JP7020783B2 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP7020783B2
JP7020783B2 JP2017017414A JP2017017414A JP7020783B2 JP 7020783 B2 JP7020783 B2 JP 7020783B2 JP 2017017414 A JP2017017414 A JP 2017017414A JP 2017017414 A JP2017017414 A JP 2017017414A JP 7020783 B2 JP7020783 B2 JP 7020783B2
Authority
JP
Japan
Prior art keywords
layer
transistor
oxide semiconductor
conductive layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017017414A
Other languages
English (en)
Other versions
JP2017143256A (ja
Inventor
舜平 山崎
肇 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2017143256A publication Critical patent/JP2017143256A/ja
Priority to JP2022015832A priority Critical patent/JP7269394B2/ja
Application granted granted Critical
Publication of JP7020783B2 publication Critical patent/JP7020783B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Thin Film Transistor (AREA)

Description

本発明の一態様は、撮像装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの動作方法、または、それらの製造方法、を一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、表示装置、撮像装置、電子機器は、半導体装置を有する場合がある。
トランジスタに適用可能な半導体材料として酸化物半導体が注目されている。例えば、酸化物半導体として酸化亜鉛、またはIn-Ga-Zn系酸化物半導体を用いてトランジスタを作製する技術が開示されている(特許文献1および特許文献2参照)。
また、酸化物半導体を有するトランジスタを画素回路の一部に用いる構成の撮像装置が特許文献3に開示されている。
特開2007-123861号公報 特開2007-96055号公報 特開2011-119711号公報
半導体集積回路では、高密度化、高容量化が進む一方で小型化の要求があり、2次元的な集積化から3次元的な集積化への移行が進んでいる。3次元的な集積化では作製工程が複雑になることがあるが、各層の材料および設計ルールなどの自由度が高まることから、2次元的な集積化では作製が困難な高機能の半導体集積回路を作製することができる。
撮像装置の画素回路は、光電変換素子および当該光電変換素子を制御するトランジスタを有する。当該光電変換素子には高い光感度が求められ、当該トランジスタには、オフ電流およびノイズ特性が小さいことが求められる。光電変換素子およびトランジスタを3次元的に集積化する構成とし、それぞれに適した材料を用いた製造工程を行うことで、より高機能の撮像素子を作製することができる。
例えば、シリコン基板を光電変換層とするフォトダイオードは光感度が高く、撮像装置に適するが、同一のシリコン基板に形成されるトランジスタは、オフ電流が比較的大きい課題を有していた。
したがって、本発明の一態様では、3次元的な集積化した撮像装置を提供することを目的の一つとする。または、シリコン基板を用いたフォトダイオードおよび酸化物半導体を用いたトランジスタを有する撮像装置を提供することを目的の一つとする。または、ノイズの少ない画像を撮像することができる撮像装置を提供することを目的の一つとする。または、解像度の高い撮像装置を提供することを目的の一つとする。または、高開口率の撮像装置を提供することを目的の一つとする。または、広い温度範囲において使用可能な撮像装置を提供することを目的の一つとする。または、信頼性の高い撮像装置を提供することを目的の一つとする。または、新規な撮像装置などを提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、第1の層と、第2の層と、を有し、第1の層は、チャネル形成領域に金属酸化物を有する第1のトランジスタ、第1の絶縁層、および第2の絶縁層を有し、第1のトランジスタは、第1の絶縁層と、第2の絶縁層との間に設けられ、第1のトランジスタは、金属酸化物と接する第1の導電層を有し、第2の層はフォトダイオードを有し、第1の導電層と、フォトダイオードのカソードまたはアノードの一方とは、第1の絶縁層および第2の絶縁層を貫通する導電体を介して電気的に接続されている撮像装置である。
また、上記態様において、フォトダイオードは、単結晶シリコン基板に設けられていてもよい。
また、上記態様において、第3の層を有し、第3の層は、チャネル形成領域にシリコンを有する第2のトランジスタと、第3の絶縁層と、第4の絶縁層と、を有し、第1のトランジスタおよび第2のトランジスタは、互いにゲートの上面が向かい合うように配置され、第3の絶縁層に埋没する領域を有するように第2の導電層が設けられ、第2のトランジスタのソース、ドレインまたはゲートと、第2の導電層とは第4の絶縁層を貫通する導電体を介して電気的に接続され、単結晶シリコン基板の、フォトダイオードの受光面側に第3の導電層が設けられ、第2の導電層と、第3の導電層とは、第1乃至第3の絶縁層および単結晶シリコン基板を貫通する導電体を介して電気的に接続されていてもよい。
また、上記態様において、第1の導電層と、フォトダイオードのカソードまたはアノードの一方とは、第1の絶縁層、金属酸化物および第2の絶縁層を貫通する導電体を介して電気的に接続されていてもよい。
また、上記態様において、第1の層は、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の配線と、第2の配線と、を有し、第1のトランジスタは画素回路に設けられ、第2のトランジスタは行ドライバに設けられ、第3のトランジスタは列ドライバに設けられ、第4のトランジスタはアナログスイッチに設けられ、第2乃至第4のトランジスタは、チャネル形成領域に金属酸化物を有してもよい。
また、上記態様において、A/Dコンバータを有し、アナログスイッチは、第1の配線と電気的に接続され、アナログスイッチは、第2の配線と電気的に接続され、第1の配線は、画素回路と電気的に接続され、第2の配線は、A/Dコンバータと電気的に接続され、A/Dコンバータは、シリコンをチャネル形成領域に用いたトランジスタを有していてもよい。
また、上記態様において、金属酸化物は、Inと、Znと、M(MはAl、Ga、YまたはSn)と、を有してもよい。
また、本発明の一態様の撮像装置と、レンズと、を有するモジュールも本発明の一態様である。
また、本発明の一態様の撮像装置と、表示装置と、を有する電子機器も本発明の一態様である。
本発明の一態様を用いることで、3次元的な集積化した撮像装置を提供することができる。または、シリコン基板を用いたフォトダイオードおよび酸化物半導体を用いたトランジスタを有する撮像装置を提供することができる。または、ノイズの少ない画像を撮像することができる撮像装置を提供することができる。または、解像度の高い撮像装置を提供することができる。または、高開口率の撮像装置を提供することができる。または、広い温度範囲において使用可能な撮像装置を提供することができる。または、信頼性の高い撮像装置を提供することができる。または、新規な撮像装置などを提供することができる。
なお、本発明の一態様はこれらの効果に限定されるものではない。例えば、本発明の一態様は、場合によっては、または、状況に応じて、これらの効果以外の効果を有する場合もある。または、例えば、本発明の一態様は、場合によっては、または、状況に応じて、これらの効果を有さない場合もある。
撮像装置の画素を説明する図および回路図。 画素回路を説明する図。 OSトランジスタの1/fノイズ特性を示す図。 光電変換素子の構成を説明する図。 光電変換素子とトランジスタとの接続構成を説明する図。 光電変換素子とトランジスタとの接続構成を説明する図。 光電変換素子とトランジスタとの接続構成を説明する図。 撮像装置の画素を説明する図。 撮像装置の画素を説明する図。 撮像装置の周辺回路を説明する図。 撮像素子のブロック図、A/Dコンバータのブロック図および撮像素子とA/Dコンバータの接続形態を示す図。 シフトレジスタの構成を示す図。 画素回路を説明する図。 画素回路の動作を説明するタイミングチャート。 画素回路を説明する図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタのチャネル幅方向の断面を説明する図。 トランジスタのチャネル長方向の断面を説明する図。 半導体層を説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタのチャネル幅方向の断面を説明する図。 トランジスタのチャネル長方向の断面を説明する図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図。 酸化物半導体の原子数比の範囲を説明する図。 InMZnOの結晶を説明する図。 酸化物半導体の積層構造におけるバンド図。 CAAC-OSおよび単結晶酸化物半導体のXRDによる構造解析を説明する図、ならびにCAAC-OSの制限視野電子回折パターンを示す図。 CAAC-OSの断面TEM像、ならびに平面TEM像およびその画像解析像。 nc-OSの電子回折パターンを示す図、およびnc-OSの断面TEM像。 a-like OSの断面TEM像。 In-Ga-Zn酸化物の電子照射による結晶部の変化を示す図。 撮像装置を収めたパッケージの斜視図および断面図。 撮像装置を収めたパッケージの斜視図および断面図。 電子機器を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。
なお、第1、第2として付される序数詞は便宜的に用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書などに記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(D/A変換回路、A/D変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。
なお、XとYとが電気的に接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟まずに接続されている場合)とが、本明細書等に開示されているものとする。つまり、電気的に接続されている、と明示的に記載されている場合は、単に、接続されている、とのみ明示的に記載されている場合と同様な内容が、本明細書等に開示されているものとする。
なお、例えば、トランジスタのソース(または第1の端子など)が、Z1を介して(または介さず)、Xと電気的に接続され、トランジスタのドレイン(または第2の端子など)が、Z2を介して(または介さず)、Yと電気的に接続されている場合や、トランジスタのソース(または第1の端子など)が、Z1の一部と直接的に接続され、Z1の別の一部がXと直接的に接続され、トランジスタのドレイン(または第2の端子など)が、Z2の一部と直接的に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下のように表現することが出来る。
例えば、「XとYとトランジスタのソース(または第1の端子など)とドレイン(または第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。または、「トランジスタのソース(または第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(または第2の端子など)はYと電気的に接続され、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。または、「Xは、トランジスタのソース(または第1の端子など)とドレイン(または第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(または第1の端子など)と、ドレイン(または第2の端子など)とを、区別して、技術的範囲を決定することができる。
または、別の表現方法として、例えば、「トランジスタのソース(または第1の端子など)は、少なくとも第1の接続経路を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した、トランジスタのソース(または第1の端子など)とトランジスタのドレイン(または第2の端子など)との間の経路であり、前記第1の接続経路は、Z1を介した経路であり、トランジスタのドレイン(または第2の端子など)は、少なくとも第3の接続経路を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有しておらず、前記第3の接続経路は、Z2を介した経路である。」と表現することができる。または、「トランジスタのソース(または第1の端子など)は、少なくとも第1の接続経路によって、Z1を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した接続経路を有し、トランジスタのドレイン(または第2の端子など)は、少なくとも第3の接続経路によって、Z2を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有していない。」と表現することができる。または、「トランジスタのソース(または第1の端子など)は、少なくとも第1の電気的パスによって、Z1を介して、Xと電気的に接続され、前記第1の電気的パスは、第2の電気的パスを有しておらず、前記第2の電気的パスは、トランジスタのソース(または第1の端子など)からトランジスタのドレイン(または第2の端子など)への電気的パスであり、トランジスタのドレイン(または第2の端子など)は、少なくとも第3の電気的パスによって、Z2を介して、Yと電気的に接続され、前記第3の電気的パスは、第4の電気的パスを有しておらず、前記第4の電気的パスは、トランジスタのドレイン(または第2の端子など)からトランジスタのソース(または第1の端子など)への電気的パスである。」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続経路について規定することにより、トランジスタのソース(または第1の端子など)と、ドレイン(または第2の端子など)とを、区別して、技術的範囲を決定することができる。
なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Y、Z1、Z2は、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、および電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
なお、一般的に、電位(電圧)は、相対的なものであり、基準の電位からの相対的な大きさによって大きさが決定される。したがって、「接地」「GND」「グラウンド」などと記載されている場合であっても、必ずしも、電位が0ボルトであるとは限らないものとする。例えば、回路で最も低い電位を基準として、「接地」や「GND」を定義する場合もある。または、回路で中間くらいの電位を基準として、「接地」や「GND」を定義する場合もある。その場合には、その電位を基準として、正の電位と負の電位が規定されることとなる。
(実施の形態1)
本実施の形態では、本発明の一態様である撮像装置の構成について説明する。
本発明の一態様は、光電変換素子と、トランジスタとを有する撮像装置である。光電変換素子およびトランジスタを3次元的に集積化する構成とし、それぞれに適した材料を用いて製造工程を行うことで、より高機能の撮像素子を作製することができる。
図1(A)は、本発明の一態様の撮像装置が有する画素20の断面図であり、3画素分(画素20a、20b、20c)の構成を表している。
図1(B)は画素20の回路図である。なお、本実施の形態では、トランジスタがn-ch型である場合の例を示すが、本発明の一態様はこれに限定されず、一部のトランジスタをp-ch型トランジスタに置き換えてもよい。
図1(B)に示すように、光電変換素子PDの一方の電極は、トランジスタ41のソースまたはドレインの一方と電気的に接続される。トランジスタ41のソースまたはドレインの他方は、トランジスタ42のソースまたはドレインの一方と電気的に接続される。トランジスタ41のソースまたはドレインの他方は、トランジスタ43のゲートと電気的に接続される。トランジスタ43のソースまたはドレインの一方は、トランジスタ44のソースまたはドレインの一方と電気的に接続される。
ここで、トランジスタ41のソースまたはドレインの他方、トランジスタ42のソースまたはドレインの一方、トランジスタ43のゲートが接続されるノードFDを電荷蓄積部とする。なお、図2(A)に示すように、ノードFDに容量素子が接続される構成であってもよい。
光電変換素子PDの他方の電極は、配線71(VPD)に電気的に接続される。トランジスタ42のソースまたはドレインの他方は、配線72(VRS)に電気的に接続される。トランジスタ43のソースまたはドレインの他方は、配線73(VPI)に電気的に接続される。トランジスタ44のソースまたはドレインの他方は、配線91(OUT1)に電気的に接続される。
なお、トランジスタおよび光電変換素子などの要素と、配線との接続形態は一例であり、それぞれの要素が異なる配線と電気的に接続される場合や、複数の要素が同一の配線に電気的に接続される場合もある。
配線71(VPD)、配線72(VRS)および配線73(VPI)は、電源線としての機能を有する。例えば、配線71(VPD)は、低電位電源線としての機能を有する。配線72(VRS)および配線73(VPI)は、高電位電源線としての機能を有する。
トランジスタ41のゲートは、配線61(TX)と電気的に接続される。トランジスタ42のゲートは、配線62(RS)と電気的に接続される。トランジスタ44のゲートは、配線63(SE)と電気的に接続される。
配線61(TX)、配線62(RS)および配線63(SE)は、それぞれが接続されるトランジスタの導通を制御する信号線としての機能を有する。
トランジスタ41は、光電変換素子PDのカソードの電位をノードFDに転送するためのトランジスタとしての機能を有する。トランジスタ42は、ノードFDの電位をリセットするためのトランジスタとしての機能を有する。トランジスタ43は、ノードFDの電位に対応した出力を行うためのトランジスタとしての機能を有する。トランジスタ44は、画素20を選択するためのトランジスタとしての機能を有する。
また、画素20は図2(B)に示すように、図1(B)とは光電変換素子PDの向きが逆であってもよい。この場合は、領域510をアノード(p型領域)、領域520をカソード(n型領域)とすることができる。例えば、n型の単結晶シリコン基板を用い、領域510にホウ素などのドーパントを添加することでp型化すればよい。
なお、上述した画素20の構成は一例であり、一部の回路、一部のトランジスタ、一部の容量素子、または一部の配線等が含まれない場合もある。または、上述した構成に含まれない回路、トランジスタ、容量素子、配線等が含まれる場合もある。また、一部の配線の接続形態が上述した構成とは異なる場合もある。
図1(A)に示すように、画素20は、層1100、層1200および層1300を有する構成とすることができる。例えば、層1100は、画素回路を構成するトランジスタ41乃至44などを有する。層1200は、光電変換素子PDなどを有する。層1300はカラーフィルタおよびマイクロレンズアレイなどを有する。
なお、本実施の形態で説明する断面図において、各層には保護膜、層間絶縁膜または平坦化膜としての機能を有する絶縁層81a乃至81e等が設けられる。例えば、絶縁層81a乃至81eは、CVD(Chemical Vapor Deposition)法などで成膜する酸化シリコン膜、酸化窒化シリコン膜などの無機絶縁膜を用いることができる。または、アクリル樹脂、ポリイミド樹脂などの有機絶縁膜などを用いてもよい。絶縁層81a乃至81e等の上面は、必要に応じてCMP(Chemical Mechanical Polishing)法等で平坦化処理を行ってもよい。
層1100に設けるトランジスタ41乃至44には、酸化物半導体をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることが好ましい。OSトランジスタはシリコンをチャネル形成領域に用いたトランジスタ(以下、Siトランジスタ)よりもオフ電流が小さい。したがって、回路構成や動作方法を複雑にすることなく、全画素で同時に電荷の蓄積動作を行うグローバルシャッタ方式を適用することができる。なお、本発明の一態様の撮像装置は、ローリングシャッタ方式で動作させることもできる。
本明細書等において、酸化物半導体を金属酸化物(metal oxide)と呼ぶ場合がある。
OSトランジスタは、Siトランジスタよりも電気特性変動の温度依存性が小さいため、極めて広い温度範囲で使用することができる。したがって、OSトランジスタを有する撮像装置および半導体装置は、自動車、航空機、宇宙機などへの搭載にも適している。
また、OSトランジスタはSiトランジスタよりも1/fノイズ特性が優れている。図3は、OSトランジスタおよびSiトランジスタ(n-ch型、p-ch型)の1/fノイズ特性を比較したデータである。
縦軸はSid/Id・L・W[m/Hz]で、ドレイン電流のスペクトル密度をドレイン電流およびトランジスタのチャネルサイズで規格化した値であり、周波数1Hz乃至10kHzの範囲で測定を行っている。なお、Lはトランジスタのチャネル長、Wはトランジスタのチャネル幅であり、OSトランジスタはL/W=30nm/30nmまたはL/W=30nm/60nm、SiトランジスタはL/W=0.8μm/10μmである。また、OSトランジスタの測定条件は、Vd=1.0V、Id=1μA、Siトランジスタの測定条件は、Vd=0.1V、Id=1μAである。
図3は、In:Ga:Zn=4:2:4.1(原子数比)のIGZOターゲットを用いてスパッタ法で成膜した酸化物半導体層をチャネル形成領域に用いたOSトランジスタ(L/W=30nm/30nm)のデータである。OSトランジスタの1/fノイズは、n-ch型のSiトランジスタよりも小さい。さらに、p-ch型のSiトランジスタと比較すると、1Hz以上500Hz以下の範囲では小さく、それより大きいの周波数においてはほぼ同等の結果となっている。すなわち、図3の周波数対数軸の1Hz以上10kHz以下の60%以上の範囲において、1/fノイズは、p-ch型のSiトランジスタよりもOSトランジスタの方が小さいといえる。
すなわち、In:Ga:Zn=4:2:4.1(原子数比)のIGZOターゲットを用いて作製したOSトランジスタは、Siトランジスタよりも1/fノイズ特性が良好であるといえる。したがって、例えば、当該OSトランジスタをCMOSイメージセンサの画素などに用いることにより、Siトランジスタを用いる場合よりもノイズの少ない鮮明な画像を得ることが可能となる。また、In:Ga:Zn=3:1:4、または5:1:6(原子数比)のIGZOターゲットを用いて作製したOSトランジスタであってもよい。なお、上記原子数比近傍もその範疇に含まれる。
図1(A)では、トランジスタ41を例示している。図1(A)に示すように、トランジスタ41は、例えばトップゲート型のOSトランジスタとすることができる。OSトランジスタは、層1200上に形成された絶縁層81c上に設けられ、酸化物半導体層130と、ソース電極またはドレイン電極の一方として機能する導電層140と、ソース電極またはドレイン電極の他方として機能する導電層150と、ゲート絶縁層として機能する絶縁層160と、ゲート電極として機能する導電層170を有する。なお、絶縁層81cは後述するバックゲート側のゲート絶縁層としての機能を有することもできる。
図1(A)では、トランジスタ41にバックゲート電極として機能する導電層173を設ける構成を例示している。画素回路に設けるOSトランジスタをトップゲート型トランジスタとする場合は、層1200側を透過した光が層1100に入射することがあるため、バックゲート電極を設けて遮光する構成とすることが好ましい。ただし、層1200の厚さが十分にあり、光の透過量が許容範囲であれば、バックゲート電極を設けない構成とすることもできる。または、遮光層などが別途設けられている場合もバックゲート電極を設けない構成とすることもできる。
