JP2999124B2 - Substructure inside a pressurized water reactor - Google Patents

Substructure inside a pressurized water reactor

Info

Publication number
JP2999124B2
JP2999124B2 JP6151107A JP15110794A JP2999124B2 JP 2999124 B2 JP2999124 B2 JP 2999124B2 JP 6151107 A JP6151107 A JP 6151107A JP 15110794 A JP15110794 A JP 15110794A JP 2999124 B2 JP2999124 B2 JP 2999124B2
Authority
JP
Japan
Prior art keywords
reactor
core
vessel
support plate
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6151107A
Other languages
Japanese (ja)
Other versions
JPH0815476A (en
Inventor
三郎 名倉
賢治 梅田
登 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6151107A priority Critical patent/JP2999124B2/en
Publication of JPH0815476A publication Critical patent/JPH0815476A/en
Application granted granted Critical
Publication of JP2999124B2 publication Critical patent/JP2999124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、加圧水型原子炉に関
し、特にその原子炉容器内部において冷却材の流れを適
切に保持する構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized water reactor, and more particularly to a structure for appropriately maintaining a flow of a coolant inside a reactor vessel.

【0002】[0002]

【従来の技術】加圧水型原子炉は、現在、商業用軽水冷
却型動力炉として広く使用されているが、冷却材である
軽水が原子炉容器側部上方の入口ノズルから流入し、炉
心槽と原子炉容器内面との間の環状下降流路すなわちダ
ウンカマー部を流下し、下部プレナムにおいて反転し、
炉心内を上昇して加熱され、原子炉容器外へ流出する内
部構造をとるのが一般的である。その下部プレナムまわ
りの構造の例を図5に示す。
2. Description of the Related Art At present, a pressurized water reactor is widely used as a commercial light water-cooled power reactor. Light water as a coolant flows in from an inlet nozzle above a side of a reactor vessel, and is connected to a reactor core tank. Flow down the annular downcomer or downcomer section between the reactor vessel inner surface and invert in the lower plenum;
It is common to have an internal structure that rises inside the reactor core and is heated and flows out of the reactor vessel. FIG. 5 shows an example of the structure around the lower plenum.

【0003】図5において、原子炉容器1は、内部の炉
心槽3との間にダウンカマー部5を画成し、冷却材aは
そこを流下する。原子炉容器1は、半球殻状の底面すな
わち下鏡板1aで閉じられており、一方、炉心槽3は、
下部において下部炉心板7及び下部炉心支持板9を支持
しており、下部炉心支持板9と下鏡板1aの間に下部プ
レナム11が形成される。前述のように流下した冷却材
aは、下部プレナム11内で反転するが、下部プレナム
11内には、炉内中性子束検出器のような計装装置を案
内する案内管13が多数設けられている。この案内管1
3は、比較的細い上に反転する冷却材aにさらされるの
で振動しやすいから、下部連接板15や上部連接板17
によって互いに連結され、支持される。下部連接板15
や上部連接板17は、図6に示すように、冷却材が流れ
るように広いくり抜き部を有している。
In FIG. 5, a reactor vessel 1 defines a downcomer section 5 between the reactor vessel 1 and an inner core tank 3, and a coolant a flows down the downcomer section 5. The reactor vessel 1 is closed by a hemispherical shell-shaped bottom surface, that is, a lower head plate 1a, while the core vessel 3 is
The lower core plate 7 and the lower core support plate 9 are supported at the lower part, and a lower plenum 11 is formed between the lower core support plate 9 and the lower head plate 1a. The coolant a that has flowed down as described above is inverted in the lower plenum 11, and in the lower plenum 11, a number of guide tubes 13 for guiding an instrumentation device such as a neutron flux detector in a furnace are provided. I have. This guide tube 1
The lower connecting plate 15 and the upper connecting plate 17 are easy to vibrate because they are exposed to a relatively thin upwardly reversing coolant a.
Are connected and supported by each other. Lower connecting plate 15
As shown in FIG. 6, the upper connecting plate 17 has a wide hollow portion so that the coolant flows.

