JP7037216B2 - Multi-layered high-energy radiation shielding material using polymer / lead-free metal composite material and its manufacturing method - Google Patents

Multi-layered high-energy radiation shielding material using polymer / lead-free metal composite material and its manufacturing method Download PDF

Info

Publication number
JP7037216B2
JP7037216B2 JP2020541409A JP2020541409A JP7037216B2 JP 7037216 B2 JP7037216 B2 JP 7037216B2 JP 2020541409 A JP2020541409 A JP 2020541409A JP 2020541409 A JP2020541409 A JP 2020541409A JP 7037216 B2 JP7037216 B2 JP 7037216B2
Authority
JP
Japan
Prior art keywords
flakes
tungsten
radiation shielding
energy radiation
shielding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020541409A
Other languages
Japanese (ja)
Other versions
JP2021512306A (en
Inventor
ソ,ヨンソク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SNU R&DB Foundation
Original Assignee
Seoul National University R&DB Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seoul National University R&DB Foundation filed Critical Seoul National University R&DB Foundation
Publication of JP2021512306A publication Critical patent/JP2021512306A/en
Application granted granted Critical
Publication of JP7037216B2 publication Critical patent/JP7037216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • G21F1/125Laminated shielding materials comprising metals

Description

本発明は、高分子/非鉛系金属複合材料を用いた多層構造の高エネルギー放射線遮蔽材及びこの製造方法に関する。 The present invention relates to a multi-layered high-energy radiation shielding material using a polymer / lead-free metal composite material and a method for producing the same.

より詳しくは、多層で構成されるビスマス-スズ合金粉末及び高分子樹脂からなるフィルム、シートまたは織物形態の基材1と、前記基材の層間に挿入され、基材の表面に所定の模様と一定の間隔を有して配列及び固定される板状のタングステン薄片2、3とを含んでなり、前記基材と固定されるタングステン薄片がなす層とが交互に積層されるよう多層に積層するが、相互に隣接した層のタングステン薄片同士の相互位置は、薄片の中心が相互に一致しないように配置して放射線が通過できないように遮断することを特徴とする多層構造の高エネルギー放射線遮蔽材に関する。 More specifically, the substrate 1 in the form of a film, sheet or woven material made of a bismuth-tungsten alloy powder and a polymer resin composed of multiple layers is inserted between the layers of the substrate, and a predetermined pattern is formed on the surface of the substrate. It contains plate-shaped tungsten flakes 2 and 3 arranged and fixed at regular intervals, and is laminated in multiple layers so that the base material and the layer formed by the tungsten flakes to be fixed are alternately laminated. However, the mutual position of the tungsten flakes of the adjacent layers is arranged so that the centers of the flakes do not coincide with each other, and the high-energy radiation shielding material having a multi-layer structure is characterized in that radiation is blocked from passing through. Regarding.

本出願は、2018年1月29日出願の韓国特許出願第10-2018-0010758号に基づく優先権を主張し、該当出願の明細書及び図面に開示された内容は、すべて本出願に組み込まれる。 This application claims priority based on Korean Patent Application No. 10-2018-0010758 filed on January 29, 2018, and all the contents disclosed in the specification and drawings of the relevant application are incorporated into this application. ..

現代社会において放射線は、原子力発電所、軍用装備、医療放射線、産業放射線などの多様な分野で有用に用いられているが、一方では、チェルノブイリ原発事故や最近の福島原発事故のように意図しない事故によって流出されて深刻な被害を被らせることもある。このような背景において放射線を遮蔽できる素材の需要はますます増加しつつある。特に、福島事態から分かるように高エネルギー放射線に対しては、適合した保護服がなくて現場で作業する作業者の安全を確保しにくい実情であった。 Radiation is usefully used in various fields such as nuclear power plants, military equipment, medical radiation, and industrial radiation in modern society, but on the other hand, unintended accidents such as the Chernobyl accident and the recent Fukushima accident. It may be leaked and cause serious damage. Against this background, the demand for materials that can shield radiation is increasing. In particular, as can be seen from the Fukushima situation, it was difficult to ensure the safety of workers working in the field without suitable protective clothing for high-energy radiation.

現在まで使用されてきた放射線遮蔽材のうち最も普遍的な放射線遮蔽物質は、鉛(lead)であるが、長期間に反復的に接触する場合、人体に対して毒性を現わすだけでなく、防護服や遮蔽材として用いるのに重さが重くて、長期間の着用時、人体に負担になり、また、高分子複合材料に比べて加工性と柔軟性が劣るという短所を有する。 The most universal radiation-shielding material that has been used to date is lead, which is not only toxic to the human body when repeatedly contacted for a long period of time. It is heavy to be used as a protective clothing or a shielding material, is a burden on the human body when worn for a long period of time, and has disadvantages that it is inferior in processability and flexibility as compared with a polymer composite material.

鉛の代替材として多様な高分子内に金属粒子を分散させた複合素材を使えば、金属の優れた遮蔽性能と高分子の加工性、柔軟性を共に有するようになる長所がある。これに係り、韓国公開特許公報第10-2011-0064988号、第10-2011-0126934号などを含めた多くの特許には、素材の種類と含量、製造方法などに変化を与えた高分子/金属複合材料放射線遮蔽材が提案されている。しかし、前記先行特許は、鉛を含んで多様な金属粒子を高分子/金属複合材料放射線遮蔽材に利用可能なことを説明しているが、そのうち、鉛よりも優れた放射線遮蔽性能を有しながら経済性及び加工性などの面で現実的に適用可能な金属は極少数に過ぎない。特に、高エネルギー放射線に対して鉛くらいの遮断性を示す材料は、現在としてはタングステンが最も有望であるが、タングステンの場合、鉛よりも比重が高くて作業服に適用しにくいだけでなく、高すぎる溶融温度を有することから実際に加工しにくい。 If a composite material in which metal particles are dispersed in various polymers is used as a substitute material for lead, there is an advantage that both excellent shielding performance of metal and processability and flexibility of polymer can be obtained. In connection with this, many patents including Korean Patent Publication Nos. 10-2011-0064988, 10-2011-0126934, etc. have changed the type and content of the material, the manufacturing method, etc. Metallic composite materials Radiation shielding materials have been proposed. However, the above-mentioned prior patent explains that various metal particles including lead can be used as a radiation shielding material for a polymer / metal composite material, and among them, it has a radiation shielding performance superior to that of lead. However, there are only a few metals that are practically applicable in terms of economy and workability. In particular, tungsten is currently the most promising material that has a blocking property of about lead against high-energy radiation, but tungsten has a higher specific gravity than lead and is difficult to apply to work clothes. It is difficult to actually process because it has a melting temperature that is too high.

本発明は、上記問題点に鑑みてなされたものであり、鉛の代替財として優れた放射線遮蔽性能を有する低融点ビスマス-スズ合金粉末を高分子樹脂と混合して均一に分散させた後、これを押出機で押し出してフィルムの形態に作るか、または繊維状に押し出した後、これを製織してシート状にし、そのものとしても放射線遮蔽性能が優秀な遮蔽材を提供するだけでなく、その上に接着剤を塗布した後、均一な模様のタングステン薄片を一定に配置して、タングステンと高分子/ビスマス-スズ混合体との混合シートを作った後、この混合シートに、該タングステン薄片が他の位置に配向しているシートを積層することで、放射線が透過可能なピンホールが防止された高エネルギー放射線多層(二層以上)遮蔽複合シートを提供することを目的とする。ここで、多層複合シートは、タングステンフィルムとは異なり、高分子/ビスマス-スズシートが柔軟で自由に曲げられる特性を有し、より多くの多層構造に製造されるほど、より高い遮蔽性能を有するようになる。 The present invention has been made in view of the above problems, and after a low melting point bismuth-tin alloy powder having excellent radiation shielding performance as a substitute for lead is mixed with a polymer resin and uniformly dispersed. This is extruded with an extruder to form a film, or extruded into a fibrous form, which is then woven into a sheet, which not only provides a shielding material with excellent radiation shielding performance, but also its own. After applying the adhesive on top, tungsten flakes with a uniform pattern are arranged uniformly to make a mixed sheet of tungsten and a polymer / bismuth-tin mixture, and then the tungsten flakes are placed on this mixed sheet. It is an object of the present invention to provide a high energy radiation multilayer (two or more layers) shielding composite sheet in which pinholes through which radiation can be transmitted are prevented by laminating sheets oriented at other positions. Here, unlike the tungsten film, the multilayer composite sheet has the property that the polymer / bismuth-tin sheet is flexible and freely bendable, and the more multilayer structures are manufactured, the higher the shielding performance is. become.

また、本発明は、このような複合シートを裁断して高エネルギー放射線遮蔽構造物、放射線遮蔽服、遮蔽織物、放射性廃棄物貯蔵または運搬用袋を製造することができる効率的な多層構造の複合遮蔽材とその製造方法を提供することを他の目的とする。 The present invention also has an efficient multi-layered composite capable of cutting such composite sheets to produce high energy radiation shielding structures, radiation shielding clothing, shielding fabrics, radioactive waste storage or transport bags. Another purpose is to provide a shielding material and a method for producing the same.