層1200に設ける光電変換素子PDには、単結晶シリコン基板に設けたフォトダイオードを用いることができる。当該フォトダイオードは、光電変換特性に優れている。また、当該フォトダイオードは、母材の単結晶シリコン基板が光電変換層として機能するため、比較的簡易に製造することができる。単結晶シリコン基板は必要に応じて研磨し、例えば3乃至30μmの厚さとすればよい。
なお、図1(A)ではpn接合型フォトダイオードを例示しており、図1(B)に示す回路図に従って、領域510をカソード(n型領域)、領域520をアノード(p型領域)とすることができる。例えば、p型の単結晶シリコン基板を用い、領域510にリンなどのドーパントを添加することでn型化すればよい。
また、層1200に設けるフォトダイオードは、図4(A)に示すように領域510と絶縁層81dとの間の一部に領域510とは逆の導電型を有する領域530を設けてもよい。なお、図4(B)に示すように領域510と絶縁層81dとの間の全域に領域530が設けられていてもよい。このような構成とすることで、フォトダイオードが埋め込み型となるため、シリコンと絶縁層の界面で発生するノイズを抑えることができる。
また、層1200に設けるフォトダイオードは、図4(C)に示すように画素間に隔壁を設ける構成としてもよい。当該隔壁は、画素間に溝を形成し、絶縁層81eで当該溝を充填するように形成すればよい。このような構成とすることで、斜め方向から入射される光(迷光)の侵入を防止することができる。
なお、隔壁としては、シリコンよりも屈折率の低い材料を用いることが好ましい。例えば、絶縁層81eには前述した材料を用いればよい。または、光を吸収しやすい材料を用いて隔壁を形成してもよい。例えば、カーボンブラックなどのカーボン系黒色顔料、チタンブラックなどのチタン系黒色顔料、鉄の酸化物、銅およびクロムの複合酸化物、銅、クロムおよび亜鉛の複合酸化物、などの材料が添加された樹脂などを用いることもできる。
また、層1200に設けるフォトダイオードは、図4(D)に示すように領域520と絶縁層81eとの間に領域520と同じ導電型で領域520よりもドーパント濃度の高い領域540を設けてもよい。このような構成とすることで、キャリアを効率良く収集することができる。
また、層1200に設けるフォトダイオードは、図4(E)に示すように領域530と隣接して領域540を設けてもよい。
なお、図1(A)、図4(A)、(B)、(C)の構成では、複数の画素毎に領域520と配線71が電気的に接続する構成とすればよい。また、図4(D)の構成では、複数の画素毎に領域540と配線71が領域545を介して電気的に接続する構成とすればよい。なお、領域545は領域540と同様に、領域520と同じ導電型で領域520よりもドーパント濃度の高い領域である。また、図4(E)の構成では、各領域540が配線71と電気的に接続する構成とすればよい。
本発明の一態様の撮像装置では、図1(A)に示すように、トランジスタ41のソースまたはドレインの一方と光電変換素子PDの一方の電極との電気的な接続は、導電体82を介して行う。導電体82は、絶縁層81b、導電層140、酸化物半導体層130、絶縁層81cおよび絶縁層81dを貫通するように設けられる。
このような構成とすることで、複数の導電体82、および接続配線などを用いたブリッジ接続を行うことなく上記電気的な接続を得ることができ、工程を簡略化することができる。また、トランジスタ41の形成前に絶縁層81c、81dなどに開口部を設ける必要がなく、段差などの形状に起因した工程不良の発生を抑えることができる。
なお、導電体82と光電変換素子PDの一方の電極との電気的な接続は、図5(A)に示すように導電層550を介して行ってもよい。導電層550には、例えばW、Ta、Al、Ti、Ni、SUS、Pdなどの金属層を用いることができる。導電層550は、光電変換素子PDの電極として作用するほか、導電体82を設ける貫通口を形成する際のエッチングストッパーとしても作用する。また、トランジスタに対する遮光層、および光電変換素子PDの反射電極としても作用する。
また、導電体82は、図5(B)に示すように導電層140および酸化物半導体層130を貫通せず、導電層140の上面および側面、ならびに酸化物半導体層130の側面と接することで電気的な接続を得てもよい。導電層140には、主に難エッチング材料である金属層が用いられるため、このような構成とすることで貫通口を形成する際のエッチング工程の負荷を低減することができる。
また、図5(C)に示すように、光電変換素子PDの一方の電極と電気的な接続を有する導電層560と導電体82が電気的な接続を有する構成としてもよい。導電層560は、絶縁層81dに開口部を設けた後、導電層173と同一の工程で形成すればよい。導電層560は、導電体82を設ける貫通口を形成する際のエッチングストッパーとして作用する。
また、例えば画素20が有する各トランジスタ41のバックゲート電極を共通化することができる。この場合、画素20を図6(A)に示す構成とすることができる。また、例えばトランジスタ41以外においても、層1100に設けられた各トランジスタのバックゲート電極を共通化することができる。以上のような構成の画素20では、導電層173によるトランジスタに対する遮光効果を高めることができる。
また、図6(B)に示すように、導電層173と配線71を電気的に接続する構成としてもよい。図6(B)では、画素20a、画素20bおよび画素20cが有する導電層173が、配線71と電気的に接続された場合の構成を示している。当該構成とすることにより、配線71の電位と、画素20が有するトランジスタのバックゲート電位とを同時に制御することができるため、画素20の動作を簡単に制御することができる。
なお、図6(A)、(B)に示す構成の画素20において、導電体82と、導電層173とは交差しない構成としている。
また、画素20は図7(A)に示す構成とすることができる。当該構成の画素20では、単結晶シリコン基板500に領域143および領域153が設けられている。領域143および領域153は、領域510と同様に、例えばリンなどのドーパントを添加することにより形成したn型領域とすることができる。
また、酸化物半導体層130は、領域143および領域153に接するように設けられる。そして、導電層140は領域143と重なるように設けられ、導電層150は領域153と重なるように設けられる。当該構成では、領域143および、導電層140と領域143に挟まれた領域はソースまたはドレインの一方として機能し、領域153および、導電層150と領域153に挟まれた領域はソースまたはドレインの他方として機能する。つまり、トランジスタ41は、酸化物半導体層130の他、単結晶シリコン基板500にもチャネル領域が形成される。したがって、トランジスタ41のチャネル領域は、酸化物半導体とシリコンとの積層構造となる。これにより、トランジスタ41のオン電流を大きくすることができる。
また、領域143は延在して領域510を形成しており、これによりトランジスタ41のソースまたはドレインの一方と、光電変換素子PDの一方の電極とが電気的に接続されている。つまり、トランジスタ41のソースまたはドレインの一方と、光電変換素子PDの一方の電極とを電気的に接続するための導電層等を設ける必要がない。これにより、本発明の一態様の撮像装置の製造工程を簡略化することができる。
また、本発明の一態様に用いるOSトランジスタは、図7(B)に示す構成であってもよい。図7(B)に示すトランジスタは、光電変換素子PDの領域510と接し、ソース電極またはドレイン電極の一方として機能する導電層140と、領域510が露出するように絶縁層81jに設けられた開口部を覆う酸化物半導体層130と、酸化物半導体層130上に設けられたソース電極またはドレイン電極の他方として機能する導電層150と、酸化物半導体層130とゲート絶縁層として機能する絶縁層160を介して重なるゲート電極として機能する導電層170を有する。
このような構成は、縦型トランジスタと呼ぶこともできる。縦型トランジスタでは、絶縁層81jに設けられた開口部の側壁を含む領域がチャネル領域となるため、トランジスタの占有面積を小さくすることができる。
なお、図7(A)、(B)に示す構成の画素20では、絶縁層81cおよび絶縁層81dが設けられていない。
層1300には、遮光層1530、光学変換層1550a、1550b、1550c、マイクロレンズアレイ1540などを設けることができる。
層1200と接する領域には、絶縁層81eが形成される。絶縁層81eは可視光に対して透光性の高い酸化シリコン膜などを用いることができる。また、パッシベーション膜として窒化シリコン膜を積層する構成としてもよい。また、反射防止膜として、酸化ハフニウムなどの誘電体膜を積層する構成としてもよい。
絶縁層81e上には遮光層1530を設けることができる。遮光層1530は隣り合う画素の境に配置され、斜め方向から侵入する迷光を遮蔽する機能を有する。遮光層1530には、アルミニウム、タングステンなどの金属層や当該金属層と反射防止膜としての機能を有する誘電体膜を積層する構成とすることができる。
絶縁層81e上および遮光層1530上には光学変換層1550a、1550b、1550cを設けることができる。例えば、光学変換層1550a、1550b、1550cに、R(赤)、G(緑)、B(青)、Y(黄)、C(シアン)、M(マゼンタ)などのカラーフィルタを割り当てることにより、カラー画像を得ることができる。
なお、光学変換層に可視光線の波長以下の光を遮るフィルタを用いれば赤外線撮像装置とすることができる。また、光学変換層に近赤外線の波長以下の光を遮るフィルタを用いれば遠赤外線撮像装置とすることができる。また、光学変換層に可視光線の波長以上の光を遮るフィルタを用いれば紫外線撮像装置とすることができる。
また、光学変換層にシンチレータを用いれば、X線撮像装置などに用いる、放射線の強弱を可視化した画像を得る撮像装置とすることができる。被写体を透過したX線等の放射線がシンチレータに入射されると、フォトルミネッセンス現象により可視光線や紫外光線などの光(蛍光)に変換される。そして、当該光を光電変換素子PDで検知することにより画像データを取得する。また、放射線検出器などに当該構成の撮像装置を用いてもよい。
シンチレータは、X線やガンマ線などの放射線が照射されると、そのエネルギーを吸収して可視光や紫外光を発する物質を含む。例えば、GdS:Tb、GdS:Pr、GdS:Eu、BaFCl:Eu、NaI、CsI、CaF、BaF、CeF、LiF、LiI、ZnOを樹脂やセラミクスに分散させたものを用いることができる。
光学変換層1550a、1550b、1550c上には、マイクロレンズアレイ1540を設けることができる。マイクロレンズアレイ1540が有する個々のレンズを通る光が直下の光学変換層1550a、1550b、1550cを通り、光電変換素子PDに照射されるようになる。
また、画素20は図8に示すように、層1100、層1200および層1300の他、層1400を有する構成とすることができる。層1400は、例えばカラムドライバおよびロードライバなどの駆動回路、A/Dコンバータなどのデータ変換回路、CDS(Correlated Double Sampling)回路などのノイズ低減回路、および撮像装置全体の制御回路など、画素回路以外の外部回路を有する。
層1400は単結晶シリコン基板600に設けられたトランジスタ46、47、およびトランジスタ46,47上に設けられた絶縁層81f、81g、81hなどを有する。
トランジスタ46およびトランジスタ47などの活性領域近傍に設けられる絶縁層中の水素はシリコンのダングリングボンドを終端する。したがって、当該水素はトランジスタ46およびトランジスタ47などの信頼性を向上させる効果がある。一方、トランジスタ41などのチャネル形成領域である酸化物半導体層の近傍に設けられる絶縁層中の水素は、酸化物半導体層中にキャリアを生成する要因の一つとなる。そのため、当該水素はトランジスタ41などの信頼性を低下させる要因となる場合がある。したがって、Siトランジスタを有する一方の層と、OSトランジスタを有する他方の層を積層する場合、これらの間に水素の拡散を防止する機能を有する絶縁層81hを設けることが好ましい。絶縁層81hにより、一方の層に水素を閉じ込めることでトランジスタ46およびトランジスタ47などの信頼性を向上させることができる。また、一方の層から他方の層への水素の拡散が抑制されることでトランジスタ41などの信頼性も向上させることができる。
絶縁層81gに埋没する領域を有するように導電層64および導電層94が形成されている。導電層64は、絶縁層81fに形成された開口部を埋めるように設けられた導電層を介して、トランジスタ47のゲートと電気的に接続されている。導電層94は、絶縁層81fに形成された開口部を埋めるように設けられた導電層を介して、トランジスタ47のソースまたはドレインの一方と電気的に接続されている。
トランジスタ46およびトランジスタ47と、トランジスタ41と、は互いにゲートの上面が向かい合うように配置されている。また、絶縁層81eと接し、マイクロレンズアレイ1540と重なる領域を有さないように導電層84が設けられている。つまり、導電層84は、単結晶シリコン基板500の、光電変換素子PDの受光面側に設けられている。
導電層94と、導電層84と、は導電体83を介して電気的に接続されている。なお、導電体83はマイクロレンズアレイ1540と重なる領域を有しない。導電体83は、絶縁層81a乃至絶縁層81e、絶縁層81g、絶縁層81hおよび単結晶シリコン基板500に形成された開口部を埋めるように設けられている。つまり、導電体83は、画素20を有する領域の外部に、層1100および層1200を貫通して設けられている。当該構成とすることにより、本発明の一態様の撮像装置の製造工程を簡略化することができる。
なお、単結晶シリコン基板500に設けられた開口部には絶縁層81eが埋め込まれており、絶縁層81eと接するように導電体83が設けられている。つまり、導電体83と単結晶シリコン基板500とは接する領域を有さない。当該構成とすることにより、導電体83と光電変換素子PDが導通することを抑制することができる。
本発明の一態様の撮像装置は図9に示す構成とすることができる。当該構成の撮像装置は、導電体83が、絶縁層81fおよび単結晶シリコン基板600に形成された開口部を埋めるように設けられている。つまり、導電体83は、画素20を有する領域の外部に、層1400を貫通して設けられている。
なお、図8および図9においてトランジスタ46およびトランジスタ47はフィン型の構成を例示しているが、図10(A)に示すようにプレーナー型であってもよい。または、図10(B)に示すように、シリコン薄膜のチャネル形成領域660を有するトランジスタであってもよい。チャネル形成領域660は、多結晶シリコンやSOI(Silicon on Insulator)の単結晶シリコンとすることができる。
図11(A)は、本発明の一態様の撮像素子11のブロック図である。撮像素子11は、画素アレイ21と、列ドライバ23と、行ドライバ24と、アナログスイッチ25と、電流源回路26と、端子30を有する。
画素アレイ21は、マトリクス状に配列された画素20と、各種配線を有している。図11(A)では、配線63(SE)と、配線91(OUT1)を図示しているが、その他の配線は省略している。
列ドライバ23および行ドライバ24はシフトレジスタ回路で構成が可能であり、単極性のOSトランジスタのみで構成することができる。また、アナログスイッチ25および電流源回路26には、OSトランジスタを用いることができる。つまり、層1100には、画像データを外部に出力するための回路も設けることができる。
なお、図11(A)に示す構成において、配線92(OUT2)を介して端子30に出力されるデータはアナログデータである。当該アナログデータをデジタルデータに変換するためには撮像素子11の外部に設けられたA/Dコンバータに当該アナログデータを出力する。
図11(B)は、A/Dコンバータ12の一例を示すブロック図である。A/Dコンバータ12は、コンパレータ28、カウンター回路29等を有し、配線93に複数ビットのデジタルデータを出力することができる。
コンパレータ28では、端子30から端子31に入力される信号電位と、上昇または下降するように掃引される基準電位(VREF)とが比較される。そして、コンパレータ28の出力に応じてカウンター回路29が動作し、配線93(OUT3)にデジタル信号が出力される。
ここで、A/Dコンバータ12は、高速動作および省電力化のため、CMOS回路を構成できるSiトランジスタで形成することが好ましい。
撮像素子11とA/Dコンバータ12との接続は、例えば、図11(C)に示すように、端子30と端子31とをワイヤボンディング法などを用いてワイヤで接続すればよい。
ここで、OSトランジスタで形成することができる単極性シフトレジスタの構成について、図12を用いて説明する。
図12(A)に示すシフトレジスタ700は、n個(nは2以上の自然数。)のパルス出力回路710を有する。本明細書等では、1段目のパルス出力回路710を「パルス出力回路710_1」と記す場合があり、n段目のパルス出力回路710を「パルス出力回路710_n」と記す場合がある。また、i段目(iは1以上n以下の自然数。)のパルス出力回路710を「パルス出力回路710_i」と記す場合がある。なお、パルス出力回路710が有する端子や出力信号OUTなどについても上記と同様に記す場合がある。例えば、パルス出力回路710_iの出力信号OUTを「出力信号OUT_i」と記す場合がある。
また、シフトレジスタ700は、リセット信号RESが供給される配線705と、クロック信号が供給される配線701乃至配線704を有している。配線701には第1のクロック信号CLK1が供給され、配線702には第2のクロック信号CLK2が供給され、配線703には第3のクロック信号CLK3が供給され、配線704には第4のクロック信号CLK4が供給される。
クロック信号は、一定の間隔でH電位とL電位に変化する信号であり、第1のクロック信号CLK1乃至第4のクロック信号CLK4は、順に1/4周期分遅延している。本実施の形態では、第1のクロック信号CLK1乃至第4のクロック信号CLK4を利用して、パルス出力回路の制御等を行う。
パルス出力回路710は、端子711乃至端子716を有している(図12(B)参照。)。端子711、端子712は、配線701乃至配線704のいずれかと電気的に接続されている。例えば、図12(A)において、パルス出力回路710_1は、端子711が配線701と電気的に接続され、端子712が配線702と電気的に接続されている。また、パルス出力回路710_2は、端子711が配線702と電気的に接続され、端子712が配線703と電気的に接続されている。また、端子714が配線705と電気的に接続されている。
パルス出力回路710_1の端子713には、スタート信号SPが供給され、端子716からは、出力信号OUT_1が出力される。また、パルス出力回路710_iの端子713は、パルス出力回路710_i-1(i-1段目のパルス出力回路710)の端子715と電気的に接続されている。また、パルス出力回路710_iの端子715は、パルス出力回路710_i+1の端子713と電気的に接続されている。パルス出力回路710_iの端子716からは、出力信号OUT_iが出力される。また、n段目のパルス出力回路710_nの端子716からは、出力信号OUT_nが出力される。
なお、パルス出力回路710_nは、端子715を有さなくてもよい。パルス出力回路710_nが端子715を有する場合は、当該端子715(端子715_n)を1段目のパルス出力回路710_1の端子713(端子713_1)と電気的に接続する場合もある。
次に、パルス出力回路710の構成について説明する(図12(C)参照。)。パルス出力回路710は、トランジスタ721、トランジスタ722、トランジスタ724乃至トランジスタ729、トランジスタ731、トランジスタ732、容量素子733、および容量素子734を有している。
トランジスタ721のソースまたはドレインの一方は配線741と電気的に接続され、ソースまたはドレインの他方はノード762と電気的に接続され、ゲートは端子712と電気的に接続されている。トランジスタ722のソースまたはドレインの一方は配線741と電気的に接続され、ソースまたはドレインの他方はノード762と電気的に接続され、ゲートは端子714と電気的に接続されている。トランジスタ724のソースまたはドレインの一方は配線741と電気的に接続され、ソースまたはドレインの他方はノード763と電気的に接続され、ゲートは端子713と電気的に接続されている。トランジスタ725のソースまたはドレインの一方はノード763と電気的に接続され、ソースまたはドレインの他方は配線746と電気的に接続され、ゲートはノード762と電気的に接続されている。トランジスタ726のソースまたはドレインの一方は端子711と電気的に接続され、ソースまたはドレインの他方は端子715と電気的に接続され、ゲートはノード761と電気的に接続されている。トランジスタ727のソースまたはドレインの一方は端子715と電気的に接続され、ソースまたはドレインの他方は配線746と電気的に接続され、ゲートはノード762と電気的に接続されている。トランジスタ728のソースまたはドレインの一方は端子711と電気的に接続され、ソースまたはドレインの他方は端子716と電気的に接続され、ゲートはノード761と電気的に接続されている。トランジスタ729のソースまたはドレインの一方は端子716と電気的に接続され、ソースまたはドレインの他方は配線746と電気的に接続され、ゲートはノード762と電気的に接続されている。トランジスタ731のソースまたはドレインの一方はノード762と電気的に接続され、ソースまたはドレインの他方は配線746と電気的に接続され、ゲートは端子713と電気的に接続されている。トランジスタ732のソースまたはドレインの一方はノード763と電気的に接続され、ソースまたはドレインの他方はノード761と電気的に接続され、ゲートは配線741と電気的に接続されている。容量素子733の一方の電極はノード762と電気的に接続され、他方の電極は配線746と電気的に接続されている。
また、画素20に用いるトランジスタは、図13(A)に示すように、トランジスタ41乃至44にバックゲートを設けた回路構成であってもよい。図13(A)はバックゲートに定電位を印加する構成であり、しきい値電圧を制御することができる。
それぞれのバックゲートに接続される配線75乃至78には、個別に異なる電位を供給することができる。または、図13(B)に示すように、トランジスタ41およびトランジスタ42が有するバックゲートに接続される配線は電気的に接続されていてもよい。また、トランジスタ43およびトランジスタ44が有するバックゲートに接続される配線は電気的に接続されていてもよい。
n-ch型のトランジスタでは、バックゲートにソース電位よりも低い電位を印加すると、しきい値電圧はプラス方向にシフトする。逆に、バックゲートにソース電位よりも高い電位を印加すると、しきい値電圧はマイナス方向にシフトする。したがって、予め定められたゲート電圧で各トランジスタのオン、オフを制御する場合、バックゲートにソース電位よりも低い電位を印加すると、オフ電流を小さくすることができる。また、バックゲートにソース電位よりも高い電位を印加すると、オン電流を小さくすることができる。
図1(B)、図4(A)、(B)、図13(A)、(B)に示す回路では、ノードFDの電位保持能力が高いことが望まれるため、前述したようにトランジスタ41、42にはオフ電流の低いOSトランジスタを用いることが好ましい。トランジスタ41、42のバックゲートにソース電位よりも低い電位を印加することで、オフ電流をより小さくすることができる。したがって、ノードFDの電位保持能力を高めることができる。
また、前述したように、トランジスタ43、44にはオン電流の高いトランジスタを用いることが好ましい。トランジスタ43、44のバックゲートにソース電位よりも高い電位を印加することで、オン電流をより大きくすることができる。したがって、配線91(OUT1)に出力される読み出し電位を速やかに確定することができる、すなわち、高い周波数で動作させることができる。
なお、トランジスタ44は、図13(C)に示すようにフロントゲートと同じ電位がバックゲートに印加される構成であってもよい。
また、撮像装置の内部では、各電源電位の他、信号電位および上記バックゲートに印加する電位など、複数の電位を用いる。撮像装置の外部から複数の電位を供給すると、端子数などが増加するため、撮像装置の内部で複数の電位を生成する電源回路を有していることが好ましい。
図14に示すタイミングチャートを用いて、図13(A)に示す画素回路の動作を説明する。タイミングチャートにおいて、“V1”は基準電位よりも高い電位であり、例えば高電源電位(VDD)とすることができる。“V0”は基準電位、すなわちソース電位であり、例えば、0V、GND電位または低電源電位(VSS)とすることができる。
