JP7039396B2 - Reactor and nuclear power generation equipment - Google Patents

Reactor and nuclear power generation equipment Download PDF

Info

Publication number
JP7039396B2
JP7039396B2 JP2018115469A JP2018115469A JP7039396B2 JP 7039396 B2 JP7039396 B2 JP 7039396B2 JP 2018115469 A JP2018115469 A JP 2018115469A JP 2018115469 A JP2018115469 A JP 2018115469A JP 7039396 B2 JP7039396 B2 JP 7039396B2
Authority
JP
Japan
Prior art keywords
reactor
power generation
heat
heat pipe
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018115469A
Other languages
Japanese (ja)
Other versions
JP2019219223A (en
Inventor
英樹 堀江
礼 木村
卓也 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018115469A priority Critical patent/JP7039396B2/en
Publication of JP2019219223A publication Critical patent/JP2019219223A/en
Application granted granted Critical
Publication of JP7039396B2 publication Critical patent/JP7039396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明の実施形態は、ヒートパイプを備えた原子炉、及びこの原子炉を有する原子力発電装置に関する。 Embodiments of the present invention relate to a nuclear reactor provided with a heat pipe and a nuclear power generation device having the nuclear reactor.

月面や火星表面に建設される基地の電源、あるいは地上でも人口の少ない離島等の地域における分散電源として、小型原子炉の適用が考えられている。上述のような設置場所では、人手を極力介したくないため、冷却材の循環方式として一般的なポンプの使用の回避が検討されている。そこで、作動流体の気化熱を利用して発熱体を冷却する熱輸送装置としてのヒートパイプの適用が考えられる。 The application of small nuclear reactors is being considered as a power source for bases constructed on the surface of the moon and Mars, or as a distributed power source in areas such as remote islands with a small population even on the ground. In the installation locations as described above, avoiding the use of a general pump as a coolant circulation method is being considered because it is not desirable to use human hands as much as possible. Therefore, it is conceivable to apply a heat pipe as a heat transport device that cools a heating element by utilizing the heat of vaporization of the working fluid.

図11に示すように、上述の非特許文献1に記載の原子炉101を備えた原子力発電装置100は、核燃料を有する上記原子炉101と、核燃料の核***反応により発生した熱を輸送する複数本のヒートパイプ102と、このヒートパイプ102により輸送された熱を電気に変換して発電する熱電素子103と、発電に供した熱を放熱する放熱パネル104と、を有して構成される。 As shown in FIG. 11, the nuclear power generation device 100 provided with the nuclear reactor 101 described in Non-Patent Document 1 described above transports the heat generated by the nuclear fission reaction of the nuclear fuel and the nuclear reactor 101 having nuclear fuel. The heat pipe 102, a thermoelectric element 103 that converts the heat transported by the heat pipe 102 into electricity to generate electricity, and a heat dissipation panel 104 that dissipates the heat used for power generation.

原子炉101では、図12に示すように、中心部に制御棒105が配置され、この制御棒105の周囲に、燃料106と減速材107とが共に環状に形成されて交互に配置され、燃料106に、二重管構造のヒートパイプ102が、原子炉101の周方向に複数本配置されている。しかしながら、このような原子炉101では、減速材107の温度分布に偏りが生じ、減速材107の温度要求値(例えば、減速材107が金属水素化物の場合に水素が解離しない温度範囲)以上になる恐れがある。 In the reactor 101, as shown in FIG. 12, a control rod 105 is arranged in the center, and the fuel 106 and the moderator 107 are both formed in an annular shape and alternately arranged around the control rod 105, and the fuel is arranged. A plurality of heat pipes 102 having a double pipe structure are arranged in 106 in the circumferential direction of the reactor 101. However, in such a reactor 101, the temperature distribution of the moderator 107 is biased, and exceeds the temperature requirement value of the moderator 107 (for example, the temperature range in which hydrogen does not dissociate when the moderator 107 is a metal hydride). There is a risk of becoming.

上述の事態を回避するために、原子炉における燃料の濃縮度を異ならせ、ヒートパイプから離れた燃料ほど濃縮度を低く設定して、減速材の温度分布の平坦化を図る原子炉が開示されている。 In order to avoid the above situation, a nuclear reactor is disclosed in which the enrichment of fuel in the reactor is different and the enrichment is set lower as the fuel is farther from the heat pipe to flatten the temperature distribution of the moderator. ing.

特開2018-21763号公報Japanese Unexamined Patent Publication No. 2018-21763

木村ら、「小型分散電源用原子炉システムの開発1)月面・火星ミッションを想定した原子炉システム・炉心コンセプト」、日本原子力学会 2016年秋の大会 3I08、2016。Kimura et al., "Development of Reactor System for Small Distributed Power Supply 1) Reactor System / Core Concept for Moon / Mars Mission", Atomic Energy Society of Japan 2016 Autumn Meeting 3I08, 2016. Kimura et al.,“Small CaH2 moderated thermal reactor for surface power generation 1): Conceptual design,” Transactions of the 2016 ANS Winter Meeting, 2016.Kimura et al. , "Small CaH2 moderated thermal reactor for surface power generation 1): Conceptual design," Transitions of the 2016 ANS Winter Meeting, 2016.

ところが、上述の原子炉であっても、ヒートパイプへの流入熱量が一部過大になる箇所が生じて、減速材の温度が温度要求値に対して必ずしも十分でない恐れがある。 However, even in the above-mentioned nuclear reactor, the amount of heat flowing into the heat pipe may be partially excessive, and the temperature of the moderator may not always be sufficient with respect to the required temperature value.

