JP7052207B2 - Adhesive structural member - Google Patents

Adhesive structural member Download PDF

Info

Publication number
JP7052207B2
JP7052207B2 JP2017060322A JP2017060322A JP7052207B2 JP 7052207 B2 JP7052207 B2 JP 7052207B2 JP 2017060322 A JP2017060322 A JP 2017060322A JP 2017060322 A JP2017060322 A JP 2017060322A JP 7052207 B2 JP7052207 B2 JP 7052207B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
structural member
resin molded
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017060322A
Other languages
Japanese (ja)
Other versions
JP2018161801A (en
Inventor
昌彦 長坂
健 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017060322A priority Critical patent/JP7052207B2/en
Publication of JP2018161801A publication Critical patent/JP2018161801A/en
Application granted granted Critical
Publication of JP7052207B2 publication Critical patent/JP7052207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、構造部材に関し、より詳細には、繊維強化樹脂成形体(A)と繊維強化樹脂材料(B)が接着剤を介しての一体化している構造部材に関する、更に、せん断試験をした際、破壊形態が接着剤の凝集破壊となる接着構造部材に関する。 The present invention further performs a shear test on a structural member in which the fiber-reinforced resin molded body (A) and the fiber-reinforced resin material (B) are integrated via an adhesive. The present invention relates to an adhesive structural member whose fracture form is cohesive fracture of an adhesive.

自動車の構造部材には、主に金属が使用されているが、近年、二酸化炭層排出規制強化に伴い、軽量化に伴う燃費向上に有用である樹脂部品が多く使用されている。 Metals are mainly used for structural members of automobiles, but in recent years, with the tightening of carbon dioxide layer emission regulations, many resin parts that are useful for improving fuel efficiency due to weight reduction have been used.

繊維強化樹脂成形品と金属のハイブリット構造部材や繊維強化樹脂成形品同士を接合した部品、部材は、数多く報告されているが、接合方法は、ボルトやリベットで機械的に接合する方法や、接着剤によって接着する方法、又、これらを併用する方法が知られている。 Many parts and members have been reported in which fiber-reinforced resin molded products and metal hybrid structural members and fiber-reinforced resin molded products are joined to each other. A method of adhering with an agent and a method of using these in combination are known.

しかしながら、単に繊維強化樹脂成形品同士を接着した構造部材は、接着強度が弱く、所定の特性を発現できないおそれがある。 However, a structural member in which fiber-reinforced resin molded products are simply bonded to each other has a weak adhesive strength and may not exhibit predetermined characteristics.

繊維強化樹脂成形品に表面処理を施すことにより、接着性を向上させた構造部材(例えば特許文献1)や、接着範囲の応力が集中する隅部に凹部を形成することで、接着性を向上させた構造体(例えば特許文献2)が提案されているが、繊維強化樹脂成形品と接着剤層の界面で剥離したり、繊維強化樹脂成形品の基材が破壊されたりして、十分な接着強度が得られていない。 Adhesiveness is improved by forming a structural member with improved adhesiveness (for example, Patent Document 1) by subjecting a fiber-reinforced resin molded product to a surface treatment, and by forming recesses in corners where stress is concentrated in the adhesive range. A structure (for example, Patent Document 2) has been proposed, but it is sufficient because it may be peeled off at the interface between the fiber-reinforced resin molded product and the adhesive layer, or the base material of the fiber-reinforced resin molded product may be destroyed. Adhesive strength is not obtained.

特開2011-73191号公報Japanese Unexamined Patent Publication No. 2011-73191 特開2017-1341号公報Japanese Unexamined Patent Publication No. 2017-1341

本発明は、上記のような従来技術に伴う問題点を解決しようとするものであって、繊維強化樹脂成形体(A)と繊維強化樹脂材料(B)との接着性を向上させ、優れた軽量性と高度な力学特性を有する接着構造部材を提供することにある。 The present invention is intended to solve the above-mentioned problems associated with the prior art, and is excellent in improving the adhesiveness between the fiber-reinforced resin molded body (A) and the fiber-reinforced resin material (B). It is an object of the present invention to provide an adhesive structural member having light weight and high mechanical properties.

本発明者等は、前記課題を解決すべく鋭意研究を重ねた結果、繊維強化樹脂成形品の繊維の分散性を向上させた繊維強化樹脂成形品を用いることにより、優れた軽量性と高度な力学特性を有する構造部材を提供することが出来ることを見出し、本願発明を完成するに至った。
即ち、本願発明の要旨は、以下の[1]~[10]に存する。
As a result of intensive research to solve the above problems, the present inventors have achieved excellent lightness and advanced weight by using a fiber reinforced resin molded product having improved fiber dispersibility in the fiber reinforced resin molded product. We have found that it is possible to provide a structural member having mechanical properties, and have completed the present invention.
That is, the gist of the present invention lies in the following [1] to [10].

[1] 下記繊維強化樹脂成形体(A)と下記繊維強化樹脂材料(B)が接着剤を介して一体化している構造部材。
<繊維強化樹脂成形体(A)>
強化繊維が複数本束ねられた繊維束とマトリックス樹脂とを含有する繊維強化樹脂成形体であって、前記繊維強化樹脂成形体の厚み方向に沿った切断面における、0.1mm角の単位区画あたりの前記強化繊維の繊維含有率の変動係数が40%以下であり、前記強化繊維の平均繊維長が5~100mmである繊維強化樹脂成形体。
<繊維強化樹脂材料(B)>
前記繊維強化樹脂成形体(A)、繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有する繊維強化樹脂成形体、もしくは繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有するプリプレグ。
[2] 繊維強化樹脂材料(B)が繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有する繊維強化樹脂成形体もしくは繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有するプリプレグであり、繊維強化樹脂材料の引張強度が300MPa以上である、上記[1]に記載の構造部材。
[3] 前記構造部材の23℃における引張接着せん断強度が14MPa以上である、上記[1]または[2]に記載の構造部材。
[4] 繊維強化樹脂成形体(A)中の強化繊維の繊維含有率の変動係数が10%以下である、上記[1]~[3]のいずれかに記載の構造部材。
[5] 繊維強化樹脂材料(B)中の強化繊維の繊維含有率の変動係数が10%以下である、上記[1]~[4]のいずれかに記載の構造部材。
[6] 前記接着剤の厚みが0.1以上4mm以下である、上記[1]~[5]のいずれかに記載の構造部材。
[7] 前記接着剤の厚みが0.1以上1mm以下である、上記[1]~[5]のいずれかに記載の構造部材。
[8] 前記接着剤がエポキシ系接着剤である、上記[1]~[7]いずれかに記載の構造部材。
[9] 前記繊維強化樹脂成形体(A)中の強化繊維が炭素繊維である、上記[1]~[8]のいずれかに記載の構造部材。
[10] 前記繊維強化樹脂材料(B)中の強化繊維が炭素繊維である、上記[1]~[8]のいずれかに記載の構造部材。
[1] A structural member in which the following fiber-reinforced resin molded body (A) and the following fiber-reinforced resin material (B) are integrated via an adhesive.
<Fiber reinforced resin molded body (A)>
A fiber-reinforced resin molded body containing a fiber bundle in which a plurality of reinforcing fibers are bundled and a matrix resin, and per unit section of 0.1 mm square on a cut surface along the thickness direction of the fiber-reinforced resin molded body. A fiber-reinforced resin molded body in which the fluctuation coefficient of the fiber content of the reinforcing fibers is 40% or less, and the average fiber length of the reinforcing fibers is 5 to 100 mm.
<Fiber reinforced plastic material (B)>
The fiber-reinforced resin molded body (A), a fiber-reinforced resin molded body containing reinforcing fibers having fiber directions aligned in one direction and a matrix resin, or a fiber-reinforced resin molded body containing fiber directions aligned in one direction and a matrix resin. Prepreg to do.
[2] The fiber reinforced resin material (B) contains a fiber reinforced resin molded body containing reinforced fibers having the fiber directions aligned in one direction and a matrix resin, or a reinforced fiber having the fiber directions aligned in one direction and a matrix resin. The structural member according to the above [1], which is a prepreg to be used and has a tensile strength of 300 MPa or more of the fiber reinforced resin material.
[3] The structural member according to the above [1] or [2], wherein the structural member has a tensile adhesive shear strength of 14 MPa or more at 23 ° C.
[4] The structural member according to any one of the above [1] to [3], wherein the coefficient of variation of the fiber content of the reinforced fiber in the fiber reinforced resin molded body (A) is 10% or less.
[5] The structural member according to any one of the above [1] to [4], wherein the coefficient of variation of the fiber content of the reinforcing fiber in the fiber reinforced resin material (B) is 10% or less.
[6] The structural member according to any one of the above [1] to [5], wherein the thickness of the adhesive is 0.1 or more and 4 mm or less.
[7] The structural member according to any one of [1] to [5] above, wherein the thickness of the adhesive is 0.1 or more and 1 mm or less.
[8] The structural member according to any one of the above [1] to [7], wherein the adhesive is an epoxy adhesive.
[9] The structural member according to any one of the above [1] to [8], wherein the reinforcing fiber in the fiber-reinforced resin molded body (A) is a carbon fiber.
[10] The structural member according to any one of the above [1] to [8], wherein the reinforcing fiber in the fiber reinforced resin material (B) is a carbon fiber.