まず、時刻T1において、配線62(RS)および配線61(TX)の電位を“V1”とすると、トランジスタ41、42が導通し、ノードFDはリセット電位(例えばVDD)にリセットされる(リセット動作)。このとき、配線75および配線76を“V0”より高い電位(>“V0”)とすることで、トランジスタ41、42のオン電流が高められ、速やかにリセット動作を行うことができる。
時刻T2に配線62(RS)の電位を“V0”とすると、トランジスタ42が非導通となり、リセット動作が終了して蓄積動作が開始される。このとき、配線76を“V0”より低い電位とすることで、トランジスタ42のオフ電流を低くすることができ、リーク電流によるノードFDへの電荷の供給を防止することができる。なお、時刻T2において、配線75の電位を“V0”としてもよい。
時刻T3に配線61(TX)の電位を“V0”とすると、トランジスタ41が非導通となり、ノードFDの電位が確定して保持される(保持動作)。このとき、配線75を“V0”より低い電位(<“V0”)とすることで、トランジスタ41のオフ電流を低くすることができ、リーク電流によるノードFDから電荷の流出を防止することができる。
時刻T4に配線63(SE)の電位を“V1”とすると、トランジスタ44が導通し、トランジスタ43に流れる電流に従って配線91(OUT1)の電位が変化する(読み出し動作)。このとき、配線77および配線78を“V0”より高い電位(>“V0”)とすることで、トランジスタ43、44のオン電流が高められ、速やかに配線91(OUT1)の電位を確定することができる。
時刻T5に配線63(SE)の電位を“V0”とすると、トランジスタ44が非導通となり、読み出し動作が完了する。なお、読み出し動作が終了するまで、ノードFDの電位が変化しないように配線75、76の電位を“V0”より低い電位(<“V0”)に保持しておくことが好ましい。なお、上記説明において、配線76は配線75と同じタイミングで電位を変化させてもよい。
以上により、ノードFDの電位に従った信号を読み出すことができる。なお、図1(B)に示す画素20は、図14に示すタイミングチャートの配線75乃至78の制御を省いて動作させればよい。図13(B)に示す画素20は、図14に示すタイミングチャートの配線76、78の制御を省いて動作させればよい。
また、本発明の一態様の画素回路は、図15(A)、(B)に示すように複数の画素でトランジスタを共有する構成としてもよい。
図15(A)に示すトランジスタ共有型の画素は、画素20h乃至20kはそれぞれ光電変換素子PDおよびトランジスタ41を個別に有し、トランジスタ42、43、44および容量素子C1を共有している構成である。画素20h乃至20kが有するトランジスタ41のそれぞれは、配線61h乃至61kで動作が制御される。当該構成では、画素ごとにリセット動作、蓄積動作、保持動作、読み出し動作を順次行うことができ、主にローリングシャッタ方式を用いた撮像に適している。
図15(B)に示すトランジスタ共有型の画素は、画素20h乃至20kはそれぞれ光電変換素子PDおよびトランジスタ41、45を個別に有し、トランジスタ42、43、44および容量素子C1を共有している構成である。配線65(GPD)の電位により動作が制御されるトランジスタ45を光電変換素子PDと配線71(VPD)との間に設けることで、光電変換素子PDのカソードに電位を保持することができる。したがって、全ての画素で同時にリセット動作、蓄積動作、保持動作を順次行い、画素ごとに読み出し動作を行うグローバルシャッタ方式を用いた撮像に適している。
図15(A)、(B)に示す画素回路は、配線91(OUT1)が延在する方向(以下、垂直方向)に並んだ複数の画素(画素20h、20i、20j、20k)でトランジスタを共有する構成を示しているが、配線63(SE)が延在する方向(以下、水平方向)に並んだ複数の画素でトランジスタを共有する構成であってもよい。または、水平垂直方向に並んだ複数の画素でトランジスタを共有する構成であってもよい。
また、トランジスタを共有する画素数は4画素に限らず、2画素、3画素、または5画素以上であってもよい。
図15(A)、(B)においては、図1(B)に示す配線72(VRS)と配線73(VPI)とを統合して、配線72(VRS)を省く構成を示しているが、配線72(VRS)を有する構成であってもよい。また、容量素子C1の他方の電極は、配線73(VPI)と接続する例を示しているが、配線71(VPD)と接続してもよい。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様に用いることのできるOSトランジスタについて図面を用いて説明する。なお、本実施の形態における図面では、明瞭化のために一部の要素を拡大、縮小、または省略して図示している。
図16(A)、(B)は、本発明の一態様のトランジスタ101の上面図および断面図である。図16(A)は上面図であり、図16(A)に示す一点鎖線B1-B2方向の断面が図16(B)に相当する。また、図16(A)に示す一点鎖線B3-B4方向の断面が図18(A)に相当する。また、一点鎖線B1-B2方向をチャネル長方向、一点鎖線B3-B4方向をチャネル幅方向と呼称する。
トランジスタ101は、基板119と接する絶縁層120と、絶縁層120と接する酸化物半導体層130と、酸化物半導体層130と電気的に接続する導電層140および導電層150と、酸化物半導体層130、導電層140および導電層150と接する絶縁層160と、絶縁層160と接する導電層170と、導電層140、導電層150、絶縁層160および導電層170と接する絶縁層175と、絶縁層175と接する絶縁層180と、を有する。また、必要に応じて絶縁層180に平坦化膜としての機能を付加してもよい。
導電層140はソース電極層、導電層150はドレイン電極層、絶縁層160はゲート絶縁膜、導電層170はゲート電極層としてそれぞれ機能することができる。
図16(B)に示す領域231はソース領域、領域232はドレイン領域、領域233はチャネル形成領域として機能することができる。領域231および領域232は導電層140および導電層150とそれぞれ接しており、導電層140および導電層150として酸素と結合しやすい導電材料を用いれば領域231および領域232を低抵抗化することができる。
具体的には、酸化物半導体層130と導電層140および導電層150とが接することで酸化物半導体層130内に酸素欠損が生じ、当該酸素欠損と酸化物半導体層130内に残留または外部から拡散する水素との相互作用により、領域231および領域232は低抵抗のn型となる。
なお、トランジスタの「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書においては、「ソース」や「ドレイン」という用語は、入れ替えて用いることができるものとする。また、「電極層」は、「配線」と言い換えることもできる。
導電層170は、導電層171および導電層172の二層で形成される例を図示しているが、一層または三層以上の積層であってもよい。当該構成は本実施の形態で説明する他のトランジスタにも適用できる。
導電層140および導電層150は単層で形成される例を図示しているが、二層以上の積層であってもよい。当該構成は本実施の形態で説明する他のトランジスタにも適用できる。
絶縁層175は、主に酸化物半導体層130に対して外部からの不純物の拡散を抑制するブロッキング層として作用するが、適切な材料を選択することで導電層170の酸化防止や、酸化物半導体層130の一部を低抵抗化する水素の供給源としての機能も有する。
本発明の一態様のトランジスタは、図16(C)、(D)に示す構成であってもよい。図16(C)はトランジスタ102の上面図であり、図16(C)に示す一点鎖線C1-C2方向の断面が図16(D)に相当する。また、図16(C)に示す一点鎖線C3-C4方向の断面は、図18(B)に相当する。また、一点鎖線C1-C2方向をチャネル長方向、一点鎖線C3-C4方向をチャネル幅方向と呼称する。
トランジスタ102は、ゲート絶縁膜として作用する絶縁層160の端部とゲート電極層として作用する導電層170の端部とを一致させない点を除き、トランジスタ101と同様の構成を有する。トランジスタ102の構造は、導電層140および導電層150が絶縁層160で広く覆われているため、導電層140および導電層150と導電層170との間の抵抗が高く、ゲートリーク電流の少ない特徴を有している。
トランジスタ101およびトランジスタ102は、導電層170と導電層140および導電層150が重なる領域を有するトップゲート構造である。当該領域のチャネル長方向の幅は、寄生容量を小さくするために3nm以上300nm未満とすることが好ましい。当該構成では、酸化物半導体層130にオフセット領域が形成されないため、オン電流の高いトランジスタを形成しやすい。
本発明の一態様のトランジスタは、図16(E)、(F)に示す構成であってもよい。図16(E)はトランジスタ103の上面図であり、図16(E)に示す一点鎖線D1-D2方向の断面が図16(F)に相当する。また、図16(E)に示す一点鎖線D3-D4方向の断面は、図18(A)に相当する。また、一点鎖線D1-D2方向をチャネル長方向、一点鎖線D3-D4方向をチャネル幅方向と呼称する。
トランジスタ103は、基板119と接する絶縁層120と、絶縁層120と接する酸化物半導体層130と、酸化物半導体層130と接する絶縁層160と、絶縁層160と接する導電層170と、酸化物半導体層130、絶縁層160および導電層170を覆う絶縁層175と、絶縁層175と接する絶縁層180と、絶縁層175および絶縁層180に設けられた開口部を通じて酸化物半導体層130と電気的に接続する導電層140および導電層150を有する。また、必要に応じて絶縁層180、導電層140および導電層150に接する絶縁層(平坦化膜)などを有していてもよい。
導電層140はソース電極層、導電層150はドレイン電極層、絶縁層160はゲート絶縁膜、導電層170はゲート電極層としてそれぞれ機能することができる。
図16(F)に示す領域231はソース領域、領域232はドレイン領域、領域233はチャネル形成領域として機能することができる。領域231および領域232は絶縁層175と接しており、例えば絶縁層175として水素を含む絶縁材料を用いれば領域231および領域232を低抵抗化することができる。
具体的には、絶縁層175を形成するまでの工程により領域231および領域232に生じる酸素欠損と、絶縁層175から領域231および領域232に拡散する水素との相互作用により、領域231および領域232は低抵抗のn型となる。なお、水素を含む絶縁材料としては、例えば窒化シリコンや窒化アルミニウムなどを用いることができる。
本発明の一態様のトランジスタは、図17(A)、(B)に示す構成であってもよい。図17(A)はトランジスタ104の上面図であり、図17(A)に示す一点鎖線E1-E2方向の断面が図17(B)に相当する。また、図17(A)に示す一点鎖線E3-E4方向の断面は、図18(A)に相当する。また、一点鎖線E1-E2方向をチャネル長方向、一点鎖線E3-E4方向をチャネル幅方向と呼称する。
トランジスタ104は、導電層140および導電層150が酸化物半導体層130の端部を覆うように接している点を除き、トランジスタ103と同様の構成を有する。
図17(B)に示す領域331および領域334はソース領域、領域332および領域335はドレイン領域、領域333はチャネル形成領域として機能することができる。
領域331および領域332は、トランジスタ101における領域231および領域232と同様に低抵抗化することができる。
領域334および領域335は、トランジスタ103における領域231および領域232と同様に低抵抗化することができる。なお、チャネル長方向における領域334および領域335の長さが100nm以下、好ましくは50nm以下の場合には、ゲート電界の寄与によりオン電流は大きく低下しない。したがって、領域334および領域335の低抵抗化を行わない場合もある。
トランジスタ103およびトランジスタ104は、導電層170と導電層140および導電層150が重なる領域を有さないセルフアライン構造である。セルフアライン構造のトランジスタはゲート電極層とソース電極層およびドレイン電極層間の寄生容量が極めて小さいため、高速動作用途に適している。
本発明の一態様のトランジスタは、図17(C)、(D)に示す構成であってもよい。図17(C)はトランジスタ105の上面図であり、図17(C)に示す一点鎖線F1-F2方向の断面が図17(D)に相当する。また、図17(C)に示す一点鎖線F3-F4方向の断面は、図18(A)に相当する。また、一点鎖線F1-F2方向をチャネル長方向、一点鎖線F3-F4方向をチャネル幅方向と呼称する。
トランジスタ105は、基板119と接する絶縁層120と、絶縁層120と接する酸化物半導体層130と、酸化物半導体層130と電気的に接続する導電層141および導電層151と、酸化物半導体層130、導電層141、導電層151と接する絶縁層160と、絶縁層160と接する導電層170と、酸化物半導体層130、導電層141、導電層151、絶縁層160および導電層170と接する絶縁層175と、絶縁層175と接する絶縁層180と、絶縁層175および絶縁層180に設けられた開口部を通じて導電層141および導電層151とそれぞれ電気的に接続する導電層142および導電層152を有する。また、必要に応じて絶縁層180、導電層142および導電層152に接する絶縁層などを有していてもよい。
導電層141および導電層151は、酸化物半導体層130の上面と接し、側面には接しない構成となっている。
トランジスタ105は、導電層141および導電層151を有する点、絶縁層175および絶縁層180に設けられた開口部を有する点、ならびに当該開口部を通じて導電層141および導電層151とそれぞれ電気的に接続する導電層142および導電層152を有する点を除き、トランジスタ101と同様の構成を有する。導電層140(導電層141および導電層142)はソース電極層として作用させることができ、導電層150(導電層151および導電層152)はドレイン電極層として作用させることができる。
本発明の一態様のトランジスタは、図17(E)、(F)に示す構成であってもよい。図17(E)はトランジスタ106の上面図であり、図17(E)に示す一点鎖線G1-G2方向の断面が図17(F)に相当する。また、図17(E)に示す一点鎖線G3-G4方向の断面は、図18(A)に相当する。また、一点鎖線G1-G2方向をチャネル長方向、一点鎖線G3-G4方向をチャネル幅方向と呼称する。
トランジスタ106は、基板119と接する絶縁層120と、絶縁層120と接する酸化物半導体層130と、酸化物半導体層130と電気的に接続する導電層141および導電層151と、酸化物半導体層130と接する絶縁層160と、絶縁層160と接する導電層170と、絶縁層120、酸化物半導体層130、導電層141、導電層151、絶縁層160、導電層170と接する絶縁層175と、絶縁層175と接する絶縁層180と、絶縁層175および絶縁層180に設けられた開口部を通じて導電層141および導電層151とそれぞれ電気的に接続する導電層142および導電層152を有する。また、必要に応じて絶縁層180、導電層142および導電層152に接する絶縁層(平坦化膜)などを有していてもよい。
導電層141および導電層151は、酸化物半導体層130の上面と接し、側面には接しない構成となっている。
トランジスタ106は、導電層141および導電層151を有する点を除き、トランジスタ103と同様の構成を有する。導電層140(導電層141および導電層142)はソース電極層として作用させることができ、導電層150(導電層151および導電層152)はドレイン電極層として作用させることができる。
トランジスタ105およびトランジスタ106の構成では、導電層140および導電層150が絶縁層120と接しない構成であるため、絶縁層120中の酸素が導電層140および導電層150に奪われにくくなり、絶縁層120から酸化物半導体層130中への酸素の供給を容易とすることができる。
トランジスタ103における領域231および領域232、トランジスタ104およびトランジスタ106における領域334および領域335には、酸素欠損を形成し導電率を高めるための不純物を添加してもよい。酸化物半導体層に酸素欠損を形成する不純物としては、例えば、リン、砒素、アンチモン、ホウ素、アルミニウム、シリコン、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、インジウム、フッ素、塩素、チタン、亜鉛、および炭素のいずれかから選択される一つ以上を用いることができる。当該不純物の添加方法としては、プラズマ処理法、イオン注入法、イオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いることができる。
不純物元素として、上記元素が酸化物半導体層に添加されると、酸化物半導体層中の金属元素および酸素の結合が切断され、酸素欠損が形成される。酸化物半導体層に含まれる酸素欠損と酸化物半導体層中に残存または後から添加される水素の相互作用により、酸化物半導体層の導電率を高くすることができる。
不純物元素の添加により酸素欠損が形成された酸化物半導体に水素を添加すると、酸素欠損サイトに水素が入り伝導帯近傍にドナー準位が形成される。その結果、酸化物導電体を形成することができる。ここでは、導電体化された酸化物半導体を酸化物導電体という。なお、酸化物導電体は酸化物半導体と同様に透光性を有する。
酸化物導電体は、縮退半導体であり、伝導帯端とフェルミ準位とが一致または略一致していると推定される。このため、酸化物導電体層とソース電極層およびドレイン電極層として機能する導電層との接触はオーミック接触であり、酸化物導電体層とソース電極層およびドレイン電極層として機能する導電層との接触抵抗を低減することができる。
本発明の一態様のトランジスタは、図19(A)、(B)、(C)、(D)、(E)、(F)に示すチャネル長方向の断面図、ならびに図18(C)、(D)に示すチャネル幅方向の断面図のように、酸化物半導体層130と基板119との間に導電層173を備えていてもよい。当該導電層を第2のゲート電極層(バックゲート)として用いることで、オン電流の増加や、しきい値電圧の制御を行うことができる。なお、図19(A)、(B)、(C)、(D)、(E)、(F)に示す断面図において、導電層173の幅を酸化物半導体層130よりも短くしてもよい。さらに、導電層173の幅を導電層170の幅よりも短くしてもよい。
オン電流を増加させるには、例えば、導電層170と導電層173を同電位とし、ダブルゲートトランジスタとして駆動させればよい。また、しきい値電圧の制御を行うには、導電層170とは異なる定電位を導電層173に供給すればよい。導電層170と導電層173を同電位とするには、例えば、図18(D)に示すように、導電層170と導電層173とをコンタクトホールを介して電気的に接続すればよい。
図16および図17におけるトランジスタ101乃至トランジスタ106では、酸化物半導体層130が単層である例を図示したが、酸化物半導体層130は積層であってもよい。トランジスタ101乃至トランジスタ106の酸化物半導体層130は、図20(B)、(C)または図20(D)、(E)に示す酸化物半導体層130と入れ替えることができる。
図20(A)は酸化物半導体層130の上面図であり、図20(B)、(C)は、二層構造である酸化物半導体層130の断面図である。また、図20(D)、(E)は、三層構造である酸化物半導体層130の断面図である。
酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130cには、それぞれ組成の異なる酸化物半導体層などを用いることができる。
本発明の一態様のトランジスタは、図21(A)、(B)に示す構成であってもよい。図21(A)はトランジスタ107の上面図であり、図21(A)に示す一点鎖線H1-H2方向の断面が図21(B)に相当する。また、図21(A)に示す一点鎖線H3-H4方向の断面が図23(A)に相当する。また、一点鎖線H1-H2方向をチャネル長方向、一点鎖線H3-H4方向をチャネル幅方向と呼称する。
トランジスタ107は、基板119と接する絶縁層120と、絶縁層120と接する酸化物半導体層130aおよび酸化物半導体層130bからなる積層と、当該積層と電気的に接続する導電層140および導電層150と、当該積層、導電層140および導電層150と接する酸化物半導体層130cと、酸化物半導体層130cと接する絶縁層160と、絶縁層160と接する導電層170と、導電層140、導電層150、酸化物半導体層130c、絶縁層160および導電層170と接する絶縁層175と、絶縁層175と接する絶縁層180と、を有する。また、必要に応じて絶縁層180に平坦化膜としての機能を付加してもよい。
トランジスタ107は、領域231および領域232において酸化物半導体層130が二層(酸化物半導体層130a、酸化物半導体層130b)である点、領域233において酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130c)である点、および導電層140および導電層150と絶縁層160との間に酸化物半導体層の一部(酸化物半導体層130c)が介在している点を除き、トランジスタ101と同様の構成を有する。
本発明の一態様のトランジスタは、図21(C)、(D)に示す構成であってもよい。図21(C)はトランジスタ108の上面図であり、図21(C)に示す一点鎖線I1-I2方向の断面が図21(D)に相当する。また、図21(C)に示す一点鎖線I3-I4方向の断面が図23(B)に相当する。また、一点鎖線I1-I2方向をチャネル長方向、一点鎖線I3-I4方向をチャネル幅方向と呼称する。
トランジスタ108は、絶縁層160および酸化物半導体層130cの端部が導電層170の端部と一致しない点がトランジスタ107と異なる。
本発明の一態様のトランジスタは、図21(E)、(F)に示す構成であってもよい。図21(E)はトランジスタ109の上面図であり、図21(E)に示す一点鎖線J1-J2方向の断面が図21(F)に相当する。また、図21(E)に示す一点鎖線J3-J4方向の断面が図23(A)に相当する。また、一点鎖線J1-J2方向をチャネル長方向、一点鎖線J3-J4方向をチャネル幅方向と呼称する。
トランジスタ109は、基板119と接する絶縁層120と、絶縁層120と接する酸化物半導体層130aおよび酸化物半導体層130bからなる積層と、当該積層と接する酸化物半導体層130cと、酸化物半導体層130cと接する絶縁層160と、絶縁層160と接する導電層170と、当該積層、酸化物半導体層130c、絶縁層160および導電層170を覆う絶縁層175と、絶縁層175と接する絶縁層180と、絶縁層175および絶縁層180に設けられた開口部を通じて当該積層と電気的に接続する導電層140および導電層150を有する。また、必要に応じて絶縁層180、導電層140および導電層150に接する絶縁層(平坦化膜)などを有していてもよい。
トランジスタ109は、領域231および領域232において酸化物半導体層130が二層(酸化物半導体層130a、酸化物半導体層130b)である点、領域233において酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130c)である点を除き、トランジスタ103と同様の構成を有する。
本発明の一態様のトランジスタは、図22(A)、(B)に示す構成であってもよい。図22(A)はトランジスタ110の上面図であり、図22(A)に示す一点鎖線K1-K2方向の断面が図22(B)に相当する。また、図22(A)に示す一点鎖線K3-K4方向の断面が図23(A)に相当する。また、一点鎖線K1-K2方向をチャネル長方向、一点鎖線K3-K4方向をチャネル幅方向と呼称する。
トランジスタ110は、領域331および領域332において酸化物半導体層130が二層(酸化物半導体層130a、酸化物半導体層130b)である点、領域333において酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130c)である点を除き、トランジスタ104と同様の構成を有する。
本発明の一態様のトランジスタは、図22(C)、(D)に示す構成であってもよい。図22(C)はトランジスタ111の上面図であり、図22(C)に示す一点鎖線L1-L2方向の断面が図22(D)に相当する。また、図22(C)に示す一点鎖線L3-L4方向の断面が図23(A)に相当する。また、一点鎖線L1-L2方向をチャネル長方向、一点鎖線L3-L4方向をチャネル幅方向と呼称する。