【0004】前述のような構造において、冷却材aは、
矢印に示すように、ダウンカマー部5を流れて下部プレ
ナム11に流入し、なお、下鏡板1aの内面に沿って流
れて合流し、進行方向を上方へ反転し、下部連接板1
5、上部連接板17、下部炉心支持板9及び下部炉心板
7を順次通って、その上の炉心内へ流入する。そして、
炉心内において、核反応熱を吸収して高温となり、出口
ノズルから原子炉容器1外へ流出し、例えば蒸気発生器
において、タービン駆動用蒸気を発生せしめる。
In the structure as described above, the coolant a
As shown by the arrow, it flows through the downcomer portion 5 and flows into the lower plenum 11, where it flows along the inner surface of the lower head plate 1a and merges, reversing the traveling direction upward, and the lower connecting plate 1
5, through the upper connecting plate 17, the lower core support plate 9, and the lower core plate 7 in order, and flow into the core above it. And
In the reactor core, it absorbs nuclear reaction heat and becomes high temperature, flows out of the reactor vessel 1 from the outlet nozzle, and generates steam for driving a turbine, for example, in a steam generator.

【0005】[0005]

【発明が解決しようとする課題】前述の構造において、
下部プレナム内の冷却材流の流動状況をみるに、合流反
転部で流速が最大であり、冷却材出口ノズルの下方位置
で最小となり、その差はかなりのものとなる。加えて、
計装案内管の配置も完全な軸対称でなく、従って、上部
及び下部の連接板の形状も、図示されるように軸対称形
とならない。したがって、各連接板に衝突して円周方向
へ流れ、反転する冷却材の流速分布も一様とならず、そ
ちこちで渦流が発生する。このようにして、下部プレナ
ム内での冷却材流の分布は、一様でなく、炉心内へ流入
する冷却材の流量、流速の分布にむらが生じる。炉心内
を流れる冷却材の流れにむらが生ずると適切な炉心の冷
却が得られなくなるから、熱効率も悪くなり、或は、原
子炉運転出力レベルも低くせざるをえなくなる。また、
非一様な冷却材流の速度分布は、炉心構成部材の流体励
起振動の原因となり、摩耗、減肉等の不具合を招来す
る。
In the structure described above,
Looking at the flow state of the coolant flow in the lower plenum, the flow velocity is maximum at the junction reversal portion, and becomes minimum at a position below the coolant outlet nozzle, and the difference is considerable. in addition,
The arrangement of the instrumentation guide tubes is also not completely axisymmetric, and therefore the shapes of the upper and lower connecting plates are not axisymmetric as shown. Therefore, the flow velocity distribution of the coolant that collides with each connecting plate and flows in the circumferential direction and reverses is not uniform, and vortices are generated there. In this manner, the distribution of the coolant flow in the lower plenum is not uniform, and the distribution of the flow rate and the flow velocity of the coolant flowing into the core is uneven. If the flow of the coolant flowing in the reactor core is uneven, proper cooling of the reactor core cannot be obtained, so that the thermal efficiency deteriorates or the reactor operation power level has to be reduced. Also,
The non-uniform coolant flow velocity distribution causes fluid-induced vibrations of the core components, causing inconveniences such as wear and thinning.

【0006】したがって、本発明は、下部プレナム内に
おける冷却材の流速分布をできるだけ一様にし、炉心の
冷却が一様に行われ、かつ、流体励起振動の少ない加圧
水型原子炉の炉内下部構造物を提供することを目的とす
るものである。
Accordingly, the present invention provides a lower structure in a pressurized water reactor of a pressurized water reactor in which the flow velocity distribution of the coolant in the lower plenum is made as uniform as possible, the core is cooled uniformly, and the fluid excitation vibration is small. The purpose is to provide things.

