JP7017716B2 - Electrode for electric resistance welding - Google Patents

Electrode for electric resistance welding Download PDF

Info

Publication number
JP7017716B2
JP7017716B2 JP2018173018A JP2018173018A JP7017716B2 JP 7017716 B2 JP7017716 B2 JP 7017716B2 JP 2018173018 A JP2018173018 A JP 2018173018A JP 2018173018 A JP2018173018 A JP 2018173018A JP 7017716 B2 JP7017716 B2 JP 7017716B2
Authority
JP
Japan
Prior art keywords
hole
electrode
guide cylinder
guide
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018173018A
Other languages
Japanese (ja)
Other versions
JP2020032458A (en
Inventor
好高 青山
省司 青山
Original Assignee
省司 青山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 省司 青山 filed Critical 省司 青山
Priority to JP2018173018A priority Critical patent/JP7017716B2/en
Publication of JP2020032458A publication Critical patent/JP2020032458A/en
Application granted granted Critical
Publication of JP7017716B2 publication Critical patent/JP7017716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

この発明は、軸状部品を受け入れるガイド筒と、ガイド孔内を進退する摺動部材の一体化部材が、ガイド孔から電極外へ露出することなくガイド孔内に収容さている電気抵抗溶接用電極に関している。 In the present invention, an electrode for electric resistance welding in which a guide cylinder for receiving a shaft-shaped component and an integrated member of a sliding member moving back and forth in the guide hole are housed in the guide hole without being exposed to the outside of the electrode from the guide hole. Is related to.

特開2017-006983号公報には、電極に載置された鋼板部品の下孔を、電極から突出している中空のガイド筒が貫通し、このガイド筒に軸状部品が挿入されることが記載されている。 Japanese Unexamined Patent Publication No. 2017-006983 describes that a hollow guide cylinder protruding from an electrode penetrates a pilot hole of a steel plate component placed on an electrode, and a shaft-shaped component is inserted into this guide cylinder. Has been done.

特開2017-006983号公報JP-A-2017-006983

下孔が開けられた鋼板部品をロボット装置で保持して、電極の受入孔と同軸になるように、鋼板部品を電極に載置することが行われている。このようなロボット装置で鋼板部品を電極に載置するときには、上記特許文献に記載されているように、ガイド筒が電極から突出していると、ガイド筒の外側面や先端部に鋼板部品が衝突し、鋼板部品やガイド筒に損傷を来すことがある。このような衝突を回避するために、ガイド筒を電極から突出しないようにすることが行われるが、このような構造であると溶接熱の放熱が低下し、電極内部の合成樹脂製部材が過熱状態になる。 A steel plate component having a prepared hole is held by a robot device, and the steel sheet component is placed on the electrode so as to be coaxial with the receiving hole of the electrode. When a steel plate component is placed on an electrode in such a robot device, as described in the above patent document, if the guide cylinder protrudes from the electrode, the steel plate component collides with the outer surface or the tip portion of the guide cylinder. However, the steel plate parts and the guide tube may be damaged. In order to avoid such a collision, the guide cylinder is prevented from protruding from the electrode, but with such a structure, the heat dissipation of the welding heat is reduced and the synthetic resin member inside the electrode is overheated. Become a state.

本発明は、上記の問題点を解決するために提供されたもので、軸状部品を受け入れるガイド筒と、ガイド孔内を進退する合成樹脂材料製の摺動部材の一体化部材が、ガイド孔から電極外へ露出することなくガイド孔内に収容さていても、溶接熱を効果的に放熱することを目的とする。 The present invention has been provided to solve the above-mentioned problems, and an integrated member of a guide cylinder for receiving a shaft-shaped component and a sliding member made of a synthetic resin material that advances and retreats in the guide hole is a guide hole. The purpose is to effectively dissipate welding heat even if it is housed in the guide hole without being exposed to the outside of the electrode.