本発明によれば、優れた軽量性と高度な力学特性を有する、繊維強化樹脂成形体と繊維強化樹脂材料の接着構造部材(ハイブリット構造部材)を提供することが出来る。 According to the present invention, it is possible to provide an adhesive structural member (hybrid structural member) of a fiber-reinforced resin molded body and a fiber-reinforced resin material, which has excellent lightness and high mechanical properties.

本発明の構造部材(ハイブリット構造部材)は、下記繊維強化樹脂成形体(A)と下記繊維強化樹脂材料(B)が接着剤を介して一体化している構造部材である。
<繊維強化樹脂成形体(A)>
強化繊維が複数本束ねられた繊維束とマトリックス樹脂とを含有する繊維強化樹脂成形体であって、前記繊維強化樹脂成形体の厚み方向に沿った切断面における、0.1mm角の単位区画あたりの前記強化繊維の繊維含有率の変動係数が40%以下であり、前記強化繊維の平均繊維長が5~100mmである繊維強化樹脂成形体。
<繊維強化樹脂材料(B)>
前記繊維強化樹脂成形体(A)、繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有する繊維強化樹脂成形体、もしくは繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有するプリプレグ。
The structural member (hybrid structural member) of the present invention is a structural member in which the following fiber-reinforced resin molded body (A) and the following fiber-reinforced resin material (B) are integrated via an adhesive.
<Fiber reinforced resin molded body (A)>
A fiber-reinforced resin molded body containing a fiber bundle in which a plurality of reinforcing fibers are bundled and a matrix resin, and per unit section of 0.1 mm square on a cut surface along the thickness direction of the fiber-reinforced resin molded body. A fiber-reinforced resin molded body in which the fluctuation coefficient of the fiber content of the reinforcing fibers is 40% or less, and the average fiber length of the reinforcing fibers is 5 to 100 mm.
<Fiber reinforced plastic material (B)>
The fiber-reinforced resin molded body (A), a fiber-reinforced resin molded body containing reinforcing fibers having fiber directions aligned in one direction and a matrix resin, or a fiber-reinforced resin molded body containing fiber directions aligned in one direction and a matrix resin. Prepreg to do.

本発明の構造部材(ハイブリット構造部材)は、繊維強化樹脂成形体(A)と繊維強化樹脂材料(B)との接着強度や破壊形態のバラツキが抑制される観点から、構造部材の23℃における引張接着せん断強度が14MPa以上であることが好ましい。 The structural member (hybrid structural member) of the present invention is a structural member at 23 ° C. from the viewpoint of suppressing variations in adhesive strength and fracture form between the fiber-reinforced resin molded body (A) and the fiber-reinforced resin material (B). The tensile adhesive shear strength is preferably 14 MPa or more.

(繊維強化樹脂成形体(A))
本発明の構造部材に用いることができる繊維強化樹脂成形品は、強化繊維とマトリックス樹脂とを含有する。本発明の繊維強化樹脂成形品は、例えば、複数の繊維束からなる繊維束群にマトリックス樹脂が含有された繊維強化樹脂材料(SMC)が成形されることで得られる。
(Fiber reinforced resin molded body (A))
The fiber reinforced resin molded product that can be used for the structural member of the present invention contains reinforced fibers and a matrix resin. The fiber-reinforced resin molded product of the present invention can be obtained, for example, by molding a fiber-reinforced resin material (SMC) containing a matrix resin in a fiber bundle group composed of a plurality of fiber bundles.

(マトリックス樹脂)
マトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂を用いることができる。マトリックス樹脂としては、熱硬化性樹脂のみを用いてもよく、熱可塑性樹脂のみを用いてもよく、熱硬化性樹脂と熱可塑性樹脂の両方を用いてもよい。
本発明の繊維強化樹脂成形品をSMCから製造する場合、マトリックス樹脂としては熱硬化性樹脂が好ましい。
(Matrix resin)
As the matrix resin, a thermosetting resin and a thermoplastic resin can be used. As the matrix resin, only the thermosetting resin may be used, only the thermoplastic resin may be used, or both the thermosetting resin and the thermoplastic resin may be used.
When the fiber-reinforced resin molded product of the present invention is produced from SMC, a thermosetting resin is preferable as the matrix resin.

熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、尿素性樹脂、メラミン樹脂、マレイミド樹脂、シアネート樹脂等が挙げられる。熱硬化性樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 The thermosetting resin is not particularly limited, and includes epoxy resin, phenol resin, unsaturated polyester resin, vinyl ester resin, phenoxy resin, alkyd resin, urethane resin, urea resin, melamine resin, maleimide resin, cyanate resin and the like. Can be mentioned. As the thermosetting resin, one type may be used alone, or two or more types may be used in combination.

熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリフェニレンサルファイド樹脂、ポリーエーテルケトン樹脂、ポリエーテルスルフォン樹脂、芳香族ポリアミド樹脂などが挙げられる。熱可塑性樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the thermoplastic resin include polyolefin resins, polyamide resins, polyester resins, polyphenylene sulfide resins, polyether ketone resins, polyether sulfone resins, aromatic polyamide resins and the like. As the thermoplastic resin, one type may be used alone, or two or more types may be used in combination.

(強化繊維)
本発明の繊維強化樹脂成形品に用いることができる強化繊維としては、強化繊維の種類は特に限定されず、無機繊維、有機繊維、金属繊維、またはこれらを組み合わせたハイブリッド構成の強化繊維が使用できる。無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維などが挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステルなどが挙げられる。金属繊維としては、ステンレス、鉄等の繊維を挙げられ、また金属を被覆した炭素繊維でもよい。これらの中では、最終成形物の強度等の機械特性を考慮すると、炭素繊維が好ましい。また、強化繊維の平均繊維直径は、1~50μmであることが好ましく、5~20μmであることがさらに好ましい。
(Reinforcing fiber)
The type of the reinforcing fiber that can be used in the fiber-reinforced resin molded product of the present invention is not particularly limited, and an inorganic fiber, an organic fiber, a metal fiber, or a hybrid-structured reinforcing fiber that combines these can be used. .. Examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, glass fiber and the like. Examples of the organic fiber include aramid fiber, high-density polyethylene fiber, other general nylon fiber, polyester and the like. Examples of the metal fiber include fibers such as stainless steel and iron, and carbon fiber coated with metal may also be used. Among these, carbon fiber is preferable in consideration of mechanical properties such as strength of the final molded product. The average fiber diameter of the reinforcing fibers is preferably 1 to 50 μm, more preferably 5 to 20 μm.

(炭素繊維)
炭素繊維には特に制限は無く、ポリアクリロニトリル(PAN)系、石油・石炭ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維も使用することができる。特にPANを原料としたPAN系炭素繊維が、工業規模における生産性及び機械的特性に優れており好ましい。これらは市販品として入手できる。
(Carbon fiber)
The carbon fiber is not particularly limited, and any carbon fiber such as polyacrylonitrile (PAN) type, petroleum / coal pitch type, rayon type, and lignin type can be used. In particular, PAN-based carbon fiber made from PAN is preferable because it is excellent in productivity and mechanical properties on an industrial scale. These are available as commercial products.

本発明の繊維強化樹脂成形品に用いことができる炭素繊維は、表面処理、特に電解処理されたものが好ましい。表面処理剤としては、例えば、エポキシ系サイジング剤、ウレタン系サイジング剤、ナイロン系サイジング剤、オレフィン系サイジング剤等が挙げられる。表面処理することによって、引張り強度、曲げ強度が向上するという利点が得られる。 The carbon fiber that can be used in the fiber-reinforced resin molded product of the present invention is preferably surface-treated, particularly electrolytically treated. Examples of the surface treatment agent include epoxy-based sizing agents, urethane-based sizing agents, nylon-based sizing agents, olefin-based sizing agents, and the like. The surface treatment has the advantage of improving the tensile strength and bending strength.

(繊維含有率、繊維含有率の変動係数)
本発明の繊維強化樹脂成形品(A)は、その厚みに沿った切断面における、0.1mm角の単位区画あたりの強化繊維の繊維含有率の変動係数(以下、「変動係数Q」とも言う。)が40%以下である。
(Fiber content, coefficient of variation of fiber content)
The fiber-reinforced resin molded product (A) of the present invention has a coefficient of variation of the fiber content of the reinforced fiber per unit section of 0.1 mm square on the cut surface along the thickness thereof (hereinafter, also referred to as “coefficient of variation Q”). .) Is 40% or less.

変動係数Qが40%以下であれば、繊維強化樹脂成形品(A)中で繊維が均等に分散し、樹脂リッチ部が抑制されていることで、繊維強化樹脂成形体(A)と繊維強化樹脂材料(B)との接着強度や破壊形態のバラツキが抑制される。
尚、変動係数Qは、繊維強化樹脂成形品(A)を厚み方向に沿って切断し、その切断面において、0.1mm単位区画あたりの強化繊維の繊維含有率を2000箇所について測定し、その標準偏差と平均値(以下「平均値P」という)を算出し、標準偏差を平均値Pで除した値を意味する。
When the fluctuation coefficient Q is 40% or less, the fibers are evenly dispersed in the fiber reinforced resin molded product (A) and the resin-rich portion is suppressed, so that the fiber reinforced resin molded body (A) and the fiber reinforced The adhesive strength with the resin material (B) and the variation in the fracture form are suppressed.
The coefficient of variation Q is obtained by cutting the fiber-reinforced resin molded product (A) along the thickness direction and measuring the fiber content of the reinforcing fibers per 0.1 mm unit section at 2000 points on the cut surface thereof. It means a value obtained by calculating the standard deviation and the mean value (hereinafter referred to as "mean value P") and dividing the standard deviation by the mean value P.

また、繊維強化樹脂材料(B)の変動係数も、上述の繊維強化樹脂成形品(A)の変動係数の求め方と同様にして算出することができる。 Further, the coefficient of variation of the fiber-reinforced resin material (B) can also be calculated in the same manner as the method for obtaining the coefficient of variation of the fiber-reinforced resin molded product (A) described above.

本発明に用いる繊維強化樹脂成形品(A)における変動係数Qの上限値は、40%であり、35%が好ましく、30%がより好ましく、特に好ましくは10%である。変動係数Qが上限値以下であれば、繊維強化樹脂成形体(A)と繊維強化樹脂材料(B)との接着強度や破壊形態のバラツキが抑制された、接着構造部材(ハイブリット構造部材)が得られる。 The upper limit of the coefficient of variation Q in the fiber-reinforced resin molded product (A) used in the present invention is 40%, preferably 35%, more preferably 30%, and particularly preferably 10%. When the coefficient of variation Q is equal to or less than the upper limit, the adhesive structural member (hybrid structural member) in which the adhesion strength between the fiber reinforced resin molded body (A) and the fiber reinforced resin material (B) and the variation in fracture form are suppressed is suppressed. can get.

変動係数Qには、繊維強化樹脂成形品(A)中の繊維の分散状態はもちろん、各繊維の繊維軸方向にも影響する。具体的に、例えば断面形状が円形状の繊維束の場合、該繊維束の繊維軸方向に対する切断面の角度が90°であれば、該切断面における繊維束の断面形状は円形状となる。一方、該繊維束の繊維軸方向に対する切断面の角度が90°よりも小さいと、該切断面における繊維束の断面形状が楕円形状となる。このように、各繊維束の繊維軸方向が変わると、各単位区画あたりの繊維束の断面形状が変わることで、その繊維束の断面に占める割合が変化するため、変動係数Qに影響する。 The coefficient of variation Q affects not only the dispersed state of the fibers in the fiber-reinforced resin molded product (A) but also the fiber axial direction of each fiber. Specifically, for example, in the case of a fiber bundle having a circular cross-sectional shape, if the angle of the cut surface of the fiber bundle with respect to the fiber axis direction is 90 °, the cross-sectional shape of the fiber bundle on the cut surface is circular. On the other hand, when the angle of the cut surface of the fiber bundle with respect to the fiber axis direction is smaller than 90 °, the cross-sectional shape of the fiber bundle on the cut surface becomes elliptical. As described above, when the fiber axis direction of each fiber bundle changes, the cross-sectional shape of the fiber bundle in each unit section changes, and the ratio of the fiber bundle to the cross section changes, which affects the coefficient of variation Q.