【0007】[0007]

【課題を解決するための手段】かかる目的の下に、本発
明によれば、側部上方に複数の冷却材入口ノズル及び出
口ノズルを備えると共に底板が半球殻状に形成された原
子炉容器、同原子炉容器内に垂下支持され同原子炉容器
との間に冷却材の環状下降流路を画成する炉心槽、同炉
心槽の下部に一体的に支持され水平方向に展延する下部
炉心支持板及び前記原子炉容器の半球殻状底板と前記下
部炉心支持板との間に互いに平行に延びる多数の計装案
内管を加圧水型原子炉において、その計装案内管を互い
に連結して支持する連接支持板のうち原子炉容器の底板
に近い下部連接支持板の外形形状を円形とし、その外周
部に環状無孔領域を形成し、これを半球殻状底板に近接
させて炉内下部構造物が構成される。
To this end, according to the present invention, there is provided, in accordance with the present invention, a nuclear reactor vessel having a plurality of coolant inlet nozzles and outlet nozzles above a side and having a bottom plate formed in a hemispherical shell shape. A core vessel which is suspended in the reactor vessel and defines an annular descending flow path of coolant between the reactor vessel and the lower core which is integrally supported at a lower portion of the reactor vessel and extends horizontally. In a pressurized water reactor, a number of instrumentation guide tubes extending parallel to each other between a support plate, a hemispherical shell-like bottom plate of the reactor vessel, and the lower core support plate are connected to each other to support the instrumentation guide tubes. The lower connecting support plate close to the bottom plate of the reactor vessel has a circular outer shape, and an annular non-perforated region is formed on the outer periphery of the lower connecting support plate. Things are composed.

【0008】[0008]

【作用】前記した構成において、複数の一般に円周方向
に間隔をおいて配設された入口ノズルから冷却材が流入
し、環状下降流路を流下し、下部炉心支持板の下方の下
部プレナムに流入する。更に、冷却材は、原子炉容器の
半球殻状底板の内面に沿って流れ、その後、下方の連接
支持板の環状無孔領域に衝突し、水平流となり、比較的
広い領域で違いに衝突合流し、上向き流となる。この冷
却材の上向き流は、上方の連接支持板及び下部炉心支持
板を貫流し、上方の炉心内に流入する。
In the above construction, coolant flows in from a plurality of generally circumferentially spaced inlet nozzles, flows down the annular down flow path, and into the lower plenum below the lower core support plate. Inflow. Furthermore, the coolant flows along the inner surface of the hemispherical shell-shaped bottom plate of the reactor vessel, and then collides with the annular non-perforated region of the lower connecting support plate, and becomes a horizontal flow, and the collision collides differently in a relatively large region. Then, it becomes an upward flow. The upward flow of the coolant flows through the upper connecting support plate and the lower core support plate, and flows into the upper core.

【0009】[0009]

【実施例】以下、添付の図面を参照して本発明の実施例
を説明する。なお、前述の従来構造を示す図面を含め、
各図において同一の部分には、同一の符号を付してい
る。図1において、原子炉容器1は、半球殻状底板すな
わち下鏡板1aで下端が閉じられた比較的長い下部胴1
bを有し、更に上部胴に4個の冷却材入口ノズル1c
(3個のみ図示)及び同数の出口ノズル1d(2個のみ
図示)が一体的に形成されている。すなわち、本実施例
に係る加圧水型原子炉は、4ループの冷却材循環系(蒸
気発生器や冷却材循環ポンプを備える)を有するが、本
発明は、2ループ型や3ループ型のものとも適用可能で
ある。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In addition, including the drawing showing the above-mentioned conventional structure,
In the respective drawings, the same parts are denoted by the same reference numerals. In FIG. 1, a reactor vessel 1 has a relatively long lower body 1 whose lower end is closed by a hemispherical shell-shaped bottom plate, that is, a lower head plate 1a.
b, and four coolant inlet nozzles 1c in the upper body.
(Only three are shown) and the same number of outlet nozzles 1d (only two are shown) are integrally formed. That is, the pressurized water reactor according to the present embodiment has a four-loop coolant circulation system (including a steam generator and a coolant circulation pump). Applicable.