上記の課題を達成するために、ビスマス-スズ合金粉末を高分子樹脂と混錬して複合樹脂を製造する複合樹脂の製造段階と、前記複合樹脂をフィルムまたはシート状に押し出すか、または繊維状に押し出した後、押し出された繊維を織物形態に製織して基材を製造する基材1の製造段階と、前記基材の表面に所定の模様と一定の間隔を有して配列される板状のタングステン薄片2、3を固定するタングステン薄片固定段階と、前記基材と固定されるタングステン薄片がなす層とが交互に積層されるよう多層に積層するが、相互に隣接した層のタングステン薄片同士の相互位置は薄片の中心が相互に一致しないように配置する、放射線が透過するピンホールのない基材とタングステン薄片との積層段階と、を含むことを特徴とする、多層構造の高エネルギー放射線遮蔽材の製造方法を提供する。 In order to achieve the above-mentioned problems, the step of manufacturing a composite resin in which a tungsten alloy powder is kneaded with a polymer resin to produce a composite resin, and the composite resin is extruded into a film or a sheet or in a fibrous form. After being extruded into a tungsten, the extruded fibers are woven into a woven form to produce a base material, and a plate arranged on the surface of the base material with a predetermined pattern and a certain interval. The tungsten flakes fixing step of fixing the tungsten flakes 2 and 3 and the layer formed by the tungsten flakes to be fixed are alternately laminated in multiple layers, but the tungsten flakes of the layers adjacent to each other are laminated alternately. The mutual position of each other is characterized by the high energy of the multi-layer structure, which comprises a step of laminating a base material without a pinhole through which radiation passes and a tungsten flakes, which are arranged so that the centers of the flakes do not coincide with each other. Provided is a method for manufacturing a radiation shielding material.

また、本発明においては、前記製造方法によって製造される多層で構成されるビスマス-スズ合金粉末及び高分子樹脂からなるフィルム、シートまたは織物形態の基材1と、前記基材の層間に挿入され、基材の表面に所定の模様と一定の間隔を有して配列及び固定される板状のタングステン薄片2、3とを含んでなり、前記基材と固定されるタングステン薄片がなす層とが交互に積層されるよう多層に積層するが、相互に隣接した層のタングステン薄片同士の相互位置は、薄片の中心が相互に一致しないように配置することで放射線が透過できるピンホールが除去されたことを特徴とする、多層構造の高エネルギー放射線遮蔽材を提供する。 Further, in the present invention, it is inserted between the base material 1 in the form of a film, sheet or woven material made of a bismuth-tin alloy powder and a polymer resin composed of multiple layers manufactured by the above-mentioned manufacturing method, and the layers of the base material. , The surface of the substrate contains plate-shaped tungsten flakes 2 and 3 arranged and fixed at a predetermined pattern with a predetermined pattern, and the substrate and the layer formed by the tungsten flakes to be fixed are formed. It is laminated in multiple layers so that it is laminated alternately, but the mutual position of the tungsten flakes of the adjacent layers is arranged so that the centers of the flakes do not coincide with each other, so that pinholes through which radiation can pass are removed. Provided is a high-energy radiation shielding material having a multi-layer structure, which is characterized by the above.

本発明によって製作された高分子/低融点ビスマス-スズ合金からなる複合シートの上にタングステン薄片を一定の間隔で配置して単層遮断シートを製造し、これらのシートを多層(二層以上)に積層することで放射線が透過できるピンホールがなく、遮断性能が優秀で柔軟な多層構造体を製造することができる。 Tungsten flakes are arranged at regular intervals on a composite sheet made of a polymer / low melting point bismuth-tin alloy produced by the present invention to produce a single-layer blocking sheet, and these sheets are multi-layered (two or more layers). It is possible to manufacture a flexible multilayer structure having excellent blocking performance without pinholes through which radiation can pass by laminating in.

多層構造体の製作に際し、高分子/ビスマス-スズ複合体の上に多角形または一定の円形のタングステン薄片を一定の間隔で配列した後、これらのシートを多層に積層するが、他の層のタングステン薄片の中心が相互にずれるように配列されることで放射線が透過可能なピンホールがなくなり、タングステンの高い遮断性を用いることができ、多層構造に製造することでタングステンフィルムが有さない柔軟性を付与して製造された多層複合構造体が既存の鉛から構成された放射線遮蔽材の問題点を解決できると共に、多様な放射線遮蔽具の製造に用いることができる。この多層構造複合体は、ビスマス-スズ合金の放射線遮蔽性能と共にタングステンの遮蔽性能を複合的に用いることができ、低エネルギー放射線は勿論、γ線のような高エネルギー放射線に対しても非常に高い遮蔽性能を示すので、高エネルギー放射線被爆の危険から作業者を保護する防護服、防護具、放射性廃棄物包装容器及び包装袋、放射線発生源を遮断する包装膜の材料に至るまで広く用いることができる。 In the fabrication of a multi-layer structure, polygonal or constant circular tungsten flakes are arranged at regular intervals on a polymer / bismus-tin composite, and then these sheets are laminated in multiple layers, but in other layers. By arranging the centers of the tungsten flakes so that they are offset from each other, there are no pinholes through which radiation can pass, and the high blocking property of tungsten can be used. The multilayer composite structure manufactured with the property can solve the problem of the existing radiation shielding material composed of lead, and can be used for manufacturing various radiation shielding materials. This multi-layered composite can use the radiation shielding performance of bismuth-tin alloy and the shielding performance of tungsten in combination, and is extremely high not only for low energy radiation but also for high energy radiation such as γ-rays. Since it exhibits shielding performance, it can be widely used for protective clothing, protective equipment, radioactive waste packaging containers and bags that protect workers from the danger of high-energy radiation exposure, and packaging membrane materials that block radiation sources. can.

また、本発明によって製造された多層構造複合遮蔽材は、高エネルギー放射線(γ線)を遮断するだけでなくX線のような低エネルギー放射線も薄厚を以っても完壁に遮断することができ、低エネルギー放射線の遮蔽材としても適用が可能である。 Further, the multilayer structure composite shielding material produced by the present invention can not only block high-energy radiation (γ-rays) but also completely block low-energy radiation such as X-rays even if it is thin. It can also be applied as a shielding material for low-energy radiation.

本発明の一具現例による多層構造の高エネルギー放射線遮蔽材を図式的に示したものであって、(a)上面図、(b)断面図、(c)屈曲時の側面図である。It is a diagrammatic representation of a high-energy radiation shielding material having a multi-layer structure according to an embodiment of the present invention, and is (a) a top view, (b) a cross-sectional view, and (c) a side view at the time of bending. 本発明の一具現例による(a)高分子とビスマス-スズ合金とが溶融混合された押出フィルムの断面を示す顕微鏡写真であり、(b)押出機のノズルから出た繊維状押出体を示す。It is a micrograph which shows the cross section of (a) the extrusion film which melt-mixed the polymer and the bismuth-tin alloy by one embodiment of this invention, and (b) shows the fibrous extruder which came out from the nozzle of the extruder. .. 本発明の一具現例によるタングステン薄片が一定の間隔で均一に付着された複合放射線遮蔽材の写真である。It is a photograph of a composite radiation shielding material in which tungsten flakes are uniformly adhered at regular intervals according to an embodiment of the present invention.

以下、本発明を詳しく説明する。これに先立ち、本明細書及び特許請求の範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはならず、発明者自らは発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に則して本発明の技術的な思想に応ずる意味及び概念で解釈されねばならない。 Hereinafter, the present invention will be described in detail. Prior to this, the terms and words used in the present specification and the scope of the patent claim should not be construed in a general or lexical sense, and the inventor himself describes the invention in the best possible way. Therefore, it must be interpreted in the meaning and concept corresponding to the technical idea of the present invention in accordance with the principle that the concept of terms can be properly defined.