本発明の実施形態は、上述の事情を考慮してなされたものであり、減速材の温度分布の偏りを防止して原子炉の出力を向上させることができる原子炉及び原子力発電装置を提供することを目的とする。 The embodiment of the present invention has been made in consideration of the above-mentioned circumstances, and provides a nuclear reactor and a nuclear power generation device capable of preventing the bias of the temperature distribution of the moderator and improving the output of the nuclear reactor. The purpose is.

本発明の実施形態における原子炉は、核***性物質を含む燃料と中性子を減速する減速材とが、環状に形成されて交互に配置され、前記燃料の核***反応により発生した熱を輸送するヒートパイプが、環状に形成されて、前記燃料と前記減速材との間に配置されて構成されたことを特徴とするものである。 In the nuclear reactor according to the embodiment of the present invention, a fuel containing a fissile material and a moderator for decelerating neutrons are formed in a ring shape and arranged alternately, and a heat pipe for transporting heat generated by the fission reaction of the fuel. Is characterized in that it is formed in an annular shape and is arranged between the fuel and the moderator.

本発明の実施形態における原子力発電装置は、前記発明に記載された原子炉と、前記原子炉外へ延びるヒートパイプの一部に設置され、前記原子炉にて発生した熱を電気に変換する発電部と、前記ヒートパイプにおける前記発電部の下流側部分であって、外部へ熱を放熱する放熱部と、を有して構成されたことを特徴とするものである。 The nuclear power generation device according to the embodiment of the present invention is installed in a part of the nuclear reactor described in the present invention and a heat pipe extending outside the nuclear reactor, and converts heat generated in the nuclear reactor into electricity. It is characterized in that it is configured to have a portion and a heat radiating portion which is a downstream portion of the power generation portion in the heat pipe and dissipates heat to the outside.

本発明の実施形態によれば、減速材の温度分布の偏りを防止して原子炉の出力を向上させることができる。 According to the embodiment of the present invention, it is possible to prevent the temperature distribution of the moderator from being biased and improve the output of the reactor.

第1実施形態に係る原子力発電装置を示す縦断面図。The vertical sectional view which shows the nuclear power generation apparatus which concerns on 1st Embodiment. 図1の原子炉を示す横断面図。FIG. 5 is a cross-sectional view showing the reactor of FIG. 図2の原子炉のIII部を示す縦断面図。FIG. 2 is a vertical sectional view showing a part III of the reactor of FIG. 図1の発電部及び放熱部の一部を示す縦断面図。The vertical sectional view which shows the part of the power generation part and the heat dissipation part of FIG. 第2実施形態に係る原子力発電装置の原子炉を示す横断面図。The cross-sectional view which shows the nuclear reactor of the nuclear power generation apparatus which concerns on 2nd Embodiment. 第3実施形態に係る原子力発電装置を示す縦断面図。The vertical sectional view which shows the nuclear power generation apparatus which concerns on 3rd Embodiment. 第4実施形態に係る原子力発電装置を示す部分斜視図。The partial perspective view which shows the nuclear power generation apparatus which concerns on 4th Embodiment. 第5実施形態に係る原子力発電装置を示し、(A)は全体構成の部分斜視図、(B)は図8(A)のヒートパイプ及び放熱部を示す縦断面図。A nuclear power generation device according to a fifth embodiment is shown, FIG. 5A is a partial perspective view of the entire configuration, and FIG. 8B is a vertical sectional view showing a heat pipe and a heat radiating portion of FIG. 8A. 第6実施形態に係る原子力発電装置を示す概略縦断面図。The schematic vertical sectional view which shows the nuclear power generation apparatus which concerns on 6th Embodiment. 第6実施形態の比較形態を示す概略縦断面図。The schematic vertical sectional view which shows the comparative embodiment of the 6th Embodiment. 従来の原子力発電装置を示す構成図。A block diagram showing a conventional nuclear power generation device. 図11の原子炉を示し、(A)は横断面図、(B)は図12(A)の部分横断面図。The nuclear reactor of FIG. 11 is shown, (A) is a cross-sectional view, and (B) is a partial cross-sectional view of FIG. 12 (A).

以下、本発明を実施するための形態を、図面に基づき説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

[A]第1実施形態(図1~図4)
図1は、第1実施形態に係る原子力発電装置を示す縦断面図である。図1に示す原子力発電装置10は、宇宙空間や月面、火星表面等のほか、地球上の極地などでの発電に用いられるものであり、原子炉11、発電部12及び放熱部13を有して構成される。
[A] First Embodiment (FIGS. 1 to 4)
FIG. 1 is a vertical sectional view showing a nuclear power generation device according to the first embodiment. The nuclear power generation device 10 shown in FIG. 1 is used for power generation in outer space, the moon surface, the surface of Mars, etc., as well as in polar regions on the earth, and has a nuclear reactor 11, a power generation unit 12, and a heat dissipation unit 13. It is composed of.

原子炉11は、図1~図3に示すように、核***性物質を含む燃料14と、中性子を減速する減速材15とが、環状に形成されて交互に複数配置され、これらの燃料14と減速材15との間に、環状に形成されたヒートパイプ16が複数配置されて構成される。更に、原子炉11の最外周位置に環状の反射体17が配置されると共に、原子炉11の中心位置に制御棒18が配置されている。 As shown in FIGS. 1 to 3, in the nuclear reactor 11, a fuel 14 containing a fissile material and a moderator 15 for decelerating neutrons are formed in a ring shape and a plurality of them are alternately arranged. A plurality of heat pipes 16 formed in an annular shape are arranged between the moderator 15 and the heat reducing material 15. Further, an annular reflector 17 is arranged at the outermost peripheral position of the reactor 11, and a control rod 18 is arranged at the center position of the reactor 11.