【0010】原子炉容器1の中に、炉心槽3が垂下支持
されており、両者の間にダウンカマー部5が形成されて
いる。炉心槽3は、多数の燃料集合体21からなる炉心
を支持すると共に、外部に熱遮蔽板23が取り付けられ
ている。炉心槽3の下部は、支持キー25により、側方
支持を受け、かつ水平方向に展延した下部炉心支持板9
を内部に一体的に支持している。下部炉心支持板9の上
方に、後述するような下部炉心板を有し、その上に前述
の燃料集合体21がぎっしりと装荷されて炉心を形成し
ている。詳細は後述するが、下部炉心支持板9の下方の
下部プレナムにおいて、上部連接板17と下部連接板1
15が設けられている。
A reactor core vessel 3 is suspended and supported in the reactor vessel 1, and a downcomer portion 5 is formed between the two. The core tank 3 supports a core composed of a large number of fuel assemblies 21 and has a heat shield plate 23 attached to the outside. The lower part of the core vessel 3 is laterally supported by a support key 25 and extends horizontally.
Is integrally supported inside. A lower core plate, which will be described later, is provided above the lower core support plate 9, and the above-described fuel assemblies 21 are tightly loaded thereon to form a core. As will be described in detail later, in the lower plenum below the lower core support plate 9, the upper connecting plate 17 and the lower connecting plate 1
15 are provided.

【0011】そして、図1において、冷却材aは、矢印
に示すように流れる。即ち、4個の入口ノズル1cから
分かれて流入し、ダウンカマー部5を流下し、下鏡板1
aの内部で方向転換し、下部炉心支持板9及び下部炉心
板を貫流し、炉心に入る。炉心内においては、燃料集合
体21の燃料棒の外側を流れ、燃料棒内の核反応熱を吸
収し、高温となって出口ノズル1dから分かれて流出す
る。
In FIG. 1, the coolant a flows as shown by the arrows. That is, it flows in from the four inlet nozzles 1c separately, flows down the downcomer part 5, and
The flow direction is changed inside a, and flows through the lower core support plate 9 and the lower core plate to enter the core. In the reactor core, the fuel flows outside the fuel rods of the fuel assembly 21, absorbs the nuclear reaction heat in the fuel rods, becomes hot, and flows out of the outlet nozzle 1d.

【0012】次に、図2、図3及び図4を参照して、本
実施例の要部である炉内下部構造物を説明する。図2に
おいて、下部炉心板7は、下部炉心支持板9の上方に位
置し、前述の燃料集合体21を支持する。下部炉心板7
及び下部炉心支持板9は、冷却材が低抵抗で貫流するよ
うに、強度の許す限り、多孔となっている。下鏡板1a
には、多数の計装管台が貫設され、これに個別に嵌合す
る計装案内管13が下部炉心支持板9の下面から垂下し
ている。
Next, with reference to FIG. 2, FIG. 3, and FIG. 4, a furnace lower structure which is a main part of the present embodiment will be described. In FIG. 2, the lower core plate 7 is located above the lower core support plate 9 and supports the above-described fuel assembly 21. Lower core plate 7
The lower core support plate 9 is porous as long as the strength permits, so that the coolant flows through at a low resistance. Lower head 1a
, A large number of instrumentation nozzles penetrate therethrough, and instrumentation guide tubes 13 individually fitted therefrom hang from the lower surface of the lower core support plate 9.