本発明においては、上記の課題を達成するために、ビスマス-スズ合金粉末を高分子樹脂と混錬して複合樹脂を製造する複合樹脂の製造段階と、前記複合樹脂をフィルムまたはシート状に押し出すか、または繊維状に押し出した後、押し出された繊維を織物形態に製織して基材1を製造する基材の製造段階と、前記基材の表面に所定の模様と一定の間隔を有して配列される板状のタングステン薄片2、3を固定するタングステン薄片固定段階と、前記基材と固定されるタングステン薄片がなす層とが交互に積層されるよう多層に積層するが、相互に隣接した層のタングステン薄片同士の相互位置は、上下に配置された薄片の中心が相互に一致しないようにして、上層の薄片2の中心が下層の薄片3同士の間に位置するように配置する基材とタングステン薄片との積層段階と、を含むことを特徴とする、多層構造の高エネルギー放射線遮蔽材の製造方法を提供する。 In the present invention, in order to achieve the above-mentioned problems, a composite resin manufacturing step of kneading a bismuth-tungsten alloy powder with a polymer resin to produce a composite resin and extruding the composite resin into a film or a sheet. Or, after extruding into a fibrous form, the extruded fiber is woven into a textile form to produce the base material 1, and the surface of the base material has a predetermined pattern and a certain interval. The tungsten flakes fixing step for fixing the plate-shaped tungsten flakes 2 and 3 arranged together and the layer formed by the tungsten flakes to be fixed are laminated in multiple layers so as to be alternately laminated, but they are adjacent to each other. The mutual position of the tungsten flakes in the layer is such that the centers of the flakes arranged above and below do not coincide with each other, and the center of the flakes 2 in the upper layer is located between the flakes 3 in the lower layer. Provided is a method for producing a high-energy radiation shielding material having a multi-layer structure, which comprises a laminating step of a material and a tungsten flakes.

本発明は、非鉛系金属として放射線遮蔽性能に優れたビスマス-スズ(Bi-Sn)合金粉末を高分子と溶融混合して直接フィルムに加工するか、または繊維状に加工した後に製織してシートを作り、そのシートの上に一定の大きさと模様(一例で四角形)のタングステン薄片を配列し、このタングステン薄片が相異なる層で交差するように配列して放射線が通過できないようにすることで遮蔽する高分子/金属複合材料放射線遮蔽材及びその製造方法に関し、(a)一軸や二軸押出機またはインターナルミキサー(internal mixer)で低融点ビスマス-スズ合金粉末を高分子樹脂と混合する段階と、(b)混合された複合樹脂をフィルムまたはシート状に押し出すか、または繊維状に押し出し、これを織物に製織した後、(c)製造されたフィルムやシート、織物の上に薄く接着剤を塗布してその上に薄い四角形のタングステン薄片を一定の間隔で離隔して配置し、(d)これらのタングステン薄片を一定に配列したシートを積層するが、相異なるシートのタングステン薄片が交互に配列するよう積層して製作される多層(二層以上)構造の高分子/金属複合材料であって、ピンホール(pin-hole)なく高エネルギー放射線(γ線)を遮断することができる遮蔽材及びその製造方法、並びに応用に関する。 In the present invention, bismus-tungsten (Bi-Sn) alloy powder, which is a lead-free metal and has excellent radiation shielding performance, is melt-mixed with a polymer and directly processed into a film, or is processed into a fibrous form and then woven. By making a sheet, arranging tungsten shards of a certain size and pattern (square in one example) on the sheet, and arranging the tungsten shards so that they intersect in different layers to prevent radiation from passing through. Regarding the polymer / metal composite material radiation shielding material to be shielded and its manufacturing method, (a) a step of mixing a low melting point bismuth-tin alloy powder with a polymer resin by a uniaxial or twin shaft extruder or an internal mixer. And (b) the mixed composite resin is extruded into a film or sheet, or extruded into a fibrous form, which is woven into a woven fabric, and then (c) a thin adhesive is applied onto the produced film, sheet, or woven fabric. (D) Tungsten shards of different sheets are alternately laminated, although thin square tungsten shards are placed on it at regular intervals. A polymer / metal composite material with a multi-layer (two or more layers) structure that is manufactured by laminating so as to be arranged, and is a shielding material that can block high-energy radiation (γ-rays) without pin-holes. And its manufacturing method, and its application.

本発明の一具現例によれば、前記(a)過程によって、ビスマス-スズ金属粉末は押出機内で溶融して高分子マトリクス内に均一に分散してそのものとしてピンホールのない複合体をなし、続いてこれを(b)過程でフィルム形態の押出体に加工すれば、そのフィルムそのものが放射線遮蔽特性を示し、さらに他の方法では、繊維状押出体を製造した後、該繊維を製織して織物を作る場合、織物そのものも放射線遮蔽機能を示し、さらに前記(c)過程で接着剤を薄く塗布した後、一定の大きさの四角形のタングステン薄片を等間隔で配列し、(d)工程でこれらのタングステン薄片が配列されたシートを他の層のタングステン薄片とずらして配列することでピンホールのない放射線遮蔽材を製造することで高エネルギー放射線(γ線)が放出されることを遮断することができる。 According to one embodiment of the present invention, by the process (a), the bismuth-tin metal powder is melted in the extruder and uniformly dispersed in the polymer matrix to form a complex without pinholes as it is. If this is subsequently processed into a film-shaped extruder in step (b), the film itself exhibits radiation shielding properties, and in another method, a fibrous extruder is produced and then the fibers are woven. When making a woven fabric, the woven fabric itself also exhibits a radiation shielding function, and after applying a thin layer of adhesive in the step (c), square tungsten flakes of a certain size are arranged at equal intervals, and in the step (d). By arranging the sheet in which these tungsten flakes are arranged so as to be offset from the tungsten flakes of other layers, a radiation shielding material without pinholes is manufactured to block the emission of high-energy radiation (γ-rays). be able to.

本発明の一具現例による放射線複合遮蔽材を放射性廃棄物移送袋または放射線防護服や防護具に製造し、放射線関連事業で働く作業者を高エネルギー放射線(γ線)の露出から保護し、放射性廃棄物貯蔵容器や移送袋として用いることができる。また、この構造体は、多層に積層するほど遮蔽性能が比例して高くなり、これを原発関連施設の非常事態時、関連施設を覆うための特殊布または包装膜の製作にも使用可能である。 A radiation composite shielding material according to an embodiment of the present invention is manufactured in a radioactive waste transfer bag or radiation protective clothing or protective equipment to protect workers working in radiation-related businesses from exposure to high-energy radiation (γ-rays) and to be radioactive. It can be used as a waste storage container or a transfer bag. In addition, the shielding performance of this structure increases proportionally as it is stacked in multiple layers, which can be used to manufacture special cloth or packaging membranes for covering related facilities in the event of an emergency at a nuclear power plant related facility. ..

本発明においては、多層構造体の金属材料として低融点ビスマス(Bi)-スズ(Sn)合金粉末とタングステン薄片を使用するが、ビスマス-スズ合金は、構成元素として含んでいるスズのK-edgeの光子エネルギーが29.2KeVであって、このエネルギー値から鉛のK-edgeの光子エネルギーである87.9KeVに至る区間で鉛よりも高い質量減衰定数を有する。また、スズは、他の金属との合金を形成するとき、融点を大幅低めて加工性を向上させるという長所がある。したがって、鉛に比べて原子番号が1しか高くなくて鉛とほぼ同じ質量減衰定数を有するビスマスと高い質量減衰定数を示すスズとが形成したビスマス-スズ合金は、139℃程度の低い融点を有して高分子との混合が容易となり、スズとビスマスの優秀な遮蔽性能を共に有することで、放射線遮蔽に使われる鉛の代替材として望ましい。また、本発明に使用されるタングステンの場合、薄片からなっており、高分子/ビスマス-スズ複合フィルムの上で一定の間隔で配列されることで自由に曲げられ、高い放射線遮蔽特性から、放射線遮蔽膜や防護服、防護具並びに廃棄物運送用包装袋の製造などに利用できる。 In the present invention, low melting point bismuth (Bi) -tin (Sn) alloy powder and tungsten flakes are used as the metal material of the multilayer structure, and the bismuth-tin alloy contains tin K-edge as a constituent element. The photon energy of tin is 29.2 KeV, and it has a mass decay constant higher than that of lead in the section from this energy value to 87.9 keV, which is the photon energy of K-edge of lead. Further, tin has an advantage that when forming an alloy with another metal, the melting point is significantly lowered to improve workability. Therefore, the bismuth-tin alloy formed by bismuth, which has an atomic number higher than that of lead and has almost the same mass decay constant as lead, and tin, which has a high mass decay constant, has a low melting point of about 139 ° C. As a result, it becomes easy to mix with a polymer and has excellent shielding performance of tin and bismuth, which is desirable as a substitute for lead used for radiation shielding. Further, in the case of the tungsten used in the present invention, it is composed of flakes, which can be freely bent by being arranged at regular intervals on a polymer / bismuth-tin composite film, and radiation due to its high radiation shielding characteristics. It can be used for manufacturing shielding films, protective clothing, protective equipment, and packaging bags for transporting waste.

本発明の一具現例による多層構造の高エネルギー放射線遮蔽材の製造方法において、前記複合樹脂製造段階は、高分子樹脂100重量部に対してビスマス-スズ合金粉末を100~500重量部で混合して混錬し得る。より望ましくは、高分子樹脂100重量部に対して低融点ビスマス-スズ(58:42)合金粉末100~500重量部、酸化防止剤10~20重量部、滑剤15~25重量部からなり得る。 In the method for manufacturing a high-energy radiation shielding material having a multi-layer structure according to an embodiment of the present invention, in the composite resin manufacturing step, bismuth-tin alloy powder is mixed in 100 to 500 parts by weight with 100 parts by weight of the polymer resin. Can be mixed. More preferably, it may consist of 100 to 500 parts by weight of a low melting point bismuth-tin (58:42) alloy powder, 10 to 20 parts by weight of an antioxidant, and 15 to 25 parts by weight of a lubricant with respect to 100 parts by weight of a polymer resin.