制御棒18は、燃料14の核***反応を制御する。また、減速材15は、中性子を減速することで燃料14の核***反応を促進させる。この減速材15は、例えばCaH等の金属水素化物により構成されている。また、反射体17は、原子炉11の外方へ飛び出ようとする中性子を原子炉11の中心側へ反射させる。 Control rods 18 control the fission reaction of fuel 14. Further, the moderator 15 accelerates the fission reaction of the fuel 14 by decelerating the neutrons. The moderator 15 is made of a metal hydride such as CaH 2 . Further, the reflector 17 reflects neutrons that are about to fly out of the reactor 11 toward the center of the reactor 11.

ヒートパイプ16は、燃料14の核***反応により発生した熱を、作動流体の蒸発及び凝縮によって発電部12に輸送させるものである。このヒートパイプ16内には、作動流体の上昇流Aと下降流Bとを分離する環状の分離板19が配置されている。この分離板19によって、ヒートパイプ16は、作動流体の上昇流Aが流れる上昇流路16Aと、作動流体の下降流Bが流れる下降流路16Bとに区画される。 The heat pipe 16 transports the heat generated by the fission reaction of the fuel 14 to the power generation unit 12 by evaporation and condensation of the working fluid. In the heat pipe 16, an annular separating plate 19 for separating the ascending flow A and the descending flow B of the working fluid is arranged. The separation plate 19 divides the heat pipe 16 into an ascending flow path 16A through which the ascending flow A of the working fluid flows and a descending flow path 16B through which the descending flow B of the working fluid flows.

図1及び図4に示す発電部12は、原子炉11外へ延びる環状のヒートパイプ16の一部、つまりヒートパイプ16の上昇流路16A内に設置される。この発電部12は、環状のヒートパイプ16の周方向に沿って一体に形成されてもよく、またはヒートパイプ16の周方向に沿って複数個が配置されて構成されてもよい。発電部12は、熱電素子にて構成され、原子炉11の燃料14にて発生した熱を電気に変換して発電する。尚、図1では、原子炉11において最外周位置に配置された環状のヒートパイプ16に設置された発電部12のみを示しているが、この発電部12は、原子炉11における全てのヒートパイプ16に設置される。 The power generation unit 12 shown in FIGS. 1 and 4 is installed in a part of the annular heat pipe 16 extending outside the reactor 11, that is, in the ascending flow path 16A of the heat pipe 16. The power generation unit 12 may be integrally formed along the circumferential direction of the annular heat pipe 16, or may be configured by arranging a plurality of the power generation units 12 along the circumferential direction of the heat pipe 16. The power generation unit 12 is composed of thermoelectric elements, and converts the heat generated by the fuel 14 of the reactor 11 into electricity to generate electricity. Note that FIG. 1 shows only the power generation unit 12 installed in the annular heat pipe 16 arranged at the outermost peripheral position in the reactor 11, but this power generation unit 12 shows all the heat pipes in the reactor 11. It is installed at 16.

放熱部13は、ヒートパイプ16における発電部12の下流側部分として構成され、発電部12により発電に供された熱を外部へ放熱する。この放熱部13は、図1及び図4に示すように、ラッパ形状(略円錐面形状)に形成されているが、円筒などの筒形状であってもよい。また、放熱部13は、ヒートパイプ16の一部であり、ヒートパイプ16の上昇流路16Aに連通して上昇流路13Aが、ヒートパイプ16の下降流路16Bに連通して下降流路13Bがそれぞれ形成されている。 The heat radiating unit 13 is configured as a downstream portion of the power generation unit 12 in the heat pipe 16, and dissipates the heat supplied to the power generation by the power generation unit 12 to the outside. As shown in FIGS. 1 and 4, the heat radiating portion 13 is formed in a trumpet shape (substantially conical surface shape), but may have a cylindrical shape such as a cylinder. Further, the heat radiating unit 13 is a part of the heat pipe 16, and the ascending flow path 13A communicates with the ascending flow path 16A of the heat pipe 16 and communicates with the descending flow path 16B of the heat pipe 16 to communicate with the descending flow path 13B. Are formed respectively.

なお、図1では、原子炉11において最外周位置に配置された環状のヒートパイプ16に連続する放熱部13のみを示しているが、放熱部13は、原子炉11における全てのヒートパイプ16に連続して形成されている。 Note that FIG. 1 shows only the heat radiating section 13 continuous with the annular heat pipe 16 arranged at the outermost peripheral position in the reactor 11, but the radiating section 13 is attached to all the heat pipes 16 in the reactor 11. It is formed continuously.

以上のように構成されたことから、第1実施形態によれば、次の効果(1)及び(2)を奏する。 Since it is configured as described above, according to the first embodiment, the following effects (1) and (2) are obtained.

