JP7014341B2 - Steel plate and steel plate manufacturing method - Google Patents

Steel plate and steel plate manufacturing method Download PDF

Info

Publication number
JP7014341B2
JP7014341B2 JP2021539855A JP2021539855A JP7014341B2 JP 7014341 B2 JP7014341 B2 JP 7014341B2 JP 2021539855 A JP2021539855 A JP 2021539855A JP 2021539855 A JP2021539855 A JP 2021539855A JP 7014341 B2 JP7014341 B2 JP 7014341B2
Authority
JP
Japan
Prior art keywords
less
strength
steel sheet
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021539855A
Other languages
Japanese (ja)
Other versions
JPWO2021167023A1 (en
Inventor
奈未 土橋
芳恵 椎森
勇人 齋藤
房亮 假屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2021167023A1 publication Critical patent/JPWO2021167023A1/ja
Application granted granted Critical
Publication of JP7014341B2 publication Critical patent/JP7014341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、特に容器用材料に好適な、延性、強度、低降伏伸びおよび上降伏応力に優れる鋼板ならびにその製造方法に関するものである。 The present invention relates to a steel sheet having excellent ductility, strength, low yield elongation and top yield stress, which is particularly suitable for a material for containers, and a method for producing the same.

近年、缶用鋼板においては、環境負荷の低減ならびに製缶コスト低減のために、高強度化による薄肉化が要求されている。その際、単に鋼板を薄肉化すると缶体強度が低下するため、極薄にしても強度を保つ鋼板が必要である。そのためには、少なくとも500MPa以上の強度が必要である。
さらに薄肉化で低下した剛性や強度を補完するため、3ピース缶の胴部にビード加工や幾何学的形状を付与して剛性や強度を高めた異形缶の適用ニーズが高まっている。そういったビード加工や幾何学的形状の加工では鋼板に高い成形性が必要とされる。そのためには、少なくとも15%以上の延性(全伸び)が必要である。
In recent years, steel sheets for cans have been required to be thinner by increasing their strength in order to reduce the environmental load and the cost of can manufacturing. At that time, if the steel plate is simply thinned, the strength of the can body is lowered, so that a steel plate that maintains the strength even if it is extremely thin is required. For that purpose, a strength of at least 500 MPa or more is required.
Furthermore, in order to supplement the rigidity and strength that have decreased due to the thinning, there is an increasing need for the application of deformed cans that have increased rigidity and strength by beading or giving geometric shapes to the body of 3-piece cans. High formability is required for steel sheets in such beading and geometrical shape processing. For that purpose, ductility (total elongation) of at least 15% or more is required.

缶体にビード加工や幾何学的形状を付与した場合、ストレッチャーストレインと呼ばれるシワが発生する場合がある。これは降伏伸び(YP-El)との関連が大きいとされており、降伏伸びを低減することでシワ発生を抑制することが可能である。したがって、低降伏伸びを有する鋼板の開発が望まれている。求められる値は加工度により変動するが、少なくとも10%以下とすることが求められている。 When the can body is beaded or given a geometric shape, wrinkles called stretcher strain may occur. It is said that this is closely related to the yield elongation (YP-El), and it is possible to suppress the occurrence of wrinkles by reducing the yield elongation. Therefore, it is desired to develop a steel sheet having a low yield elongation. The required value varies depending on the degree of processing, but it is required to be at least 10% or less.

また、加工度の低い缶底部では鋼板の加工硬化による強度上昇が小さいため、薄肉化した鋼板を用いて製缶した場合、缶運搬時に落下等の衝撃を受けることでくぼみ等が発生し、商品価値が低下するといった問題が生じる。かかる問題を回避するためには、低加工度の部材においても優れた缶体強度を有する必要があり、そのためには、少なくとも400MPa以上の上降伏応力が必要である。
以上の理由から、優れた延性と引張強さ、低降伏伸びおよび高上降伏応力を兼備した極薄鋼板の開発が望まれている。
In addition, since the strength increase due to work hardening of the steel plate is small at the bottom of the can with a low degree of processing, when a can is made using a thin steel plate, dents etc. occur due to impact such as dropping during transportation of the can. Problems such as reduced value arise. In order to avoid such a problem, it is necessary to have excellent can body strength even in a member having a low degree of processing, and for that purpose, a yield yield stress of at least 400 MPa or more is required.
For the above reasons, it is desired to develop an ultrathin steel sheet having excellent ductility, tensile strength, low yield elongation and high yield stress.