トランジスタ111は、基板119と接する絶縁層120と、絶縁層120と接する酸化物半導体層130aおよび酸化物半導体層130bからなる積層と、当該積層と電気的に接続する導電層141および導電層151と、当該積層、導電層141および導電層151と接する酸化物半導体層130cと、酸化物半導体層130cと接する絶縁層160と、絶縁層160と接する導電層170と、当該積層、導電層141、導電層151、酸化物半導体層130c、絶縁層160および導電層170と接する絶縁層175と、絶縁層175と接する絶縁層180と、絶縁層175および絶縁層180に設けられた開口部を通じて導電層141および導電層151とそれぞれ電気的に接続する導電層142および導電層152を有する。また、必要に応じて絶縁層180、導電層142および導電層152に接する絶縁層(平坦化膜)などを有していてもよい。
トランジスタ111は、領域231および領域232において酸化物半導体層130が二層(酸化物半導体層130a、酸化物半導体層130b)である点、領域233において酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130c)である点、ならびに導電層141および導電層151と絶縁層160との間に酸化物半導体層の一部(酸化物半導体層130c)が介在している点を除き、トランジスタ105と同様の構成を有する。
本発明の一態様のトランジスタは、図22(E)、(F)に示す構成であってもよい。図22(E)はトランジスタ112の上面図であり、図22(E)に示す一点鎖線M1-M2方向の断面が図22(F)に相当する。また、図22(E)に示す一点鎖線M3-M4方向の断面が図23(A)に相当する。また、一点鎖線M1-M2方向をチャネル長方向、一点鎖線M3-M4方向をチャネル幅方向と呼称する。
トランジスタ112は、領域331、領域332、領域334および領域335において酸化物半導体層130が二層(酸化物半導体層130a、酸化物半導体層130b)である点、領域333において酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130c)である点を除き、トランジスタ106と同様の構成を有する。
本発明の一態様のトランジスタは、図24(A)、(B)、(C)、(D)、(E)、(F)に示すチャネル長方向の断面図、ならびに図23(C)、(D)に示すチャネル幅方向の断面図のように、酸化物半導体層130と基板119との間に導電層173を備えていてもよい。当該導電層を第2のゲート電極層(バックゲート)として用いることで、更なるオン電流の増加や、しきい値電圧の制御を行うことができる。なお、図24(A)、(B)、(C)、(D)、(E)、(F)に示す断面図において、導電層173の幅を酸化物半導体層130よりも短くしてもよい。さらに、導電層173の幅を導電層170の幅よりも短くしてもよい。
本発明の一態様のトランジスタは、図25(A)、(B)、(C)に示す構成とすることもできる。図25(A)は上面図であり、図25(B)は、図25(A)に示す一点鎖線N1-N2に対応する断面図であり、図25(C)は、図25(A)に示す一点鎖線N3-N4に対応する断面図である。なお、図25(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
トランジスタ113は、酸化物半導体層130cおよび絶縁層160が導電層141および導電層151を覆う構成である点を除き、トランジスタ111と同様の構成を有する。該構成とすることにより、酸化物半導体層130cがブロッキング層として作用し、絶縁層175から、水素、水およびハロゲン等の不純物が酸化物半導体層130bへ拡散することを抑制することができる。なお、トランジスタ113の構成は、本発明の一態様のほかの構成のトランジスタにも適用することができる。
なお、図25(D)、(E)に示す断面図のように、酸化物半導体層130と基板119との間に第2のゲート電極層(バックゲート)として機能する導電層173を備えていてもよい。
本発明の一態様のトランジスタは、図26(A)、(B)、(C)に示す構成とすることもできる。図26(A)は上面図であり、図26(B)は、図26(A)に示す一点鎖線O1-O2に対応する断面図であり、図26(C)は、図26(A)に示す一点鎖線O3-O4に対応する断面図である。なお、図26(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
トランジスタ114は、酸化物半導体層130a、酸化物半導体層130b、導電層141および導電層151の側面が、絶縁層175と接していない点を除き、トランジスタ111と同様の構成を有する。つまり、酸化物半導体層130a、酸化物半導体層130b、導電層141および導電層151の側面が、絶縁層180と接している。
該構成とすることにより、絶縁層175による導電層170の酸化防止効果を維持しつつ、効率的に絶縁層180が有する酸素を酸化物半導体層130bに供給することができる。
なお、図26(D)、(E)に示す断面図のように、酸化物半導体層130と基板119との間に第2のゲート電極層(バックゲート)として機能する導電層173を備えていてもよい。
本発明の一態様のトランジスタは、図27(A)、(B)、(C)に示す構成とすることもできる。図27(A)は上面図であり、図27(B)は、図27(A)に示す一点鎖線P1-P2に対応する断面図であり、図27(C)は、図27(A)に示す一点鎖線P3-P4に対応する断面図である。なお、図27(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
図27(A)、(B)、(C)に示すトランジスタ115は、基板119と、基板119上の絶縁層120と、絶縁層120上の酸化物半導体層130(酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130c)と、酸化物半導体層130に接し、間隔を開けて配置された導電層140および導電層150と、酸化物半導体層130cと接する絶縁層160と、絶縁層160と接する導電層170を有する。なお、酸化物半導体層130c、絶縁層160および導電層170は、トランジスタ115上の絶縁層190に設けられた酸化物半導体層130aおよび酸化物半導体層130bに達する開口部に設けられている。なお、絶縁層190として、例えば絶縁層180と同様の材料を用いることができる。
トランジスタ115の構成は、前述したその他のトランジスタの構成と比較して、ソースまたはドレインとなる導電体とゲート電極となる導電体の重なる領域が少ないため、寄生容量を小さくすることができる。したがって、トランジスタ115は、高速動作を必要とする回路の要素として適している。トランジスタ115の上面は、図27(B)に示すようにCMP(Chemical Mechanical Polishing)法等を用いて平坦化することが好ましいが、平坦化しない構成とすることもできる。
なお、図27(D)、(E)に示す断面図のように、酸化物半導体層130と基板119との間に第2のゲート電極層(バックゲート)として機能する導電層173を備えていてもよい。
本発明の一態様のトランジスタは、図28(A)、(B)、(C)に示す構成とすることもできる。図28(A)は上面図であり、図28(B)は、図28(A)に示す一点鎖線Q1-Q2に対応する断面図であり、図28(C)は、図28(A)に示す一点鎖線Q3-Q4に対応する断面図である。なお、図28(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
トランジスタ116は、絶縁層120、酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130c、導電層140および導電層150と接するように酸化物半導体層130dが形成され、酸化物半導体層130cおよび酸化物半導体層130dと接するように絶縁層190が形成されている点を除き、トランジスタ115と同様の構成を有する。酸化物半導体層130dとして、例えば酸化物半導体層130cと同様の材料を用いることができる。該構成とすることにより、酸化物半導体層130dがブロッキング層として作用し、絶縁層190から水素、水およびハロゲン等の不純物が酸化物半導体層130bへ拡散することを抑制することができる。
なお、図28(D)、(E)に示す断面図のように、酸化物半導体層130と基板119との間に第2のゲート電極層(バックゲート)として機能する導電層173を備えていてもよい。
本発明の一態様のトランジスタは、図29(A)、(B)、(C)に示す構成とすることもできる。図29(A)は上面図であり、図29(B)は、図29(A)に示す一点鎖線R1-R2に対応する断面図であり、図29(C)は、図29(A)に示す一点鎖線R3-R4に対応する断面図である。なお、図29(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
トランジスタ117は、酸化物半導体層130c、絶縁層160、導電層170および絶縁層190を覆うように絶縁層191が設けられている点を除き、トランジスタ115と同様の構成を有する。絶縁層191として、例えば絶縁層175と同様の材料を用いることができる。該構成とすることにより、導電層170の酸化を防止することができる。また、絶縁層190が有する酸素を酸化物半導体層130bに効率的に供給することができる。
なお、図29(D)、(E)に示す断面図のように、酸化物半導体層130と基板119との間に第2のゲート電極層(バックゲート)として機能する導電層173を備えていてもよい。
本発明の一態様のトランジスタにおける導電層140(ソース電極層)および導電層150(ドレイン電極層)は、図30(A)、(B)に示す上面図(酸化物半導体層130、導電層140および導電層150のみを図示)のように酸化物半導体層130の幅(WOS)よりも導電層140および導電層150の幅(WSD)が長く形成されていてもよいし、短く形成されていてもよい。WOS≧WSD(WSDはWOS以下)とすることで、ゲート電界が酸化物半導体層130全体にかかりやすくなり、トランジスタの電気特性を向上させることができる。また、図30(C)に示すように、導電層140および導電層150が酸化物半導体層130と重なる領域のみに形成されていてもよい。
本発明の一態様のトランジスタ(トランジスタ101乃至トランジスタ114)では、いずれの構成においても、ゲート電極層である導電層170は、ゲート絶縁膜である絶縁層160を介して酸化物半導体層130のチャネル幅方向を電気的に取り囲み、オン電流が高められる。このようなトランジスタの構造を、surrounded channel(s-channel)構造とよぶ。
酸化物半導体層130aおよび酸化物半導体層130bを有するトランジスタ、ならびに酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層130cを有するトランジスタにおいては、酸化物半導体層130を構成する二層または三層の材料を適切に選択することで酸化物半導体層130bに電流を流すことができる。酸化物半導体層130bに電流が流れることで、界面散乱の影響を受けにくく、高いオン電流を得ることができる。したがって、酸化物半導体層130bを厚くすることでオン電流が向上する場合がある。
以上の構成のトランジスタを用いることにより、半導体装置に良好な電気特性を付与することができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、実施の形態2に示したトランジスタの構成要素について詳細を説明する。
基板119には、ガラス基板、石英基板、半導体基板、セラミックス基板、表面が絶縁処理された金属基板などを用いることができる。または、トランジスタやフォトダイオードが形成されたシリコン基板、および当該シリコン基板上に絶縁層、配線、コンタクトプラグとして機能を有する導電体等が形成されたものを用いることができる。なお、シリコン基板にp-ch型のトランジスタを形成する場合は、n型の導電型を有するシリコン基板を用いることが好ましい。または、n型またはi型のシリコン層を有するSOI基板であってもよい。また、シリコン基板に設けるトランジスタがp-ch型である場合は、トランジスタを形成する面の面方位は、(110)面であるシリコン基板を用いることが好ましい。(110)面にp-ch型トランジスタを形成することで、移動度を高くすることができる。
絶縁層120は、基板119に含まれる要素からの不純物の拡散を防止する役割を有するほか、酸化物半導体層130に酸素を供給する役割を担うことができる。したがって、絶縁層120は酸素を含む絶縁膜であることが好ましく、化学量論組成よりも多い酸素を含む絶縁膜であることがより好ましい。例えば、膜の表面温度が100℃以上700℃以下、好ましくは100℃以上500℃以下の加熱処理で行われるTDS法にて、酸素原子に換算した酸素の放出量が1.0×1019atoms/cm以上である膜とする。また、基板119が他のデバイスが形成された基板である場合、絶縁層120は、層間絶縁膜としての機能も有する。その場合は、表面が平坦になるようにCMP法等で平坦化処理を行うことが好ましい。
例えば、絶縁層120には、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルなどの酸化物絶縁膜、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウムなどの窒化物絶縁膜、またはこれらの混合材料を用いることができる。また、上記材料の積層であってもよい。
酸化物半導体層130は、酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層130cを絶縁層120側から順に積んだ三層構造とすることができる。
なお、酸化物半導体層130が単層の場合は、本実施の形態に示す、酸化物半導体層130bに相当する層を用いればよい。
酸化物半導体層130が二層の場合は、酸化物半導体層130aに相当する層および酸化物半導体層130bに相当する層を絶縁層120側から順に積んだ積層を用いればよい。この構成の場合、酸化物半導体層130aと酸化物半導体層130bとを入れ替えることもできる。
一例としては、酸化物半導体層130bには、酸化物半導体層130aおよび酸化物半導体層130cよりも電子親和力(真空準位から伝導帯下端までのエネルギー)が大きい酸化物半導体を用いる。
このような構造において、導電層170に電界を印加すると、酸化物半導体層130のうち、伝導帯下端のエネルギーが最も小さい酸化物半導体層130bにチャネルが形成される。したがって、酸化物半導体層130bは半導体として機能する領域を有するといえるが、酸化物半導体層130aおよび酸化物半導体層130cは絶縁体または半絶縁体として機能する領域を有するともいえる。
酸化物半導体層130a、酸化物半導体層130b、および酸化物半導体層130cとして用いることのできる酸化物半導体は、少なくともInもしくはZnを含むことが好ましい。または、InとZnの双方を含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすため、それらと共に、Al、Ga、Y、またはSn等のスタビライザーを含むことが好ましい。
酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層130cには、結晶部が含まれることが好ましい。特にc軸に配向した結晶を用いることでトランジスタに安定した電気特性を付与することができる。また、c軸に配向した結晶は歪曲に強く、フレキシブル基板を用いた半導体装置の信頼性を向上させることができる。
ソース電極層として作用する導電層140およびドレイン電極層として作用する導電層150には、例えば、Al、Cr、Cu、Ta、Ti、Mo、W、Ni、Mn、Nd、Sc、および当該金属材料の合金または導電性窒化物から選ばれた材料の単層、あるいは積層を用いることができる。また、低抵抗のCuやCu-Mnなどの合金と上記材料との積層を用いてもよい。トランジスタ105、トランジスタ106、トランジスタ111、トランジスタ112においては、例えば、導電層141および導電層151にW、導電層142および導電層152にTiとAlとの積層膜などを用いることができる。
上記材料は酸化物半導体層から酸素を引き抜く性質を有する。そのため、上記材料と接した酸化物半導体層の一部の領域では酸化物半導体層中の酸素が脱離し、酸素欠損が形成される。膜中に僅かに含まれる水素と当該酸素欠損が結合することにより当該領域は顕著にn型化する。したがって、n型化した当該領域はトランジスタのソースまたはドレインとして作用させることができる。
導電層140および導電層150にWを用いる場合には、窒素をドーピングしてもよい。窒素をドーピングすることで酸素を引き抜く性質を適度に弱めることができ、n型化した領域がチャネル領域まで拡大することを防ぐことができる。また、導電層140および導電層150をn型の半導体層との積層とし、n型の半導体層と酸化物半導体層を接触させることによってもn型化した領域がチャネル領域まで拡大することを防ぐことができる。n型の半導体層としては、窒素が添加されたIn-Ga-Zn酸化物、酸化亜鉛、酸化インジウム、酸化スズ、酸化インジウムスズなどを用いることができる。
ゲート絶縁膜として作用する絶縁層160には、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルを一種以上含む絶縁膜を用いることができる。また、絶縁層160は上記材料の積層であってもよい。なお、絶縁層160に、La、N、Zrなどを、不純物として含んでいてもよい。
また、絶縁層160の積層構造の一例について説明する。絶縁層160は、例えば、酸素、窒素、シリコン、ハフニウムなどを有する。具体的には、酸化ハフニウム、および酸化シリコンまたは酸化窒化シリコンを含むと好ましい。
酸化ハフニウムおよび酸化アルミニウムは、酸化シリコンや酸化窒化シリコンと比べて比誘電率が高い。したがって、酸化シリコンを用いた場合と比べて、絶縁層160の膜厚を大きくできるため、トンネル電流によるリーク電流を小さくすることができる。即ち、オフ電流の小さいトランジスタを実現することができる。さらに、結晶構造を有する酸化ハフニウムは、非晶質構造を有する酸化ハフニウムと比べて高い比誘電率を備える。したがって、オフ電流の小さいトランジスタとするためには、結晶構造を有する酸化ハフニウムを用いることが好ましい。結晶構造の例としては、単斜晶系や立方晶系などが挙げられる。ただし、本発明の一態様は、これらに限定されない。
また、酸化物半導体層130と接する絶縁層120および絶縁層160は、窒素酸化物の放出量の少ない膜を用いることが好ましい。窒素酸化物の放出量の多い絶縁層と酸化物半導体が接した場合、窒素酸化物に起因する準位密度が高くなることがある。絶縁層120および絶縁層160には、例えば、窒素酸化物の放出量の少ない酸化窒化シリコン膜または酸化窒化アルミニウム膜等の酸化物絶縁層を用いることができる。
窒素酸化物の放出量の少ない酸化窒化シリコン膜は、TDS法において、窒素酸化物の放出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニアの放出量が1×1018cm-3以上5×1019cm-3以下である。なお、アンモニアの放出量は、膜の表面温度が50℃以上650℃以下、好ましくは50℃以上550℃以下の加熱処理による放出量とする。
絶縁層120および絶縁層160として、上記酸化物絶縁層を用いることで、トランジスタのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することができる。
ゲート電極層として作用する導電層170には、例えば、Al、Ti、Cr、Co、Ni、Cu、Y、Zr、Mo、Ru、Ag、Mn、Nd、Sc、TaおよびWなどの導電膜を用いることができる。また、上記材料の合金や上記材料の導電性窒化物を用いてもよい。また、上記材料、上記材料の合金、および上記材料の導電性窒化物から選ばれた複数の材料の積層であってもよい。代表的には、タングステン、タングステンと窒化チタンの積層、タングステンと窒化タンタルの積層などを用いることができる。また、低抵抗のCuまたはCu-Mnなどの合金や上記材料とCuまたはCu-Mnなどの合金との積層を用いてもよい。本実施の形態では、導電層171に窒化タンタル、導電層172にタングステンを用いて導電層170を形成する。
また、導電層170にはIn-Ga-Zn酸化物、酸化亜鉛、酸化インジウム、酸化スズ、酸化インジウムスズなどの酸化物導電層を用いてもよい。
絶縁層175には、水素を含む窒化シリコン膜または窒化アルミニウム膜などを用いることができる。実施の形態2に示したトランジスタ103、トランジスタ104、トランジスタ106、トランジスタ109、トランジスタ110、およびトランジスタ112では、絶縁層175として水素を含む絶縁膜を用いることで酸化物半導体層の一部をn型化することができる。また、窒化絶縁膜は水分などのブロッキング膜としての作用も有し、トランジスタの信頼性を向上させることができる。
また、絶縁層175としては酸化アルミニウム膜を用いることもできる。特に、実施の形態2に示したトランジスタ101、トランジスタ102、トランジスタ105、トランジスタ107、トランジスタ108、およびトランジスタ111では絶縁層175に酸化アルミニウム膜を用いることが好ましい。酸化アルミニウム膜は、水素、水分などの不純物、および酸素の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウム膜は、トランジスタの作製工程中および作製後において、水素、水分などの不純物の酸化物半導体層130への混入防止、酸素の酸化物半導体層からの放出防止、絶縁層120からの酸素の不必要な放出防止の効果を有する保護膜として用いることに適している。
絶縁層175上には絶縁層180が形成されていることが好ましい。当該絶縁層には、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルを一種以上含む絶縁膜を用いることができる。また、当該絶縁層は上記材料の積層であってもよい。
ここで、絶縁層180は絶縁層120と同様に化学量論組成よりも多くの酸素を有することが好ましい。絶縁層180から放出される酸素は絶縁層160を経由して酸化物半導体層130のチャネル形成領域に拡散させることができることから、チャネル形成領域に形成された酸素欠損に酸素を補填することができる。したがって、安定したトランジスタの電気特性を得ることができる。
半導体装置を高集積化するにはトランジスタの微細化が必須である。一方、トランジスタの微細化によりトランジスタの電気特性は悪化する傾向にあり、例えばチャネル幅を縮小させるとオン電流は低下してしまう。
本発明の一態様のトランジスタ107乃至トランジスタ112では、チャネルが形成される酸化物半導体層130bを覆うように酸化物半導体層130cが形成されており、チャネル形成層とゲート絶縁膜が接しない構成となっている。そのため、チャネル形成層とゲート絶縁膜との界面で生じるキャリアの散乱を抑えることができ、トランジスタのオン電流を大きくすることができる。
本発明の一態様のトランジスタでは、前述したように酸化物半導体層130のチャネル幅方向を電気的に取り囲むようにゲート電極層(導電層170)が形成されているため、酸化物半導体層130に対しては上面に垂直な方向からのゲート電界に加えて、側面に垂直な方向からのゲート電界が印加される。すなわち、チャネル形成層に対して全体的にゲート電界が印加されることになり実効チャネル幅が拡大するため、さらにオン電流を高められる。
本実施の形態で説明した金属膜、半導体膜、無機絶縁膜など様々な膜は、代表的にはスパッタ法やプラズマCVD法により形成することができるが、他の方法、例えば、熱CVD法により形成してもよい。熱CVD法の例としては、MOCVD(Metal Organic Chemical Vapor Deposition)法やALD(Atomic Layer Deposition)法などがある。
熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生成されることが無いという利点を有する。
また、熱CVD法では、原料ガスと酸化剤を同時にチャンバー内に送り、チャンバー内を大気圧または減圧下とし、基板近傍または基板上で反応させて基板上に堆積させることで成膜を行ってもよい。
ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスをチャンバーに導入・反応させ、これを繰り返すことで成膜を行う。原料ガスと一緒に不活性ガス(アルゴン、或いは窒素など)をキャリアガスとして導入しても良い。例えば2種類以上の原料ガスを順番にチャンバーに供給してもよい。その際、複数種の原料ガスが混ざらないように第1の原料ガスの反応後、不活性ガスを導入し、第2の原料ガスを導入する。あるいは、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着・反応して第1の層を成膜し、後から導入される第2の原料ガスが吸着・反応して、第2の層が第1の層上に積層されて薄膜が形成される。このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入の繰り返す回数によって調節することができるため、精密な膜厚調節が可能であり、微細なFETを作製する場合に適している。