【0013】計装案内管13を相互に連結する上部連接
支持板17は、図3に示すように、主として外側に位置
する案内管13を個別に通す孔をもつ多数の保持部17
aと、これらを連結するランド17bとからなってい
る。下部連接支持板115は、基本的には、上部連接支
持板17と同一の思想から形成されているが、本発明の
特徴である環状無孔領域を外周部にもっていて、主とし
て半径方向内側に位置する計装案内管13を互いに連結
している。その形状が図4に拡大して示されている。
As shown in FIG. 3, the upper connecting support plate 17 for interconnecting the instrumentation guide tubes 13 has a large number of holding portions 17 having holes for individually passing the guide tubes 13 located mainly on the outside.
a and lands 17b connecting them. The lower connecting support plate 115 is basically formed from the same concept as the upper connecting support plate 17, but has an annular non-perforated region which is a feature of the present invention on the outer peripheral portion, and mainly has a radially inward side. The located instrumentation guide tubes 13 are connected to one another. The shape is shown enlarged in FIG.

【0014】図4を参照するに、下部連接支持板115
は、多数の貫通保持部115aと、これらをつなぐ多数
のランド115bとを有すると共に、環状無孔領域11
5cを外周部に有する。この環状無孔領域115cは、
後述するように冷却材流を実質的に遮ぎるためのもので
あるから、この主機能を有すれば他の炉内構造部材との
干渉をさけるため若干の細孔や切欠きを若干有してもよ
い。
Referring to FIG. 4, a lower connecting support plate 115 is provided.
Has a large number of penetrating holding portions 115a and a large number of lands 115b connecting these,
5c on the outer periphery. This annular non-porous area 115c is
Since it is for substantially blocking the coolant flow as will be described later, if it has this main function, it has some pores and notches to avoid interference with other structural members in the furnace. You may.

【0015】このような構成において、先に図1を参照
して説明したようにダウンカマー部5を流下した冷却材
aは、図2の矢印に示す如く下部プレナム11内に流下
し、下鏡板1aの球状内面に沿って流れる。そして、下
部連接支持板115の環状無孔領域115cに行く手を
遮られ、水平方向流となって半径方向内方へ進み、更に
合流して流れ方向を上方へ変えて上昇流となる。環状無
孔領域115cの外周縁と下鏡板1aの内面との隙間
は、許容される最小限度に保持されるから、下部連接支
持板115の下方へ流れこむ冷却材の流量は無視できる
ものである。
In such a configuration, the coolant a flowing down the downcomer portion 5 as described above with reference to FIG. 1 flows down into the lower plenum 11 as shown by an arrow in FIG. It flows along the spherical inner surface of 1a. Then, the hand reaching the annular non-perforated region 115c of the lower connecting support plate 115 is blocked, the flow becomes a horizontal flow, proceeds inward in the radial direction, and further merges to change the flow direction upward to form an upward flow. Since the gap between the outer peripheral edge of the annular non-perforated region 115c and the inner surface of the lower head plate 1a is kept to an allowable minimum, the flow rate of the coolant flowing below the lower connecting support plate 115 is negligible. .

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
環状下降流路を流下した冷却材は、一様に下部連接支持
板の環状無孔領域に衝突するので、一様な内向き水平流
となって比較的広い領域で合流するので、一様な上向き
速度分布が得られる。したがって、炉心は一様に冷却さ
れ、局部的なホットスポットも生ぜず、効率のよい原子
炉の運転を行うことができる。
As described above, according to the present invention,
The coolant flowing down the annular descending flow path uniformly collides with the annular non-perforated area of the lower connecting support plate, so that it forms a uniform inward horizontal flow and merges in a relatively wide area, so that a uniform An upward velocity distribution is obtained. Therefore, the reactor core is uniformly cooled, and local hot spots are not generated, so that efficient operation of the reactor can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例に係る加圧水型原子炉の炉内
下部構造物を示す一部切欠き斜視図である。
FIG. 1 is a partially cutaway perspective view showing an in-reactor lower structure of a pressurized water reactor according to an embodiment of the present invention.