請求項1記載の発明は、
断面円形で筒状とされた電極本体が、金属材料を用いて構成され、
前記電極本体に大径孔と小径孔から成るガイド孔が形成され、
軸状部品の軸部が挿入され断面円形とされた金属材料製のガイド筒が、前記大径孔に摺動可能な状態で挿入されている合成樹脂材料製の摺動部材と同軸の状態で一体的に組み合わされることにより、一体化部材が構成され、
前記ガイド筒を前記摺動部材の端部から突出させて、放熱部を構成し、
前記小径孔の内面と前記放熱部の外周面の間に、冷却空気の通気路が形成され、
前記一体化部材は、前記ガイド孔から電極外へ露出することなくガイド孔内に収容さていることを特徴とする電気抵抗溶接用電極である。
The invention according to claim 1 is
The electrode body, which has a circular cross section and a cylindrical shape, is constructed using a metal material.
A guide hole composed of a large-diameter hole and a small-diameter hole is formed in the electrode body, and the guide hole is formed.
A metal material guide cylinder into which the shaft portion of the shaft-shaped part is inserted and having a circular cross section is coaxial with the synthetic resin material sliding member inserted into the large-diameter hole in a slidable state. By being integrally combined, an integrated member is formed,
The guide cylinder is projected from the end of the sliding member to form a heat dissipation portion.
A cooling air ventilation path is formed between the inner surface of the small diameter hole and the outer peripheral surface of the heat radiating portion.
The integrated member is an electrode for electric resistance welding, characterized in that it is housed in the guide hole without being exposed to the outside of the electrode from the guide hole.

軸状部品の軸部が挿入され断面円形とされた金属材料製のガイド筒が、大径孔に摺動可能な状態で挿入されている合成樹脂材料製の摺動部材と同軸の状態で一体的に組み合わされて、一体化部材を構成し、ガイド筒を摺動部材の端部から突き出させて、放熱部を構成し、小径孔の内面と放熱部の外周面の間に、冷却空気の通気路が形成され、ガイド筒と摺動部材の一体化部材は、ガイド孔から電極外へ露出することなくガイド孔内に収容さている。 A guide cylinder made of a metal material with a circular cross section into which the shaft part of a shaft-shaped part is inserted is integrated with a sliding member made of a synthetic resin material that is slidably inserted into a large-diameter hole in a coaxial state. To form an integrated member, the guide cylinder is projected from the end of the sliding member to form a heat dissipation part, and the cooling air is provided between the inner surface of the small diameter hole and the outer peripheral surface of the heat dissipation part. A ventilation path is formed, and the integrated member of the guide cylinder and the sliding member is housed in the guide hole without being exposed to the outside of the electrode from the guide hole.

鋼板部品から電極本体に伝えられた溶接熱は、主に電極本体の外表面から放熱される。一方、軸状部品の軸部からガイド筒に伝えられた溶接熱は、ガイド筒が摺動部材で包み込まれているので、放熱されにくくなるが、小径孔の内面と放熱部の外周面の間に、冷却空気の通気路が形成してあるので、通気路を流れる冷気によって放熱部が冷却される。このようにガイド筒に蓄熱されている溶接熱は、放熱部に向かう熱流を描いて放熱される。ガイド筒に蓄熱されている溶接熱は、放熱部から冷却空気中に放熱され、合成樹脂材料製の摺動部材が過熱状態にならないようにし、摺動部材の耐久性向上が遂行される。したがって、ガイド筒と摺動部材の一体化部材がガイド孔から電極外へ露出することなくガイド孔内に収容さていても、過熱問題が解消されるので、ガイド筒を電極から突出させることなく、ロボット装置を活用することが容易になる。 The welding heat transferred from the steel plate component to the electrode body is mainly dissipated from the outer surface of the electrode body. On the other hand, the welding heat transferred from the shaft portion of the shaft-shaped component to the guide cylinder is difficult to dissipate because the guide cylinder is wrapped in the sliding member, but between the inner surface of the small diameter hole and the outer peripheral surface of the heat radiation portion. In addition, since a ventilation path for cooling air is formed, the heat radiating portion is cooled by the cold air flowing through the ventilation path. The welding heat stored in the guide cylinder in this way is dissipated by drawing a heat flow toward the heat radiating portion. The welding heat stored in the guide cylinder is dissipated from the heat radiating portion into the cooling air to prevent the sliding member made of the synthetic resin material from becoming overheated, and the durability of the sliding member is improved. Therefore, even if the integrated member of the guide cylinder and the sliding member is housed in the guide hole without being exposed to the outside of the electrode from the guide hole, the problem of overheating is solved, so that the guide cylinder does not protrude from the electrode. , It becomes easy to utilize the robot device.