これらの要求に対して、特許文献1には、マルテンサイト分率が5%以上30%未満であるフェライトとマルテンサイトとの複合組織を有し、マルテンサイト粒径、製品板厚、マルテンサイト硬さおよび30T硬度をそれぞれ規定した製缶用高強度薄鋼板が開示されている。 In response to these requirements, Patent Document 1 has a composite structure of ferrite and martensite having a martensite fraction of 5% or more and less than 30%, and has martensite particle size, product plate thickness, and martensite hardness. High-strength thin steel sheets for can manufacturing, each of which specifies a hardness of 30 T, are disclosed.

また、特許文献2には、フェライト相を主相とし、第2相としてマルテンサイト相及び/または残留オーステナイト相を面積分率の合計で1.0%以上含む鋼板が開示されている。 Further, Patent Document 2 discloses a steel sheet containing a ferrite phase as a main phase and a martensite phase and / or a retained austenite phase as a second phase in a total area fraction of 1.0% or more.

特開2009-84687号公報Japanese Unexamined Patent Publication No. 2009-84687 国際公開第2016/075866号International Publication No. 2016/075866

しかしながら、特許文献1は、強度と延性についての記述はあるものの、上降伏応力および低降伏伸びに関する記述はない。また、組織はフェライトとマルテンサイトの2相組織である。したがって、低加工度の部材においては十分な缶体強度が確保できず、缶体にビード加工や幾何学的形状を付与した場合、シワが発生するおそれがある。 However, although Patent Document 1 describes strength and ductility, it does not describe upper yield stress and low yield elongation. The structure is a two-phase structure of ferrite and martensite. Therefore, sufficient strength of the can body cannot be ensured in the member having a low degree of processing, and wrinkles may occur when the can body is beaded or geometrically shaped.

また、特許文献2にも、上降伏応力および低降伏伸びに関する記述がなく、特許文献1と同様に、加工後の缶体強度の低下や缶体へのシワが発生してしまうおそれがある。加えて、2次圧延を施さなければならず高コストであるという問題がある。 Further, Patent Document 2 does not describe the upper yield stress and the low yield elongation, and as in Patent Document 1, there is a possibility that the strength of the can body after processing may decrease and wrinkles may occur on the can body. In addition, there is a problem that secondary rolling must be performed and the cost is high.

従って、優れた成形性を有して缶体にビード加工や幾何学的形状を付与することができ、いかなる加工度においてもシワが発生せず、優れた缶体強度を有する極薄鋼板およびその製造方法の実現が求められている。 Therefore, an ultra-thin steel sheet having excellent formability, bead processing and geometric shape can be imparted to the can body, wrinkles do not occur at any degree of processing, and the can body has excellent strength. Realization of a manufacturing method is required.

本発明は、前述の従来技術に係る問題に鑑みてなる。すなわち、優れた延性(全伸び≧15%)、高強度(TS≧500MPa)、低降伏伸び(≦10%)および十分な上降伏応力(≧400MPa)を兼備し、とりわけ容器用に供する板厚が0.1mm以上1.0mm以下の高強度薄鋼板およびその製造方法を提供することを目的とする。 The present invention is made in view of the above-mentioned problems related to the prior art. That is, it has excellent ductility (total elongation ≧ 15%), high strength (TS ≧ 500MPa), low yield elongation (≦ 10%) and sufficient top yield stress (≧ 400MPa), and is especially used for containers. It is an object of the present invention to provide a high-strength thin steel sheet having a thickness of 0.1 mm or more and 1.0 mm or less and a method for manufacturing the same.