MOCVD法やALD法などの熱CVD法は、これまでに記載した実施形態に開示された金属膜、半導体膜、無機絶縁膜など様々な膜を形成することができ、例えば、In-Ga-Zn-O膜を成膜する場合には、トリメチルインジウム(In(CH)、トリメチルガリウム(Ga(CH)、およびジメチル亜鉛(Zn(CH)を用いることができる。これらの組み合わせに限定されず、トリメチルガリウムに代えてトリエチルガリウム(Ga(C)を用いることもでき、ジメチル亜鉛に代えてジエチル亜鉛(Zn(C)を用いることもできる。
例えば、ALDを利用する成膜装置により酸化ハフニウム膜を形成する場合には、溶媒とハフニウム前駆体を含む液体(ハフニウムアルコキシドや、テトラキスジメチルアミドハフニウム(TDMAH、Hf[N(CH)やテトラキス(エチルメチルアミド)ハフニウムなどのハフニウムアミド)を気化させた原料ガスと、酸化剤としてオゾン(O)の2種類のガスを用いる。
例えば、ALDを利用する成膜装置により酸化アルミニウム膜を形成する場合には、溶媒とアルミニウム前駆体を含む液体(トリメチルアルミニウム(TMA、Al(CH)など)を気化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。他の材料としては、トリス(ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、アルミニウムトリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)などがある。
例えば、ALDを利用する成膜装置により酸化シリコン膜を形成する場合には、ヘキサクロロジシランを被成膜面に吸着させ、酸化性ガス(O、一酸化二窒素)のラジカルを供給して吸着物と反応させる。
例えば、ALDを利用する成膜装置によりタングステン膜を成膜する場合には、WFガスとBガスを順次導入して初期タングステン膜を形成し、その後、WFガスとHガスを順次導入してタングステン膜を形成する。なお、Bガスに代えてSiHガスを用いてもよい。
例えば、ALDを利用する成膜装置により酸化物半導体層、例えばIn-Ga-Zn-O層を成膜する場合には、In(CHガスとOガスを順次導入してIn-O層を形成し、その後、Ga(CHガスとOガスを順次導入してGaO層を形成し、更にその後Zn(CHガスとOガスを順次導入してZnO層を形成する。なお、これらの層の順番はこの例に限らない。これらのガスを用いてIn-Ga-O層やIn-Zn-O層、Ga-Zn-O層などの混合化合物層を形成しても良い。なお、Oガスに代えてAr等の不活性ガスでバブリングして得られたHOガスを用いても良いが、Hを含まないOガスを用いる方が好ましい。
酸化物半導体層の成膜には、対向ターゲット式スパッタ装置を用いることもできる。当該対向ターゲット式スパッタ装置を用いた成膜法を、VDSP(vapor deposition SP)と呼ぶこともできる。
対向ターゲット式スパッタ装置を用いて酸化物半導体層を成膜することによって、酸化物半導体層の成膜時におけるプラズマ損傷を低減することができる。そのため、膜中の酸素欠損を低減することができる。また、対向ターゲット式スパッタ装置を用いることで低圧での成膜が可能となるため、成膜された酸化物半導体層中の不純物濃度(例えば水素、希ガス(アルゴンなど)、水など)を低減させることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、本発明の一態様に用いることのできる酸化物半導体の材料について説明する。
酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
ここで、酸化物半導体が、インジウム、元素M及び亜鉛を有する場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
まず、図31(A)、図31(B)、および図31(C)を用いて、本発明に係る酸化物半導体が有するインジウム、元素M及び亜鉛の原子数比の好ましい範囲について説明する。なお、図31には、酸素の原子数比については記載しない。また、酸化物半導体が有するインジウム、元素M、及び亜鉛の原子数比のそれぞれの項を[In]、[M]、および[Zn]とする。
図31(A)、図31(B)、および図31(C)において、破線は、[In]:[M]:[Zn]=(1+α):(1-α):1の原子数比(-1≦α≦1)となるライン、[In]:[M]:[Zn]=(1+α):(1-α):2の原子数比となるライン、[In]:[M]:[Zn]=(1+α):(1-α):3の原子数比となるライン、[In]:[M]:[Zn]=(1+α):(1-α):4の原子数比となるライン、および[In]:[M]:[Zn]=(1+α):(1-α):5の原子数比となるラインを表す。
また、一点鎖線は、[In]:[M]:[Zn]=1:1:βの原子数比(β≧0)となるライン、[In]:[M]:[Zn]=1:2:βの原子数比となるライン、[In]:[M]:[Zn]=1:3:βの原子数比となるライン、[In]:[M]:[Zn]=1:4:βの原子数比となるライン、[In]:[M]:[Zn]=2:1:βの原子数比となるライン、及び[In]:[M]:[Zn]=5:1:βの原子数比となるラインを表す。
また、図31に示す、[In]:[M]:[Zn]=0:2:1の原子数比またはその近傍値の酸化物半導体は、スピネル型の結晶構造をとりやすい。
図31(A)および図31(B)では、本発明の一態様の酸化物半導体が有する、インジウム、元素M、及び亜鉛の原子数比の好ましい範囲の一例について示している。
一例として、図32に、[In]:[M]:[Zn]=1:1:1である、InMZnOの結晶構造を示す。また、図32は、b軸に平行な方向から観察した場合のInMZnOの結晶構造である。なお、図32に示すM、Zn、酸素を有する層(以下、(M,Zn)層)における金属元素は、元素Mまたは亜鉛を表している。この場合、元素Mと亜鉛の割合が等しいものとする。元素Mと亜鉛とは、置換が可能であり、配列は不規則である。
InMZnOは、層状の結晶構造(層状構造ともいう)をとり、図32に示すように、インジウム、および酸素を有する層(以下、In層)が1に対し、元素M、亜鉛、および酸素を有する(M,Zn)層が2となる。
また、インジウムと元素Mは、互いに置換可能である。そのため、(M,Zn)層の元素Mがインジウムと置換し、(In,M,Zn)層と表すこともできる。その場合、In層が1に対し、(In,M,Zn)層が2である層状構造をとる。
[In]:[M]:[Zn]=1:1:2となる原子数比の酸化物半導体は、In層が1に対し、(M,Zn)層が3である層状構造をとる。つまり、[In]および[M]に対し[Zn]が大きくなると、酸化物半導体が結晶化した場合、In層に対する(M,Zn)層の割合が増加する。
ただし、酸化物半導体中において、In層が1層に対し、(M,Zn)層の層数が非整数である場合、In層が1層に対し、(M,Zn)層の層数が整数である層状構造を複数種有する場合がある。例えば、[In]:[M]:[Zn]=1:1:1.5である場合、In層が1に対し、(M,Zn)層が2である層状構造と、(M,Zn)層が3である層状構造とが混在する層状構造となる場合がある。
例えば、酸化物半導体をスパッタリング装置にて成膜する場合、ターゲットの原子数比からずれた原子数比の膜が形成される。特に、成膜時の基板温度によっては、ターゲットの[Zn]よりも、膜の[Zn]が小さくなる場合がある。
また、酸化物半導体中に複数の相が共存する場合がある(二相共存、三相共存など)。例えば、[In]:[M]:[Zn]=0:2:1の原子数比の近傍値である原子数比では、スピネル型の結晶構造と層状の結晶構造との二相が共存しやすい。また、[In]:[M]:[Zn]=1:0:0を示す原子数比の近傍値である原子数比では、ビックスバイト型の結晶構造と層状の結晶構造との二相が共存しやすい。酸化物半導体中に複数の相が共存する場合、異なる結晶構造の間において、粒界(グレインバウンダリーともいう)が形成される場合がある。
また、インジウムの含有率を高くすることで、酸化物半導体のキャリア移動度(電子移動度)を高くすることができる。これは、インジウム、元素M及び亜鉛を有する酸化物半導体では、主として重金属のs軌道がキャリア伝導に寄与しており、インジウムの含有率を高くすることにより、s軌道が重なる領域がより大きくなるため、インジウムの含有率が高い酸化物半導体はインジウムの含有率が低い酸化物半導体と比較してキャリア移動度が高くなるためである。
一方、酸化物半導体中のインジウムおよび亜鉛の含有率が低くなると、キャリア移動度が低くなる。従って、[In]:[M]:[Zn]=0:1:0を示す原子数比、およびその近傍値である原子数比(例えば図31(C)に示す領域C)では、絶縁性が高くなる。
従って、本発明の一態様の酸化物半導体は、キャリア移動度が高く、かつ、粒界が少ない層状構造となりやすい、図31(A)の領域Aで示される原子数比を有することが好ましい。
また、図31(B)に示す領域Bは、[In]:[M]:[Zn]=4:2:3から4.1、およびその近傍値を示している。近傍値には、例えば、原子数比が[In]:[M]:[Zn]=5:3:4が含まれる。領域Bで示される原子数比を有する酸化物半導体は、特に、結晶性が高く、キャリア移動度も高い優れた酸化物半導体である。
なお、酸化物半導体が、層状構造を形成する条件は、原子数比によって一義的に定まらない。原子数比により、層状構造を形成するための難易の差はある。一方、同じ原子数比であっても、形成条件により、層状構造になる場合も層状構造にならない場合もある。従って、図示する領域は、酸化物半導体が層状構造を有する原子数比を示す領域であり、領域A乃至領域Cの境界は厳密ではない。
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
なお、上記酸化物半導体をトランジスタに用いることで、粒界におけるキャリア散乱等を減少させることができるため、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
また、トランジスタには、キャリア密度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10-9/cm以上とすればよい。
なお、高純度真性または実質的に高純度真性である酸化物半導体は、キャリア発生源が少ないため、キャリア密度を低くすることができる。また、高純度真性または実質的に高純度真性である酸化物半導体は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体において、窒素はできる限り低減されていることが好ましい。例えば、酸化物半導体中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
続いて、該酸化物半導体を2層構造、または3層構造とした場合について述べる。酸化物半導体S1、酸化物半導体S2、および酸化物半導体S3の積層構造、および積層構造に接する絶縁体のバンド図と、酸化物半導体S2および酸化物半導体S3の積層構造、および積層構造に接する絶縁体のバンド図と、について、図33を用いて説明する。なお、酸化物半導体S1は酸化物半導体層130a、酸化物半導体S2は酸化物半導体層130b、酸化物半導体S3は酸化物半導体層130cに相当する。
図33(A)は、絶縁体I1、酸化物半導体S1、酸化物半導体S2、酸化物半導体S3、及び絶縁体I2を有する積層構造の膜厚方向のバンド図の一例である。また、図33(B)は、絶縁体I1、酸化物半導体S2、酸化物半導体S3、及び絶縁体I2を有する積層構造の膜厚方向のバンド図の一例である。なお、バンド図は、理解を容易にするため絶縁体I1、酸化物半導体S1、酸化物半導体S2、酸化物半導体S3、及び絶縁体I2の伝導帯下端のエネルギー準位(Ec)を示す。
酸化物半導体S1、酸化物半導体S3は、酸化物半導体S2よりも伝導帯下端のエネルギー準位が真空準位に近く、代表的には、酸化物半導体S2の伝導帯下端のエネルギー準位と、酸化物半導体S1、酸化物半導体S3の伝導帯下端のエネルギー準位との差が、0.15eV以上、または0.5eV以上、かつ2eV以下、または1eV以下であることが好ましい。すなわち、酸化物半導体S1、酸化物半導体S3の電子親和力よりも、酸化物半導体S2の電子親和力が大きく、酸化物半導体S1、酸化物半導体S3の電子親和力と、酸化物半導体S2の電子親和力との差は、0.15eV以上、または0.5eV以上、かつ2eV以下、または1eV以下であることが好ましい。
図33(A)、および図33(B)に示すように、酸化物半導体S1、酸化物半導体S2、酸化物半導体S3において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、連続的に変化または連続接合するともいうことができる。このようなバンド図を有するためには、酸化物半導体S1と酸化物半導体S2との界面、または酸化物半導体S2と酸化物半導体S3との界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物半導体S1と酸化物半導体S2、酸化物半導体S2と酸化物半導体S3が、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物半導体S2がIn-Ga-Zn酸化物半導体の場合、酸化物半導体S1、酸化物半導体S3として、In-Ga-Zn酸化物半導体、Ga-Zn酸化物半導体、酸化ガリウムなどを用いるとよい。
このとき、キャリアの主たる経路は酸化物半導体S2となる。酸化物半導体S1と酸化物半導体S2との界面、および酸化物半導体S2と酸化物半導体S3との界面における欠陥準位密度を低くすることができるため、界面散乱によるキャリア伝導への影響が小さく、高いオン電流が得られる。
トラップ準位に電子が捕獲されることで、捕獲された電子は固定電荷のように振る舞うため、トランジスタのしきい値電圧はプラス方向にシフトしてしまう。酸化物半導体S1、酸化物半導体S3を設けることにより、トラップ準位を酸化物半導体S2より遠ざけることができる。当該構成とすることで、トランジスタのしきい値電圧がプラス方向にシフトすることを防止することができる。
酸化物半導体S1、酸化物半導体S3は、酸化物半導体S2と比較して、導電率が十分に低い材料を用いる。このとき、酸化物半導体S2、酸化物半導体S2と酸化物半導体S1との界面、および酸化物半導体S2と酸化物半導体S3との界面が、主にチャネル領域として機能する。例えば、酸化物半導体S1、酸化物半導体S3には、図31(C)において、絶縁性が高くなる領域Cで示す原子数比の酸化物半導体を用いればよい。なお、図31(C)に示す領域Cは、[In]:[M]:[Zn]=0:1:0、またはその近傍値である原子数比を示している。
特に、酸化物半導体S2に領域Aで示される原子数比の酸化物半導体を用いる場合、酸化物半導体S1および酸化物半導体S3には、[M]/[In]が1以上、好ましくは2以上である酸化物半導体を用いることが好ましい。また、酸化物半導体S3として、十分に高い絶縁性を得ることができる[M]/([Zn]+[In])が1以上である酸化物半導体を用いることが好適である。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態5)
以下では、本発明の一態様に用いることのできる酸化物半導体の構造について説明する。
なお、本明細書において、「平行」とは、二つの直線が-10°以上10°以下の角度で配置されている状態をいう。したがって、-5°以上5°以下の場合も含まれる。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。
また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す。
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、CAAC-OS(c-axis-aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc-OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a-like OS:amorphous-like oxide semiconductor)および非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半導体と、に分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC-OS、多結晶酸化物半導体およびnc-OSなどがある。
非晶質構造は、一般に、等方的であって不均質構造を持たない、準安定状態で原子の配置が固定化していない、結合角度が柔軟である、短距離秩序は有するが長距離秩序を有さない、などといわれている。
即ち、安定な酸化物半導体を完全な非晶質(completely amorphous)酸化物半導体とは呼べない。また、等方的でない(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化物半導体とは呼べない。一方、a-like OSは、等方的でないが、鬆(ボイドともいう。)を有する不安定な構造である。不安定であるという点では、a-like OSは、物性的に非晶質酸化物半導体に近い。
まずは、CAAC-OSについて説明する。
CAAC-OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半導体の一種である。
CAAC-OSをX線回折(XRD:X-Ray Diffraction)によって解析した場合について説明する。例えば、空間群R-3mに分類されるInGaZnOの結晶を有するCAAC-OSに対し、out-of-plane法による構造解析を行うと、図34(A)に示すように回折角(2θ)が31°近傍にピークが現れる。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC-OSでは、結晶がc軸配向性を有し、c軸がCAAC-OSの膜を形成する面(被形成面ともいう。)、または上面に略垂直な方向を向いていることが確認できる。なお、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、空間群Fd-3mに分類される結晶構造に起因する。そのため、CAAC-OSは、該ピークを示さないことが好ましい。
一方、CAAC-OSに対し、被形成面に平行な方向からX線を入射させるin-plane法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、InGaZnOの結晶の(110)面に帰属される。そして、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行っても、図34(B)に示すように明瞭なピークは現れない。一方、単結晶InGaZnOに対し、2θを56°近傍に固定してφスキャンした場合、図34(C)に示すように(110)面と等価な結晶面に帰属されるピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC-OSは、a軸およびb軸の配向が不規則であることが確認できる。
次に、電子回折によって解析したCAAC-OSについて説明する。例えば、InGaZnOの結晶を有するCAAC-OSに対し、CAAC-OSの被形成面に平行にプローブ径が300nmの電子線を入射させると、図34(D)に示すような回折パターン(制限視野電子回折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、CAAC-OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させたときの回折パターンを図34(E)に示す。図34(E)より、リング状の回折パターンが確認される。したがって、プローブ径が300nmの電子線を用いた電子回折によっても、CAAC-OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる。なお、図34(E)における第1リングは、InGaZnOの結晶の(010)面および(100)面などに起因すると考えられる。また、図34(E)における第2リングは(110)面などに起因すると考えられる。
また、透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって、CAAC-OSの明視野像と回折パターンとの複合解析像(高分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一方、高分解能TEM像であってもペレット同士の境界、即ち結晶粒界(グレインバウンダリーともいう。)を明確に確認することができない場合がある。そのため、CAAC-OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
図35(A)に、試料面と略平行な方向から観察したCAAC-OSの断面の高分解能TEM像を示す。高分解能TEM像の観察には、球面収差補正(Spherical Aberration Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像は、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM-ARM200Fなどによって観察することができる。
図35(A)より、金属原子が層状に配列している領域であるペレットを確認することができる。ペレット一つの大きさは1nm以上のものや、3nm以上のものがあることがわかる。したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。また、CAAC-OSを、CANC(C-Axis Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。ペレットは、CAAC-OSの被形成面または上面の凹凸を反映しており、CAAC-OSの被形成面または上面と平行となる。
また、図35(B)および図35(C)に、試料面と略垂直な方向から観察したCAAC-OSの平面のCs補正高分解能TEM像を示す。図35(D)および図35(E)は、それぞれ図35(B)および図35(C)を画像処理した像である。以下では、画像処理の方法について説明する。まず、図35(B)を高速フーリエ変換(FFT:Fast Fourier Transform)処理することでFFT像を取得する。次に、取得したFFT像において原点を基準に、2.8nm-1から5.0nm-1の間の範囲を残すマスク処理する。次に、マスク処理したFFT像を、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理することで画像処理した像を取得する。こうして取得した像をFFTフィルタリング像と呼ぶ。FFTフィルタリング像は、Cs補正高分解能TEM像から周期成分を抜き出した像であり、格子配列を示している。
図35(D)では、格子配列の乱れた箇所を破線で示している。破線で囲まれた領域が、一つのペレットである。そして、破線で示した箇所がペレットとペレットとの連結部である。破線は、六角形状であるため、ペレットが六角形状であることがわかる。なお、ペレットの形状は、正六角形状とは限らず、非正六角形状である場合が多い。
図35(E)では、格子配列の揃った領域と、別の格子配列の揃った領域と、の間を点線で示している。点線近傍においても、明確な結晶粒界を確認することはできない。点線近傍の格子点を中心に周囲の格子点を繋ぐと、歪んだ六角形や、五角形または/および七角形などが形成できる。即ち、格子配列を歪ませることによって結晶粒界の形成を抑制していることがわかる。これは、CAAC-OSが、a-b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
以上に示すように、CAAC-OSは、c軸配向性を有し、かつa-b面方向において複数のペレット(ナノ結晶)が連結し、歪みを有した結晶構造となっている。よって、CAAC-OSを、CAA crystal(c-axis-aligned a-b-plane-anchored crystal)を有する酸化物半導体と称することもできる。
CAAC-OSは結晶性の高い酸化物半導体である。酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。
次に、nc-OSについて説明する。