上記特許文献記載のように、ガイド筒が鋼板部品の下孔を貫通して鋼板部品の上側に突出しているものであると、ガイド筒の直径寸法を考慮して下孔の直径を大きくする必要がある。このような下孔内径にすると、軸状部品の軸部直径よりも下孔内径が遥かに大きくなり、下孔と軸部の同軸性が狂いやすくなる。下孔中心に対して、軸部中心をできるだけ正確に合致させることが、溶接後における軸状部品と鋼板部品の相対位置の正確性向上に役立つ。これは、溶接後の軸部に他の部品を取り付けるような場合において、他の部品と鋼板部品の相対位置の正確性が向上し、組み立て品の品質向上にとって効果的である。本願発明では、ガイド筒の内径と軸部の外径との寸法差をできるだけ小さく設定することが出来るので、軸状部品と下孔との同軸性を正確に確保することができ、さらに、軸状部品と下孔の径差を少なくして、漏洩オイルなどの通過を阻止することにとっても有効である。 As described in the above patent document, if the guide cylinder penetrates the prepared hole of the steel plate part and protrudes to the upper side of the steel plate part, it is necessary to increase the diameter of the prepared hole in consideration of the diameter dimension of the guide cylinder. There is. When the inner diameter of the prepared hole is set to be such that the inner diameter of the prepared hole is much larger than the diameter of the shaft portion of the shaft-shaped component, the coaxiality between the prepared hole and the shaft portion tends to be out of order. Matching the center of the shaft with the center of the prepared hole as accurately as possible helps to improve the accuracy of the relative positions of the shaft-shaped part and the steel plate part after welding. This is effective for improving the quality of the assembled product by improving the accuracy of the relative position between the other parts and the steel plate parts when the other parts are attached to the shaft portion after welding. In the present invention, the dimensional difference between the inner diameter of the guide cylinder and the outer diameter of the shaft portion can be set as small as possible, so that the coaxiality between the shaft-shaped component and the prepared hole can be accurately ensured, and further, the shaft can be set. It is also effective in reducing the diameter difference between the shaped parts and the prepared holes to prevent the passage of leaked oil and the like.

溶着箇所から飛散したスパッタや鉄屑などの微小不純物が鋼板部品の下孔を通過することが発生しても、これらの不純物はガイド筒の受入孔に収容されるので、不純物が一体化部材の摺動箇所に入り込むようなことがなく、電極の正常な動作を正常に維持することができる。 Even if minute impurities such as spatter and iron scraps scattered from the welded part pass through the pilot holes of the steel plate parts, these impurities are contained in the receiving holes of the guide cylinder, so that the impurities are contained in the integrated member. The normal operation of the electrodes can be maintained normally without getting into the sliding portion.

本願発明は、上述のような電極の発明であるが、以下に記載する実施例から明らかなように、溶接熱の放熱過程などを特定した方法発明として存在させることができる。 The invention of the present application is the invention of the electrode as described above, but as is clear from the examples described below, it can exist as a method invention that specifies the heat dissipation process of welding heat and the like.

電極各部の断面図である。It is sectional drawing of each part of an electrode.

つぎに、本発明にかかる電気抵抗溶接用電極を実施するための形態を説明する。 Next, a mode for carrying out the electrode for electric resistance welding according to the present invention will be described.

図1は、本発明の実施例を示す。 FIG. 1 shows an embodiment of the present invention.

最初に、軸状部品について説明する。 First, the shaft-shaped parts will be described.

溶接の対象となる部品は、軸部を有する軸状部品であればよいのであるが、ここでは鋼板部品に溶接されるプロジェクションボルトの場合である。以下の説明において、プロジェクションボルトを単にボルトと表現する場合もある。 The part to be welded may be a shaft-shaped part having a shaft portion, but here, it is a projection bolt to be welded to a steel plate part. In the following description, the projection bolt may be simply referred to as a bolt.

プロジェクションボルト1、すなわち軸状部品1は、図1に示すように、雄ねじが形成された軸部2と、軸部2と一体になっているフランジ3と、フランジ3の平坦な下面4に設けた溶着用突起5によって構成されている。図示したフランジ3は円形であるが、それ以外に小判型や四角型にすることも可能である。溶着用突起5は、120度間隔で同一円周上に3個設けてある。 As shown in FIG. 1, the projection bolt 1, that is, the shaft-shaped component 1, is provided on the shaft portion 2 on which the male screw is formed, the flange 3 integrated with the shaft portion 2, and the flat lower surface 4 of the flange 3. It is composed of a welding protrusion 5. The illustrated flange 3 is circular, but it can also be oval or square. Three welding protrusions 5 are provided on the same circumference at intervals of 120 degrees.

ボルト1は、鉄製である。その寸法は、軸部2の長さが25mm、軸部2の直径が8mm、フランジ3の直径は16mmである。 The bolt 1 is made of iron. The dimensions are such that the length of the shaft portion 2 is 25 mm, the diameter of the shaft portion 2 is 8 mm, and the diameter of the flange portion 3 is 16 mm.

つぎに、電極本体について説明する。 Next, the electrode body will be described.