発明者らは、上記の課題を解決すべく鋭意研究した。その結果、金属組織をフェライト、マルテンサイトおよびベイナイトを含む複合組織とすることで、特に、降伏伸びが10%以下かつ上降伏応力が400MPa以上の高強度鋼板が得られることを見出した。すなわち、延性向上に寄与する軟質なフェライト、強度向上および降伏伸び低減に寄与する硬質なマルテンサイトの2相組織に加えて、ベイナイトを形成することで、延性の低下や降伏伸びの増加を低減しつつ、鋼の降伏強度を増加させることに成功した。
これにより、いかなる加工度においてもシワを発生させることなく優れた缶体強度を有する異形缶に最適な高強度鋼板が得られる。
The inventors have worked diligently to solve the above problems. As a result, it was found that by using a composite structure containing ferrite, martensite and bainite as the metal structure, a high-strength steel sheet having a yield elongation of 10% or less and a top yield stress of 400 MPa or more can be obtained. That is, by forming bainite in addition to the two-phase structure of soft ferrite that contributes to the improvement of ductility and hard martensite that contributes to the improvement of strength and reduction of yield elongation, the decrease in ductility and the increase in yield elongation are reduced. At the same time, we succeeded in increasing the yield strength of steel.
As a result, a high-strength steel plate that is most suitable for deformed cans having excellent can body strength without causing wrinkles at any degree of processing can be obtained.

また、製造条件としては、焼鈍工程の加熱速度、焼鈍温度、焼鈍後の冷却速度および冷却停止温度での保持時間、保持後の冷却速度を適正に制御することが、上記複合組織の制御に適していることを併せて見出した。 Further, as the manufacturing conditions, it is suitable for controlling the composite structure to appropriately control the heating rate in the annealing step, the annealing temperature, the cooling rate after annealing, the holding time at the cooling stop temperature, and the cooling rate after holding. I also found that it was.

本発明は以上の知見に基づきなされたもので、その要旨は以下の通りである。
1.質量%で、
C:0.03%以上0.13%以下、
Si:0.05%以下、
Mn:0.01%以上0.6%以下、
P:0.025%以下、
S:0.020%以下、
Al:0.01%以上0.20%以下、
N:0.0001%以上0.02%以下、
Ti:0.005%以上0.02%以下および
B:0.0005%以上0.02%以下、
を含有し、残部が鉄および不可避的不純物の成分組成を有し、
面積率で、84.0%以上のフェライト、0.5%以上10.0%以下のマルテンサイトおよび0.1%以上10.0%以下のベイナイトを含む金属組織を有する、鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
1. 1. By mass%,
C: 0.03% or more and 0.13% or less,
Si: 0.05% or less,
Mn: 0.01% or more and 0.6% or less,
P: 0.025% or less,
S: 0.020% or less,
Al: 0.01% or more and 0.20% or less,
N: 0.0001% or more and 0.02% or less,
Ti: 0.005% or more and 0.02% or less and
B: 0.0005% or more and 0.02% or less,
The balance has a composition of iron and unavoidable impurities,
Steel sheet having a metal structure containing ferrite of 84.0% or more, martensite of 0.5% or more and 10.0% or less, and bainite of 0.1% or more and 10.0% or less in area ratio.

2.前記成分組成に加えて質量%で、
Mo:0.05%以下、
Ni:0.15%以下、
Cr:0.10%以下、
V:0.02%以下、
Nb:0.02%以下および
Cu:0.02%以下
より選ばれる1種または2種以上を含有する、前記1に記載の鋼板。
2. 2. In addition to the above component composition, by mass%,
Mo: 0.05% or less,
Ni: 0.15% or less,
Cr: 0.10% or less,
V: 0.02% or less,
Nb: 0.02% or less and
Cu: The steel sheet according to 1 above, which contains one or more selected from 0.02% or less.

3.前記フェライトの平均結晶粒径が10μm以下である、前記1又は2に記載の鋼板。
4.缶用鋼板である、前記1~3のいずれかに記載の鋼板。
3. 3. The steel sheet according to 1 or 2 above, wherein the average crystal grain size of the ferrite is 10 μm or less.
4. The steel plate according to any one of 1 to 3, which is a steel plate for cans.