変動係数Qは小さいほど、繊維強化樹脂成形品(A)中で各繊維がより均等に分散していることを示す。しかし、変動係数Qがゼロに近いほど、各単位区画あたりの繊維束の断面形状の変化が小さい状態、即ち繊維強化樹脂成形品(A)中で各繊維束の繊維軸方向が揃った状態になっている。
繊維強化樹脂材料成形品(A)と繊維強化樹脂材料(B)との接着強度や破壊形態のバラツキを抑制するには、各繊維の繊維方向がランダムになっていることが好ましい。このことから、変動係数Qの下限値は、10%が好ましく、12%が好ましく、15%がより好ましい。変動係数Qが下限値以上であれば、繊維強化樹脂成形体(A)と繊維強化樹脂材料(B)との接着強度や破壊形態のバラツキが抑制された、接着構造部材が得られる。
The smaller the coefficient of variation Q is, the more evenly the fibers are dispersed in the fiber-reinforced resin molded product (A). However, the closer the coefficient of variation Q is to zero, the smaller the change in the cross-sectional shape of the fiber bundle per unit section is, that is, the fiber axial direction of each fiber bundle is aligned in the fiber reinforced resin molded product (A). It has become.
In order to suppress variations in the adhesive strength and the fracture form between the fiber-reinforced resin material molded product (A) and the fiber-reinforced resin material (B), it is preferable that the fiber direction of each fiber is random. From this, the lower limit of the coefficient of variation Q is preferably 10%, preferably 12%, and more preferably 15%. When the coefficient of variation Q is at least the lower limit value, an adhesive structural member in which the adhesive strength between the fiber reinforced resin molded body (A) and the fiber reinforced resin material (B) and the variation in fracture form are suppressed can be obtained.

本発明で用いることができる繊維強化樹脂成形体(A)中の強化繊維の平均繊維長は、5~100mmが好ましく、20~60mmがより好ましい。繊維強化樹脂成形品の平均繊維長が前記下限値以上であれば、物性に優れた繊維強化樹脂成形品(A)が得られるため、より軽量性と物性のバランスに優れた繊維強化樹脂成形体(A)と繊維強化樹脂材料(B)の接着構造部材(ハイブリット構造部材)が得られ、前記上限値以下であれば、成形時に繊維強化樹脂材料がより流動しやすくなるため、成形が容易になる。 The average fiber length of the reinforcing fibers in the fiber-reinforced resin molded body (A) that can be used in the present invention is preferably 5 to 100 mm, more preferably 20 to 60 mm. If the average fiber length of the fiber-reinforced resin molded product is at least the above lower limit value, the fiber-reinforced resin molded product (A) having excellent physical properties can be obtained, so that the fiber-reinforced resin molded product has an excellent balance between lightness and physical properties. An adhesive structural member (hybrid structural member) between (A) and the fiber reinforced resin material (B) can be obtained, and if it is equal to or less than the upper limit, the fiber reinforced resin material is more likely to flow during molding, so that molding is easy. Become.

(繊維強化樹脂材料(B))
本発明で用いることの出来る繊維強化樹脂材料(B)は、(i)前記繊維強化樹脂成形体(A)と同じもの、(ii)繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有する繊維強化樹脂成形体、もしくは(iii)繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有するプリプレグである。それ以外の繊維強化樹脂材医療であれば、接着強度や破壊形態のバラツキがあり、接着構造部材の品質保証や、該品質を満たすための接着構造部材の設計等が困難である。
(Fiber reinforced plastic material (B))
The fiber-reinforced resin material (B) that can be used in the present invention is (i) the same as the fiber-reinforced resin molded body (A), and (ii) the fiber and the matrix resin in which the fiber directions are aligned in one direction. It is a fiber reinforced resin molded body contained, or (iii) a prepreg containing reinforced fibers having the fiber directions aligned in one direction and a matrix resin. In the case of other fiber-reinforced resin material medical treatment, there are variations in adhesive strength and fracture form, and it is difficult to guarantee the quality of the adhesive structural member and to design the adhesive structural member to satisfy the quality.

繊維強化樹脂材料(B)が(ii)繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有する繊維強化樹脂成形体もしくは(iii)繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有するプリプレグである場合、繊維強化樹脂材料(B)は引張強度が300MPa以上であることが好ましい。それ以下の繊維強化樹脂成形体であれば、接着強度や破壊形態のバラツキがあり、接着構造部材の品質保証や、該品質を満たすための接着構造部材の設計等が困難である。 The fiber reinforced resin material (B) is a fiber reinforced resin molded body containing (ii) a reinforced fiber having a unidirectional fiber direction and a matrix resin, or (iii) a reinforced fiber and a matrix resin having a unidirectional fiber direction. In the case of a prepreg containing the above, the fiber reinforced resin material (B) preferably has a tensile strength of 300 MPa or more. If the fiber-reinforced resin molded body is less than that, there are variations in the adhesive strength and the fracture form, and it is difficult to guarantee the quality of the adhesive structural member and to design the adhesive structural member to satisfy the quality.

繊維強化樹脂材料(B)を構成する強化繊維としては、繊維強化樹脂成形体(A)の説明部分で挙げた前述の強化繊維と同様のものが挙げられ、最終成形物の強度等の機械特性を考慮すると、炭素繊維が好ましい。また、繊維強化樹脂材料(B)を構成するマトリックス樹脂としては、繊維強化樹脂成形体(A)の説明部分で挙げた前述のマトリックス樹脂と同様のものが挙げられる。 Examples of the reinforcing fibers constituting the fiber-reinforced resin material (B) include the same as the above-mentioned reinforcing fibers mentioned in the explanation part of the fiber-reinforced resin molded body (A), and mechanical properties such as strength of the final molded product. Considering the above, carbon fiber is preferable. Further, as the matrix resin constituting the fiber reinforced resin material (B), the same as the above-mentioned matrix resin mentioned in the explanatory portion of the fiber reinforced resin molded body (A) can be mentioned.

最終成形物の強度等の機械特性を考慮すると、繊維強化樹脂材料(B)中の強化繊維の繊維含有率の変動係数は、10%以下であることが好ましい。 Considering the mechanical properties such as the strength of the final molded product, the coefficient of variation of the fiber content of the reinforcing fibers in the fiber reinforced resin material (B) is preferably 10% or less.