(1)原子力発電装置10の原子炉11では、燃料14、減速材15及びヒートパイプ16が環状に形成され、交互に配置された燃料14と減速材15との間にヒートパイプ16が配置されたことから、燃料14にて発生した熱が、ヒートパイプ16に均等に伝熱され、更にヒートパイプ16から減速材15に均等に伝熱されるので、減速材15に温度分布の偏りを防止できる。従って、減速材15が温度分布の偏りによって温度要求値(例えば金属水素化物により構成された減速材15の水素が解離しない温度範囲)を超えてしまうことがないように原子炉11の出力を抑制する必要がないので、原子炉11の出力を向上させることできる。 (1) In the reactor 11 of the nuclear power generation device 10, the fuel 14, the decelerating material 15, and the heat pipe 16 are formed in an annular shape, and the heat pipe 16 is arranged between the alternately arranged fuel 14 and the decelerating material 15. Therefore, the heat generated in the fuel 14 is evenly transferred to the heat pipe 16, and further is evenly transferred from the heat pipe 16 to the speed reducing material 15, so that it is possible to prevent the temperature distribution from being biased to the speed reducing material 15. .. Therefore, the output of the reactor 11 is suppressed so that the moderator 15 does not exceed the temperature requirement value (for example, the temperature range in which the hydrogen of the moderator 15 composed of the metal hydride does not dissociate) due to the bias of the temperature distribution. Since it is not necessary to do so, the output of the reactor 11 can be improved.

(2)原子炉11では、前述の如く、燃料14、減速材15及びヒートパイプ16が環状に形成され、燃料14と減速材15との間にヒートパイプ16が配置されて、燃料14で発生した熱がヒートパイプ16に均等に伝熱されている。このため、ヒートパイプ16内を流れる作動流体の上昇流A及び下降流Bに温度の偏りが生じないので、発電部12による発電効率を向上させることができる。 (2) In the reactor 11, as described above, the fuel 14, the speed reducing material 15, and the heat pipe 16 are formed in an annular shape, and the heat pipe 16 is arranged between the fuel 14 and the speed reducing material 15 to generate heat in the fuel 14. The generated heat is evenly transferred to the heat pipe 16. Therefore, since there is no temperature bias in the ascending flow A and the descending flow B of the working fluid flowing in the heat pipe 16, the power generation efficiency by the power generation unit 12 can be improved.

[B]第2実施形態(図5)
図5は、第2実施形態に係る原子力発電装置の原子炉を示す横断面図である。この第2実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 5)
FIG. 5 is a cross-sectional view showing the nuclear reactor of the nuclear power generation device according to the second embodiment. In this second embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第2実施形態の原子力発電装置20が第1実施形態と異なる点は、この原子力発電装置20を構成する原子炉21における燃料14、減速材15及びヒートパイプ16が、それらの周方向に分割されて構成された点である。 The difference between the nuclear power generation device 20 of the second embodiment and the first embodiment is that the fuel 14, moderator 15, and heat pipe 16 in the reactor 21 constituting the nuclear power generation device 20 are divided in the circumferential direction thereof. It is a point composed of.

つまり、燃料14、減速材15及びヒートパイプ16は、環状に形成され、それらの周方向に複数に分割(例えば4分の1に分割)されて構成される。図5の符号22は、燃料14、減速材15及びヒートパイプ16の分割面を示す。従って、原子炉21は、分割面22により分割された燃料14の燃料セクタ14W、14X、14Y及び14Zと、減速材15の減速材セクタ15W、15X、15Y及び15Zと、ヒートパイプ16のヒートパイプセクタ16W、16X、16Y及び16Zとが組み付けられて構成される。 That is, the fuel 14, the moderator 15, and the heat pipe 16 are formed in an annular shape, and are divided into a plurality of parts (for example, divided into quarters) in the circumferential direction thereof. Reference numeral 22 in FIG. 5 indicates a divided surface of the fuel 14, the moderator 15, and the heat pipe 16. Therefore, the reactor 21 has the fuel sectors 14W, 14X, 14Y and 14Z of the fuel 14 divided by the dividing surface 22, the moderator sectors 15W, 15X, 15Y and 15Z of the moderator 15, and the heat pipe of the heat pipe 16. Sectors 16W, 16X, 16Y and 16Z are assembled and configured.

以上のように構成されたことから、本第2実施形態によれば、第1実施形態の効果(1)及び(2)と同様な効果を奏するほか、次の効果(3)を奏する。 Since it is configured as described above, according to the second embodiment, in addition to the same effects as those of the first embodiment (1) and (2), the following effect (3) is obtained.

(3)原子炉21の燃料14、減速材15及びヒートパイプ16が複数に分割されて構成されたので、原子炉21の設計及び製造などを容易化できる。 (3) Since the fuel 14, moderator 15, and heat pipe 16 of the reactor 21 are divided into a plurality of parts, the design and manufacture of the reactor 21 can be facilitated.

[C]第3実施形態(図6)
図6は、第3実施形態に係る原子力発電装置を示す縦断面図である。この第3実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third Embodiment (FIG. 6)
FIG. 6 is a vertical sectional view showing a nuclear power generation device according to a third embodiment. In this third embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第3実施形態の原子力発電装置30が第1実施形態と異なる点は、この原子力発電装置30を構成する放熱部31が、周方向に分割されて構成された点である。 The difference between the nuclear power generation device 30 of the third embodiment and the first embodiment is that the heat dissipation unit 31 constituting the nuclear power generation device 30 is divided in the circumferential direction.

つまり、放熱部31は、環状に形成されるが、周方向に複数に分割され、各分割された放熱部セクタ31A、31B、31C…が独立して機能するよう構成されている。なお、図6では、放熱部31の分割面を符号32で示す。 That is, although the heat radiating unit 31 is formed in an annular shape, it is divided into a plurality of parts in the circumferential direction, and the divided heat radiating unit sectors 31A, 31B, 31C ... Are configured to function independently. In FIG. 6, the divided surface of the heat radiating unit 31 is indicated by reference numeral 32.

