JP7017367B2 - Underwater acoustic MIMO communication system using parametric method - Google Patents

Underwater acoustic MIMO communication system using parametric method Download PDF

Info

Publication number
JP7017367B2
JP7017367B2 JP2017207077A JP2017207077A JP7017367B2 JP 7017367 B2 JP7017367 B2 JP 7017367B2 JP 2017207077 A JP2017207077 A JP 2017207077A JP 2017207077 A JP2017207077 A JP 2017207077A JP 7017367 B2 JP7017367 B2 JP 7017367B2
Authority
JP
Japan
Prior art keywords
wave
parametric
primary
frequency
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017207077A
Other languages
Japanese (ja)
Other versions
JP2019080227A (en
Inventor
勇介 井戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikegami Tsushinki Co Ltd
Original Assignee
Ikegami Tsushinki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikegami Tsushinki Co Ltd filed Critical Ikegami Tsushinki Co Ltd
Priority to JP2017207077A priority Critical patent/JP7017367B2/en
Publication of JP2019080227A publication Critical patent/JP2019080227A/en
Application granted granted Critical
Publication of JP7017367B2 publication Critical patent/JP7017367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Description

本発明は、水中での音響通信の通信品質を向上させるパラメトリック方式を用いた水中音響MIMO通信システムに関するものである。 The present invention relates to an underwater acoustic MIMO communication system using a parametric method for improving the communication quality of underwater acoustic communication.

従来から、海中における無線通信技術は、AUV(Autonomous Underwater Vehicle)を用いた沈没船探査や、深海生物調査、海底調査・地質調査、海底資源探査などに役立っている。本国においては、水深700~1800m地点に海底熱水鉱床や、マンガン団塊、メタンハイドレートの存在が確認されており、探査と探索、開発が進められている。 Traditionally, underwater wireless communication technology has been useful for submerged ship exploration using AUVs (Autonomous Underwater Vehicles), deep-sea biological surveys, seafloor surveys / geological surveys, and seafloor resource exploration. In the home country, the existence of submarine hydrothermal deposits, manganese nodules, and methane hydrate has been confirmed at depths of 700 to 1800 m, and exploration, exploration, and development are underway.

また、探査には、海中における伝搬減衰が電波や可視光より小さい音波を用いるSONAR(SOund Navigation And Ranging)が使用される。このSONARを用いた探査方法には、数百kHzの音波を用いて海底地形を測定するサイドスキャンソナーや、透過性の高い数十kHzの音波を用いて海底下の地層を測定するサブボトムプロファイラがある。このうち、サブボトムプロファイラは、低い周波数の音波を狭いビームで放射するために、パラメトリック方式が用いられている。 In addition, SONAR (SOund Navigation And Ranging), which uses sound waves whose propagation attenuation in the sea is smaller than that of radio waves and visible light, is used for exploration. The exploration method using this SONAR includes a side scan sonar that measures the seafloor topography using sound waves of several hundred kHz, and a subbottom profiler that measures the seafloor layer using sound waves of several tens of kHz with high transparency. There is. Of these, the sub-bottom profiler uses a parametric method to radiate low-frequency sound waves with a narrow beam.

このパラメトリック方式を利用した技術については、例えば、特許文献1に開示されている技術は、2周波の音波を同時に音場媒質に送波した時、音場媒質の非線形特性によって音波同士が相互作用を起こし、前記2周波の和と差の周波数成分を発生し、この場合の差の周波数成分が極めて鋭い指向性を有する音波となるパラメトリック効果を利用している。 Regarding the technique using this parametric method, for example, in the technique disclosed in Patent Document 1, when two frequency sound waves are simultaneously transmitted to the sound field medium, the sound waves interact with each other due to the non-linear characteristics of the sound field medium. The parametric effect is utilized in which the sum of the two frequencies and the frequency component of the difference are generated, and the frequency component of the difference in this case becomes a sound wave having extremely sharp directivity.

また、特許文献2には、超音波を送信する超音波送波器と、該超音波送波器を周波数fで励振する励振信号の生成回路と、該励振信号を該励振信号の周波数fに比して充分低い繰り返し周波数fのパルス列でパルス変調するパルス変調回路と、該パルス変調された変調信号を上記超音波送波器に導いて超音波信号を送信する送信器と、上記超音波送波器と同方向に指向して配置され、周波数fで到来する超音波信号を受信する超音波受波器とを具備してなるパラメトリック探知装置が開示されている。 Further, Patent Document 2 describes an ultrasonic wave transmitter that transmits ultrasonic waves, an excitation signal generation circuit that excites the ultrasonic wave transmitter at a frequency f h , and the excitation signal at a frequency f of the excitation signal. A pulse modulation circuit that pulse-modulates with a pulse train having a repetition frequency f1 that is sufficiently lower than h , a transmitter that guides the pulse-modulated modulation signal to the ultrasonic transmitter and transmits an ultrasonic signal, and the above. Disclosed is a parametric detector comprising an ultrasonic receiver arranged in the same direction as the ultrasonic transmitter and receiving an ultrasonic signal arriving at a frequency f1.

さらに、特許文献3には、超音波信号の伝搬媒体の非直線性によるパラメトリック効果より発生する2つの高い周波数の差の低い周波数を受信し、この2つの受信信号を合成することにより目標物を探知するアクティブソーナ方式が開示されている。また、特許文献4に開示されているように、水底埋没物探査装置にパラメトリック方式による送波器と受波器を設ける技術も知られている。 Further, in Patent Document 3, a target is obtained by receiving a low frequency of the difference between two high frequencies generated by a parametric effect due to the non-linearity of the propagation medium of the ultrasonic signal, and synthesizing the two received signals. The active sonar method to detect is disclosed. Further, as disclosed in Patent Document 4, a technique of providing a parametric wave transmitter and a receiver in a water bottom buried object exploration device is also known.