クロム銅のような導電性金属材料で作られた電極本体6は、円筒状の形状であり、断面円形とされ、静止部材7に差し込まれる固定部8と、鋼板部品9が載置されるキャップ部10がねじ部11において結合されて、断面円形の電極本体6が形成されている。電極本体6には断面円形のガイド孔13が形成され、このガイド孔13は、固定部7に形成された大径孔14と、この大径孔14よりも小径でキャップ部10に形成された小径孔15によって形成されており、大径孔14、小径孔15は、電極本体6の中心軸線O-O上に整列した同軸状態で配置されている。また、通孔16が小径孔15に連続させて形成してある。小径孔15と通孔16は、ともにキャップ部10に形成されており、通孔16を小径孔15と同径にしてもよい。 The electrode body 6 made of a conductive metal material such as chrome copper has a cylindrical shape and a circular cross section, and a fixing portion 8 to be inserted into the stationary member 7 and a cap on which a steel plate component 9 is placed are placed. The portions 10 are coupled at the threaded portion 11 to form an electrode body 6 having a circular cross section. A guide hole 13 having a circular cross section was formed in the electrode body 6, and the guide hole 13 was formed in the large-diameter hole 14 formed in the fixing portion 7 and in the cap portion 10 having a smaller diameter than the large-diameter hole 14. The small-diameter holes 15 are formed by the small-diameter holes 15, and the large-diameter holes 14 and the small-diameter holes 15 are arranged in a coaxial state aligned on the central axis OO of the electrode body 6. Further, the through hole 16 is formed to be continuous with the small diameter hole 15. Both the small diameter hole 15 and the through hole 16 are formed in the cap portion 10, and the through hole 16 may have the same diameter as the small diameter hole 15.

つぎに、一体化部材について説明する。 Next, the integrated member will be described.

ガイド筒17は、ステンレス鋼やセラミック材料のような耐熱硬質材料で構成されている。摺動部材18は、ポリテトラフルオロエチレン(テフロン・登録商標)のような合成樹脂材料製とされている。別の材料として、ポリアミド樹脂の中から、耐熱性、耐摩耗性にすぐれた樹脂を採用することも可能である。ガイド筒17は、断面円形の真っ直ぐな筒状の形状であり、軸状部品1の軸部2が挿入される受入孔19が形成されている。摺動部材18も断面円形であり、ガイド筒17が差し込まれた状態で一体化され、大径孔14に摺動可能な状態で差し込まれている。ガイド筒17と摺動部材18が一体化されて一体化部材20が構成されている。 The guide cylinder 17 is made of a heat-resistant hard material such as stainless steel or a ceramic material. The sliding member 18 is made of a synthetic resin material such as polytetrafluoroethylene (Teflon, registered trademark). As another material, it is also possible to use a resin having excellent heat resistance and wear resistance from the polyamide resins. The guide cylinder 17 has a straight cylindrical shape with a circular cross section, and a receiving hole 19 into which the shaft portion 2 of the shaft-shaped component 1 is inserted is formed. The sliding member 18 also has a circular cross section, is integrated with the guide cylinder 17 inserted, and is inserted into the large-diameter hole 14 in a slidable state. The guide cylinder 17 and the sliding member 18 are integrated to form the integrated member 20.

ガイド筒17と摺動部材18の一体化は、摺動部材18のインジェクション成型時に、ガイド筒17を一緒にモールドインする方法や、ガイド筒17に結合ボルト構造部を設ける方法など、種々なものが採用できる。ここでは、後者の結合ボルト構造部のタイプである。 The integration of the guide cylinder 17 and the sliding member 18 is various, such as a method of molding the guide cylinder 17 together at the time of injection molding of the sliding member 18, and a method of providing a connecting bolt structure portion on the guide cylinder 17. Can be adopted. Here, it is the type of the latter coupling bolt structure.

すなわち、ガイド筒17の下端部にこれと一体的にボルト21が形成され、摺動部材18の底部材22にボルト21を貫通し、ワッシャ23を組み付けてロックナット24で締め付けてある。摺動部材18は、電極本体6と対をなす可動電極25が動作して溶接電流が通電されたときに、溶接電流がボルト1の溶着用突起5から鋼板部品9にのみ流れるように、絶縁機能を果たしている。 That is, a bolt 21 is integrally formed at the lower end of the guide cylinder 17, penetrates the bolt 21 through the bottom member 22 of the sliding member 18, is assembled with a washer 23, and is tightened with a locknut 24. The sliding member 18 is insulated so that when the movable electrode 25 paired with the electrode body 6 operates and a welding current is applied, the welding current flows only from the welding projection 5 of the bolt 1 to the steel plate component 9. It is functioning.