以上のように構成されたことから、本第3実施形態によれば、第1実施形態の効果(1)及び(2)と同様な効果を奏するほか、次の効果(4)を奏する。 Since it is configured as described above, according to the third embodiment, in addition to the same effects as those of the first embodiment (1) and (2), the following effect (4) is obtained.

(4)放熱部31が複数に分割して構成されたので、放熱部31の設計及び製造とを容易化できる。また、放熱部セクタ31A、31B、31C…の一部が放熱機能を喪失した場合にも、放熱部セクタ31A、31B、31C…の他が機能することで、放熱部31の全体としての放熱機能を良好に確保することができる。 (4) Since the heat radiating unit 31 is divided into a plurality of parts, the design and manufacture of the heat radiating unit 31 can be facilitated. Further, even if a part of the heat radiating section sectors 31A, 31B, 31C ... loses the heat radiating function, the other radiating section sectors 31A, 31B, 31C ... Can be secured well.

[D]第4実施形態(図7)
図7は、第4実施形態に係る原子力発電装置を示す部分斜視図である。この第4実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[D] Fourth Embodiment (FIG. 7)
FIG. 7 is a partial perspective view showing the nuclear power generation device according to the fourth embodiment. In this fourth embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第4実施形態の原子力発電装置40が第1実施形態と異なる点は、ヒートパイプ41における原子炉11外へ延びた部位のうち、上流側ヒートパイプ部分41Aが第1実施形態のヒートパイプ16と同様に環状であるが、下流側ヒートパイプ部分16Bが管状に形成されて複数設けられた点である。この下流側ヒートパイプ部分16Bの先端部に放熱部42が連続して設けられている。 The difference between the nuclear power generation device 40 of the fourth embodiment and the first embodiment is that the upstream heat pipe portion 41A is the heat pipe 16 of the first embodiment among the portions of the heat pipe 41 extending outside the reactor 11. It is an annular shape as in the above, but it is a point that the downstream side heat pipe portion 16B is formed in a tubular shape and is provided in a plurality. A heat radiating portion 42 is continuously provided at the tip of the downstream heat pipe portion 16B.

以上のように構成されたことから、本第4実施形態によれば、第1実施形態の効果(1)及び(2)と同様な効果を奏するほか、次の効果(5)を奏する。 Since it is configured as described above, according to the fourth embodiment, in addition to the same effects as the effects (1) and (2) of the first embodiment, the following effects (5) are exhibited.

(5)ヒートパイプ16における原子炉11外へ延びた部位のうち、下流側ヒートパイプ部分41Bが管状に形成されて上流側ヒートパイプ部分41Aよりも強度が増大している。この結果、ヒートパイプ41の構成を簡易化できると共に、構造上の強度を増大させることができる。 (5) Of the portions of the heat pipe 16 extending outside the reactor 11, the downstream heat pipe portion 41B is formed in a tubular shape and has higher strength than the upstream heat pipe portion 41A. As a result, the configuration of the heat pipe 41 can be simplified and the structural strength can be increased.

[E]第5実施形態(図8)
図8は、第5実施形態に係る原子力発電装置を示し、(A)は全体構成の部分斜視図、(B)は図8(A)のヒートパイプ及び放熱部を示す縦断面図である。この第5実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[E] Fifth Embodiment (FIG. 8)
8A and 8B show a nuclear power generation device according to a fifth embodiment, FIG. 8A is a partial perspective view of the entire configuration, and FIG. 8B is a vertical sectional view showing a heat pipe and a heat radiating portion of FIG. 8A. In the fifth embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第5実施形態の原子力発電装置50が第1実施形態と異なる点は、ヒートパイプ51における原子炉11外へ延びた部位のうち、上流側ヒートパイプ部分51Aが第1実施形態のヒートパイプ16と同様に環状であり、下流側ヒートパイプ部分51Bが管状に形成されて複数設けられ、この下流側ヒートパイプ部分51Bに放熱部52が連続して設けられ、更に下流側ヒートパイプ部分51Bが上昇流路53及び下降流路54を備えて構成された点である。 The difference between the nuclear power generation device 50 of the fifth embodiment and the first embodiment is that the upstream heat pipe portion 51A is the heat pipe 16 of the first embodiment among the portions of the heat pipe 51 extending outside the reactor 11. Similarly, the downstream side heat pipe portion 51B is formed in a tubular shape and is provided in plurality, and the downstream side heat pipe portion 51B is continuously provided with the heat radiating portion 52, and the downstream side heat pipe portion 51B is further raised. It is a point configured to include a flow path 53 and a descending flow path 54.

つまり、管状に形成された下流側ヒートパイプ部分51Bの上昇流路53に作動流体の上昇流Aが流れ、下降流路54に作動流体の下降流Bが流れるよう構成される。また、上流側ヒートパイプ部分51Aは、第1実施形態のヒートパイプ16と同様に、分離板19によって上昇流路16Aと下降流路16Bに区画され、上昇流路16Aが下流側ヒートパイプ部分51Bの上昇流路53に、下降流路16Bが下流側ヒートパイプ部分51Bの下降流路54にそれぞれ連続する。 That is, the ascending flow A of the working fluid flows in the ascending flow path 53 of the downstream side heat pipe portion 51B formed in a tubular shape, and the descending flow B of the working fluid flows in the descending flow path 54. Further, the upstream side heat pipe portion 51A is divided into an ascending flow path 16A and a descending flow path 16B by a separation plate 19 as in the heat pipe 16 of the first embodiment, and the ascending flow path 16A is a downstream side heat pipe portion 51B. The descending flow path 16B is continuous with the descending flow path 54 of the downstream side heat pipe portion 51B.