またさらに、特許文献5には、音響を用いた埋設物検出方法において、パラメトリックアレイよりなる音響センサの送波器に異なる2つの周波数の信号を印加し、音波の伝播する媒質中において前記周波数の差の周波数を有する音響ビームを形成し、前記音響ビームのビーム方向を変化させて走査し、前記音響ビームの埋設物からの反射音を検出して埋設物を検出することを特徴とする埋設物検出方法が開示されている。 Further, in Patent Document 5, in the method of detecting a buried object using acoustics, signals of two different frequencies are applied to a transmitter of an acoustic sensor composed of a parametric array, and the above frequencies are used in a medium in which sound waves propagate. A buried object characterized in that an acoustic beam having a difference frequency is formed, the beam direction of the acoustic beam is changed and scanned, and the reflected sound from the buried object of the acoustic beam is detected to detect the buried object. The detection method is disclosed.

さらに、特許文献6には、音波の非線形効果を利用したパラメトリック送波器と、このパラメトリック送波器からの音波を受波する受波器を備えたソナーであって、2つの周波数の1次波信号をそれぞれ特定の高速符号で変調して前記パラメトリック送波器へ出力する送信回路と、前記受波器より検出された信号と前記送信回路の同一の高速符号との相関積分により、前記送波器より出力され被検出物より反射した信号を求める受信回路を備えたことを特徴とするパラメトリック拡散ソナーが開示されている。 Further, Patent Document 6 describes a sonar including a parametric transmitter that utilizes the non-linear effect of sound waves and a receiver that receives sound waves from the parametric transmitter, and is a primary of two frequencies. The transmission is based on the correlation integration between the transmission circuit that modulates each wave signal with a specific high-speed code and outputs it to the parametric transmitter, and the signal detected by the receiver and the same high-speed code of the transmission circuit. A parametric diffusion sonar is disclosed, which comprises a receiving circuit for obtaining a signal output from a wave device and reflected from an object to be detected.

ところで、パラメトリック方式を用いた技術に、パラメトリックスピーカがある。馴染みがあるものとしては、超指向性スピーカが知られており、狭い範囲に音波を放射することができ、その鋭い指向性は、伝搬媒質の非線形性により実現できるものである。なお、音波は微小な振幅であれば伝搬媒質の非線形性は無視できるが、振幅が大きくなると非線形現象が現れることが知られており、このような音波を有限振幅音波と呼ぶ。 By the way, there is a parametric speaker as a technique using a parametric method. As a familiar one, a super-directional speaker is known, which can emit a sound wave in a narrow range, and its sharp directivity can be realized by the non-linearity of the propagation medium. It should be noted that the non-linearity of the propagation medium can be ignored if the sound wave has a small amplitude, but it is known that a non-linear phenomenon appears when the amplitude becomes large, and such a sound wave is called a finite amplitude sound wave.

1次波として有限振幅音波を2つの周波数成分f、fで放射すれば、各々の高調波の他に、和音f+fや、差音f-fといった結合波が1次波のビーム内に2次的に発生する(2次波)。一般的に、周波数が低ければ指向性は広くなるが、パラメトリックスピーカでは、1次波のビームに沿って2次波が生成されるため、周波数が低い差音を鋭い指向性で放射することができる。 If a finite amplitude sound wave is radiated as a primary wave with two frequency components f 1 and f 2 , in addition to the respective harmonics, a coupled wave such as a chord f 1 + f 2 and a difference tone f 1 −f 2 will be the primary wave. It is secondarily generated in the beam of the wave (secondary wave). Generally, the lower the frequency, the wider the directivity, but in a parametric speaker, a secondary wave is generated along the beam of the primary wave, so it is possible to radiate a low frequency difference tone with sharp directivity. can.

1次波のビーム上に2次波の仮想音源が伝搬方向に存在すると捉えられるため、このような2次的に発生する仮想的な縦型アレイのことをパラメトリックアレイと呼ぶ。2次波は、1次波の伝搬に伴い振幅が増し、この作用は1次波の振幅が音波吸収や拡散により減衰するまで持続する。 Since it is considered that the virtual sound source of the secondary wave exists on the beam of the primary wave in the propagation direction, such a virtual vertical array generated secondarily is called a parametric array. The amplitude of the secondary wave increases with the propagation of the primary wave, and this action continues until the amplitude of the primary wave is attenuated by sound wave absorption or diffusion.

一般的に2次波の生成効率は1%と言われているが、2次波のうち差音は、1次波に比べ周波数が低いため音波吸収が小さく、1次波が減衰しても遠方まで伝搬する性質を持つ。このような性質から、海底探査以外にも特定の領域に音を伝えるオーディオスポットといった利用や、超音波医療などに応用されている。 It is generally said that the generation efficiency of the secondary wave is 1%, but the difference sound of the secondary wave has a lower frequency than the primary wave, so the sound wave absorption is small and even if the primary wave is attenuated. It has the property of propagating to a long distance. Due to these properties, it is used not only for seafloor exploration but also for audio spots that transmit sound to specific areas, and for ultrasonic medicine.

特開昭59-147257号公報Japanese Unexamined Patent Publication No. 59-147257 特開昭63-204180号公報Japanese Unexamined Patent Publication No. 63-204180 特開昭64-47986号公報Japanese Unexamined Patent Publication No. 64-47986 特開平4-13988号公報Japanese Unexamined Patent Publication No. 4-13988 特開平5-223923号公報Japanese Unexamined Patent Publication No. 5-223923 特開平9-211109号公報Japanese Unexamined Patent Publication No. 9-21109

しかしながら、上記従来からの技術は、無線通信への応用はされていない。近年では、海中通信ネットワークの構築に向けた音響通信技術の関心も高まっているが、音響は電波に比べて使用可能な帯域が狭いことや、伝搬路が厳しい時間選択性と、周波数選択性を持つことから、通信速度の高速化や、信頼性の向上が難しいとされている。 However, the above-mentioned conventional technology has not been applied to wireless communication. In recent years, there has been increasing interest in acoustic communication technology for the construction of underwater communication networks, but acoustics have a narrower usable band than radio waves, time selectivity with strict propagation paths, and frequency selectivity. It is said that it is difficult to increase the communication speed and improve the reliability because it has.