5.前記1~4のいずれかに記載の鋼板を製造する方法であって、
前記1又は2に記載の成分組成を有する鋼素材を1150℃以上に加熱し、仕上げ温度800℃以上950℃以下、巻き取り温度700℃以下にて熱間圧延を施す熱間圧延工程、該熱間圧延工程を経た熱延板に圧下率80%以上の冷間圧延を施す冷間圧延工程および、該冷間圧延工程を経た冷延板に平均加熱速度10℃/s以上で加熱を施し、700℃以上900℃以下の温度域で5秒以上90秒以下保持後、平均冷却速度50℃/s以上で150℃以上600℃以下の温度域まで冷却する焼鈍工程を備える、鋼板の製造方法。
5. The method for manufacturing the steel sheet according to any one of 1 to 4 above, wherein the steel sheet is manufactured.
A hot rolling step in which a steel material having the component composition described in 1 or 2 is heated to 1150 ° C. or higher and hot-rolled at a finishing temperature of 800 ° C. or higher and 950 ° C. or lower and a winding temperature of 700 ° C. or lower. A cold rolling process in which a hot rolled plate that has undergone an annealing process is cold-rolled with a rolling reduction of 80% or more, and a cold-rolled plate that has undergone the cold rolling process are heated at an average heating rate of 10 ° C./s or more. A method for manufacturing steel sheets, which comprises a rolling step of cooling to a temperature range of 150 ° C or more and 600 ° C or less at an average cooling rate of 50 ° C / s or more after holding for 5 seconds or more and 90 seconds or less in a temperature range of 700 ° C or more and 900 ° C or less.

6.前記焼鈍工程を経た焼鈍板を前記150℃以上600℃以下の温度域にて300秒以下で保持し、その後、さらに平均冷却速度10℃/s以上で150℃未満の温度域まで冷却する、前記5に記載の鋼板の製造方法。 6. The annealed sheet that has undergone the annealing step is held in the temperature range of 150 ° C. or higher and 600 ° C. or lower for 300 seconds or less, and then further cooled to a temperature range of less than 150 ° C. at an average cooling rate of 10 ° C./s or higher. 5. The method for manufacturing a steel sheet according to 5.

本発明によれば、15%以上の全伸び、500MPa以上の引張強さ、10%以下の低降伏伸び、400MPa以上の上降伏応力を有する高強度極薄鋼板が得られる。
また、本発明により得られる高強度鋼板を異形缶に適用した場合、高い延性(全伸び)を有するため、拡缶加工・ビード加工などの強い缶胴加工や、フランジ加工などを行うことが可能となる。加えて、鋼板の高強度化により缶の薄肉化の進行に伴う強度低下を補償し、高い缶体強度を確保することが可能である。さらに、低い降伏伸びを有することから、缶体にシワが発生することもない。
According to the present invention, a high-strength ultrathin steel sheet having a total elongation of 15% or more, a tensile strength of 500 MPa or more, a low yield elongation of 10% or less, and a top yield stress of 400 MPa or more can be obtained.
Further, when the high-strength steel plate obtained by the present invention is applied to a deformed can, it has high ductility (total elongation), so that it is possible to perform strong can body processing such as can expansion processing and bead processing, and flange processing. Will be. In addition, by increasing the strength of the steel sheet, it is possible to compensate for the decrease in strength due to the progress of thinning of the can and to secure high strength of the can body. Furthermore, since it has a low yield elongation, wrinkles do not occur on the can body.

以下、本発明の高強度鋼板の成分組成と組織の適正範囲およびその限定理由について説明する。なお、以下の成分組成を表す「%」は、特に断らない限り「質量%」を意味するものとする。また、延性と低降伏伸びの両方に優れた場合を、加工性に優れたとも称する。さらに、引張強さと上降伏応力の両方に優れた場合を、高強度とも称する。 Hereinafter, the component composition and the appropriate range of the structure of the high-strength steel sheet of the present invention and the reasons for their limitation will be described. In addition, "%" representing the following component composition means "mass%" unless otherwise specified. Further, the case where both ductility and low yield elongation are excellent is also referred to as excellent workability. Further, the case where both the tensile strength and the upper yield stress are excellent is also referred to as high strength.