本発明の一具現例によるより具体的な多層構造放射線遮蔽材の製造方法は、次のようである。先ず、高分子樹脂100重量部に対し、低融点ビスマス-スズ(58:42)合金粉末を400重量部、酸化防止剤10~20重量部、滑剤15~25重量部を準備し、ツインスクリューインターナルミキサーに投入した後、混合する。この際、使用される低融点スズビスマス合金は、ビスマスの含量比が58%からなる合金であって、139℃程度の低い共融点を有する合金である。 A more specific method for producing a multi-layered radiation shielding material according to an embodiment of the present invention is as follows. First, 400 parts by weight of a low melting point bismuth-tin (58:42) alloy powder, 10 to 20 parts by weight of an antioxidant, and 15 to 25 parts by weight of a lubricant are prepared for 100 parts by weight of a polymer resin, and a twin screw inter is prepared. After putting in a null mixer, mix. At this time, the low melting point tin bismuth alloy used is an alloy having a bismuth content ratio of 58% and having a low co-melting point of about 139 ° C.

この際、前記高分子樹脂は、化学的に安定して物性が悪化しにくく、低い温度で加工可能であり、金属粉末を均一に分散させることができるほどの粘度を有する高分子樹脂として、ポリエチレン-プロピレン共重合体、ポリスチレン-ブタジエン-スチレン共重合体、ポリスチレン-イソプレン-スチレン共重合体、ポリビニルアセテート(polyvinyl acetate)、ポリオレフィンエラストマー(poly olefin elastomer)、ポリブタジエン、ポリイソプレン、ポリカーボネート(polycarbonate)及びEPDM(Ethylene Propylene Diene Monomer)弾性体を単一樹脂で使用するか、または適切な割合で混ぜた混合物であることが望ましい。 At this time, the polymer resin is made of polyethylene as a polymer resin having a viscosity that is chemically stable and does not easily deteriorate in physical properties, can be processed at a low temperature, and can uniformly disperse the metal powder. -Propylene copolymer, polystyrene-butadiene-styrene copolymer, polystyrene-isoprene-styrene copolymer, polyvinyl acetate, polyolefin elastomer, polybutadiene, polyisoprene, polycarbonate and EPDM (Elastomer Propyrene Polymer) It is desirable that the elastic material is used as a single resin or is a mixture mixed in an appropriate ratio.

前記高分子樹脂のうちポリビニルアセテートは、加工性と粘度、柔軟性の面で非常に優れているだけでなく、ビニルアセテートの含量が増加するほど接着性が増加するため、ビニルアセテートの含量が高い材料を用いることで複数枚の遮蔽材の積層時に界面接着力を向上させることができ、特に、ポリビニルアセテートとポリオレフィンエラストマーとの混合物の場合、ポリビニルアセテートの割合を調節することで混合物の粘着力を調節することができる。 Among the above-mentioned polymer resins, polyvinyl acetate is not only extremely excellent in processability, viscosity, and flexibility, but also has a high content of vinyl acetate because the adhesiveness increases as the content of vinyl acetate increases. By using a material, the interfacial adhesive strength can be improved when laminating a plurality of shielding materials. In particular, in the case of a mixture of polyvinyl acetate and a polyolefin elastomer, the adhesive strength of the mixture can be improved by adjusting the ratio of polyvinyl acetate. Can be adjusted.

また、前記高分子樹脂のうちポリカーボネートは、ビスマス-スズ合金粉末の融点である139℃付近においても高い強度を有するため、分解されることなくビスマス-スズ合金粉末を均一に分散させて混合または混錬できるという長所がある。 Further, among the polymer resins, polycarbonate has high strength even at around 139 ° C., which is the melting point of the bismuth-tin alloy powder, so that the bismuth-tin alloy powder is uniformly dispersed and mixed or mixed without being decomposed. It has the advantage of being able to be cultivated.

本発明の一具現例による前記ビスマス-スズ合金は、人体に無害であり、放射線遮蔽性能に優れた物質であるが、密度が高いため、高分子樹脂内に均一に分散させにくい。しかし、押出機内で溶融した後、液状に変化すれば、粘度が低くなり、液状ビスマス-スズよりもさらに粘度の高い高分子樹脂内で密度差による分離なく均一に混合または混錬される。 The bismuth-tin alloy according to one embodiment of the present invention is harmless to the human body and has excellent radiation shielding performance, but because of its high density, it is difficult to uniformly disperse it in the polymer resin. However, if it changes to a liquid after being melted in an extruder, the viscosity becomes low, and the mixture or kneaded uniformly in a polymer resin having a viscosity higher than that of liquid bismuth-tin without separation due to a density difference.

図1は、本発明の一具現例による多層構造の高エネルギー放射線遮蔽材を図式的に示した(a)上面図、(b)断面図、(c)屈曲時の側面図であって、より具体的に、本発明の一具現例によって製造した複合樹脂をフィルムまたはシート状に押し出すか、または繊維状に押し出した後、押し出された繊維を織物形態に製織して製造される基材1に接着剤を塗布した後、その上に厚さ5mm以下の一定の模様(四角形、三角形等の多角形または円形)のタングステン薄片2、3を図1の(a)と(b)に示したように一定の間隔で配列した後、このように製造されたタングステン薄片付きシートを多層に積層するが、最小二層以上に積層して奇数層と偶数層とのタングステン薄片はその中心がずれるように配置することで、他の層の空隙(ピンホール)を遮るようになってピンホールの発生を防止する多層構造の高エネルギー放射線遮蔽材を製造することができる。 FIG. 1 is a top view, (b) a sectional view, and (c) a side view at the time of bending, which schematically shows a high-energy radiation shielding material having a multilayer structure according to an embodiment of the present invention. Specifically, the composite resin produced according to one embodiment of the present invention is extruded into a film or a sheet, or extruded into a fibrous form, and then the extruded fibers are woven into a woven form to form a base material 1. After applying the adhesive, tungsten flakes 2 and 3 having a constant pattern (polygon or circle such as a quadrangle or a triangle) having a thickness of 5 mm or less are shown in FIGS. 1 (a) and 1 (b). After arranging them at regular intervals, the sheets with tungsten flakes manufactured in this way are laminated in multiple layers, but the tungsten flakes of the odd-numbered layer and the even-numbered layer are laminated in a minimum of two or more layers so that their centers are offset. By arranging the material, it is possible to manufacture a high-energy radiation shielding material having a multilayer structure that blocks the voids (pinholes) of other layers and prevents the generation of pinholes.

本発明の一具現例による多層構造の高エネルギー放射線遮蔽材は、タングステン薄片による放射線遮蔽性能とビスマス-スズ合金を含む織物層の放射線遮蔽性能とが複合的に作用し、さらに向上した放射線遮蔽性能を示すことを特徴とする。 In the high-energy radiation shielding material having a multi-layer structure according to an embodiment of the present invention, the radiation shielding performance of tungsten flakes and the radiation shielding performance of a textile layer containing a bismuth-tin alloy work in combination, and the radiation shielding performance is further improved. It is characterized by showing.

本発明の一具現例による多層構造の高エネルギー放射線遮蔽材の製造方法において、前記タングステン薄片は円形または多角形であり得、より望ましくは、三角形、四角形(正方形または長方形)または円形であり得る。 In the method for producing a multi-layered high energy radiation shielding material according to an embodiment of the present invention, the tungsten flakes may be circular or polygonal, and more preferably triangular, quadrangular (square or rectangular) or circular.

本発明の一具現例による多層構造の高エネルギー放射線遮蔽材の製造方法において、前記タングステン薄片は、隣接するタングステン薄片同士の間隔がタングステン薄片の厚さよりも二倍以上の距離で離隔するように基材に固定され得る。より具体的に、図1の(c)に示したように、多層構造の高エネルギー放射線遮蔽材は、タングステン薄片同士の間隔がタングステンフィルムの厚さよりも大きくて、織物体が自由に曲げられることを特徴とする。 In the method for producing a high-energy radiation shielding material having a multi-layer structure according to an embodiment of the present invention, the tungsten flakes are based on such that the distance between adjacent tungsten flakes is at least twice the thickness of the tungsten flakes. Can be fixed to the material. More specifically, as shown in FIG. 1 (c), in the high-energy radiation shielding material having a multi-layer structure, the distance between the tungsten flakes is larger than the thickness of the tungsten film, and the woven fabric can be freely bent. It is characterized by.