これに対し、地上の無線通信で広く使われるOFDM(Orthogonal Frequency Division Multiplexing)や、MIMO(Multiple-Input Multiple-Output)といった通信や、信頼性を向上させる技術を適用することも考えられる(例えば、国際特許公開公報WO2008/059985参照)。 On the other hand, it is conceivable to apply communication such as OFDM (Orthogonal Frequency Division Multiplexing) and MIMO (Multiple-Input Multiple-Output), which are widely used in terrestrial wireless communication, and technologies for improving reliability (for example). International Patent Publication Publication WO2008 / 059985).

本発明は、上述の課題を解決するためのもので、パラメトリック方式と、MIMO通信技術を相適用し、水中(海中など)における音響通信の通信品質や、信頼性を向上させることができるパラメトリック方式を用いた水中音響MIMO通信システムを提供することにある。 The present invention is for solving the above-mentioned problems, and is a parametric method capable of improving the communication quality and reliability of acoustic communication underwater (underwater, etc.) by applying a parametric method and MIMO communication technology in phase. It is an object of the present invention to provide an underwater acoustic MIMO communication system using the above.

上述の課題に対応するため、本発明は、以下の技術的手段を講じている。
即ち、請求項1記載の発明は、複数のパラメトリック送波器と、送信する単一のベースバンド信号をASK変調した周波数fの変調波、周波数f の搬波を前記パラメトリック送波器に1次波として送波させる送信回路と、前記パラメトリック送波器によって送波された1次波と、当該1次波により生じる結合波である前記1次波の周波数の差音(f-f)と、和音(f+f)を2次波として受波可能とする複数のパラメトリック受波器と、前記パラメトリック受波器が受波した1次波及び/又は2次波をベースバンド信号に変換する受信回路と、を備えることを特徴とするパラメトリック方式を用いた水中音響MIMO通信システムである。
In order to cope with the above-mentioned problems, the present invention takes the following technical measures.
That is, the invention according to claim 1 comprises a plurality of parametric transmitters, a modulated wave having a frequency f1 obtained by ASK - modulated a single baseband signal to be transmitted, and a carrier wave having a frequency f2. The frequency difference between the transmission circuit that sends the device as the primary wave, the primary wave transmitted by the parametric transmitter, and the primary wave that is the coupled wave generated by the primary wave (f). 2 -f 1 ), a plurality of parametric receivers capable of receiving chords (f 2 + f 1 ) as secondary waves, and primary and / or secondary waves received by the parametric receiver. It is an underwater acoustic MIMO communication system using a parametric method, which comprises a receiving circuit for converting a frequency into a baseband signal.

また、請求項2記載の発明は、請求項1記載のパラメトリック方式を用いた水中音響MIMO通信システムであって、前記2次波は、前記1次波である搬送波と変調波が、水中の非線形性による歪みで自己復調されることにより生じる変調波の包絡線情報を含んだ差音(f-f)と、和音(f+f)であることを特徴としている。 The invention according to claim 2 is an underwater acoustic MIMO communication system using the parametric method according to claim 1, wherein the carrier wave and the modulated wave, which are the primary waves, are non-linear in water. It is characterized by a difference sound (f 2 − f 1 ) including the envelope information of the modulated wave generated by self-demodation due to distortion due to sex, and a chord (f 2 + f 1 ).

さらに、請求項3記載の発明は、請求項2記載のパラメトリック方式を用いた水中音響MIMO通信システムであって、前記受信回路は、前記パラメトリック受波器が受波した1次波及び/又は2次波について包絡線検波を行い、当該1次波及び/又は2次波が含む包絡線情報を取り出すことで、前記1次波及び/又は2次波をベースバンド信号に変換するものであることを特徴としている。 Further, the invention according to claim 3 is an underwater acoustic MIMO communication system using the parametric method according to claim 2, wherein the receiving circuit is a primary wave and / or 2 received by the parametric receiver. Envelope detection is performed on the next wave, and the envelope information contained in the primary wave and / or the secondary wave is taken out to convert the primary wave and / or the secondary wave into a baseband signal. It is characterized by.

本発明によれば、パラメトリック方式と、MIMO通信技術を相適用することにより、水中においても音響通信の通信速度の高速化や、通信の信頼性の向上を図ることが可能となる。 According to the present invention, by applying the parametric method and the MIMO communication technology in phase, it is possible to increase the communication speed of acoustic communication and improve the reliability of communication even underwater.

本発明に係るパラメトリック方式を用いた水中音響MIMO通信システムの実施形態における構成概略図である。It is a block diagram in embodiment of the underwater acoustic MIMO communication system using the parametric method which concerns on this invention. 本発明に係るパラメトリック方式を用いた水中音響MIMO通信システムの実施形態によるシミュレーションにおけるMIMOシミュレーション諸元を示した表である。It is a table which showed the MIMO simulation specifications in the simulation by the embodiment of the underwater acoustic MIMO communication system which used the parametric method which concerns on this invention. 本発明に係るパラメトリック方式を用いた水中音響MIMO通信システムの実施形態によるシミュレーションにより評価したBER特性を示したグラフである。It is a graph which showed the BER characteristic evaluated by the simulation by the embodiment of the underwater acoustic MIMO communication system which used the parametric method which concerns on this invention. 本発明に係るパラメトリック方式を用いた水中音響MIMO通信システムの実施形態によるシミュレーションにより評価したチャネル容量を示したグラフである。It is a graph which showed the channel capacity evaluated by the simulation by the embodiment of the underwater acoustic MIMO communication system which used the parametric method which concerns on this invention. 本発明に係るパラメトリック方式を用いた水中音響MIMO通信システムの実施形態によるシミュレーションにおける2次波生成効率を考慮した各波の伝搬損失の差を表したグラフである。It is a graph which showed the difference of the propagation loss of each wave considering the secondary wave generation efficiency in the simulation by the embodiment of the underwater acoustic MIMO communication system which used the parametric method which concerns on this invention. 本発明に係るパラメトリック方式を用いた水中音響MIMO通信システムの実施形態によるシミュレーションにおける2次波生成効率を考慮した各波の伝搬損失を表したグラフである。It is a graph showing the propagation loss of each wave considering the secondary wave generation efficiency in the simulation by the embodiment of the underwater acoustic MIMO communication system using the parametric method which concerns on this invention. 2×2MIMOシステムモデルを示した構成概略図である。It is a block diagram which showed the 2 × 2 MIMO system model. 本実施形態において採用されるパラメトリック方式の一連の流れを示した図である。It is a figure which showed the series flow of the parametric method adopted in this embodiment.