圧縮コイルスプリング26は、摺動部材18の下面とガイド孔13の内底面の間に嵌め込まれており、その張力が摺動部材18に作用している。なお、符号27は、ガイド孔13の内底面に嵌め込んだ絶縁シートを示している。圧縮コイルスプリング26の張力が、後述の静止内端面に対する可動端面の加圧密着を成立させている。圧縮コイルスプリング26は、加圧手段であり、これに換えて圧縮空気の圧力を利用することも可能である。 The compression coil spring 26 is fitted between the lower surface of the sliding member 18 and the inner bottom surface of the guide hole 13, and the tension thereof acts on the sliding member 18. Reference numeral 27 indicates an insulating sheet fitted into the inner bottom surface of the guide hole 13. The tension of the compression coil spring 26 establishes the consolidation of the movable end surface with respect to the stationary inner end surface described later. The compression coil spring 26 is a pressurizing means, and the pressure of compressed air can be used instead.

つぎに、放熱部と通気路について説明する。 Next, the heat dissipation unit and the ventilation path will be described.

放熱部29は、ガイド筒17に伝えられた溶接熱を放熱するもので、摺動部材18の端部から突出させて円筒状に形成されている。放熱部29の内側に先端に向かって肉厚が薄くなるテーパ面30が形成されている。このテーパ面30は、軸部2を挿入するときに円滑な差し込みを可能としている。 The heat radiating portion 29 dissipates the welding heat transmitted to the guide cylinder 17, and is formed in a cylindrical shape so as to protrude from the end portion of the sliding member 18. A tapered surface 30 whose wall thickness decreases toward the tip is formed inside the heat radiating portion 29. The tapered surface 30 enables smooth insertion when the shaft portion 2 is inserted.

小径孔15の内面と放熱部29の外周面との間に、冷却空気を通過させる環状の通気路31が形成してある。 An annular ventilation path 31 through which cooling air passes is formed between the inner surface of the small diameter hole 15 and the outer peripheral surface of the heat radiating portion 29.

ガイド筒17と摺動部材18による一体化部材20は、ガイド孔13から電極本体6外へ露出することなく、ガイド孔13内に収容さている The integrated member 20 formed by the guide cylinder 17 and the sliding member 18 is housed in the guide hole 13 without being exposed to the outside of the electrode body 6 from the guide hole 13.

つぎに、冷却空気の断続構造を説明する。 Next, the intermittent structure of the cooling air will be described.

冷却空気をガイド孔13に導く通気口32が形成してある。摺動部材18と大径孔14の摺動箇所に空気通路を確保するために、摺動部材18の外周面に中心軸線O-O方向の凹溝を形成することもできるが、ここでは図1(B)に示すように、摺動部材18の外周面に中心軸線O-O方向の平面部33を形成して、平面部33と大径孔14の円弧型内面で構成された空気通路34が形成されている。このような平面部33は、90度間隔で形成して、4箇所に空気通路34を設けている。 A vent 32 is formed to guide the cooling air to the guide hole 13. In order to secure an air passage at the sliding portion between the sliding member 18 and the large diameter hole 14, it is possible to form a concave groove in the central axis OO direction on the outer peripheral surface of the sliding member 18, but here, the figure is shown. As shown in 1 (B), a flat surface portion 33 in the central axis OO direction is formed on the outer peripheral surface of the sliding member 18, and an air passage formed by the flat surface portion 33 and the arcuate inner surface of the large diameter hole 14. 34 is formed. Such flat surface portions 33 are formed at intervals of 90 degrees, and air passages 34 are provided at four locations.

ガイド孔13の大径孔14と小径孔15の境界部に環状の静止内端面35が形成されている。また、摺動部材18の上端面が環状の可動端面36とされている。静止内端面35と可動端面36は電極本体6の中心軸線O-Oが垂直に交わる仮想平面上に配置してあり、圧縮コイルスプリング26の張力によって、可動端面36が静止内端面35に対して環状状態で密着し、この密着によって冷却空気流の封止がなされている。 An annular stationary inner end surface 35 is formed at the boundary between the large-diameter hole 14 and the small-diameter hole 15 of the guide hole 13. Further, the upper end surface of the sliding member 18 is an annular movable end surface 36. The stationary inner end surface 35 and the movable end surface 36 are arranged on a virtual plane where the central axis OO of the electrode body 6 intersects vertically, and the movable end surface 36 with respect to the stationary inner end surface 35 due to the tension of the compression coil spring 26. It adheres in an annular state, and the cooling air flow is sealed by this adhesion.

つぎに、電極の動作を説明する。 Next, the operation of the electrodes will be described.