本発明の一具現例による多層構造の高エネルギー放射線遮蔽材の製造方法において、前記基材とタングステン薄片の積層段階は、図1の(a)と(b)に示したように、一層の薄片中心が他の層の隣接する二つ以上の薄片が形成する間隔部に位置するようにする基材とタングステン薄片との積層段階を含み得る。 In the method for producing a high-energy radiation shielding material having a multi-layer structure according to an embodiment of the present invention, the step of laminating the base material and the tungsten flakes is as shown in FIGS. 1 (a) and 1 (b). It may include a laminating step of the substrate and the tungsten flakes such that the center is located at the spacing formed by two or more flanks of the other layer.

図2は、本発明の一具現例による(a)高分子とビスマス-スズ合金とが溶融混合された押出フィルムの断面を示す顕微鏡写真であり、(b)押出機ノズルから出た繊維状の押出体を示したものであって、混合または混錬時、一軸または二軸押出機を使用することが望ましく、インターナルミキサーの場合には、スクリューの回転速度を30rpm以上に速くして4~5分間混合することが望ましい。 FIG. 2 is a micrograph showing a cross section of an extruded film in which (a) a polymer and a bismuth-tin alloy are melt-mixed according to an embodiment of the present invention, and (b) a fibrous form emitted from an extruder nozzle. It shows an extruder, and it is desirable to use a single-screw or twin-screw extruder during mixing or kneading. In the case of an internal mixer, the rotation speed of the screw is increased to 30 rpm or more and 4 to 4 to It is desirable to mix for 5 minutes.

この際、基材を製造する基材の製造段階において、複合樹脂をフィルムまたはシート状に押し出すか、繊維状に押し出した後、押し出された繊維を織物形態に製織するか、または押し出されたフィルムをTダイを連結して薄いフィルム状にすぐ加工することができる。他の形態のシートの製作のためには、図2の(b)のように繊維状に伸ばすことができ、この際、繊維状は用途によって延伸してその太さを調節することができる。 At this time, in the manufacturing stage of the base material for manufacturing the base material, the composite resin is extruded into a film or a sheet, or extruded into a fibrous form, and then the extruded fibers are woven into a woven fabric form, or the extruded film. Can be immediately processed into a thin film by connecting T-dies. For the production of other forms of the sheet, it can be stretched into a fibrous form as shown in FIG. 2B, and at this time, the fibrous form can be stretched depending on the application and its thickness can be adjusted.

特に、本発明の一具現例による高エネルギー放射線遮蔽材のビスマス-スズ合金は、ビスマス58%とスズ42%からなることで139℃付近で溶融することを特徴とする共融合金であって、高分子樹脂100重量部に対してビスマス-スズ合金粉末を100~500重量部混合する構成割合で押出機内で容易に溶融混合して押し出し得る特徴がある。また、一軸または二軸押出機またはインターナルミキサー内で製造された高分子/ビスマス-スズ複合樹脂は、フィルム状または繊維状に押し出した後に製織して、織物形態に製造可能な特徴がある。 In particular, the bismuth-tin alloy of the high-energy radiation shielding material according to one embodiment of the present invention is a bismuth-tin alloy characterized in that it is composed of 58% bismuth and 42% tin and melts at around 139 ° C. It has a feature that bismuth-tin alloy powder can be easily melt-mixed and extruded in an extruder at a composition ratio of mixing 100 to 500 parts by weight of bismuth-tin alloy powder with respect to 100 parts by weight of a polymer resin. Further, the polymer / bismuth-tin composite resin produced in a single-screw or twin-screw extruder or an internal mixer has a characteristic that it can be produced in a woven form by extruding into a film or fibrous form and then weaving.

また、本発明においては、多層として構成されるビスマス-スズ合金粉末及び高分子樹脂からなるフィルム、シートまたは織物形態の基材と、前記基材の層間に挿入され、基材の表面に所定の模様と一定の間隔を有して配列及び固定される板状のタングステン薄片とを含んでなり、前記基材と固定されるタングステン薄片がなす層とが交互に多層として積層するが、相互に隣接する層のタングステン薄片同士の相互位置は、他の層の薄片の中心が相互に一致しないように配置されることを特徴とする多層構造の高エネルギー放射線遮蔽材を提供する。 Further, in the present invention, it is inserted between a base material in the form of a film, sheet or woven material made of a bismus-tungsten alloy powder and a polymer resin configured as multiple layers, and the base material, and is predetermined on the surface of the base material. It contains a pattern and plate-shaped tungsten flakes that are arranged and fixed at regular intervals, and the base material and the layer formed by the tungsten flakes that are fixed are alternately laminated as multiple layers, but are adjacent to each other. The mutual position of the tungsten flakes of the other layer provides a multi-layered high energy radiation shielding material characterized in that the centers of the flakes of the other layer are arranged so as not to coincide with each other.

本発明の一具現例による多層構造の高エネルギー放射線遮蔽材において、前記高分子樹脂は、ポリエチレン-プロピレン共重合体、ポリスチレン-ブタジエン-スチレン共重合体、ポリスチレン-イソプレン-スチレン共重合体、ポリビニルアセテート、ポリオレフィンエラストマー、ポリブタジエン、ポリイソプレン、ポリカーボネート及びEPDM弾性体からなる群より選択される一種の高分子樹脂または二種以上の混合物であり得る。 In the high-energy radiation shielding material having a multilayer structure according to an embodiment of the present invention, the polymer resin is a polyethylene-propylene copolymer, a polystyrene-butadiene-styrene copolymer, a polystyrene-isoprene-styrene copolymer, or a polyvinyl acetate. , Polyolefins, Polybutadienes, Polyisoprenes, Polycarbonates and EPDM Elastics can be one type of polymeric resin selected from the group or a mixture of two or more.

本発明の一具現例による多層構造の高エネルギー放射線遮蔽材において、前記タングステン薄片は、隣接するタングステン薄片との間隔がタングステン薄片の厚さよりも二倍以上の距離で離隔するように基材に固定され得る。 In the high-energy radiation shielding material having a multi-layer structure according to an embodiment of the present invention, the tungsten flakes are fixed to the substrate so that the distance between the tungsten flakes and the adjacent tungsten flakes is at least twice the thickness of the tungsten flakes. Can be done.

本発明の一具現例による多層構造の高エネルギー放射線遮蔽材において、前記タングステン薄片の層間の配列は、一層の薄片中心が、他の層の隣接する薄片同士が形成する間隔部に位置したものであり得る。 In the high-energy radiation shielding material having a multi-layer structure according to an embodiment of the present invention, the arrangement between the layers of the tungsten flakes is such that the center of the flakes of one layer is located at the interval formed by the adjacent flakes of the other layers. possible.

本発明の一具現例による多層構造の高エネルギー放射線遮蔽材は裁断され、放射線防護服、防護具、放射線遮蔽用包装膜、放射性廃棄物包装容器及び包装袋より選択されるいずれか一つに製造され得る。 The high-energy radiation shielding material having a multi-layer structure according to an embodiment of the present invention is cut and manufactured as one selected from radiation protective clothing, protective equipment, radiation shielding packaging membrane, radioactive waste packaging container and packaging bag. Can be done.

本発明の一具現例による多層構造の高エネルギー放射線遮蔽材は裁断され、低エネルギー放射線(X線)防護服、防護具及び遮蔽膜より選択されるいずれかの一つに製造され得る。 The multi-layered high energy radiation shielding material according to one embodiment of the present invention can be cut and manufactured into one of low energy radiation (X-ray) protective clothing, protective equipment and shielding film.

本発明の一具現例によれば、多層構造の高エネルギー放射線遮蔽材を裁断して、放射線防護服、防護具、放射線遮蔽用包装膜、放射性廃棄物包装容器及び包装袋を製造することができ、このような多層構造の高エネルギー放射線遮蔽材は、低エネルギー放射線(X線)防護服や防護具及び遮蔽膜にも活用できるという長所がある。 According to one embodiment of the present invention, a multi-layered high-energy radiation shielding material can be cut to produce radiation protective clothing, protective equipment, radiation shielding packaging membranes, radioactive waste packaging containers and packaging bags. The high-energy radiation shielding material having such a multi-layer structure has an advantage that it can be used for low-energy radiation (X-ray) protective clothing, protective equipment, and a shielding film.

本発明による前記基材の表面に所定の模様と一定の間隔を有して配列される板状のタングステン薄片を固定するタングステン薄片固定段階で使用する接着剤は、塗布が容易な通常の接着剤としてエポキシやアクリル接着剤などを含み得る。タングステン薄片が配置されたシートまたは基材に接着剤をコーティングして他のシートまたは基材と積層するときに接着を容易にすることもでき、または他の層との積層時に使用する高分子のガラス転移温度以上の温度で若干の圧力と共に熱溶着することで多層シートを接着することができる。 The adhesive used in the tungsten slice fixing step for fixing the plate-shaped tungsten flakes arranged on the surface of the substrate according to the present invention with a predetermined pattern at a certain interval is a normal adhesive that is easy to apply. May include epoxy, acrylic adhesives and the like. The sheet or substrate on which the tungsten flakes are placed can be coated with an adhesive to facilitate adhesion when laminated with other sheets or substrates, or the polymer used when laminating with other layers. The multilayer sheet can be bonded by heat-welding at a temperature higher than the glass transition temperature with some pressure.