本発明に係るパラメトリック方式を用いた水中音響MIMO通信システムの実施形態について図面を参照しながら説明する。図1は、本発明に係るパラメトリック方式を用いた水中音響MIMO通信システムの実施形態における構成概略図である。符号については、10が水中音響MIMO通信システム、12がパラメトリック送波器、14が送信回路、16がパラメトリック受波器、18が受信回路を示している。 An embodiment of an underwater acoustic MIMO communication system using the parametric method according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an embodiment of an underwater acoustic MIMO communication system using the parametric method according to the present invention. Regarding the reference numerals, 10 indicates an underwater acoustic MIMO communication system, 12 indicates a parametric transmitter, 14 indicates a transmission circuit, 16 indicates a parametric receiver, and 18 indicates a reception circuit.

まず、本実施形態における水中音響MIMO通信システム10は、複数のパラメトリック送波器12と、送信するベースバンド信号をASK変調した周波数fの信号を変調波として、さらに、周波数fの信号を搬送波として、それぞれパラメトリック送波器12に1次波として送波させる送信回路14を備えている。なお、上記周波数は、f<fの関係である。 First, in the underwater acoustic MIMO communication system 10 of the present embodiment, a plurality of parametric transmitters 12 and a signal having a frequency f 1 obtained by ASK-modulated a base band signal to be transmitted are used as a modulated wave, and a signal having a frequency f 2 is further used. As a carrier wave, a transmission circuit 14 for transmitting a parametric transmitter 12 as a primary wave is provided. The above frequencies have a relationship of f 1 <f 2 .

さらに、パラメトリック送波器12に送波された1次波と、当該1次波により生じる結合波である1次波の周波数の差音(f-f)と、和音(f+f)を2次波として受波可能とする複数のパラメトリック受波器16と、パラメトリック受波器16が受波した1次波及び/又は2次波をベースバンド信号に変換する受信回路18を備えている。 Further, the difference in frequency between the primary wave transmitted to the parametric transmitter 12 and the primary wave which is the coupled wave generated by the primary wave (f2-f 1 ) and the chord (f 2 + f 1 ). ) Is provided as a plurality of parametric receivers 16 capable of receiving as a secondary wave, and a receiving circuit 18 for converting the primary wave and / or the secondary wave received by the parametric receiver 16 into a baseband signal. ing.

続いて、本実施形態における水中音響MIMO通信システム10について詳細に説明する。まず、本実施形態における水中音響MIMO通信システム10は、水中(海中など)にて用いられるもので、図1に示すように、送波側(図中、左側)と受波側(図中、右側)との間で、音波によるMIMO通信システムを採用しているものである。 Subsequently, the underwater acoustic MIMO communication system 10 in the present embodiment will be described in detail. First, the underwater acoustic MIMO communication system 10 in the present embodiment is used underwater (underwater, etc.), and as shown in FIG. 1, the wave transmitting side (in the figure, the left side) and the receiving side (in the figure, in the figure). The MIMO communication system using sound waves is adopted between the right side).

送波側では、送信回路14が、送波するベースバンド信号をASK変調することで周波数fの信号を変調波とし、さらに、周波数fの信号を搬送波とする処理を行い、パラメトリック送波器12にこれらを1次波として送波させる。なお、図中、パラメトリック送波器12は、2つとなっているが、これは本発明を限定するものではない。 On the transmission side, the transmission circuit 14 ASK-modulates the baseband signal to be transmitted to convert the signal of frequency f 1 into a modulated wave, and further performs processing using the signal of frequency f 2 as a carrier wave to parametrically transmit. These are sent to the vessel 12 as the primary wave. In the figure, the number of parametric transmitters 12 is two, but this does not limit the present invention.

次に、パラメトリック送波器12から送波された1次波(搬送波fと、変調波f)は、水中の非線形性の歪みにより自己復調し、変調波の包絡線情報を含んだ1次波の周波数の差音(f-f)と、和音(f+f)が、2次波(結合波)として、1次波のビームに沿って発生することになる。なお、周波数が低い差音は、特に鋭い指向性で放射できることになる。そして、パラメトリック送波器12から所定の距離に設置されるパラメトリック受波器16が、1次波及び/又は2次波を受波し、受波した1次波及び/又は2次波について包絡線検波を行い、それらの包絡線情報を受信回路18が取り出すことで、1次波及び/又は2次波をベースバンド信号に変換する。 Next, the first-order waves (carrier wave f 2 and modulated wave f 1 ) transmitted from the parametric transmitter 12 are self-decomposed by the distortion of non-linearity in water, and include the envelope information of the modulated wave 1 The difference sound (f 2 − f 1 ) of the frequency of the next wave and the chord (f 2 + f 1 ) are generated along the beam of the primary wave as the secondary wave (coupling wave). It should be noted that a low frequency difference tone can be radiated with a particularly sharp directivity. Then, the parametric receiver 16 installed at a predetermined distance from the parametric transmitter 12 receives the primary wave and / or the secondary wave, and envelops the received primary wave and / or the secondary wave. The line detection is performed, and the envelope information is taken out by the receiving circuit 18, so that the primary wave and / or the secondary wave is converted into a baseband signal.

ここで、本実施形態において採用される海中におけるMIMO通信システムについて説明していく。MIMO通信システムにおいて複数のパラメトリック送波器12から送信された複数の異なる信号は、海面や海底、浮遊物によって反射や散乱することによるマルチパスフェージングの影響を受ける。 Here, the underwater MIMO communication system adopted in the present embodiment will be described. In a MIMO communication system, a plurality of different signals transmitted from a plurality of parametric transmitters 12 are affected by multipath fading due to reflection and scattering by the sea surface, the sea bottom, and suspended matter.