以上のように構成されたことから、本第5実施形態によれば、第1及び第4実施形態の効果(1)、(2)及び(5)と同様な効果を奏するほか、次の効果(6)を奏する。 Since it is configured as described above, according to the fifth embodiment, the effects similar to those of the first and fourth embodiments (1), (2) and (5) are exhibited, and the following effects are obtained. Play (6).

(6)ヒートパイプ51は、原子炉11外へ延びて放熱部52に至る手前の管状に形成された下流側ヒートパイプ部分51Bが、上昇流路53及び下降流路54を備えて構成されたので、放熱部52による放熱効率を向上させることができる。 (6) The heat pipe 51 is configured such that a downstream side heat pipe portion 51B formed in a tubular shape extending to the outside of the reactor 11 and reaching the heat radiating portion 52 is provided with an ascending flow path 53 and a descending flow path 54. Therefore, the heat dissipation efficiency of the heat dissipation unit 52 can be improved.

[F]第6実施形態(図9、図10)
図9は、第6実施形態に係る原子力発電装置を示す概略縦断面図である。この第6実施形態において第1及び第5実施形態と同様な部分については、第1及び第5実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[F] Sixth Embodiment (FIGS. 9 and 10)
FIG. 9 is a schematic vertical sectional view showing a nuclear power generation device according to a sixth embodiment. In the sixth embodiment, the same parts as those in the first and fifth embodiments are designated by the same reference numerals as those in the first and fifth embodiments to simplify or omit the description.

本第6実施形態の原子力発電装置60が第1及び第5実施形態と異なる点は、原子炉11内で燃料14の外側に隣接して配置されたヒートパイプ61では、作動流体の上昇流Aを流す上昇流路61Aと、作動流体の下降流Bを流す下降流路61Bとが、放熱部62に至る手前で切り替えられて構成された点である。 The difference between the nuclear power generation device 60 of the sixth embodiment and the first and fifth embodiments is that in the heat pipe 61 arranged adjacent to the outside of the fuel 14 in the reactor 11, the ascending flow A of the working fluid A. The point is that the ascending flow path 61A through which the working fluid flows and the descending flow path 61B through which the descending flow B of the working fluid flows are switched and configured before reaching the heat radiating portion 62.

つまり、図10に示すように、第1または第5実施形態の原子炉11内には、燃料14の内側に隣接して配置されるヒートパイプ16、51と、燃料14の外側に隣接して配置されるヒートパイプ16、51とが、原子炉11の構造上存在する。このうち、燃料14の内側に隣接して配置されるヒートパイプ16、51では、上昇流路16A、53を流れた作動流体は、放熱部62(放熱部13、52)にて凝縮され、この凝縮された作動流体Mが、下降流路16B、54を通って原子炉11側へ流れる。 That is, as shown in FIG. 10, in the reactor 11 of the first or fifth embodiment, the heat pipes 16 and 51 arranged adjacent to the inside of the fuel 14 and adjacent to the outside of the fuel 14 are adjacent to each other. The heat pipes 16 and 51 to be arranged exist in the structure of the reactor 11. Of these, in the heat pipes 16 and 51 arranged adjacent to the inside of the fuel 14, the working fluid flowing through the ascending flow paths 16A and 53 is condensed by the heat radiating section 62 (heat radiating section 13 and 52). The condensed working fluid M flows to the reactor 11 side through the descending flow paths 16B and 54.

しかしながら、燃料14の外側に隣接して配置されるヒートパイプ16、51では、上昇流路16A、53を流れた作動流体は、放熱部62(放熱部13、52)にて凝縮され、この凝縮された作動流体Mが、上昇流路16A、53を逆流して流れ落ちる可能性がある。これは、放熱部62が、原子炉11の外側へ向かって徐々に傾斜して略水平になる放熱部13(第1実施形態)や放熱部52(第5実施形態)であるからである。 However, in the heat pipes 16 and 51 arranged adjacent to the outside of the fuel 14, the working fluid flowing through the ascending flow paths 16A and 53 is condensed by the heat radiating section 62 (heat radiating section 13 and 52), and this condensation occurs. There is a possibility that the generated working fluid M will flow back through the ascending flow paths 16A and 53 and flow down. This is because the heat radiating unit 62 is the heat radiating unit 13 (first embodiment) and the heat radiating unit 52 (fifth embodiment) that gradually incline toward the outside of the reactor 11 and become substantially horizontal.

そこで、図9に示すように、第6実施形態の原子力発電装置60では、燃料14の外側に隣接して配置されたヒートパイプ61は、上昇流路61Aと下降流路61Bとが放熱部62に至る手前位置で切り替えられて、上昇流路61Aが下降流路61Bの下側に位置づけられる。これにより、ヒートパイプ61の上昇流路61Aを上昇し、放熱部62(放熱部13、52)に至って凝縮された作動流体Mは、燃料14の内側に隣接して配置されたヒートパイプ16、51の場合と同様に、下降流路61Bを通って原子炉11側へ流れ、上昇流路61Aを逆流して流れ落ちることがない。 Therefore, as shown in FIG. 9, in the nuclear power generation device 60 of the sixth embodiment, in the heat pipe 61 arranged adjacent to the outside of the fuel 14, the ascending flow path 61A and the descending flow path 61B form a heat dissipation portion 62. The ascending flow path 61A is positioned below the descending flow path 61B by being switched at a position before reaching. As a result, the working fluid M that has risen in the ascending flow path 61A of the heat pipe 61 and has been condensed to reach the heat radiating portions 62 (heat radiating portions 13 and 52) is the heat pipe 16 arranged adjacent to the inside of the fuel 14. As in the case of 51, it does not flow down to the reactor 11 side through the descending flow path 61B and backflow through the ascending flow path 61A.