本発明によるビスマス-スズ合金粉末を高分子樹脂と混錬して複合樹脂を製造する複合樹脂製造段階を経た高分子/金属複合材料混合物は、前記フィルム状またはシート状に押し出すか、または繊維状に押し出した後、押し出された繊維を織物形態に製織して基材を製造する基材の製造段階の圧着過程を経ながら内部のビスマス-スズ合金粉末の変形と配向が行われると共に、図3のように薄いシート状に加工され得る。 The polymer / metal composite material mixture that has undergone the composite resin manufacturing step of kneading the bismuth-tin alloy powder according to the present invention with a polymer resin to produce a composite resin is extruded into the film or sheet, or fibrous. After being extruded into a woven material, the extruded fibers are woven into a woven fabric to form a base material. Can be processed into a thin sheet like.

以下、添付された図面を参照して、本願が属する技術分野における通常の知識を持つ者が容易に実施できるように本願の望ましい具現例及び実施例を詳しく説明する。特に、これによって本発明の技術的思想とその核心構成及び作用が制限されない。また、本発明の内容は、多様な形態の装備で具現することができ、ここで説明する具現例及び実施例に限定されない。 Hereinafter, desirable embodiment and examples of the present application will be described in detail with reference to the attached drawings so that a person having ordinary knowledge in the technical field to which the present application belongs can easily carry out the present application. In particular, this does not limit the technical idea of the present invention and its core structure and action. Further, the content of the present invention can be embodied in various forms of equipment, and is not limited to the embodiment and the examples described here.

<製造例>
マトリクス高分子樹脂としてポリビニルアセテートとポリオレフィンエラストマーとを7:3の重量比で混合した高分子100重量部に対し、平均粒径20~38μmのビスマス-スズ(58:42)の金属粉末400重量部、酸化防止剤15重量部、滑剤20重量部を準備し、準備された高分子樹脂、ビスマス-スズ金属粉末、酸化防止剤、滑剤をツインスクリューインターナルミキサーに投入し、100℃、30rpmで押し出した。
<Manufacturing example>
400 parts by weight of bismuth-tin (58:42) metal powder having an average particle size of 20 to 38 μm with respect to 100 parts by weight of a polymer obtained by mixing polyvinyl acetate and a polyolefin elastomer as a matrix polymer resin in a weight ratio of 7: 3. Prepare 15 parts by weight of antioxidant and 20 parts by weight of lubricant, put the prepared polymer resin, bismuth-tin metal powder, antioxidant, and lubricant into a twin screw internal mixer, and extrude at 100 ° C. and 30 rpm. rice field.

押し出された繊維状の線状押出体を、モールド厚さが1、3、5mmであるモールドに入れ、130℃で7tonの圧力で5分間圧着して均一な厚さのフィルムを製造した。圧着後のホットプレスの圧力はそのまま維持したまま4分間常温まで冷却した。 The extruded fibrous linear extruder was placed in a mold having a mold thickness of 1, 3, 5 mm and pressure-bonded at 130 ° C. at a pressure of 7 ton for 5 minutes to produce a film having a uniform thickness. The pressure of the hot press after crimping was maintained as it was, and the mixture was cooled to room temperature for 4 minutes.

<放射線遮蔽試験>
前記製造例によって製作された高分子/ビスマス-スズ複合材料遮蔽フィルムを実験条件によって各々5個ずつ用いて放射線遮蔽特性を測定した。電子の加速電圧が662KeVであるセシウム(Cs137)γ線を照射(全ての測定値は原子力安全研究院でセシウム放射線源を用いて測定した結果である。)し、遮蔽材通過後の線量を通過前の線量で割ることで線量率を計算し、これを1から引くことで得られる多層構造遮蔽材のγ線遮蔽率を表1に示した。この際、シートの厚さは、前記製造されたシートを接着剤で多層接合させた後に測定した。
<Radiation shielding test>
The radiation shielding characteristics were measured using 5 polymer / bismuth-tin composite material shielding films produced according to the above production example, respectively, depending on the experimental conditions. Irradiate cesium (Cs137) γ-rays with an electron acceleration voltage of 662 KeV (all measured values are the results measured using a cesium radiation source at the Nuclear Safety Research Institute) and pass the dose after passing through the shielding material. The dose rate was calculated by dividing by the previous dose, and the γ-ray shielding rate of the multilayer structure shielding material obtained by subtracting this from 1 is shown in Table 1. At this time, the thickness of the sheet was measured after the manufactured sheets were laminated in multiple layers with an adhesive.

Figure 0007037216000001
Figure 0007037216000001

表1は、高分子/ビスマス-スズ合金(400phr)混合フィルムの厚さによるγ線遮蔽率(線量率は、減衰前エネルギーで368mGy/hであり、信頼度は5.5%以内であった。)を示しており、前記表1によると、透過率はランベルト・ベールの法則(Beer-Lambert law)によって指数関数的な挙動を示し、これを式で表すと、線量率は99%以上の相関関係においてCi=0.99274×exp(-0.030362×x)で表すことができる(x=複合体の厚さ,mm)、この式によると、高分子/ビスマス-スズ合金複合体のみを使用する場合、全体厚さが98mm以上であれば、誤差範囲内で完全にγ線遮蔽をなすことができる。 Table 1 shows the γ-ray shielding rate (dose rate was 368 mGy / h in pre-attenuation energy) depending on the thickness of the polymer / bismuth-tin alloy (400 phr) mixed film, and the reliability was within 5.5%. ), And according to Table 1 above, the permeability shows an exponential behavior according to Lambert-Lambert law, and when this is expressed by an equation, the dose rate is 99% or more. The correlation can be expressed as Ci = 0.99274 × exp (−0.030362 × x) (x = composite thickness, mm), according to this equation, only polymer / bismuth-tin alloy composites. When the above is used, if the total thickness is 98 mm or more, γ-ray shielding can be completely achieved within the error range.

さらに、タングステン薄膜フィルムのみの遮蔽特性を確認するために、厚さ別に各々5個ずつ用いて放射線遮蔽特性を測定した。前記の高分子/ビスマス-スズ複合材料遮蔽フィルムと同様に、電子の加速電圧が662KeVであるセシウム(Cs137)γ線(原子力安全研究院測定)を照射し、遮蔽材通過後の線量を通過前の線量で割ることで線量率を計算して表2に示した。この際、シートは0.2mmの厚さのフィルムと0.3mm厚さのフィルムとを接着剤(エポキシ)を用いて多層に接合した後に測定した。 Furthermore, in order to confirm the shielding characteristics of only the tungsten thin film, the radiation shielding characteristics were measured using 5 pieces each for each thickness. Similar to the polymer / bismuth-tin composite material shielding film, it is irradiated with cesium (Cs137) γ-rays (measured by the Nuclear Safety Research Institute) whose electron acceleration voltage is 662 KeV, and the dose after passing through the shielding material is passed. The dose rate was calculated by dividing by the dose of and shown in Table 2. At this time, the sheet was measured after a film having a thickness of 0.2 mm and a film having a thickness of 0.3 mm were bonded in multiple layers using an adhesive (epoxy).

Figure 0007037216000002
Figure 0007037216000002

表2は、タングステンフィルムの厚さによるセシウム(Cs137)γ線遮蔽率(線量率は、減衰前のエネルギーで368mGy/hであり、信頼度は5.5%であった。)を示しており、前記表によると、タングステンフィルムに対するγ線透過率もランベルト・ベールの法則による指数関数的な挙動を示し、これを99%の相関関係を有する式で表すと、線量率はCi=0.98912×exp(-0.21659×x)で表される(x=複合体の厚さ,mm)。この式によると、タングステンフィルムのみを使用する場合、14mm厚さであれば、誤差範囲内でこのエネルギーのγ線遮蔽を完全になすことができる。 Table 2 shows the cesium (Cs137) γ-ray shielding rate according to the thickness of the tungsten film (the dose rate was 368 mGy / h at the energy before attenuation, and the reliability was 5.5%). According to the above table, the γ-ray transmission rate for the tungsten film also shows exponential behavior according to Lambert-Beer's law, and when this is expressed by an equation having a 99% correlation, the dose rate is Ci = 0.98912. It is represented by × exp (−0.21659 × x) (x = thickness of complex, mm). According to this equation, when only a tungsten film is used, if the thickness is 14 mm, the γ-ray shielding of this energy can be completely achieved within the error range.