(接着剤)
本発明に用いられる接着剤としては、例えば、酢酸ビニル系、ポリビニールアルコール系、ポリアセタール系、塩化ビニール系、アクリル系、ポリエチレン系、セルロース系、ユリア系、レゾルシノール系、メラミン系、フェノール系(ノボラック、水溶性)、エポキシ系、ポリウレタン系、ポリエステル系、ポリイミド系、ポリアロマチック系、クロロブレン系、ニトリルゴム系、SBR系、ポリサルファイド系、ブチルゴム系、シリコーンゴム系、エポキシ-ナイロン系、フェノール-ニトリル系、エポキシ-ニトリル系、エポキシ-フェノール系等が挙げられる。
(glue)
Examples of the adhesive used in the present invention include vinyl acetate, polyvinyl alcohol, polyacetal, vinyl chloride, acrylic, polyethylene, cellulose, urea, resorcinol, melamine, and phenol (Novolak). , Water-soluble), epoxy-based, polyurethane-based, polyester-based, polyimide-based, polyaromatic-based, chlorobrene-based, nitrile rubber-based, SBR-based, polysulfide-based, butyl rubber-based, silicone rubber-based, epoxy-nylon-based, phenol-nitrile Examples include system, epoxy-nitrile system, epoxy-phenol system and the like.

本発明で用いることができる接着剤の厚みは、0.1~4mmが好ましく、0.1~1mmがより好ましい。接着層の厚みが前記下限値以下であれば、構造部材に必要な耐疲労性が得られず、前記上限値以上であれば、構造部材に必要な耐衝撃性等の物性が得られない。 The thickness of the adhesive that can be used in the present invention is preferably 0.1 to 4 mm, more preferably 0.1 to 1 mm. If the thickness of the adhesive layer is not less than the lower limit value, the fatigue resistance required for the structural member cannot be obtained, and if it is more than the upper limit value, the physical properties such as impact resistance required for the structural member cannot be obtained.

(繊維強化樹脂成形品(A)と繊維強化樹脂材料(B)との構造部材の製造方法)
接着構造部材は、繊維強化樹脂成形体(A)に接着剤を塗布し、繊維強化樹脂材料(B)と重なるように貼り合せて、接着剤の使用法に応じて、室温もしくは適宜高温で加熱して接着剤を固化させ得られる。
(Manufacturing method of structural member of fiber reinforced resin molded product (A) and fiber reinforced resin material (B))
For the adhesive structural member, an adhesive is applied to the fiber-reinforced resin molded body (A), bonded so as to overlap the fiber-reinforced resin material (B), and heated at room temperature or an appropriate high temperature depending on the usage of the adhesive. It is obtained by solidifying the adhesive.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the inventions described in the Examples.

(繊維含有率平均値Pと繊維含有率変動係数Q)
実施例及び比較例の繊維強化樹脂成形品を厚み方向に切断し、その切断面が覆われるように切断面をメタクリル樹脂(製品名「テクノビット4004」、ヘレウス社製)で包埋した後、研磨を行って切断面を露出させた。次いで、切断面を光学顕微鏡(製品名「BX51M」、オリンパス社製)により、倍率100倍にて撮像した。切断面の画像を、画像処理ソフト(製品名「Winroof2015、三谷商事社製」により、0.1mm角の単位区画に分割した後、輝度の闘値を136として二値化処理を行って繊維とマトリックス樹脂とを区別した。次いで、2000箇所の単位区画のそれぞれについて、単位区画の面積に対して輝度が闘値以上である領域(繊維が占める領域)の面積が占める割合を測定し、繊維含有率を求めた。次いで、2000箇所の単位区画についての繊維含有率の平均値(平均値P)と標準偏差を算出し、標準偏差を平均値Pで除して変動係数Qを算出した。
(Fiber content average value P and fiber content coefficient of variation Q)
After cutting the fiber-reinforced resin molded products of Examples and Comparative Examples in the thickness direction and embedding the cut surface with methacrylic resin (product name "Technobit 4004", manufactured by Heraeus) so that the cut surface is covered. Polishing was performed to expose the cut surface. Next, the cut surface was imaged with an optical microscope (product name "BX51M", manufactured by Olympus Corporation) at a magnification of 100 times. The image of the cut surface is divided into 0.1 mm square unit sections by image processing software (product name "Winroom 2015, manufactured by Mitani Shoji Co., Ltd.", and then binarized with the luminance fighting value set to 136 to obtain fibers. Distinguished from the matrix resin. Next, for each of the 2000 unit compartments, the ratio of the area occupied by the region (the region occupied by the fibers) whose brightness was equal to or higher than the fighting value was measured with respect to the area of the unit compartment, and the fiber content was measured. Next, the average value (average value P) and the standard deviation of the fiber content for 2000 unit sections were calculated, and the standard deviation was divided by the average value P to calculate the variation coefficient Q.

(接着強度の測定法)
実施例及び比較例の繊維強化樹脂成形品(A)(長さ100mm×幅25mm×厚さ2mm)の先端部に接着剤を塗布し、繊維強化樹脂材料(B)(長さ100mm×幅25mm×厚さ2mm)の先端部へ重なるよう貼り合せて、重ねた上から1kgのおもりをのせ、140℃1時間加熱硬化させて、繊維強化樹脂成形品(A)と繊維硬化樹脂材料(B)とが接着した構造部材(ハイブリット構造部材)を得て試験片とした。
(Measurement method of adhesive strength)
An adhesive is applied to the tips of the fiber-reinforced resin molded products (A) (length 100 mm × width 25 mm × thickness 2 mm) of Examples and Comparative Examples, and the fiber-reinforced resin material (B) (length 100 mm × width 25 mm) is applied. × 2 mm thick), pasted together so that they overlap, put 1 kg of weight on top of each other, and heat-cured at 140 ° C for 1 hour to form a fiber-reinforced resin molded product (A) and a fiber-cured resin material (B). A structural member (hybrid structural member) adhered to and was obtained and used as a test piece.

この試験片の両端を機械名で固定して、室温で速度5mm/minで引張り、せん断強度を測定及び破壊形態を観察した。尚、せん断強度が10MPa以上で、破壊形態が接着剤の凝集破壊○、せん断強度が10MPa以下で、破壊形態が接着剤の凝集破壊△、破壊形態が繊維強化樹脂成形品の基材破壊もしくは繊維強化樹脂成形品(A)と繊維強化樹脂材料(B)との界面で剥離が起こっている場合×とした。 Both ends of this test piece were fixed by the machine name, pulled at a speed of 5 mm / min at room temperature, the shear strength was measured, and the fracture morphology was observed. It should be noted that the shear strength is 10 MPa or more and the fracture form is the cohesive failure of the adhesive ○, the shear strength is 10 MPa or less and the fracture form is the cohesive failure of the adhesive Δ, and the fracture form is the substrate destruction or fiber of the fiber reinforced resin molded product. When peeling occurred at the interface between the reinforced resin molded product (A) and the fiber reinforced resin material (B), it was marked as x.