nc-OSをXRDによって解析した場合について説明する。例えば、nc-OSに対し、out-of-plane法による構造解析を行うと、配向性を示すピークが現れない。即ち、nc-OSの結晶は配向性を有さない。
また、例えば、InGaZnOの結晶を有するnc-OSを薄片化し、厚さが34nmの領域に対し、被形成面に平行にプローブ径が50nmの電子線を入射させると、図36(A)に示すようなリング状の回折パターン(ナノビーム電子回折パターン)が観測される。また、同じ試料にプローブ径が1nmの電子線を入射させたときの回折パターン(ナノビーム電子回折パターン)を図36(B)に示す。図36(B)より、リング状の領域内に複数のスポットが観測される。したがって、nc-OSは、プローブ径が50nmの電子線を入射させることでは秩序性が確認されないが、プローブ径が1nmの電子線を入射させることでは秩序性が確認される。
また、厚さが10nm未満の領域に対し、プローブ径が1nmの電子線を入射させると、図36(C)に示すように、スポットが略正六角状に配置された電子回折パターンを観測される場合がある。したがって、厚さが10nm未満の範囲において、nc-OSが秩序性の高い領域、即ち結晶を有することがわかる。なお、結晶が様々な方向を向いているため、規則的な電子回折パターンが観測されない領域もある。
図36(D)に、被形成面と略平行な方向から観察したnc-OSの断面のCs補正高分解能TEM像を示す。nc-OSは、高分解能TEM像において、補助線で示す箇所などのように結晶部を確認することのできる領域と、明確な結晶部を確認することのできない領域と、を有する。nc-OSに含まれる結晶部は、1nm以上10nm以下の大きさであり、特に1nm以上3nm以下の大きさであることが多い。なお、結晶部の大きさが10nmより大きく100nm以下である酸化物半導体を微結晶酸化物半導体(micro crystalline oxide semiconductor)と呼ぶことがある。nc-OSは、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場合がある。なお、ナノ結晶は、CAAC-OSにおけるペレットと起源を同じくする可能性がある。そのため、以下ではnc-OSの結晶部をペレットと呼ぶ場合がある。
このように、nc-OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc-OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc-OSは、分析方法によっては、a-like OSや非晶質酸化物半導体と区別が付かない場合がある。
なお、ペレット(ナノ結晶)間で結晶方位が規則性を有さないことから、nc-OSを、RANC(Random Aligned nanocrystals)を有する酸化物半導体、またはNANC(Non-Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
nc-OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、nc-OSは、a-like OSや非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc-OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、nc-OSは、CAAC-OSと比べて欠陥準位密度が高くなる。
a-like OSは、nc-OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。
図37に、a-like OSの高分解能断面TEM像を示す。ここで、図37(A)は電子照射開始時におけるa-like OSの高分解能断面TEM像である。図37(B)は4.3×10/nmの電子(e)照射後におけるa-like OSの高分解能断面TEM像である。図37(A)および図37(B)より、a-like OSは電子照射開始時から、縦方向に延伸する縞状の明領域が観察されることがわかる。また、明領域は、電子照射後に形状が変化することがわかる。なお、明領域は、鬆または低密度領域と推測される。
鬆を有するため、a-like OSは、不安定な構造である。以下では、a-like OSが、CAAC-OSおよびnc-OSと比べて不安定な構造であることを示すため、電子照射による構造の変化を示す。
試料として、a-like OS、nc-OSおよびCAAC-OSを準備する。いずれの試料もIn-Ga-Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試料は、いずれも結晶部を有する。
なお、InGaZnOの結晶の単位格子は、In-O層を3層有し、またGa-Zn-O層を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその値は0.29nmと求められている。したがって、以下では、格子縞の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と見なした。なお、格子縞は、InGaZnOの結晶のa-b面に対応する。
図38は、各試料の結晶部(22箇所から30箇所)の平均の大きさを調査した例である。なお、上述した格子縞の長さを結晶部の大きさとしている。図38より、a-like OSは、TEM像の取得などに係る電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。図38より、TEMによる観察初期においては1.2nm程度の大きさだった結晶部(初期核ともいう。)が、電子(e)の累積照射量が4.2×10/nmにおいては1.9nm程度の大きさまで成長していることがわかる。一方、nc-OSおよびCAAC-OSは、電子照射開始時から電子の累積照射量が4.2×10/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。図38より、電子の累積照射量によらず、nc-OSおよびCAAC-OSの結晶部の大きさは、それぞれ1.3nm程度および1.8nm程度であることがわかる。なお、電子線照射およびTEMの観察は、日立透過電子顕微鏡H-9000NARを用いた。電子線照射条件は、加速電圧を300kV、電流密度を6.7×10/(nm・s)、照射領域の直径を230nmとした。
このように、a-like OSは、電子照射によって結晶部の成長が見られる場合がある。一方、nc-OSおよびCAAC-OSは、電子照射による結晶部の成長がほとんど見られない。即ち、a-like OSは、nc-OSおよびCAAC-OSと比べて、不安定な構造であることがわかる。
また、鬆を有するため、a-like OSは、nc-OSおよびCAAC-OSと比べて密度の低い構造である。具体的には、a-like OSの密度は、同じ組成の単結晶の密度の78.6%以上92.3%未満である。また、nc-OSの密度およびCAAC-OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満である。単結晶の密度の78%未満である酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmである。よって、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、a-like OSの密度は5.0g/cm以上5.9g/cm未満である。また、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、nc-OSの密度およびCAAC-OSの密度は5.9g/cm以上6.3g/cm未満である。
なお、同じ組成の単結晶が存在しない場合、任意の割合で組成の異なる単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。なお、酸化物半導体は、例えば、非晶質酸化物半導体、a-like OS、nc-OS、CAAC-OSのうち、二種以上を有する積層膜であってもよい。
次に、酸化物半導体のキャリア密度について、以下に説明を行う。
酸化物半導体のキャリア密度に影響を与える因子としては、酸化物半導体中の酸素欠損(Vo)、または酸化物半導体中の不純物などが挙げられる。
酸化物半導体中の酸素欠損が多くなると、該酸素欠損に水素が結合(この状態をVoHともいう)した際に、欠陥準位密度が高くなる。または、酸化物半導体中の不純物が多くなると、該不純物に起因し欠陥準位密度が高くなる。したがって、酸化物半導体中の欠陥準位密度を制御することで、酸化物半導体のキャリア密度を制御することができる。
ここで、酸化物半導体をチャネル領域に用いるトランジスタを考える。
トランジスタのしきい値電圧のマイナスシフトの抑制、またはトランジスタのオフ電流の低減を目的とする場合においては、酸化物半導体のキャリア密度を低くする方が好ましい。酸化物半導体のキャリア密度を低くする場合においては、酸化物半導体中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。高純度真性の酸化物半導体のキャリア密度としては、8×1015cm-3未満、好ましくは1×1011cm-3未満、さらに好ましくは1×1010cm-3未満であり、1×10-9cm-3以上とすればよい。
一方で、トランジスタのオン電流の向上、またはトランジスタの電界効果移動度の向上を目的とする場合においては、酸化物半導体のキャリア密度を高くする方が好ましい。酸化物半導体のキャリア密度を高くする場合においては、酸化物半導体の不純物濃度をわずかに高める、または酸化物半導体の欠陥準位密度をわずかに高めればよい。あるいは、酸化物半導体のバンドギャップをより小さくするとよい。例えば、トランジスタのId-Vg特性のオン/オフ比が取れる範囲において、不純物濃度がわずかに高い、または欠陥準位密度がわずかに高い酸化物半導体は、実質的に真性とみなせる。また、電子親和力が大きく、それにともなってバンドギャップが小さくなり、その結果、熱励起された電子(キャリア)の密度が増加した酸化物半導体は、実質的に真性とみなせる。なお、より電子親和力が大きな酸化物半導体を用いた場合には、トランジスタのしきい値電圧がより低くなる。
上述のキャリア密度が高められた酸化物半導体は、わずかにn型化している。したがって、キャリア密度が高められた酸化物半導体を、「Slightly-n」と呼称してもよい。
実質的に真性の酸化物半導体のキャリア密度は、1×10cm-3以上1×1018cm-3未満が好ましく、1×10cm-3以上1×1017cm-3以下がより好ましく、1×10cm-3以上5×1016cm-3以下がさらに好ましく、1×1010cm-3以上1×1016cm-3以下がさらに好ましく、1×1011cm-3以上1×1015cm-3以下がさらに好ましい。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態6)
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud-Aligned Composite)-OSの構成について説明する。
CAC-OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
なお、酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
例えば、In-Ga-Zn酸化物におけるCAC-OS(CAC-OSの中でもIn-Ga-Zn酸化物を、特にCAC-IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、およびZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、およびZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。
つまり、CAC-OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、混合している構成を有する複合酸化物半導体である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。
なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1-x0)(ZnO)m0(-1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa-b面においては配向せずに連結した結晶構造である。
一方、CAC-OSは、酸化物半導体の材料構成に関する。CAC-OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。従って、CAC-OSにおいて、結晶構造は副次的な要素である。
なお、CAC-OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC-OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。
CAC-OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC-OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
CAC-OSは、X線回折(XRD:X-ray diffraction)測定法のひとつであるOut-of-plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折から、測定領域のa-b面方向、およびc軸方向の配向は見られないことが分かる。
またCAC-OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リング領域に複数の輝点が観測される。従って、電子線回折パターンから、CAC-OSの結晶構造が、平面方向、および断面方向において、配向性を有さないnc(nano-crystal)構造を有することがわかる。
また例えば、In-Ga-Zn酸化物におけるCAC-OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X-ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。
CAC-OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC-OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。従って、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。
従って、CAC-OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することができる。
また、CAC-OSを用いた半導体素子は、信頼性が高い。従って、CAC-OSは、ディスプレイをはじめとするさまざまな半導体装置に最適である。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、イメージセンサチップを収めたパッケージおよびカメラモジュールの一例について説明する。当該イメージセンサチップには、本発明の一態様の撮像装置の構成を用いることができる。
図39(A)は、イメージセンサチップを収めたパッケージの上面側の外観斜視図である。当該パッケージは、イメージセンサチップ850を固定するパッケージ基板810、カバーガラス820および両者を接着する接着剤830等を有する。
図39(B)は、当該パッケージの下面側の外観斜視図である。パッケージの下面には、半田ボールをバンプ840としたBGA(Ball grid array)の構成を有する。なお、BGAに限らず、LGA(Land grid array)やPGA(Pin Grid Array)などであってもよい。
図39(C)は、カバーガラス820および接着剤830の一部を省いて図示したパッケージの斜視図であり、図39(D)は、当該パッケージの断面図である。パッケージ基板810上には電極パッド860が形成され、電極パッド860およびバンプ840はスルーホール880およびランド885を介して電気的に接続されている。電極パッド860は、イメージセンサチップ850が有する電極とワイヤ870によって電気的に接続されている。
また、図40(A)は、イメージセンサチップをレンズ一体型のパッケージに収めたカメラモジュールの上面側の外観斜視図である。当該カメラモジュールは、イメージセンサチップ851を固定するパッケージ基板811、レンズカバー821、およびレンズ835等を有する。また、パッケージ基板811およびイメージセンサチップ851の間には撮像装置の駆動回路および信号変換回路などの機能を有するICチップ890も設けられており、SiP(System in package)としての構成を有している。
図40(B)は、当該カメラモジュールの下面側の外観斜視図である。パッケージ基板811の下面および4側面には、実装用のランド841が設けられるQFN(Quad flat no- lead package)の構成を有する。なお、当該構成は一例であり、QFP(Quad flat package)や前述したBGA等であってもよい。
図40(C)は、レンズカバー821およびレンズ835の一部を省いて図示したモジュールの斜視図であり、図40(D)は、当該カメラモジュールの断面図である。ランド841の一部は電極パッド861として利用され、電極パッド861はイメージセンサチップ851およびICチップ890が有する電極とワイヤ871によって電気的に接続されている。
イメージセンサチップを上述したような形態のパッケージに収めることで実装が容易になり、様々な半導体装置、電子機器に組み込むことができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態8)
本発明の一態様に係る撮像装置、表示装置および両者を含む半導体装置を用いることができる電子機器として、表示機器、パーソナルコンピュータ、記録媒体を備えた画像記憶装置または画像再生装置、携帯電話、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ払い機(ATM)、自動販売機などが挙げられる。これら電子機器の具体例を図41に示す。
図41(A)は監視カメラであり、筐体951、レンズ952、支持部953等を有する。当該監視カメラにおける画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。なお、監視カメラとは慣用的な名称であり、用途を限定するものではない。例えば監視カメラとしての機能を有する機器はカメラ、またはビデオカメラとも呼ばれる。
図41(B)はビデオカメラであり、第1筐体971、第2筐体972、表示部973、操作キー974、レンズ975、接続部976等を有する。操作キー974およびレンズ975は第1筐体971に設けられており、表示部973は第2筐体972に設けられている。当該ビデオカメラにおける画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。
図41(C)はデジタルカメラであり、筐体961、シャッターボタン962、マイク963、発光部967、レンズ965等を有する。当該デジタルカメラにおける画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。
図41(D)は腕時計型の情報端末であり、筐体931、表示部932、リストバンド933、操作用のボタン935、竜頭936、カメラ939等を有する。表示部932はタッチパネルとなっていてもよい。当該情報端末における画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。
図41(E)は携帯型ゲーム機であり、筐体901、表示部903、マイク905、スピーカー906、操作キー907、スタイラス908、カメラ909等を有する。なお、図41(E)に示した携帯型ゲーム機は、表示部を1つのみ有しているが、携帯型ゲーム機が有する表示部の数は、これに限定されない。当該携帯型ゲーム機における画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。
図41(F)は携帯データ端末であり、筐体911、表示部912、カメラ919等を有する。表示部912が有するタッチパネル機能により情報の入出力を行うことができる。当該携帯データ端末における画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
11 撮像素子
12 A/Dコンバータ
20 画素
20a 画素
20b 画素
20c 画素
20h 画素
20i 画素
20j 画素
20k 画素
21 画素アレイ
23 列ドライバ
24 行ドライバ
25 アナログスイッチ
26 電流源回路
28 コンパレータ
29 カウンター回路
30 端子
31 端子
41 トランジスタ
42 トランジスタ
43 トランジスタ
44 トランジスタ
45 トランジスタ
46 トランジスタ
47 トランジスタ
61 配線
61h 配線
61i 配線
61j 配線
61k 配線
62 配線
63 配線
64 導電層
65 配線
71 配線
72 配線
73 配線
75 配線
76 配線
77 配線
78 配線
81a 絶縁層
81b 絶縁層
81c 絶縁層
81d 絶縁層
81e 絶縁層
81f 絶縁層
81g 絶縁層
81h 絶縁層
81j 絶縁層
82 導電体
83 導電体
84 導電層
91 配線
92 配線
93 配線
94 導電層
101 トランジスタ
102 トランジスタ
103 トランジスタ
104 トランジスタ
105 トランジスタ
106 トランジスタ
107 トランジスタ
108 トランジスタ
109 トランジスタ
110 トランジスタ
111 トランジスタ
112 トランジスタ
113 トランジスタ
114 トランジスタ
115 トランジスタ
116 トランジスタ
117 トランジスタ
119 基板
120 絶縁層
130 酸化物半導体層
130a 酸化物半導体層
130b 酸化物半導体層
130c 酸化物半導体層
130d 酸化物半導体層
140 導電層
141 導電層
142 導電層
143 領域
150 導電層
151 導電層
152 導電層
153 領域
160 絶縁層
170 導電層
171 導電層
172 導電層
173 導電層
175 絶縁層
180 絶縁層
190 絶縁層
191 絶縁層
231 領域
232 領域
233 領域
331 領域
332 領域
333 領域
334 領域
335 領域
500 単結晶シリコン基板
510 領域
520 領域
530 領域
540 領域
545 領域
550 導電層
560 導電層
600 単結晶シリコン基板
660 チャネル形成領域
700 シフトレジスタ
701 配線
702 配線
703 配線
704 配線
705 配線
710 パルス出力回路
710_i パルス出力回路
710_i-1 パルス出力回路
710_n パルス出力回路
710_1 パルス出力回路
710_2 パルス出力回路
711 端子
712 端子
713 端子
713_1 端子
714 端子
715 端子
715_n 端子
716 端子
721 トランジスタ
722 トランジスタ
724 トランジスタ
725 トランジスタ
726 トランジスタ
727 トランジスタ
728 トランジスタ
729 トランジスタ
731 トランジスタ
732 トランジスタ
733 容量素子
734 容量素子
741 配線
746 配線
761 ノード
762 ノード
763 ノード
810 パッケージ基板
811 パッケージ基板
820 カバーガラス
821 レンズカバー
830 接着剤
835 レンズ
840 バンプ
841 ランド
850 イメージセンサチップ
851 イメージセンサチップ
860 電極パッド
861 電極パッド
870 ワイヤ
871 ワイヤ
880 スルーホール
885 ランド
890 ICチップ
901 筐体
903 表示部
905 マイク
906 スピーカー
907 操作キー
908 スタイラス
909 カメラ
911 筐体
912 表示部
919 カメラ
931 筐体
932 表示部
933 リストバンド
935 ボタン
936 竜頭
939 カメラ
951 筐体
952 レンズ
953 支持部
961 筐体
962 シャッターボタン
963 マイク
965 レンズ
967 発光部
971 筐体
972 筐体
973 表示部
974 操作キー
975 レンズ
976 接続部
1100 層
1200 層
1300 層
1400 層
1530 遮光層
1540 マイクロレンズアレイ
1550a 光学変換層
1550b 光学変換層
1550c 光学変換層