多層構造放射線遮蔽材の場合、放射線減衰は各層で独立的に起こるため、ここで得られた式を用いると、多層構造放射線遮蔽材の線量率及び遮蔽率を得ることができる。これを確認するために、高分子/ビスマス-スズ合金複合シート10mmの上にタングステン薄片を厚さ別に積層した後、線量率と遮蔽率を測定した結果と計算結果を表3に示した。 In the case of the multi-layered radiation shielding material, radiation attenuation occurs independently in each layer. Therefore, the dose rate and the shielding rate of the multi-layered radiation shielding material can be obtained by using the equation obtained here. In order to confirm this, Table 3 shows the results of measuring the dose rate and the shielding rate and the calculation results after laminating tungsten flakes according to the thickness on the polymer / bismuth-tin alloy composite sheet 10 mm.

Figure 0007037216000003
Figure 0007037216000003

表3は、10mmの高分子/ビスマス-スズ複合シートの上に載せたタングステン薄片の厚さによるγ線遮蔽率(線量率は、減衰前エネルギーで368mGy/hであり、信頼度は5.5%以内であった。)を示しており、実際に測定したγ線遮蔽率と計算値がほぼ正確に一致することから高分子/ビスマス-スズ合金複合体シートの上にタングステン薄片を載せると、γ線遮断効果が二つのシートの遮断効果に複合要素として作用することが分かる。厚さ10mmの高分子/ビスマス-スズシートを使用すると仮定するとき、タングステンシートの厚さが12mmであれば、使用したγ線は誤差範囲内でほとんど遮断されることが分かる。 Table 3 shows the γ-ray shielding rate according to the thickness of the tungsten flakes placed on the 10 mm polymer / bismuth-tin composite sheet (the dose rate is 368 mGy / h in pre-attenuation energy, and the reliability is 5.5. It was within%.), And since the actually measured γ-ray shielding rate and the calculated value almost exactly match, when the tungsten flakes are placed on the polymer / bismuth-tin alloy composite sheet, It can be seen that the γ-ray blocking effect acts as a compound element on the blocking effect of the two sheets. Assuming that a polymer / bismuth-tin sheet with a thickness of 10 mm is used, it can be seen that if the thickness of the tungsten sheet is 12 mm, the γ-rays used are almost blocked within the error range.

他の例で、前記高分子/ビスマス-スズ合金複合フィルムに0.5mmのタングステン薄片を単層載せた場合と、これらを2層載せた場合の測定値及び3層載せた場合の計算値を下記の表4に示した。 In another example, the measured values when a single layer of 0.5 mm tungsten flakes are mounted on the polymer / bismuth-tin alloy composite film, the measured values when these are mounted in two layers, and the calculated values when these are mounted in three layers are shown. It is shown in Table 4 below.

Figure 0007037216000004
Figure 0007037216000004

表4は、タングステン0.5mmの薄片を高分子/ビスマス-スズ複合シートに載せた場合の複合シート厚さ及び層数によるγ線遮蔽率(線量率は、減衰前エネルギーで368mGy/hであり、信頼度は5.5%以内であった。)を示しており、単層と2層は測定結果であり、3層は計算値である。高分子/ビスマス-スズ複合シートもγ線遮断に非常に効果的であることが分かる。 Table 4 shows the γ-ray shielding rate according to the thickness of the composite sheet and the number of layers when a thin piece of tungsten 0.5 mm is placed on the polymer / bismuth-tin composite sheet (the dose rate is 368 mGy / h in pre-attenuation energy). , The reliability was within 5.5%.), The single layer and the second layer are the measurement results, and the third layer is the calculated value. It can be seen that the polymer / bismuth-tin composite sheet is also very effective in blocking γ-rays.

表5は、1mm厚さの高分子/ビスマス-スズ複合(400phr)フィルムに、1mmのタングステンフィルム薄片を多層載せた場合におけるγ線遮蔽率計算結果(線量率は減衰前エネルギーで368mGy/hとして計算)を示しており、層数が8層以上になると、90%以上のγ線が遮断されることが分かる。 Table 5 shows the calculation results of the γ-ray shielding rate when a 1 mm thick polymer / bismuth-tin composite (400 phr) film is mounted in multiple layers (dose rate is 368 mGy / h in pre-attenuation energy). Calculation) is shown, and it can be seen that 90% or more of γ-rays are blocked when the number of layers is 8 or more.

Figure 0007037216000005
Figure 0007037216000005


Claims (10)

ビスマス-スズ合金粉末を高分子樹脂と混錬して複合樹脂を製造する複合樹脂製造段階と、
前記複合樹脂をフィルムまたはシート状に押し出すか、または繊維状に押し出した後、押し出された繊維を織物形態に製織して基材を製造する基材製造段階と、
前記基材の表面に所定の模様と一定の間隔を有して配列される板状のタングステン薄片を固定するタングステン薄片固定段階と、
前記基材と固定されるタングステン薄片がなす層とが交互に積層されるよう多層に積層するが、相互に隣接した層のタングステン薄片同士の相互位置は、薄片の中心が相互に一致しないように配置する、基材とタングステン薄片との積層段階と、を含み、
前記基材とタングステン薄片との積層段階は、一層の薄片中心が他の層の二つ以上の薄片が形成する間隔部に位置するようにすることを特徴とする、多層構造の高エネルギー放射線遮蔽材の製造方法。
At the composite resin manufacturing stage, where bismuth-tin alloy powder is kneaded with a polymer resin to manufacture a composite resin,
A base material manufacturing stage in which the composite resin is extruded into a film or sheet, or extruded into fibers, and then the extruded fibers are woven into a woven fabric to produce a base material.
Tungsten flakes fixing step of fixing plate-shaped tungsten flakes arranged at a predetermined pattern and a certain interval on the surface of the base material, and
The base material and the layers formed by the tungsten flakes to be fixed are laminated in multiple layers so as to be laminated alternately, but the mutual positions of the tungsten flakes of the adjacent layers are such that the centers of the flakes do not coincide with each other. Including, including the laminating step of the substrate and the tungsten flakes, to be placed,
The laminating step of the substrate and the tungsten flakes is characterized in that the center of the flakes of one layer is located at the interval formed by two or more flakes of the other layer. Material manufacturing method.
前記複合樹脂の製造段階は、高分子樹脂100重量部に対してビスマス-スズ合金粉末を100~500重量部混合して混錬することを特徴とする、請求項1に記載の多層構造の高エネルギー放射線遮蔽材の製造方法。 The height of the multilayer structure according to claim 1, wherein the production stage of the composite resin is characterized in that 100 to 500 parts by weight of bismuth-tin alloy powder is mixed and kneaded with 100 parts by weight of the polymer resin. Manufacturing method of energy radiation shielding material. 前記高分子樹脂が、ポリエチレン-プロピレン共重合体、ポリスチレン-ブタジエン-スチレン共重合体、ポリスチレン-イソプレン-スチレン共重合体、ポリビニルアセテート、ポリオレフィンエラストマー、ポリブタジエン、ポリイソプレン、ポリカーボネート及びEPDM弾性体からなる群より選択される一種の高分子樹脂または二種以上の混合物であることを特徴とする、請求項1に記載の多層構造の高エネルギー放射線遮蔽材の製造方法。 The group in which the polymer resin is composed of a polyethylene-propylene copolymer, a polystyrene-butadiene-styrene copolymer, a polystyrene-isoprene-styrene copolymer, a polyvinyl acetate, a polyolefin elastomer, polybutadiene, a polyisoprene, a polycarbonate, and an EPDM elastic body. The method for producing a high-energy radiation shielding material having a multilayer structure according to claim 1, wherein the polymer resin is one kind or a mixture of two or more kinds selected from the above. 前記タングステン薄片が円形または多角形であることを特徴とする、請求項1に記載の多層構造の高エネルギー放射線遮蔽材の製造方法。 The method for producing a high-energy radiation shielding material having a multi-layer structure according to claim 1, wherein the tungsten flakes are circular or polygonal. 前記タングステン薄片は、隣接するタングステン薄片同士の間隔が、タングステン薄片の厚さよりも二倍以上の距離で離隔するように基材に固定されることを特徴とする、請求項1に記載の多層構造の高エネルギー放射線遮蔽材の製造方法。 The multilayer structure according to claim 1, wherein the tungsten flakes are fixed to a base material so that the distance between adjacent tungsten flakes is at least twice the thickness of the tungsten flakes. How to make high energy radiation shielding material. 多層から構成されるビスマス-スズ合金粉末及び高分子樹脂からなるフィルム、シートまたは織物形態の基材と、
前記基材の層間に挿入され、基材の表面に所定の模様と一定の間隔を有して配列及び固定される板状のタングステン薄片とを含んでなり、
前記基材と固定されるタングステン薄片がなす層とが交互に積層されるよう多層に積層するが、相互に隣接した層のタングステン薄片同士の相互位置は薄片の中心が相互に一致しないように配置され
前記タングステン薄片の層間の配列は、一層の薄片中心が他の層の二つ以上の薄片が形成する間隔部に位置することを特徴とする、多層構造の高エネルギー放射線遮蔽材。
A bismuth-tin alloy powder composed of multiple layers and a base material in the form of a film, sheet or woven fabric made of a polymer resin.
The surface of the substrate is inserted between layers of the substrate and contains a plate-shaped tungsten flakes that are arranged and fixed at regular intervals with a predetermined pattern.
The base material and the layers formed by the tungsten flakes to be fixed are laminated in multiple layers so as to be laminated alternately, but the mutual positions of the tungsten flakes of the adjacent layers are arranged so that the centers of the flakes do not coincide with each other. Being done
The arrangement between the layers of the tungsten flakes is a high-energy radiation shielding material having a multi-layer structure, wherein the center of the flakes of one layer is located at an interval formed by two or more flakes of another layer .
前記高分子樹脂は、ポリエチレン-プロピレン共重合体、ポリスチレン-ブタジエン-スチレン共重合体、ポリスチレン-イソプレン-スチレン共重合体、ポリビニルアセテート、ポリオレフィンエラストマー、ポリブタジエン、ポリイソプレン、ポリカーボネート及びEPDM弾性体からなるより選択される一種の高分子樹脂または二種以上の混合物であることを特徴とする、請求項に記載の多層構造の高エネルギー放射線遮蔽材。 The polymer resin is composed of a polyethylene-propylene copolymer, a polystyrene-butadiene-styrene copolymer, a polystyrene-isoprene-styrene copolymer, a polyvinyl acetate, a polyolefin elastomer, a polybutadiene, a polyisoprene, a polycarbonate, and an EPDM elastic body. The high-energy radiation shielding material having a multi-layer structure according to claim 6 , wherein the polymer resin is one kind selected or a mixture of two or more kinds. 前記タングステン薄片は、隣接するタングステン薄片同士の間隔がタングステン薄片の厚さよりも二倍以上の距離で離隔するように基材に固定されたことを特徴とする、請求項に記載の多層構造の高エネルギー放射線遮蔽材。 The multilayer structure according to claim 6 , wherein the tungsten flakes are fixed to the base material so that the distance between the adjacent tungsten flakes is at least twice the thickness of the tungsten flakes. High energy radiation shielding material. 前記多層構造の高エネルギー放射線遮蔽材は裁断され、放射線防護服、防護具、放射線遮蔽用包装膜、放射性廃棄物包装容器及び包装袋より選択されるいずれか一つに製造されることを特徴とする請求項に記載の多層構造の高エネルギー放射線遮蔽材。 The multi-layered high-energy radiation shielding material is characterized in that it is cut and manufactured into any one selected from radiation protective clothing, protective equipment, radiation shielding packaging membranes, radioactive waste packaging containers and packaging bags. The high-energy radiation shielding material having a multi-layer structure according to claim 6 . 前記多層構造の高エネルギー放射線遮蔽材は裁断され、低エネルギー放射線(X線)防護服、防護具及び遮蔽膜より選択されるいずれか一つに製造されることを特徴とする請求項に記載の多層構造の高エネルギー放射線遮蔽材。 The sixth aspect of claim 6 , wherein the high-energy radiation shielding material having a multi-layer structure is cut and manufactured into any one selected from a low-energy radiation (X-ray) protective clothing, a protective device, and a shielding film. High-energy radiation shielding material with a multi-layer structure.
JP2020541409A 2018-01-29 2019-01-29 Multi-layered high-energy radiation shielding material using polymer / lead-free metal composite material and its manufacturing method Active JP7037216B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2018-0010758 2018-01-29
KR1020180010758A KR102014527B1 (en) 2018-01-29 2018-01-29 Multi-layered high energy radiation shielding material using polymer/lead-free metal composites and preparation method thereof
PCT/KR2019/001235 WO2019147108A1 (en) 2018-01-29 2019-01-29 Multi-layered high energy radiation shielding material using polymer/lead-free metal composite material and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2021512306A JP2021512306A (en) 2021-05-13
JP7037216B2 true JP7037216B2 (en) 2022-03-16