(実施例1)
繊維として(商品名「TR50S15L」、三菱レイヨン社製)を使用した。
熱硬化性樹脂であるエポキシアクリレート樹脂(製品名:ネオポール8051、日本ユピカ社製)100質量部に対して、硬化剤として1,1-ジ(t-ブチルペルオキシ)シクロヘキサンの75%溶液(製品名:パーヘキサC-75、日本油脂社製)0.5質量部と、t-ブチルパーオキシイソプロピルカーボネートの74%溶液(製品名:カヤカルボンBIC-75、化薬アクゾ社製)0.5質量部とを添加し、内部離型剤として、リン酸エステル系誘導体組成物(製品名:MOLD WIZ INT-EQ-6、アクセルプラスチックリサーチラボらトリー社製)0.35質量部を添加し、増粘剤として、変性ジフェニルメタンジイソシアネート(製品名:コスモネートLL、三井化学社製)15.5質量部を添加し、安定剤として、1.4-ベンゾキノン、和光純薬工業社製)0.02質量部を添加して、これらを十分に混合撹拌してマトリックス樹脂を含むペーストを得た。
(Example 1)
(Product name "TR50S15L", manufactured by Mitsubishi Rayon Co., Ltd.) was used as the fiber.
A 75% solution of 1,1-di (t-butylperoxy) cyclohexane as a curing agent to 100 parts by mass of an epoxy acrylate resin (product name: Neopol 8051, manufactured by Iupica Japan), which is a thermosetting resin (product name). : Perhexa C-75, manufactured by Nippon Oil & Fats Co., Ltd.) 0.5 parts by mass and 74% solution of t-butylperoxyisopropyl carbonate (product name: Kayacarboxyl BIC-75, manufactured by Kayaku Akuzo Co., Ltd.) 0.5 parts by mass As an internal release agent, 0.35 part by mass of a phosphate ester derivative composition (product name: MOLD WIZ INT-EQ-6, manufactured by Axel Plastic Research Lab et al., Tory Co., Ltd.) was added, and a thickener was added. As a stabilizer, 15.5 parts by mass of modified diphenylmethane diisocyanate (product name: Cosmonate LL, manufactured by Mitsui Kagaku Co., Ltd.) was added, and as a stabilizer, 1.4-benzoquinone, manufactured by Wako Pure Chemical Industries, Ltd., 0.02 parts by mass was added. After addition, these were sufficiently mixed and stirred to obtain a paste containing a matrix resin.

搬送している第1キャリアシート上に前記ペーストを塗工して厚み0.45mmの第1樹脂シートを形成した。又、開繊及び分繊を行った厚み0.05mm、幅7.5mmの炭素繊維束を裁断機で裁断し、平均繊維長が50.8mmのチョップド繊維束として落下させ、厚み1.3mmのシート状繊維束群を形成した。第1樹脂シートと裁断機の間には、直径3mmの断面円形状の複数の傾斜コームを第1樹脂シートの走行方向と平行するように並べて配置した。傾斜コームの第1樹脂シートからの高さは400mm、隣り合う傾斜コームの間隔は65mm、傾斜コームの水平方向に対数傾斜角度を15°とした。ライン速度は1.5m/分とした。 The paste was applied onto the conveyed first carrier sheet to form a first resin sheet having a thickness of 0.45 mm. Further, a carbon fiber bundle having a thickness of 0.05 mm and a width of 7.5 mm, which had been opened and separated, was cut with a cutting machine and dropped as a chopped fiber bundle having an average fiber length of 50.8 mm to have a thickness of 1.3 mm. A sheet-like fiber bundle group was formed. A plurality of inclined combs having a circular cross section with a diameter of 3 mm were arranged side by side between the first resin sheet and the cutting machine so as to be parallel to the traveling direction of the first resin sheet. The height of the inclined comb from the first resin sheet was 400 mm, the distance between adjacent inclined combs was 65 mm, and the logarithmic inclination angle in the horizontal direction of the inclined comb was 15 °. The line speed was 1.5 m / min.

第1キャリアシートの上方で、第1キャリアシートの逆方向に搬送している第2キャリアシート上の前記ペーストを塗工して厚み0.45mmの第2樹脂シートを形成し、搬送方向を反転させて第2樹脂シートを前記シート状繊維束群の上に貼り合せて積層した。さらに、第1樹脂シート、シート状繊維束群及び第2樹脂シートの積層体に対して、予備含浸と本含浸を行い、厚み2mmのシート状の繊維強化樹脂材料を得た。予備含浸は、ロール外周面に円柱状の凸部(凸部の高さ:3mm、凸部の先端部の面積:38mm2、凸部のピッチ:8mm)が千鳥状に設けられた凹凸ロールと、平面ロールとを組み合わせた5対のロールによって行った。本含浸は11対の平面ロールより行った。 Above the first carrier sheet, the paste on the second carrier sheet being conveyed in the opposite direction of the first carrier sheet is applied to form a second resin sheet having a thickness of 0.45 mm, and the conveying direction is reversed. Then, the second resin sheet was laminated on the sheet-shaped fiber bundle group. Further, the first resin sheet, the sheet-shaped fiber bundle group, and the laminated body of the second resin sheet were pre-impregnated and main-impregnated to obtain a sheet-shaped fiber-reinforced resin material having a thickness of 2 mm. Preliminary impregnation includes a concavo-convex roll in which columnar convex portions (height of the convex portion: 3 mm, area of the tip of the convex portion: 38 mm2, pitch of the convex portion: 8 mm) are provided in a staggered manner on the outer peripheral surface of the roll. This was done with 5 pairs of rolls in combination with planar rolls. This impregnation was performed from 11 pairs of flat rolls.

得られた繊維強化樹脂材料を25±5℃の温度で1週間養生したものを250mm×250mmに切断し、端部に嵌合号を有するパネル成形用金型(300mm×300mm×2mm、表面クロムメッキ仕上げ)に、製造装置での繊維強化樹脂材料の搬送方向(MD方向)を揃えて、2枚(合計およそ156g)を金型中央に投入した。そして、金型内で繊維強化樹脂材料を140℃、8MPa、5分の条件で加熱加圧し、繊維強化樹脂成形体(A)を得た。得られた繊維強化樹脂成形品(A)の繊維含有率Pは55.7%、繊維含有率変動係数Qは26.1%であった。 The obtained fiber-reinforced resin material was cured at a temperature of 25 ± 5 ° C. for 1 week, cut into 250 mm × 250 mm, and a panel molding die (300 mm × 300 mm × 2 mm, surface chrome) having a fitting number at the end. For the plating finish), the transport direction (MD direction) of the fiber reinforced resin material in the manufacturing apparatus was aligned, and two sheets (a total of about 156 g) were put into the center of the mold. Then, the fiber-reinforced resin material was heated and pressed in the mold under the conditions of 140 ° C., 8 MPa, and 5 minutes to obtain a fiber-reinforced resin molded product (A). The fiber content P of the obtained fiber-reinforced resin molded product (A) was 55.7%, and the fiber content coefficient of variation Q was 26.1%.

次に得られた繊維強化樹脂成形体(A)を長さ100mm×幅25mmに切出し、先端部から12.5mm×幅25mmの面積にIW2190(3M社製エポキシ系接着剤)を塗布し、繊維強化樹脂材料(B)として繊維強化樹脂成形体(A)と同じ成形体を(長さ100mm×幅25mm×厚さ2mm)の先端部へ重なるよう貼り合せて、重ねた上から1kgのおもりをのせ、140℃1時間加熱硬化させて、接着構造部材を得て、試験片とした。 Next, the obtained fiber-reinforced resin molded body (A) was cut into a length of 100 mm × a width of 25 mm, and IW2190 (an epoxy adhesive manufactured by 3M) was applied to an area of 12.5 mm × a width of 25 mm from the tip portion to form a fiber. As the reinforced resin material (B), the same molded body as the fiber reinforced resin molded body (A) is bonded to the tip of the (length 100 mm × width 25 mm × thickness 2 mm) so as to overlap, and a weight of 1 kg is placed on top of the layers. It was placed and cured by heating at 140 ° C. for 1 hour to obtain an adhesive structural member, which was used as a test piece.