図1は、ボルト1がガイド筒17の受入孔19に差し込まれて、軸部2の下端が受入孔19の底部に突き当たり、フランジ3の下面4と鋼板部品9との間に空隙Lが形成されている状態を示している。 In FIG. 1, the bolt 1 is inserted into the receiving hole 19 of the guide cylinder 17, the lower end of the shaft portion 2 abuts against the bottom of the receiving hole 19, and a gap L is formed between the lower surface 4 of the flange 3 and the steel plate component 9. It shows the state that is being done.

可動電極25が進出してフランジ3を加圧すると、一体化部材20が圧縮コイルスプリング26を圧縮しながら下降し、可動端面36が静止内端面35から離れる。これによって冷却空気は空気通路34、可動端面36と静止内端面35の間、通気路31、通孔16、下孔12を通過して外部へ放出される。このような冷却空気流によって、ガイド筒17に伝えられた溶接熱は、放熱部29に接触する冷却空気によって外部へ放熱される。 When the movable electrode 25 advances and pressurizes the flange 3, the integrated member 20 descends while compressing the compression coil spring 26, and the movable end surface 36 separates from the stationary inner end surface 35. As a result, the cooling air is discharged to the outside through the air passage 31, the through hole 16, and the prepared hole 12 between the air passage 34, the movable end surface 36, and the stationary inner end surface 35. The welding heat transferred to the guide cylinder 17 by such a cooling air flow is radiated to the outside by the cooling air in contact with the heat radiating portion 29.

上述の冷却動作が進行しながら溶着用突起5が鋼板部品に加圧されるとともに、溶接電流が通電されて溶着が完了する。 While the above-mentioned cooling operation proceeds, the welding projection 5 is pressed against the steel plate component, and the welding current is applied to complete the welding.

以上に説明した実施例の作用効果は、つぎのとおりである。 The effects of the examples described above are as follows.

軸状部品1、すなわちプロジェクションボルト1の軸部2が挿入され断面円形とされた金属材料製のガイド筒17が、大径孔14に摺動可能な状態で挿入されている合成樹脂材料製の摺動部材18と同軸の状態で一体的に組み合わされて、一体化部材20を構成し、ガイド筒17を摺動部材18の端部から突き出させて、放熱部29を構成し、小径孔15の内面と放熱部29の外周面の間に、冷却空気の通気路31が形成され、ガイド筒17と摺動部材18による一体化部材20は、ガイド孔13から電極本体6外へ露出することなくガイド孔13内に収容さている。 The shaft-shaped component 1, that is, the guide cylinder 17 made of a metal material into which the shaft portion 2 of the projection bolt 1 is inserted and has a circular cross section is made of a synthetic resin material in which the guide cylinder 17 is slidably inserted into the large-diameter hole 14. The integrated member 20 is integrally combined with the sliding member 18 in a coaxial state, and the guide cylinder 17 is projected from the end of the sliding member 18 to form the heat dissipation portion 29, and the small diameter hole 15 is formed. A cooling air ventilation path 31 is formed between the inner surface of the heat radiating portion 29 and the outer peripheral surface of the heat radiating portion 29, and the integrated member 20 formed by the guide cylinder 17 and the sliding member 18 is exposed to the outside of the electrode body 6 from the guide hole 13. It is housed in the guide hole 13.

鋼板部品9から電極本体6に伝えられた溶接熱は、主に電極本体6の外表面から放熱される。一方、軸状部品であるプロジェクションボルト1の軸部2からガイド筒17に伝えられた溶接熱は、ガイド筒17が摺動部材18で包み込まれているので、放熱されにくくなるが、小径孔15の内面と放熱部29の外周面の間に、冷却空気の通気路31が形成してあるので、通気路31を流れる冷気によって放熱部29が冷却される。このようにガイド筒17に蓄熱されている溶接熱は、放熱部29に向かう熱流を描いて放熱される。ガイド筒17に蓄熱されている溶接熱は、放熱部29から冷却空気中に放熱され、合成樹脂材料製の摺動部材18が過熱状態にならないようにし、摺動部材18の耐久性向上が遂行される。したがって、ガイド筒17と摺動部材18の一体化部材20がガイド孔13から電極外へ露出することなくガイド孔13内に収容さていても、過熱問題が解消されるので、ガイド筒17を電極から突出させることなく、ロボット装置を活用することが容易になる。 The welding heat transferred from the steel plate component 9 to the electrode body 6 is mainly dissipated from the outer surface of the electrode body 6. On the other hand, the welding heat transferred from the shaft portion 2 of the projection bolt 1 which is a shaft-shaped component to the guide cylinder 17 is difficult to dissipate because the guide cylinder 17 is wrapped in the sliding member 18, but the small diameter hole 15 Since the cooling air ventilation path 31 is formed between the inner surface of the air passage and the outer peripheral surface of the heat dissipation portion 29, the heat dissipation portion 29 is cooled by the cold air flowing through the ventilation passage 31. The welding heat stored in the guide cylinder 17 in this way is dissipated by drawing a heat flow toward the heat radiating portion 29. The welding heat stored in the guide cylinder 17 is dissipated from the heat radiating portion 29 into the cooling air to prevent the sliding member 18 made of synthetic resin material from becoming overheated, and the durability of the sliding member 18 is improved. Will be done. Therefore, even if the integrated member 20 of the guide cylinder 17 and the sliding member 18 is housed in the guide hole 13 without being exposed to the outside of the electrode from the guide hole 13, the problem of overheating is solved. It becomes easy to utilize the robot device without projecting from the electrodes.