Family

ID=67396205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020541409A Active JP7037216B2 (en) 2018-01-29 2019-01-29 Multi-layered high-energy radiation shielding material using polymer / lead-free metal composite material and its manufacturing method

Country Status (3)

Country Link
JP (1) JP7037216B2 (en)
KR (1) KR102014527B1 (en)
WO (1) WO2019147108A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113539536B (en) * 2021-07-24 2023-01-31 重庆大学 High-energy ray shielding material
JP7228943B1 (en) 2022-01-06 2023-02-27 隆太郎 和田 Composite absorption material for scattered X-rays
WO2023153345A1 (en) * 2022-02-08 2023-08-17 隆太郎 和田 Protective device/instrument for reducing radiation exposure and burden of protection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247666A (en) 2010-05-25 2011-12-08 Japan Environment Research Co Ltd Radiation shielding mat
JP2013104785A (en) 2011-11-14 2013-05-30 Keiwa Inc Radiation protective sheet and method for manufacturing radiation protective sheet
KR20160010715A (en) 2014-07-17 2016-01-28 서울대학교산학협력단 Radiation shielding thin-film composite materials made by non-leaded bismuth-tin alloy particles dispersed in the polymer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841791B2 (en) * 1998-12-07 2005-01-11 Meridian Research And Development Multiple hazard protection articles and methods for making them
KR100709140B1 (en) * 2002-12-04 2007-04-18 김건보 Radiation shielding body and method for producing the shielding body
KR100857230B1 (en) * 2008-03-13 2008-09-05 세안기술 주식회사 A neutron shield
KR101089323B1 (en) 2009-12-09 2011-12-02 (주)버팔로 Manufacturing Method Of Fabric For Shielding Radiation, Fabric For Shielding Radiation And The Clothes Including The Same
KR20110126934A (en) 2010-05-18 2011-11-24 유병천 Composite for radiation shielding and material for radiation shielding made thereof
KR20130076955A (en) * 2011-12-29 2013-07-09 서울대학교산학협력단 Multilayered radiation shielding composite materials and their preparation
JP2016145844A (en) * 2016-05-16 2016-08-12 恵和株式会社 Radiation protective sheet and method for manufacturing radiation protective sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247666A (en) 2010-05-25 2011-12-08 Japan Environment Research Co Ltd Radiation shielding mat
JP2013104785A (en) 2011-11-14 2013-05-30 Keiwa Inc Radiation protective sheet and method for manufacturing radiation protective sheet
KR20160010715A (en) 2014-07-17 2016-01-28 서울대학교산학협력단 Radiation shielding thin-film composite materials made by non-leaded bismuth-tin alloy particles dispersed in the polymer

Also Published As

Publication number Publication date
KR20190091781A (en) 2019-08-07
KR102014527B1 (en) 2019-08-26
WO2019147108A1 (en) 2019-08-01
JP2021512306A (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP7037216B2 (en) Multi-layered high-energy radiation shielding material using polymer / lead-free metal composite material and its manufacturing method
US9029817B2 (en) Radiation attenuation elastomeric material, a multilayer glove for protection against ionizing radiations and their uses
CN106415732A (en) Composition for radiation shielding and method for preparing same
US11024435B2 (en) Radiation-shielding material and manufacture thereof
CA1337845C (en) Protection barrier against ionizing rays of the _type and/or x-rays
CN107901534A (en) A kind of liquid metal flexible shielding material and preparation method thereof
Kim et al. Multilayer structuring of nonleaded metal (BiSn)/Polymer/Tungsten composites for enhanced γ‐ray shielding
KR102091344B1 (en) Multilayer sheet for radiation shielding and adhesive special paper comprising the same
KR101591965B1 (en) Radiation shielding thin-film composite materials made by non-leaded bismuth-tin alloy particles dispersed in the polymer
KR100709140B1 (en) Radiation shielding body and method for producing the shielding body
KR100860332B1 (en) Fiber from radioactive ray shield
KR100845055B1 (en) Radioactive ray shield
KR20090011090A (en) Fabric from radioactive ray shield
KR100909075B1 (en) Radiation shielding fiber
KR101631313B1 (en) Multilayered radiation shielding thin-film composite materials made by uniform or multi-sized non-leaded tungsten particles on which polymers were synthesized for uniform dispersion of the particles in the same polymer or compatible polymer
CN104929493A (en) Screen protection door device and preparation thereof
KR101943576B1 (en) Radiation protection material with nano polymer and Manufacturing method thereof
WO2016068241A1 (en) Sheet-shaped radiation shielding material
KR20090011088A (en) Radioactive ray shield
KR20090011055A (en) Fabric from radioactive ray shield
KR20090010581A (en) Fabric from radioactive ray shield
KR20180012507A (en) Moisture-permeable and waterproof fabric with natural radiation shielding, and manufacturing method thereof
JPH06128447A (en) Material for protecting from x-ray and radiation
KR20090010577A (en) Radioactive ray shield
KR20090011082A (en) Fabric from radioactive ray shield

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220225

R150 Certificate of patent or registration of utility model

Ref document number: 7037216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150