(実施例2)
繊維強化樹脂成形体(A)は、実施例1と同じ方法にて作製した。
(Example 2)
The fiber-reinforced resin molded body (A) was produced by the same method as in Example 1.

(繊維強化樹脂材料(B)の製造)
所定のプリプレグ(三菱レイヨン社製:商品名:TR3523-366G:樹脂含有率40%)を経糸の繊維方向が[0°/90°]s2となるように10プライ積層して、上型と下型からなる、予め140℃に温度調節された金属製の金型(300mm×300mm×2mm)の下型に上記積層基材を配置し、次いで、上型及び下型を閉じて、金型温度を保ったまま、成形圧力8MPa、成形時間10分の条件で加圧成形した。その後型を開き、繊維強化樹脂材料(B)を得た。
(Manufacturing of fiber reinforced resin material (B))
A predetermined prepreg (manufactured by Mitsubishi Rayon Co., Ltd .: trade name: TR3523-366G: resin content 40%) is laminated with 10 plies so that the fiber direction of the warp is [0 ° / 90 °] s2, and the upper die and the lower die are laminated. The laminated base material is placed on a lower mold (300 mm × 300 mm × 2 mm) of a metal mold (300 mm × 300 mm × 2 mm) whose temperature has been adjusted to 140 ° C. in advance, and then the upper and lower molds are closed to close the mold temperature. Pressure molding was performed under the conditions of a molding pressure of 8 MPa and a molding time of 10 minutes. After that, the mold was opened to obtain a fiber reinforced resin material (B).

実施例1と同様の方法で接着構造部材を得て、試験片とした。 An adhesive structural member was obtained in the same manner as in Example 1 and used as a test piece.

(比較例1)
繊維強化樹脂材料としてSTR120N131-KA6N(三菱レイヨン社製)を使用し、厚み2mmの25cm角の試験片を2枚切出して重ね、プレス成形して30cm角の板上の繊維強化樹脂成形品を得た。得られた繊維強化樹脂成形体(A)の繊維含有率の平均値Pは44.2%、変動係数Qは47.1%であった。
(Comparative Example 1)
Using STR120N131-KA6N (manufactured by Mitsubishi Rayon) as a fiber reinforced resin material, two 25 cm square test pieces with a thickness of 2 mm are cut out, stacked, and press-molded to obtain a fiber reinforced resin molded product on a 30 cm square plate. rice field. The average value P of the fiber content of the obtained fiber-reinforced resin molded product (A) was 44.2%, and the coefficient of variation Q was 47.1%.

実施例1と同様の方法で繊維強化樹脂成形体(A)と、繊維強化樹脂材料(B)繊維強化樹脂成形体(A)と同じものを使用して、接着構造部材を得て、試験片とした。 Using the same fiber-reinforced resin molded body (A) and fiber-reinforced resin material (B) fiber-reinforced resin molded body (A) in the same manner as in Example 1, an adhesive structural member was obtained, and a test piece was obtained. And said.

Figure 0007052207000001
表1より明らかなように、実施例1及び2は、せん断強度が高く、破壊形態も良好であった。
Figure 0007052207000001
As is clear from Table 1, in Examples 1 and 2, the shear strength was high and the fracture mode was also good.

本発明の繊維強化樹脂成形体(A)と繊維強化樹脂材料(B)が接着剤を介しての一体化している構造部材(ハイブリット構造部材)は、接着強度及び破壊形態に優れるため、航空機部材、自動車部材、スポーツ用具等に広い分野で利用可能である。 The structural member (hybrid structural member) in which the fiber-reinforced resin molded body (A) and the fiber-reinforced resin material (B) of the present invention are integrated via an adhesive has excellent adhesive strength and fracture form, and thus is an aircraft member. It can be used in a wide range of fields such as automobile parts and sports equipment.

Claims (10)

下記繊維強化樹脂成形体(A)と下記繊維強化樹脂材料(B)が接着剤を介して一体化している構造部材。
<繊維強化樹脂成形体(A)>
強化繊維が複数本束ねられた繊維束とマトリックス樹脂とを含有する繊維強化樹脂成形体であって、前記繊維強化樹脂成形体の厚み方向に沿った切断面における、0.1mm角の単位区画あたりの前記強化繊維の繊維含有率の変動係数が40%以下であり、前記強化繊維の平均繊維長が5~100mmである繊維強化樹脂成形体。
<繊維強化樹脂材料(B)>
前記繊維強化樹脂成形体(A)、繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有する繊維強化樹脂成形体、もしくは繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有するプリプレグ。
A structural member in which the following fiber-reinforced resin molded body (A) and the following fiber-reinforced resin material (B) are integrated via an adhesive.
<Fiber reinforced resin molded body (A)>
A fiber-reinforced resin molded body containing a fiber bundle in which a plurality of reinforcing fibers are bundled and a matrix resin, and per unit section of 0.1 mm square on a cut surface along the thickness direction of the fiber-reinforced resin molded body. A fiber-reinforced resin molded body in which the fluctuation coefficient of the fiber content of the reinforcing fibers is 40% or less, and the average fiber length of the reinforcing fibers is 5 to 100 mm.
<Fiber reinforced plastic material (B)>
The fiber-reinforced resin molded body (A), a fiber-reinforced resin molded body containing reinforcing fibers having fiber directions aligned in one direction and a matrix resin, or a fiber-reinforced resin molded body containing fiber directions aligned in one direction and a matrix resin. Prepreg to do.
繊維強化樹脂材料(B)が繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有する繊維強化樹脂成形体もしくは繊維方向が一方向にそろった強化繊維とマトリックス樹脂とを含有するプリプレグであり、繊維強化樹脂材料の引張強度が300MPa以上である、請求項1に記載の構造部材。 The fiber reinforced resin material (B) is a fiber reinforced resin molded body containing reinforced fibers having the fiber directions aligned in one direction and a matrix resin, or a prepreg containing reinforced fibers having the fiber directions aligned in one direction and a matrix resin. The structural member according to claim 1, wherein the fiber-reinforced resin material has a tensile strength of 300 MPa or more. 前記構造部材の23℃における引張接着せん断強度が14MPa以上である、請求項1または2に記載のハイブリット構造部材。 The hybrid structural member according to claim 1 or 2, wherein the structural member has a tensile adhesive shear strength of 14 MPa or more at 23 ° C. 前記繊維強化樹脂成形体(A)中の強化繊維の繊維含有率の変動係数が15%以上30%以下である、請求項1~3のいずれか一項に記載の構造部材。 The structural member according to any one of claims 1 to 3, wherein the coefficient of variation of the fiber content of the reinforcing fibers in the fiber-reinforced resin molded body (A) is 15% or more and 30% or less. 前記繊維強化樹脂材料(A)の前記強化繊維の平均繊維長が20~60mmであり、SMCが成形されたものである、請求項1~4のいずれか一項に記載の構造部材。 The structural member according to any one of claims 1 to 4, wherein the fiber-reinforced resin material (A) has an average fiber length of 20 to 60 mm and is formed by SMC. 前記繊維強化樹脂材料(A)および前記繊維強化樹脂材料(B)のマトリックス樹脂が熱硬化性樹脂を含む、請求項1~5のいずれか一項に記載の構造部材。 The structural member according to any one of claims 1 to 5 , wherein the matrix resin of the fiber reinforced resin material (A) and the fiber reinforced resin material (B) contains a thermosetting resin . 前記接着剤の厚みが0.1以上1mm以下である、請求項1~5のいずれか一項に記載の構造部材。 The structural member according to any one of claims 1 to 5, wherein the thickness of the adhesive is 0.1 or more and 1 mm or less. 前記接着剤がエポキシ系接着剤である、請求項1~7のいずれか一項に記載の構造部材。 The structural member according to any one of claims 1 to 7, wherein the adhesive is an epoxy-based adhesive. 前記繊維強化樹脂成形体(A)中の強化繊維が炭素繊維である、請求項1~8のいずれか一項に記載の構造部材。 The structural member according to any one of claims 1 to 8, wherein the reinforcing fiber in the fiber-reinforced resin molded body (A) is a carbon fiber. 前記繊維強化樹脂材料(B)中の強化繊維が炭素繊維である、請求項1~8のいずれか一項に記載の構造部材。 The structural member according to any one of claims 1 to 8, wherein the reinforcing fiber in the fiber-reinforced resin material (B) is carbon fiber.
JP2017060322A 2017-03-27 2017-03-27 Adhesive structural member Active JP7052207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060322A JP7052207B2 (en) 2017-03-27 2017-03-27 Adhesive structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060322A JP7052207B2 (en) 2017-03-27 2017-03-27 Adhesive structural member