【図2】 前記実施例の要部を示す部分立断面図であ
る。
FIG. 2 is a partial vertical sectional view showing a main part of the embodiment.

【図3】 図2のIII−III線に沿う底面図である。FIG. 3 is a bottom view taken along the line III-III of FIG. 2;

【図4】 前記実施例の一構成部材の平面図である。FIG. 4 is a plan view of one component of the embodiment.

【図5】 従来構造の一例を示す部分立断面図である。FIG. 5 is a partial vertical sectional view showing an example of a conventional structure.

【図6】 図5のIV−IV線に沿う底面図である。FIG. 6 is a bottom view taken along line IV-IV in FIG. 5;

【符号の説明】[Explanation of symbols]

1…原子炉容器、、1a…下鏡板、1c…入口ノズル、
1d…出口ノズル、3…炉心槽、5…ダウンカマー部、
9…下部炉心支持板、13…計装案内管、115…下部
連接支持板、115c…環状無孔領域。
DESCRIPTION OF SYMBOLS 1 ... Reactor vessel, 1a ... Lower head plate, 1c ... Inlet nozzle,
1d: outlet nozzle, 3: core tank, 5: downcomer part,
9: Lower core support plate, 13: Instrumentation guide tube, 115: Lower connecting support plate, 115c: Annular non-porous area.

フロントページの続き (56)参考文献 特開 平6−59072(JP,A) RADCLIFF T D et.a l.,”Visualiztion o f the Lower Plenum Anomaly in the We stinghouse AP600 Re a−ctor.”,Nucl Tech nol,Vol.106,No.1(1994) p.100−109 (58)調査した分野(Int.Cl.7,DB名) G21C 15/02 GDP JICSTファイル(JOIS) WPI(DIALOG)Continuation of front page (56) References JP-A-6-59072 (JP, A) RADIFFIFF TD et. a l. , "Visualization of the Lower Plenum Anomaly in the Westinghouse AP600 Real-ector.", Nucl Technol, Vol. 106, no. 1 (1994) p. 100-109 (58) Field surveyed (Int. Cl. 7 , DB name) G21C 15/02 GDP JICST file (JOIS) WPI (DIALOG)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 側部上方に複数の冷却材入口ノズル及び
出口ノズルをそれぞれ備えると共に底板が半球殻状に形
成された原子炉容器、同原子炉容器内に垂下支持され同
原子炉容器との間に冷却材の環状下降流路を画成する炉
心槽、同炉心槽の下部に一体的に支持され水平方向に展
延する下部炉心支持板、及び前記原子炉容器の半球殻状
の底板と前記下部炉心支持板との間に互いに平行に延び
る多数の計装案内管を有する加圧水型原子炉において、
前記計装案内管を互いに連結して支持する連接支持板の
うち前記底板に近い下部連接支持板の外径形状を円形と
し、その外周部に所定の巾の環状無孔領域を形成して前
記底板に近接させたことを特徴とする加圧水型原子炉の
炉内下部構造物。
A reactor vessel having a plurality of coolant inlet nozzles and a plurality of outlet nozzles above a side portion and having a bottom plate formed in a hemispherical shell shape, wherein the reactor vessel is suspended and supported in the reactor vessel. A core vessel defining an annular descending flow path of coolant between the lower vessel, a lower core support plate integrally supported at a lower portion of the core vessel and extending in the horizontal direction, and a hemispherical shell-like bottom plate of the reactor vessel; A pressurized water reactor having a number of instrumentation guide tubes extending parallel to each other between the lower core support plate,
Of the connecting support plates that connect and support the instrumentation guide tubes with each other, the lower connecting support plate close to the bottom plate has a circular outer diameter shape, and an annular non-perforated region having a predetermined width is formed on an outer peripheral portion thereof. A lower structure inside a reactor of a pressurized water reactor, which is located close to a bottom plate.
JP6151107A 1994-07-01 1994-07-01 Substructure inside a pressurized water reactor Expired - Lifetime JP2999124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6151107A JP2999124B2 (en) 1994-07-01 1994-07-01 Substructure inside a pressurized water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6151107A JP2999124B2 (en) 1994-07-01 1994-07-01 Substructure inside a pressurized water reactor