Claims (4)

  1. 第1の層と、第3の層と、前記第1の層と前記第3の層との間に設けられた第2の層と、を有し、
    前記第1の層は、チャネル形成領域に金属酸化物を有する第1のトランジスタ、第1の絶縁層、および第2の絶縁層を有し、
    前記第1のトランジスタは、前記第1の絶縁層と、前記第2の絶縁層との間に設けられ、
    前記第1のトランジスタは、前記金属酸化物と接する第1の導電層を有し、
    前記第2の層はフォトダイオードを有し、
    前記第1の導電層と、前記フォトダイオードのカソードまたはアノードの一方とは、前記第1の絶縁層、前記第1の導電層および前記第2の絶縁層を貫通する第1の導電体を介して電気的に接続され
    前記第3の層は、カラーフィルタおよびマイクロレンズアレイを有し、
    前記第1の層と前記第2の層を貫通する第2の導電体は、前記マイクロレンズアレイと重なる領域を有さず、
    前記第2の導電体は、前記カラーフィルタと同一面上に設けられた第2の導電層と接する領域を有することを特徴とする撮像装置。
  2. 請求項1において、
    前記フォトダイオードは、単結晶シリコン基板に設けられていることを特徴とする撮像装置。
  3. 請求項2において、
    の層を有し、
    前記第の層は、チャネル形成領域にシリコンを有する第2のトランジスタと、第3の絶縁層と、第4の絶縁層と、を有し、
    前記第1のトランジスタおよび前記第2のトランジスタは、互いにゲートの上面が向かい合うように配置され、
    前記第3の絶縁層に埋没する領域を有するように第の導電層が設けられ、
    前記第2のトランジスタのソース、ドレインまたはゲートと、前記第の導電層とは前記第4の絶縁層を貫通する第の導電体を介して電気的に接続され
    記第2の導電層と、前記第3の導電層とは、前記第1の絶縁層乃至前記第3の絶縁層および前記単結晶シリコン基板を貫通する前記第2の導電体を介して電気的に接続されていることを特徴とする撮像装置。
  4. 請求項1乃至3のいずれか一項において、
    断面視において、前記第1の導電層は、前記金属酸化物の端部と一致した端部を有し、
    前記第1の導電層と、前記フォトダイオードのカソードまたはアノードの一方とは、前記第1の絶縁層、前記第1の導電層、前記金属酸化物および前記第2の絶縁層を貫通する前記第1の導電体を介して電気的に接続されていることを特徴とする撮像装置。
JP2017017414A 2016-02-03 2017-02-02 撮像装置 Active JP7020783B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022015832A JP7269394B2 (ja) 2016-02-03 2022-02-03 撮像装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016019266 2016-02-03
JP2016019266 2016-02-03
JP2016020908 2016-02-05
JP2016020908 2016-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022015832A Division JP7269394B2 (ja) 2016-02-03 2022-02-03 撮像装置