Publications (2)

Publication Number Publication Date
JP2018161801A JP2018161801A (en) 2018-10-18
JP7052207B2 true JP7052207B2 (en) 2022-04-12

Family

ID=63859607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060322A Active JP7052207B2 (en) 2017-03-27 2017-03-27 Adhesive structural member

Country Status (1)

Country Link
JP (1) JP7052207B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974141A4 (en) 2019-05-23 2023-06-21 Toray Industries, Inc. Prepreg, layered body, and molded article
EP3974466A4 (en) 2019-05-23 2023-06-07 Toray Industries, Inc. Prepreg, laminate, and molded article
WO2020235484A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Prepreg, laminate, and molded article
CN113840723A (en) 2019-05-23 2021-12-24 东丽株式会社 Prepreg, laminate, and molded article
JPWO2020235487A1 (en) 2019-05-23 2020-11-26
TW202132438A (en) 2019-12-11 2021-09-01 日商東麗股份有限公司 Prepreg, laminate and integrated molded article
US20230001651A1 (en) 2019-12-11 2023-01-05 Toray Industries, Inc. Prepreg, laminate, and integrated product
EP4074766A4 (en) * 2019-12-11 2023-12-27 Toray Industries, Inc. Prepreg, laminate and integrated molded article
CN114829097B (en) 2019-12-23 2024-05-03 东丽株式会社 Prepreg, molded body, and integrated molded body
WO2021131382A1 (en) * 2019-12-23 2021-07-01 東レ株式会社 Composite prepreg and fiber-reinforced resin molded product
CN115427225A (en) 2020-03-31 2022-12-02 东丽株式会社 Fiber-reinforced resin, integrated molded article, and method for producing fiber-reinforced resin
EP4282644A1 (en) 2021-01-21 2023-11-29 Toray Industries, Inc. Prepreg, molded article, and integrally molded article
WO2022158222A1 (en) 2021-01-21 2022-07-28 東レ株式会社 Prepreg, molded article, and integrally molded article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297417A (en) 2004-04-14 2005-10-27 Toray Ind Inc Industrial structure member and its manufacturing method
JP2006198784A (en) 2005-01-18 2006-08-03 Toray Ind Inc Fiber reinforced composite material and its manufacturing method
JP2010253937A (en) 2009-03-31 2010-11-11 Toray Ind Inc Integrally molded product
JP2016501145A (en) 2012-11-26 2016-01-18 サイテク・インダストリーズ・インコーポレーテツド Composite bonding
JP2016107485A (en) 2014-12-05 2016-06-20 東レ株式会社 Composite molding, and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297417A (en) 2004-04-14 2005-10-27 Toray Ind Inc Industrial structure member and its manufacturing method
JP2006198784A (en) 2005-01-18 2006-08-03 Toray Ind Inc Fiber reinforced composite material and its manufacturing method
JP2010253937A (en) 2009-03-31 2010-11-11 Toray Ind Inc Integrally molded product
JP2016501145A (en) 2012-11-26 2016-01-18 サイテク・インダストリーズ・インコーポレーテツド Composite bonding
JP2016107485A (en) 2014-12-05 2016-06-20 東レ株式会社 Composite molding, and production method thereof

Also Published As

Publication number Publication date
JP2018161801A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP7052207B2 (en) Adhesive structural member
US11135825B2 (en) Metal/fiber-reinforced resin material composite body and method for producing same
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
US9890483B2 (en) Fiber-reinforced composite material and method for manufacturing the same
EP2974842B1 (en) Layered substrate and method for manufacturing same
EP3168257B1 (en) Pseudo-isotropic reinforced sheet material and method for producing same
JP2009062474A (en) Molding material, fiber-reinforced plastic, and manufacturing method for them
WO2009142291A1 (en) Molded fiber-reinforced thermoplastic resin
JP2009114611A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
JP2009114612A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
JP2013202890A (en) Molding material and method of manufacturing the same
JP2018080347A (en) Fiber-reinforced resin material molded body, method for producing fiber-reinforced resin material molded body and method for producing fiber-reinforced resin material
JP2013199011A (en) Wear resistant and heat resistant fiber-reinforced composite material and method for producing the same
JP2010030193A (en) Method for manufacturing fiber-reinforced plastic
JP7047755B2 (en) Fiber reinforced plastic sheet
CN110505958B (en) Fiber-reinforced composite material molded article and method for producing same
EP3950283A1 (en) Fiber-reinforced resin molding material molded product and method for producing same
JP7005917B2 (en) Hybrid structural member of fiber reinforced plastic molded product and metal
JP2008208343A (en) Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate
JP2015028140A (en) Matrix material
JP2005161852A (en) Metal/fiber-reinforced plastic composite material, and its production method
EP3388215A1 (en) Sandwich panel, method for producing unidirectional prepreg, and method for producing sandwich panel
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
KR20210083259A (en) Fiber-reinforced resin molding material and molded article thereof
JPH11256489A (en) Bowed guide plate in strander and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R151 Written notification of patent or utility model registration

Ref document number: 7052207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151