異なるフェージングの影響を受けた各々の送信信号は、通信路で多重化される。この多重化された通信路のことをストリームと呼ぶ。受信側では、パラメトリック受波器16によって受信した複数の多重化された信号を分離することで元の信号を取り出すことができるようになっている。 Each transmitted signal affected by different fading is multiplexed in the channel. This multiplexed communication path is called a stream. On the receiving side, the original signal can be taken out by separating a plurality of multiplexed signals received by the parametric receiver 16.

ここで、図7に示すような送波器70からN個の信号s(j=1, ..., Nt)を送信するシステムを考えてみる。このとき、送信信号ベクトルは、次式(数1)で表される。 Now, consider a system that transmits N t signals s j (j = 1, ..., N t ) from the transmitter 70 as shown in FIG. 7. At this time, the transmission signal vector is expressed by the following equation (Equation 1).

Figure 0007017367000001
Figure 0007017367000001

各送信信号はチャネル係数hi,jが乗算され、受波器72にてN個の受信信号r(i=1, ..., Nr)が得られる。このとき、次式(数2)の受信信号ベクトルは、次式(数3)と表される。 Each transmitted signal is multiplied by the channel coefficients h i and j , and N r received signals r i (i = 1, ..., N r ) are obtained by the receiver 72. At this time, the received signal vector of the following equation (Equation 2) is expressed as the following equation (Equation 3).

Figure 0007017367000002
Figure 0007017367000002

Figure 0007017367000003
Figure 0007017367000003

ここで、次式(数4)は、雑音ベクトルであり、また、次式(数5)はチャネル行列であり、次式(数6)と表される。 Here, the following equation (Equation 4) is a noise vector, and the following equation (Equation 5) is a channel matrix, which is expressed as the following equation (Equation 6).

Figure 0007017367000004
Figure 0007017367000004

Figure 0007017367000005
Figure 0007017367000005

Figure 0007017367000006
Figure 0007017367000006

続いて、本実施形態におけるパラメトリック方式の一連の流れを図8に示す。パラメトリック方式では、1次波として周波数fである変調波と、周波数fである搬送波を大音量で放射する。音波が大振幅であれば、伝搬媒質への応力と歪みの関係が非線形となる。 Subsequently, FIG. 8 shows a series of flow of the parametric method in the present embodiment. In the parametric method, a modulated wave having a frequency f 1 and a carrier wave having a frequency f 2 are radiated at a loud volume as primary waves. If the sound wave has a large amplitude, the relationship between stress and strain on the propagation medium becomes non-linear.

非線形過程における音速cは、次式(数7)で表される。ここで、cは微小振幅における音速で、βは非線形係数であり、水の場合は、β=3.5となる。 The speed of sound c in the non-linear process is expressed by the following equation (Equation 7). Here, c 0 is the speed of sound at a minute amplitude, β is a nonlinear coefficient, and in the case of water, β = 3.5.

Figure 0007017367000007
Figure 0007017367000007

また、次式(数8)は、粒子速度であり、pは音圧、Zは媒質密度ρとcで表される比音響インピーダンスである。uの振幅をUとすれば、正のピークでは、次式(数9)となるから、cより早く伝搬し、負のピークでは、次式(数10)となるからcより遅く伝搬する。 The following equation (Equation 8) is the particle velocity, p is the sound pressure, and Z is the specific acoustic impedance represented by the medium densities ρ 0 and c 0 . If the amplitude of u is U, the positive peak has the following equation (Equation 9), so it propagates faster than c 0 , and the negative peak has the following equation (Equation 10), so it propagates later than c 0 . do.

Figure 0007017367000008
Figure 0007017367000008

Figure 0007017367000009
Figure 0007017367000009

Figure 0007017367000010
Figure 0007017367000010

この音速の違いにより、伝搬した距離に伴って波面の傾きが垂直に近づいていき、衝撃波が形成される。このときの距離は、衝撃波面形成距離と呼ばれ、次式(数11)で表される。 Due to this difference in sound velocity, the slope of the wavefront approaches vertically with the propagated distance, and a shock wave is formed. The distance at this time is called the shock wave surface formation distance and is expressed by the following equation (Equation 11).

Figure 0007017367000011
Figure 0007017367000011

ここで、Mは、U/cで表されるマッハ数、kは、ω/cで表される波数であり、ωは、各周波数である。この波形の歪みにより高調波が生じるが、それと同時にそれぞれの周波数間における差音と、和音の成分も生成されることになる。 Here, M is a Mach number represented by U / c 0 , k is a wave number represented by ω / c 0 , and ω is each frequency. Harmonics are generated by this distortion of the waveform, but at the same time, a difference tone between each frequency and a chord component are also generated.

差音と和音のうち、1次波の周波数の差音f-f、和音f+fが2次波として利用される。1次波の変調方式には振幅変調が多く用いられており、1次波の包短線が、2次波の波形として現れる。従って、音声データを振幅変調して1次波を生成し、2次波のうち差音の包短線情報が空間で復調されることで、可聴領域に音声を再現することができる。 Of the difference tone and the chord, the difference tone f2-f 1 and the chord f 2 + f 1 of the frequency of the primary wave are used as the secondary wave. Amplitude modulation is often used as the modulation method of the primary wave, and the short line of the primary wave appears as the waveform of the secondary wave. Therefore, the audio data can be amplitude-modulated to generate a primary wave, and the short line information of the difference tone of the secondary waves is demodulated in space, so that the audio can be reproduced in the audible region.

本実施形態では、包短線が変化するデジタル変調方式であるASK(Amplitude-Shift Keying)変調を1次波の変調に用いて、1次波と2次波の包短線情報をデータとして復調するものである。 In the present embodiment, ASK (Amplitude-Shift Keying) modulation, which is a digital modulation method in which the packet short line changes, is used for modulation of the primary wave, and the packet short line information of the primary wave and the secondary wave is demodulated as data. Is.

次に、図1に示すように、2次波は、伝搬媒質の非線形性により1次波を送信した後に遅れて生成されるため、MIMOにおけるチャネルを1次波を放射した後と、2次波が生成された後について考える必要がある。2次波生成前の1次波のチャネル行列をH(1)とすれば、次式(数12)で表される。 Next, as shown in FIG. 1, since the secondary wave is generated with a delay after transmitting the primary wave due to the non-linearity of the propagation medium, the channel in MIMO is radiated from the primary wave and then the secondary wave. We need to think about after the waves are generated. If the channel matrix of the primary wave before the generation of the secondary wave is H (1) , it is expressed by the following equation (Equation 12).