Publications (2)

Publication Number Publication Date
JP2017143256A JP2017143256A (ja) 2017-08-17
JP7020783B2 true JP7020783B2 (ja) 2022-02-16

Family

ID=59385695

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017017414A Active JP7020783B2 (ja) 2016-02-03 2017-02-02 撮像装置
JP2022015832A Active JP7269394B2 (ja) 2016-02-03 2022-02-03 撮像装置
JP2023070168A Pending JP2023090784A (ja) 2016-02-03 2023-04-21 撮像装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022015832A Active JP7269394B2 (ja) 2016-02-03 2022-02-03 撮像装置
JP2023070168A Pending JP2023090784A (ja) 2016-02-03 2023-04-21 撮像装置

Country Status (2)

Country Link
US (1) US9947700B2 (ja)
JP (3) JP7020783B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9989801B2 (en) * 2016-03-23 2018-06-05 Oculus Vr, Llc Inverted LCD structure for VR
US9911780B1 (en) * 2016-12-22 2018-03-06 Omnivision Technologies, Inc. Backside metal grid and metal pad simplification
JP7039310B2 (ja) * 2018-02-09 2022-03-22 キヤノン株式会社 光電変換装置及び撮像システム
KR102498582B1 (ko) * 2018-02-26 2023-02-14 에스케이하이닉스 주식회사 파티션 패턴들을 가진 이미지 센서
JP7148269B2 (ja) * 2018-05-02 2022-10-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および撮像装置
KR102593949B1 (ko) * 2018-07-25 2023-10-27 삼성전자주식회사 이미지 센서
CN109037346B (zh) * 2018-07-27 2020-06-02 京东方科技集团股份有限公司 薄膜晶体管、显示基板及其制作方法、显示装置
KR102551483B1 (ko) * 2018-08-14 2023-07-04 삼성전자주식회사 이미지 센서 및 그 제조 방법
US20220103772A1 (en) * 2019-01-29 2022-03-31 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
KR20210046929A (ko) 2019-10-21 2021-04-29 삼성전자주식회사 이미지 센서
JP2021100025A (ja) * 2019-12-20 2021-07-01 株式会社半導体エネルギー研究所 撮像装置、撮像装置の駆動方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105381A (ja) 2007-10-19 2009-05-14 Samsung Electronics Co Ltd 透明なトランジスタを備えたcmosイメージセンサー
JP2011096851A (ja) 2009-10-29 2011-05-12 Sony Corp 半導体装置とその製造方法、及び電子機器
JP2013201188A (ja) 2012-03-23 2013-10-03 Toshiba Corp 固体撮像装置
JP2013243355A (ja) 2012-04-25 2013-12-05 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2013251391A (ja) 2012-05-31 2013-12-12 Canon Inc 半導体装置の製造方法
WO2013183291A1 (ja) 2012-06-08 2013-12-12 株式会社ニコン 撮像素子および撮像装置
JP2014072297A (ja) 2012-09-28 2014-04-21 Canon Inc 半導体装置およびその製造方法
JP2014078680A (ja) 2012-09-18 2014-05-01 Denso Corp イメージセンサ
JP2014099582A (ja) 2012-10-18 2014-05-29 Sony Corp 固体撮像装置
JP2015023080A (ja) 2013-07-17 2015-02-02 ソニー株式会社 放射線撮像装置および放射線撮像表示システム
JP2015195378A (ja) 2014-03-28 2015-11-05 株式会社半導体エネルギー研究所 撮像装置
JP2015216369A (ja) 2014-04-23 2015-12-03 株式会社半導体エネルギー研究所 撮像装置
WO2016012911A1 (ja) 2014-07-25 2016-01-28 株式会社半導体エネルギー研究所 撮像装置
JP2016006871A5 (ja) 2015-05-28 2018-07-05

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
EP1998374A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
TWI585955B (zh) 2008-11-28 2017-06-01 半導體能源研究所股份有限公司 光感測器及顯示裝置
WO2011055638A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2011055626A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5772329B2 (ja) * 2011-07-19 2015-09-02 ソニー株式会社 半導体装置の製造方法、半導体装置、電子機器
US9153490B2 (en) * 2011-07-19 2015-10-06 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, manufacturing method of semiconductor device, semiconductor device, and electronic device
US8901557B2 (en) 2012-06-15 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6079502B2 (ja) * 2013-08-19 2017-02-15 ソニー株式会社 固体撮像素子および電子機器
JP6384822B2 (ja) 2013-11-07 2018-09-05 Tianma Japan株式会社 イメージセンサ及びその製造方法
SG10201912585TA (en) * 2014-05-30 2020-02-27 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105381A (ja) 2007-10-19 2009-05-14 Samsung Electronics Co Ltd 透明なトランジスタを備えたcmosイメージセンサー
JP2011096851A (ja) 2009-10-29 2011-05-12 Sony Corp 半導体装置とその製造方法、及び電子機器
JP2013201188A (ja) 2012-03-23 2013-10-03 Toshiba Corp 固体撮像装置
JP2013243355A (ja) 2012-04-25 2013-12-05 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2013251391A (ja) 2012-05-31 2013-12-12 Canon Inc 半導体装置の製造方法
WO2013183291A1 (ja) 2012-06-08 2013-12-12 株式会社ニコン 撮像素子および撮像装置
JP2014078680A (ja) 2012-09-18 2014-05-01 Denso Corp イメージセンサ
JP2014072297A (ja) 2012-09-28 2014-04-21 Canon Inc 半導体装置およびその製造方法
JP2014099582A (ja) 2012-10-18 2014-05-29 Sony Corp 固体撮像装置
JP2015023080A (ja) 2013-07-17 2015-02-02 ソニー株式会社 放射線撮像装置および放射線撮像表示システム
JP2015195378A (ja) 2014-03-28 2015-11-05 株式会社半導体エネルギー研究所 撮像装置
JP2015216369A (ja) 2014-04-23 2015-12-03 株式会社半導体エネルギー研究所 撮像装置
WO2016012911A1 (ja) 2014-07-25 2016-01-28 株式会社半導体エネルギー研究所 撮像装置
JP2016006871A5 (ja) 2015-05-28 2018-07-05

Also Published As

Publication number Publication date
JP7269394B2 (ja) 2023-05-08
US20170221943A1 (en) 2017-08-03
JP2022058889A (ja) 2022-04-12
JP2017143256A (ja) 2017-08-17
US9947700B2 (en) 2018-04-17
JP2023090784A (ja) 2023-06-29

Similar Documents

Publication Publication Date Title
JP6959468B2 (ja) カメラモジュール、及び、電子機器
JP7020783B2 (ja) 撮像装置
JP6811342B2 (ja) 光電変換装置
JP7004469B2 (ja) 撮像装置
JP6755756B2 (ja) 撮像装置
TWI713367B (zh) 成像裝置及其運作方法
JP6995947B2 (ja) 撮像装置
JP7114783B2 (ja) 撮像素子
JP6903413B2 (ja) 撮像装置、モジュール、および電子機器
JP6904730B2 (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220203

R150 Certificate of patent or registration of utility model

Ref document number: 7020783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150