以上のように構成されたことから、本第6実施形態によれば、第1実施形態の効果(1)及び(2)と同様な効果を奏するほか、次の効果(7)を奏する。 Since it is configured as described above, according to the sixth embodiment, in addition to the same effects as those of the first embodiment (1) and (2), the following effect (7) is obtained.

(7)原子炉11内で燃料14の外側に隣接して配置されたヒートパイプ61では、作動流体の上昇流Aを流す上昇流路61Aと作動流体の下降流Bを流す下降流路61Bとが、略水平に配置される放熱部62の手前位置で切り替えられて構成されている。従って、放熱部62で凝縮された作動流体Mが上昇流路61Aを逆流して流れ落ちることがないので、ヒートパイプ61の熱輸送効率の低下を防止でき、ひいては発電部12による発電効率を良好に確保できる。 (7) In the heat pipe 61 arranged adjacent to the outside of the fuel 14 in the reactor 11, the ascending flow path 61A through which the ascending flow A of the working fluid flows and the descending flow path 61B through which the descending flow B of the working fluid flows. However, it is configured to be switched at a position in front of the heat radiating portion 62 arranged substantially horizontally. Therefore, since the working fluid M condensed in the heat radiating unit 62 does not flow back through the ascending flow path 61A and flows down, it is possible to prevent a decrease in the heat transport efficiency of the heat pipe 61, and by extension, the power generation efficiency of the power generation unit 12 is improved. Can be secured.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention, and their replacements and changes can be made. Is included in the scope and gist of the invention, as well as the invention described in the claims and the equivalent scope thereof.

10…原子力発電装置、11…原子炉、12…発電部、13…放熱部、14…燃料、15…減速材、16…ヒートパイプ、16A…上昇流路、16B…下降流路、19…分離板、20…原子力発電装置、21…原子炉、22…分割面、30…原子力発電装置、31…放熱部、32…分割面、40…原子力発電装置、41…ヒートパイプ、41B…下流側ヒートパイプ部分、42…放熱部、50…原子力発電装置、51…ヒートパイプ、51B…下流側ヒートパイプ部分、52…放熱部、53…上昇流路、54…下降流路、60…原子力発電装置、61…ヒートパイプ、61A…上昇流路、61B…下降流路、62…放熱部。 10 ... Nuclear power generation equipment, 11 ... Reactor, 12 ... Power generation unit, 13 ... Heat dissipation unit, 14 ... Fuel, 15 ... Deceleration material, 16 ... Heat pipe, 16A ... Upstream flow path, 16B ... Downstream flow path, 19 ... Separation Plate, 20 ... Nuclear power generation device, 21 ... Reactor, 22 ... Divided surface, 30 ... Nuclear power generation device, 31 ... Heat dissipation part, 32 ... Divided surface, 40 ... Nuclear power generation device, 41 ... Heat pipe, 41B ... Downstream heat Pipe part, 42 ... heat dissipation part, 50 ... nuclear power generation device, 51 ... heat pipe, 51B ... downstream side heat pipe part, 52 ... heat dissipation part, 53 ... ascending flow path, 54 ... descending flow path, 60 ... nuclear power generation device, 61 ... heat pipe, 61A ... ascending flow path, 61B ... descending flow path, 62 ... heat dissipation part.

Claims (8)