Publications (2)

Publication Number Publication Date
JPH0815476A JPH0815476A (en) 1996-01-19
JP2999124B2 true JP2999124B2 (en) 2000-01-17

Family

ID=15511509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6151107A Expired - Lifetime JP2999124B2 (en) 1994-07-01 1994-07-01 Substructure inside a pressurized water reactor

Country Status (1)

Country Link
JP (1) JP2999124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245689B2 (en) 2003-06-18 2007-07-17 Mitsubishi Heavy Industries, Ltd Nuclear reactor internal structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786616B2 (en) * 2007-08-31 2011-10-05 三菱重工業株式会社 Reactor
DE102008016310A1 (en) * 2008-03-28 2009-07-16 Areva Np Gmbh Measuring arrangement for determining concentration of boron dissolved in e.g. water, has radioactive neutron source and thermal radiation sensors/neutron detectors for detecting neutrons, where source is arranged within measuring vessel
CN104637553A (en) * 2015-01-28 2015-05-20 中科华核电技术研究院有限公司 Flow distribution device and nuclear reactor component with same
CN111916230B (en) * 2020-08-13 2022-02-11 中国核动力研究设计院 Pressurized water reactor capable of realizing circumferential uniform distribution of flow of descending section
CN112185600B (en) * 2020-09-30 2022-02-01 中国核动力研究设计院 Nuclear reactor lower cavity stepped flow distribution device and distribution structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RADCLIFF T D et.al.,"Visualiztion of the Lower Plenum Anomaly in the Westinghouse AP600 Rea−ctor.",Nucl Technol,Vol.106,No.1(1994)p.100−109

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245689B2 (en) 2003-06-18 2007-07-17 Mitsubishi Heavy Industries, Ltd Nuclear reactor internal structure

Also Published As

Publication number Publication date
JPH0815476A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
KR101129735B1 (en) Nuclear reactor
JP5542062B2 (en) Neutron shielding panels for reactor pressure vessels.
EP2366184B1 (en) Reactor vessel coolant deflector shield
JP2010518402A (en) Pressurized water reactor skirt rectifier
GB1563911A (en) Nuclear core region fastener arrangement
JP2999124B2 (en) Substructure inside a pressurized water reactor
US4146430A (en) Nuclear reactor core flow baffling
US3549493A (en) Fast sodium-cooled reactor core structure
US4235284A (en) Heat exchanger with auxiliary cooling system
GB2181593A (en) Reactor internals loose parts strainer
US11881320B2 (en) Molten fuel reactors and orifice ring plates for molten fuel reactors
JP3316459B2 (en) Reactor Vessel Internal Structure
US3393128A (en) Nuclear reactor fuel element assemblies
US4077835A (en) Nuclear reactor with self-orificing radial blanket
JPH0862372A (en) Internal structure of pressurized water reactor
JP3853415B2 (en) Pressurized water reactor reactor vessel
JP3626844B2 (en) Radial neutron reflector for nuclear reactors
JP4220845B2 (en) Reactor internal structure
JPH0972985A (en) To-be-heated fluid mixing acceleration structure of vertical heat exchanger
JP3035276B1 (en) Reactor vessel core support structure
JPH10111379A (en) Internal structure of pressurized water reactor
JP2002257971A (en) Nuclear reactor vessel
JP2000111682A (en) Core internal structure of pressurized water reactor
JP4166910B2 (en) Pressurized water reactor
JPH0587963A (en) Tank type fast breeder reactor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 14

EXPY Cancellation because of completion of term