上記特許文献記載のように、ガイド筒17が鋼板部品の下孔12を貫通して鋼板部品9の上側に突出しているものであると、ガイド筒17の直径寸法を考慮して下孔12の直径を大きくする必要がある。このような下孔内径にすると、軸状部品1の軸部直径よりも下孔内径が遥かに大きくなり、下孔12と軸部2の同軸性が狂いやすくなる。下孔中心に対して、軸部中心をできるだけ正確に合致させることが、溶接後における軸状部品1と鋼板部品9の相対位置の正確性向上に役立つ。これは、溶接後の軸部2に他の部品を取り付けるような場合において、他の部品と鋼板部品9の相対位置の正確性が向上し、組み立て品の品質向上にとって効果的である。本実施例では、ガイド筒17の内径と軸部2の外径との寸法差をできるだけ小さく設定することが出来るので、軸状部品1と下孔12との同軸性を正確に確保することができ、さらに、軸状部品1と下孔12の径差を少なくして、漏洩オイルなどの通過を阻止することにとっても有効である。 As described in the above patent document, if the guide cylinder 17 penetrates the prepared hole 12 of the steel plate component and protrudes upward of the steel plate component 9, the prepared hole 12 is formed in consideration of the diameter dimension of the guide cylinder 17. It is necessary to increase the diameter. When the inner diameter of the prepared hole is set to be such that the inner diameter of the prepared hole is much larger than the diameter of the shaft portion of the shaft-shaped component 1, the coaxiality between the prepared hole 12 and the shaft portion 2 tends to be out of order. Matching the center of the shaft with the center of the prepared hole as accurately as possible helps to improve the accuracy of the relative positions of the shaft-shaped part 1 and the steel plate part 9 after welding. This is effective for improving the quality of the assembled product by improving the accuracy of the relative positions of the other parts and the steel plate parts 9 when the other parts are attached to the shaft portion 2 after welding. In this embodiment, the dimensional difference between the inner diameter of the guide cylinder 17 and the outer diameter of the shaft portion 2 can be set as small as possible, so that the coaxiality between the shaft-shaped component 1 and the prepared hole 12 can be accurately ensured. Further, it is also effective in reducing the diameter difference between the shaft-shaped component 1 and the prepared hole 12 to prevent the passage of leaked oil and the like.

溶着箇所から飛散したスパッタや鉄屑などの微小不純物が鋼板部品9の下孔12を通過することが発生しても、これらの不純物はガイド筒17の受入孔19に収容されるので、不純物が一体化部材20の摺動箇所に入り込むようなことがなく、電極の動作を正常に維持することができる。 Even if minute impurities such as spatter and iron scraps scattered from the welded portion pass through the prepared hole 12 of the steel plate component 9, these impurities are contained in the receiving hole 19 of the guide cylinder 17, so that the impurities are contained. The operation of the electrodes can be maintained normally without entering the sliding portion of the integrated member 20.

上述のように、本発明の電極によれば、ガイド筒と摺動部材の一体化部材が、ガイド孔内に収容さていても、溶接熱を効果的に放熱する。したがって、自動車の車体溶接工程や、家庭電化製品の板金溶接工程などの広い産業分野で利用できる。 As described above, according to the electrode of the present invention, welding heat is effectively dissipated even when the integrated member of the guide cylinder and the sliding member is housed in the guide hole. Therefore, it can be used in a wide range of industrial fields such as a body welding process for automobiles and a sheet metal welding process for home electric appliances.