核***性物質を含む燃料と中性子を減速する減速材とが、環状に形成されて交互に配置され、
前記燃料の核***反応により発生した熱を輸送するヒートパイプが、環状に形成されて、前記燃料と前記減速材との間に配置されて構成されたことを特徴とする原子炉。
Fuel containing fissile material and moderators that slow down neutrons are formed in a ring and arranged alternately.
A nuclear reactor characterized in that a heat pipe for transporting heat generated by the fission reaction of the fuel is formed in an annular shape and is arranged between the fuel and the moderator.
前記ヒートパイプ内には、作動流体の上昇流と下降流を分離する分離板が、環状に形成されて配置されたことを特徴とする請求項1に記載の原子炉。 The reactor according to claim 1, wherein a separation plate for separating the ascending flow and the descending flow of the working fluid is formed and arranged in an annular shape in the heat pipe. 前記環状に形成されて配置された燃料、ヒートパイプ及び減速材が、それらの周方向に分割されて構成されたことを特徴とする請求項1または2に記載の原子炉。 The nuclear reactor according to claim 1 or 2, wherein the fuel, heat pipes and moderators formed and arranged in an annular shape are divided in the circumferential direction thereof. 請求項1乃至3のいずれか1項に記載された原子炉と、
前記原子炉外へ延びるヒートパイプの一部に設置され、前記原子炉にて発生した熱を電気に変換する発電部と、
前記ヒートパイプにおける前記発電部の下流側部分であって、外部へ熱を放熱する放熱部と、を有して構成されたことを特徴とする原子力発電装置。
The nuclear reactor according to any one of claims 1 to 3 and
A power generation unit that is installed in a part of the heat pipe that extends outside the reactor and converts the heat generated in the reactor into electricity.
A nuclear power generation device characterized by having a heat radiating portion that radiates heat to the outside, which is a downstream portion of the power generation portion in the heat pipe.
前記放熱部は、環状に形成されると共に、その周方向に分割されて構成されたことを特徴とする請求項4に記載の原子力発電装置。 The nuclear power generation device according to claim 4, wherein the heat radiating portion is formed in an annular shape and is divided in the circumferential direction thereof. 前記ヒートパイプは、原子炉外へ延びた部分が管状に形成されて複数設けられ、それらの先端部分に放熱部が設けられたことを特徴とする請求項4に記載の原子力発電装置。 The nuclear power generation device according to claim 4, wherein the heat pipe is provided with a plurality of tubular portions extending to the outside of the reactor, and a heat radiating portion is provided at the tip portions thereof. 前記ヒートパイプは、原子炉外へ延びて放熱部に至る手前の部分が、作動流体の上昇流と下降流が異なる流路を流れるよう構成されたことを特徴とする請求項4乃至6のいずれか1項に記載の原子力発電装置。 Any of claims 4 to 6, wherein the heat pipe is configured such that a portion extending to the outside of the reactor and reaching the heat radiating portion flows through different flow paths for the ascending flow and the descending flow of the working fluid. The nuclear power generation device according to item 1. 前記原子炉内で燃料の外側に隣接して配置されたヒートパイプでは、作動流体の上昇流と下降流をそれぞれ流す流路が、放熱部に至る手前位置で入れ替えられて構成されたことを特徴とする請求項7に記載の原子力発電装置。 The heat pipes arranged adjacent to the outside of the fuel in the reactor are characterized in that the flow paths for the ascending flow and the descending flow of the working fluid are interchanged at the position before reaching the heat dissipation part. The nuclear power generation device according to claim 7.
JP2018115469A 2018-06-18 2018-06-18 Reactor and nuclear power generation equipment Active JP7039396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115469A JP7039396B2 (en) 2018-06-18 2018-06-18 Reactor and nuclear power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115469A JP7039396B2 (en) 2018-06-18 2018-06-18 Reactor and nuclear power generation equipment

Publications (2)

Publication Number Publication Date
JP2019219223A JP2019219223A (en) 2019-12-26
JP7039396B2 true JP7039396B2 (en) 2022-03-22

Family

ID=69096158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115469A Active JP7039396B2 (en) 2018-06-18 2018-06-18 Reactor and nuclear power generation equipment

Country Status (1)

Country Link
JP (1) JP7039396B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240170168A1 (en) * 2022-11-19 2024-05-23 Westinghouse Electric Company Llc Solid-state fluid thermal bonded heat pipe micro-reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181445A (en) 2016-03-31 2017-10-05 株式会社東芝 Portable type nuclear reactor and reactor core thereof
US20180033501A1 (en) 2016-08-01 2018-02-01 Kabushiki Kaisha Toshiba Nuclear reactor and a method of heat transfer from a core

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191998U (en) * 1984-05-29 1985-12-19 石川島播磨重工業株式会社 Reactor
JPH06258472A (en) * 1993-03-02 1994-09-16 Hitachi Ltd Nuclear reactor, reactor core and component thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181445A (en) 2016-03-31 2017-10-05 株式会社東芝 Portable type nuclear reactor and reactor core thereof
US20180033501A1 (en) 2016-08-01 2018-02-01 Kabushiki Kaisha Toshiba Nuclear reactor and a method of heat transfer from a core
JP2018021763A (en) 2016-08-01 2018-02-08 株式会社東芝 Nuclear reactor and method for removing heat of nuclear reactor

Also Published As

Publication number Publication date
JP2019219223A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
Zhang et al. Conceptual design and analysis of a megawatt power level heat pipe cooled space reactor power system
JP7039396B2 (en) Reactor and nuclear power generation equipment
Zhang et al. Preliminary design and thermal analysis of a liquid metal heat pipe radiator for TOPAZ-II power system
Sagara et al. Review of stellarator/heliotron design issues towards MFE DEMO
KR101787916B1 (en) A nuclear fuel assembly for a thermal neutron reactor
US8675808B2 (en) Natural circulation type boiling water reactor
KR102605338B1 (en) Doppler reactivity augmentation device
CN110706829B (en) Integrated compact reactor core with radial power flattening function
KR101406872B1 (en) Side-screen flow mixing header for an integral nuclear reactor
KR101535480B1 (en) Plate type nuclear fuel assembly and nuclear power plant having the same
US3228853A (en) Fuel elements for nuclear reactors
Ahmad et al. Coupled analysis and improvements for Canadian-SCWR core design
JP2999124B2 (en) Substructure inside a pressurized water reactor
JP2014215250A (en) Air-cooling system of reactor containment vessel
JPH05215877A (en) Core of boiling water type nuclear reac- tor
JPH09509744A (en) Critical power enhancement system for pressurized fuel channel reactor using critical heat flux enhancement appendage
Goldschmidt Minimum critical mass in intermediate reactors subject to constraints on power density and fuel enrichment
KR20110128850A (en) Continuous evaporator
JP2009008436A (en) Radioactive material storage facility
Wong et al. ARIES-RS divertor system selection and analysis
Kim et al. Thermal-fluid assessment of the design options for reactor vessel cooling in a prismatic core VHTR
US20240013937A1 (en) In-core printed circuit heat exchanger
JP2007232434A (en) Chimney structure in boiling-water reactor of natural circulation system
US3075909A (en) Reactional vessel
JPH0481692A (en) Fuel spacer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220309

R150 Certificate of patent or registration of utility model

Ref document number: 7039396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150