Figure 0007017367000012
Figure 0007017367000012

送波器からの送信信号数と、受波器での受信信号数の関係は変化していないことから、従来のMIMOにおけるHと同じ行列サイズで表される。次に、2次波生成後のチャネル行列H(2)を次式(数13)のように置く。 Since the relationship between the number of transmitted signals from the transmitter and the number of received signals in the receiver has not changed, it is represented by the same matrix size as H in conventional MIMO. Next, the channel matrix H (2) after the generation of the second wave is placed as in the following equation (Equation 13).

Figure 0007017367000013
Figure 0007017367000013

これは、各パスで1次波に加えてN-1個の2次波が生成され、1次波と2次波を合わせたN個の信号が伝搬することを表している。2次波は、2次波生成前のチャネルの影響を受けた1次波から、伝搬媒質の非線形性により1次波の波形が歪むことで生成される。また、1次波と2次波は、周波数が大きく異なることから、異なるフェージングを受けると考えられるため、各波のチャネル係数が異なっている。 This means that N s -1 secondary wave is generated in addition to the primary wave in each path, and N s signals including the primary wave and the secondary wave propagate. The secondary wave is generated by distorting the waveform of the primary wave from the primary wave affected by the channel before the generation of the secondary wave due to the non-linearity of the propagation medium. Further, since the primary wave and the secondary wave have significantly different frequencies, they are considered to be subject to different fading, so that the channel coefficients of the respective waves are different.

2次波生成前後のチャネル情報を含んだチャネル行列をH(1,2)とすれば、次式(数14)のように表される。 If the channel matrix including the channel information before and after the generation of the second wave is H (1, 2) , it is expressed as the following equation (Equation 14).

Figure 0007017367000014
Figure 0007017367000014

ここで、H(1,2)の各ベクトルは、H(1)とH(2)のパス毎のチャネルの積として、次式(数15)のように表される。 Here, each vector of H ( 1, 2) is expressed as the following equation (Equation 15) as the product of the channels for each path of H (1) and H (2) .

Figure 0007017367000015
Figure 0007017367000015

そして、各パスでN個の信号が伝搬することで、N×N個の信号が受信される。このとき、次式(数16)の受信信号ベクトルは、次式(数17)と表される。 Then, by propagating N s signals in each path, N s × N r signals are received. At this time, the received signal vector of the following equation (Equation 16) is expressed as the following equation (Equation 17).

Figure 0007017367000016
Figure 0007017367000016

Figure 0007017367000017
Figure 0007017367000017

1次波の周波数をf、fとしたとき、2次波の周波数は、その差音f-fと、和音f+fの周波数で生成される。ある距離lで音波が伝搬した場合、周波数により減衰の大きさが異なってくる。海中における伝搬損失dは、次式(数18)として、拡散損失pを持つ項と、吸収減衰aを持つ項で表される。 When the frequency of the primary wave is f 1 and f 2 , the frequency of the secondary wave is generated by the difference tone f 2 −f 1 and the chord f 2 + f 1 . When a sound wave propagates at a certain distance l, the magnitude of attenuation differs depending on the frequency. The propagation loss d in the sea is expressed by a term having a diffusion loss p and a term having an absorption attenuation a as the following equation (Equation 18).

Figure 0007017367000018
Figure 0007017367000018

ここで、吸収減衰aは、Thorpの経験式より、周波数fを用いて次式(数19)で表される。 Here, the absorption attenuation a is expressed by the following equation (Equation 19) using the frequency f from the empirical equation of Thorp.

Figure 0007017367000019
Figure 0007017367000019

この式は、水温4℃、塩分35‰、水素イオン指数pH8、水深1000mの条件で導出される。本実施形態でのシミュレーションにおいては、1次波と2次波の差音と和音の伝搬損失を求め、1次波の伝搬損失との差を求めることで、各波の信号電力を表現するために使用する。 This formula is derived under the conditions of water temperature of 4 ° C., salt content of 35 ‰, hydrogen ion index pH of 8, and water depth of 1000 m. In the simulation in this embodiment, the signal power of each wave is expressed by obtaining the propagation loss of the difference tone and the chord between the primary wave and the secondary wave and the difference between the propagation loss of the primary wave. Used for.

続いて、MIMOシステムにおけるチャネル推定の方法として、MMSE(Minimum Mean Square Error)法を用いる。MMSEでは、等化器出力に含まれる干渉及び雑音成分の電力を最小化する。 Subsequently, the MMSE (Minimum Mean Square Error) method is used as a channel estimation method in the MIMO system. The MMSE minimizes the power of interference and noise components contained in the equalizer output.

Figure 0007017367000020
Figure 0007017367000020

上式(数20)の目的関数を最小化する次式(数21)の受信ウェイトは、次式(数22)となる。 The reception weight of the following equation (Equation 21) that minimizes the objective function of the above equation (Equation 20) is the following equation (Equation 22).

Figure 0007017367000021
Figure 0007017367000021

Figure 0007017367000022
Figure 0007017367000022

ここで、[ ]はエルミート転置、γはSNR(Signal to Noise power Ratio)を表す。MMSEは干渉成分とともに雑音成分の影響を同時に抑えるため、SINR(Signal to Interference and Noise power Ratio)が最大化する。そのため、低SNR時において特性が改善される傾向がある。このとき、次式(数23)の推定送信信号は、次式(数24)となる。 Here, [] H represents Hermitian transposition, and γ represents SNR (Signal to Noise power Ratio). Since the MMSE suppresses the influence of the noise component as well as the interference component at the same time, the SINR (Signal to Interference and Noise power Ratio) is maximized. Therefore, the characteristics tend to be improved at low SNR. At this time, the estimated transmission signal of the following equation (Equation 23) becomes the following equation (Equation 24).