1 プロジェクションボルト、軸状部品
2 軸部
6 電極本体
9 鋼板部品
13 ガイド孔
14 大径孔
15 小径孔
17 ガイド筒
18 摺動部材
19 受入孔
20 一体化部材
29 放熱部
31 通気路
1 Projection bolt, shaft-shaped part 2 Shaft part 6 Electrode body 9 Steel plate part 13 Guide hole 14 Large diameter hole 15 Small diameter hole 17 Guide cylinder 18 Sliding member 19 Receiving hole 20 Integrated member 29 Heat dissipation part 31 Ventilation path

Claims (1)

断面円形で筒状とされた電極本体が、金属材料を用いて構成され、
前記電極本体に大径孔と小径孔から成るガイド孔が形成され、
軸状部品の軸部が挿入され断面円形とされた金属材料製のガイド筒が、前記大径孔に摺動可能な状態で挿入されている合成樹脂材料製の摺動部材と同軸の状態で一体的に組み合わされることにより、一体化部材が構成され、
前記ガイド筒を前記摺動部材の端部から突出させて、放熱部を構成し、
前記小径孔の内面と前記放熱部の外周面の間に、冷却空気の通気路が形成され、
前記一体化部材は、前記ガイド孔から電極外へ露出することなくガイド孔内に収容さていることを特徴とする電気抵抗溶接用電極。
The electrode body, which has a circular cross section and a cylindrical shape, is constructed using a metal material.
A guide hole composed of a large-diameter hole and a small-diameter hole is formed in the electrode body, and the guide hole is formed.
A metal material guide cylinder into which the shaft portion of the shaft-shaped part is inserted and having a circular cross section is coaxial with the synthetic resin material sliding member inserted into the large-diameter hole in a slidable state. By being integrally combined, an integrated member is formed,
The guide cylinder is projected from the end of the sliding member to form a heat dissipation portion.
A cooling air ventilation path is formed between the inner surface of the small diameter hole and the outer peripheral surface of the heat radiating portion.
The integrated member is an electrode for electric resistance welding, characterized in that the integrated member is housed in the guide hole without being exposed to the outside of the electrode from the guide hole.
JP2018173018A 2018-08-29 2018-08-29 Electrode for electric resistance welding Active JP7017716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018173018A JP7017716B2 (en) 2018-08-29 2018-08-29 Electrode for electric resistance welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018173018A JP7017716B2 (en) 2018-08-29 2018-08-29 Electrode for electric resistance welding

Publications (2)

Publication Number Publication Date
JP2020032458A JP2020032458A (en) 2020-03-05
JP7017716B2 true JP7017716B2 (en) 2022-02-09

Family

ID=69666684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018173018A Active JP7017716B2 (en) 2018-08-29 2018-08-29 Electrode for electric resistance welding

Country Status (1)

Country Link
JP (1) JP7017716B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624365B2 (en) * 2015-06-23 2019-12-25 青山 省司 Cooling method of guide pin in electric resistance welding electrode
JP2017074616A (en) * 2015-10-17 2017-04-20 青山 省司 Electric resistance-welding electrode
JP6553004B2 (en) * 2016-08-08 2019-07-31 青山 省司 Electric resistance welding electrode

Also Published As

Publication number Publication date
JP2020032458A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6541029B2 (en) Electric resistance welding electrode
US10518482B2 (en) Metal-resin joining device
AU2003248079A1 (en) Electrode for projection welding
JP7017716B2 (en) Electrode for electric resistance welding
JP6624365B2 (en) Cooling method of guide pin in electric resistance welding electrode
JP5967443B2 (en) Electric resistance welding electrode
JP2014214751A (en) Valve device
WO2020022178A1 (en) Joint device, joint structure, and method for manufacturing joint structure
JP2010247221A (en) Component detecting electrode
JP5773303B2 (en) Electrical resistance welding electrode with cylindrical pressure member
JP2023016653A (en) Electrode for electric resistance welding
JP7017717B2 (en) Electrode for electric resistance welding
JP7017718B2 (en) Electrical resistance welded electrodes for cap nuts
JP2023027731A (en) Electrode for electrical resistance weld
JP6857792B2 (en) Welding electrodes and welding methods for perforated parts
JP2017136639A (en) Electrode for electric resistance-welding
WO2021161771A1 (en) Magnet-equipped projection welding electrode
JP2023071134A (en) Electrode for electrical resistance welding
JP2023069974A (en) Electrode for electric resistance welding
JP7021425B2 (en) Electrical resistance welding electrode and its cooling method
JP6493847B1 (en) Electrical resistance welding method for projection bolts
JP2019217548A (en) Guide pin for electric resistance welded electrode
JP2017074616A (en) Electric resistance-welding electrode
WO2021171864A1 (en) Electrical resistance welding electrode
JP2023077361A (en) Electrode for electrical resistance welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220114

R150 Certificate of patent or registration of utility model

Ref document number: 7017716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150