Figure 0007017367000023
Figure 0007017367000023

Figure 0007017367000024
Figure 0007017367000024

続いて、MIMOシステムのシミュレーション諸元を図2に示す。また、シミュレーションにより評価したBER特性及びチャネル容量をそれぞれ、図3、図4に示す。本シミュレーションでは、距離lに応じて、Thorpの経験式より1次波の伝搬損失ddBと、2次波の差音と和音の伝搬損失ddB、ddBを求め、その差であるd-d、d-d、d-ddBを電力として表す。 Subsequently, FIG. 2 shows the simulation specifications of the MIMO system. The BER characteristics and channel capacities evaluated by simulation are shown in FIGS. 3 and 4, respectively. In this simulation, the propagation loss d 1 dB of the primary wave and the propagation loss d 2 dB and d 3 dB of the difference tone and chord of the secondary wave are obtained from Thorp's empirical formula according to the distance l, and the difference is used. A certain d 1 -d 1 , d 2 -d 1 , d 3 -d 1 dB is expressed as electric power.

図4、図5より、本シミュレーションにおける距離l=0.1,1.0kmの電力差では、2×2MIMOシステムの理論値よりもBER特性、チャネル容量が劣化していることが分かる。ただし、l=4.0km以上では改善し、2×4MIMOシステムの理論値に近づいている。 From FIGS. 4 and 5, it can be seen that the BER characteristics and the channel capacitance are deteriorated from the theoretical values of the 2 × 2 MIMO system at the power difference of the distance l = 0.1,1.0 km in this simulation. However, when l = 4.0 km or more, it is improved and approaches the theoretical value of the 2 × 4 MIMO system.

ここで、2次波生成効率を考慮した各波の伝搬損失の差d-d、d-d、d-dを表した図6を見ると、距離l=5.0kmに近づくにつれて、1次波と2次波の差音の差d-ddBが0dBに近づいていることが分かる。これは、差音が1次波よりも低い周波数であるため伝搬減衰が小さくなるからである。そのため、距離l=4.0km以上では、差音と1次波の電力差が小さくなり、2×4MIMOシステム程度の性能になる。 Here, looking at FIG. 6, which shows the difference in propagation loss of each wave in consideration of the secondary wave generation efficiency, d 1 − d 1 , d 2 − d 1 , and d 3 − d 1 , the distance l = 5.0 km. It can be seen that the difference d2 - d 1 dB of the difference tone between the primary wave and the secondary wave is approaching 0 dB as it approaches. This is because the propagation attenuation is small because the difference tone has a frequency lower than that of the primary wave. Therefore, when the distance is l = 4.0 km or more, the power difference between the difference tone and the primary wave becomes small, and the performance is about that of a 2 × 4 MIMO system.

一方で、距離l=4.0km未満では、2次波の差音、和音ともに電力が小さくなるため、性能の向上に寄与せず、2×2MIMOシステム程度の性能になる。また、2次波の和音は、いずれの場合も電力が小さいため、性能向上には寄与しないと考えられる。 On the other hand, when the distance l = less than 4.0 km, the power of both the difference tone and the chord of the secondary wave becomes small, so that the performance does not contribute to the improvement of the performance and the performance becomes about 2 × 2 MIMO system. Further, since the power of the chord of the secondary wave is small in each case, it is considered that the chord does not contribute to the performance improvement.

本シミュレーションによれば、距離lが長くなると差音と1次波の電力差が縮まることにより、2×2MIMOシステムより性能が改善することが確認できた。しかし、図6によれば、距離l=5.0km地点での1次波と差音の減衰は、おおよそ-56dBと非常に大きくなる。従って、海中での伝搬において、伝搬減衰以外にも特性劣化に繋がる要因が多く存在するために、性能を改善できる所要SNRを満たすことが難しくなることに注意が必要である。 According to this simulation, it was confirmed that the performance is improved as compared with the 2 × 2 MIMO system by reducing the power difference between the difference tone and the primary wave as the distance l becomes longer. However, according to FIG. 6, the attenuation of the primary wave and the difference tone at the distance l = 5.0 km is very large, about −56 dB. Therefore, it should be noted that in propagation in the sea, there are many factors that lead to characteristic deterioration other than propagation attenuation, and it is difficult to satisfy the required SNR that can improve the performance.

本発明に係るパラメトリック方式を用いた水中音響MIMOシステムは、水中(海中など)において音響通信の通信品質や、信頼性を確保させる必要があるデジタル通信システムの構築に好適に用いることができる。 The underwater acoustic MIMO system using the parametric method according to the present invention can be suitably used for constructing a digital communication system that needs to ensure the communication quality and reliability of acoustic communication underwater (underwater, etc.).

10 水中音響MIMO通信システム
12 パラメトリック送波器
14 送信回路
16 パラメトリック受波器
18 受信回路
10 Underwater acoustic MIMO communication system 12 Parametric transmitter 14 Transmit circuit 16 Parametric receiver 18 Receiver circuit

Claims (3)

複数のパラメトリック送波器と、送信する単一のベースバンド信号をASK変調した周波数fの変調波、周波数f の搬波を前記パラメトリック送波器に1次波として送波させる送信回路と、前記パラメトリック送波器によって送波された1次波と、当該1次波により生じる結合波である前記1次波の周波数の差音(f-f)と、和音(f+f)を2次波として受波可能とする複数のパラメトリック受波器と、前記パラメトリック受波器が受波した1次波及び/又は2次波をベースバンド信号に変換する受信回路と、を備えることを特徴とするパラメトリック方式を用いた水中音響MIMO通信システム。 Transmission in which a plurality of parametric transmitters, a modulated wave of frequency f1 obtained by ASK - modulated a single baseband signal to be transmitted, and a carrier wave of frequency f2 are transmitted to the parametric transmitter as a primary wave. The frequency difference between the primary wave transmitted by the circuit, the parametric transmitter, and the primary wave, which is the coupled wave generated by the primary wave, and the chord (f 2 -f 1 ). A plurality of parametric receivers capable of receiving 2 + f 1 ) as secondary waves, and a receiving circuit that converts the primary and / or secondary waves received by the parametric receiver into a baseband signal. An underwater acoustic MIMO communication system using a parametric method, which comprises. 前記2次波は、前記1次波である搬送波と変調波が、水中の非線形性による歪みで自己復調されることにより生じる変調波の包絡線情報を含んだ差音(f-f)と、和音(f+f)であることを特徴とする請求項1記載のパラメトリック方式を用いた水中音響MIMO通信システム。 The secondary wave is a difference sound (f 2 -f 1 ) including the envelope information of the modulated wave generated by self-demodulation of the carrier wave and the modulated wave, which are the primary waves, due to distortion due to non-linearity in water. And, the underwater acoustic MIMO communication system using the parametric method according to claim 1, characterized in that it is a chord (f 2 + f 1 ). 前記受信回路は、前記パラメトリック受波器が受波した1次波及び/又は2次波について包絡線検波を行い、当該1次波及び/又は2次波が含む包絡線情報を取り出すことで、前記1次波及び/又は2次波をベースバンド信号に変換するものであることを特徴とする請求項2記載のパラメトリック方式を用いた水中音響MIMO通信システム。 The receiving circuit performs envelope detection on the primary wave and / or the secondary wave received by the parametric receiver, and extracts the envelope information contained in the primary wave and / or the secondary wave. The underwater acoustic MIMO communication system using the parametric method according to claim 2, wherein the primary wave and / or the secondary wave is converted into a baseband signal.
JP2017207077A 2017-10-26 2017-10-26 Underwater acoustic MIMO communication system using parametric method Active JP7017367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017207077A JP7017367B2 (en) 2017-10-26 2017-10-26 Underwater acoustic MIMO communication system using parametric method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017207077A JP7017367B2 (en) 2017-10-26 2017-10-26 Underwater acoustic MIMO communication system using parametric method

Publications (2)

Publication Number Publication Date
JP2019080227A JP2019080227A (en) 2019-05-23
JP7017367B2 true JP7017367B2 (en) 2022-02-08

Family

ID=66628898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017207077A Active JP7017367B2 (en) 2017-10-26 2017-10-26 Underwater acoustic MIMO communication system using parametric method

Country Status (1)

Country Link
JP (1) JP7017367B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245525B (en) * 2020-01-17 2021-05-11 东南大学 Large-scale MIMO underwater acoustic communication method and system
CN115549813B (en) * 2022-09-19 2023-05-02 中国舰船研究设计中心 Acoustic compatibility on-lake test method of communication underwater acoustic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244445A (en) 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Radio communication medium processor and radio communication medium processing system
JP2007228175A (en) 2006-02-22 2007-09-06 Ntt Docomo Inc Acoustic signal transmission system, modulation device, demodulation device, and acoustic signal transmitting method
WO2008059985A1 (en) 2006-11-17 2008-05-22 Nec Corporation Mimo communication system having deterministic communication paths and method
US20120008463A1 (en) 2010-04-19 2012-01-12 University Of Delaware High data rate acoustic multiple-input/multiple-output (mimo) communication apparatus and system for submersibles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208334A (en) * 1987-02-24 1988-08-29 Nec Corp Underwater digital telemetory instrument
JPH02253800A (en) * 1989-03-28 1990-10-12 Matsushita Electric Works Ltd Acoustic device multiply using space

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244445A (en) 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Radio communication medium processor and radio communication medium processing system
JP2007228175A (en) 2006-02-22 2007-09-06 Ntt Docomo Inc Acoustic signal transmission system, modulation device, demodulation device, and acoustic signal transmitting method
WO2008059985A1 (en) 2006-11-17 2008-05-22 Nec Corporation Mimo communication system having deterministic communication paths and method
US20120008463A1 (en) 2010-04-19 2012-01-12 University Of Delaware High data rate acoustic multiple-input/multiple-output (mimo) communication apparatus and system for submersibles

Also Published As

Publication number Publication date
JP2019080227A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
Bouvet et al. Capacity analysis of underwater acoustic MIMO communications
KR101580427B1 (en) Doppler Frequency Estimation and receiving method for Time-varying Underwater Acoustic Communication Channel
JP7017367B2 (en) Underwater acoustic MIMO communication system using parametric method
Song et al. Long-range acoustic communication in deep water using a towed array
Li et al. Interference cancellation in in-band full-duplex underwater acoustic systems
Song et al. Diversity combining for long-range acoustic communication in deep water
CN106814360A (en) A kind of multibeam sounding system based on linear FM signal
CN115396043A (en) Flexible cross-water-air medium communication system without device alignment
Hsieh et al. FD-UWA: Full-duplex underwater acoustic comms via self-interference cancellation in space
CN103513239B (en) A kind of method adopting coding phase-modulated signal to realize direct-wave jamming suppression
Burrowes et al. Investigation of a short-range underwater acoustic communication channel for MAC protocol design
JP6638820B2 (en) Underwater wireless communication system, transmitting unit, receiving unit, and underwater wireless communication method
WO2020105538A1 (en) Underwater acoustic communication system and receiving device
JP4264832B2 (en) Passive phase conjugate underwater acoustic communication method and passive phase conjugate underwater acoustic communication system
Kapileswar et al. Adaptive OFDM non-uniform modulation for underwater acoustic communication
Dushin Modeling of a high-frequency hydroacoustic communication channel in shallow water of the Black Sea
CN114900220A (en) Cross-medium communication method, device and system
Barbeau et al. Adaptable design for long range underwater communications
Fedosov et al. Wireless data transmission in underwater hydroacoustic environment based on MIMO-OFDM system and application adaptive algorithm at the receiver side
Dol et al. Characterizing the underwater acoustic communications channel in shallow estuaries and its application to development of a flexible wideband modulation
Rezzouki et al. Design and implementation of differential chirp spread spectrum system for underwater acoustic communication
KR101554286B1 (en) Method for implementing underwater acoustic communication using channel transfer characteristic estimation based on superimposed pilot scheme
Kusuma Aplikasi Metode Passive Time Reversal Mirror Untuk Mengurangi Pengaruh Multipath Pada Komunikasi Akustik Bawah Air
Benson et al. High data rates in the high frequency acoustic channel
Bouvet et al. MIMO underwater acoustic communications over shallow water channel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220127

R150 Certificate of patent or registration of utility model

Ref document number: 7017367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150