C:0.03%以上0.13%以下
Cは、鋼の強度に寄与する元素であり、固溶強化および析出強化あるいはマルテンサイトおよびベイナイトの形成により鋼の強度を増加させる。C含有量が0.03%未満となると、マルテンサイトおよびベイナイトの面積率が低下し強度が低下する。そのため、C含有量は0.03%以上とする必要がある。一方、過度の含有は強度上昇による延性の低下を招くとともに、過剰なマルテンサイトの形成、固溶Cの増加による降伏伸びの増加の原因となる場合があるため、上限は0.13%とする。したがって、本発明において、Cは0.03%以上0.13%以下とする。強度と成形性を高い水準で両立させるために、下限は好ましくは0.05%以上である。上限は好ましくは0.09%以下である。
C: 0.03% or more and 0.13% or less
C is an element that contributes to the strength of steel and increases the strength of steel by solid solution strengthening and precipitation strengthening or the formation of martensite and bainite. When the C content is less than 0.03%, the area ratio of martensite and bainite decreases and the strength decreases. Therefore, the C content should be 0.03% or more. On the other hand, the upper limit is 0.13% because excessive content may cause a decrease in ductility due to an increase in strength and may cause an increase in yield elongation due to the formation of excessive martensite and an increase in solid solution C. Therefore, in the present invention, C is 0.03% or more and 0.13% or less. In order to achieve both strength and moldability at a high level, the lower limit is preferably 0.05% or more. The upper limit is preferably 0.09% or less.

Si:0.05%以下
Siは、0.05%を超えて含有すると耐食性が著しく損なわれる。したがって、Si含有量は0.05%以下とする。より優れた耐食性を得るために、好ましくは0.03%以下である。一方、Siは固溶強化による鋼の高強度化に寄与する元素である。この作用を得るためには0.01%以上含有させることが好ましい。
Si: 0.05% or less
If Si is contained in excess of 0.05%, the corrosion resistance is significantly impaired. Therefore, the Si content should be 0.05% or less. In order to obtain better corrosion resistance, it is preferably 0.03% or less. On the other hand, Si is an element that contributes to increasing the strength of steel by solid solution strengthening. In order to obtain this effect, it is preferable to contain 0.01% or more.

Mn:0.01%以上0.6%以下
Mnは本発明において重要な添加元素の1つである。Mnは、固溶強化あるいはマルテンサイト、ベイナイトを所望量生成させることにより、鋼の高強度化に寄与する元素である。よって、本発明で目的とする鋼板の強度および成形性を得るためには、Mn含有量は0.01%以上にする必要がある。Mn含有量が0.01%に満たないと、マルテンサイトおよびベイナイトを所望量生成させることができず、目的の強度および成形性を得ることができない。一方、0.6%を超えて含有すると、焼入れ性の向上によって、マルテンサイトが過剰に生成され、所望量のベイナイトを生成することができない。このように所望量のベイナイトが生成できないと、低加工度における缶体強度を担保する上降伏応力が低下し、低加工度における缶体強度が低下することで製品不良の原因となる。したがって、Mnは0.01%以上0.6%以下の範囲とする。好ましくは0.3%以上0.6%以下の範囲である。
Mn: 0.01% or more and 0.6% or less
Mn is one of the important additive elements in the present invention. Mn is an element that contributes to increasing the strength of steel by solid solution strengthening or the formation of martensite and bainite in desired amounts. Therefore, in order to obtain the strength and formability of the steel sheet aimed at in the present invention, the Mn content needs to be 0.01% or more. If the Mn content is less than 0.01%, the desired amount of martensite and bainite cannot be produced, and the desired strength and moldability cannot be obtained. On the other hand, if it is contained in excess of 0.6%, martensite is excessively produced due to the improvement in hardenability, and a desired amount of bainite cannot be produced. If a desired amount of bainite cannot be produced in this way, the yield stress that guarantees the strength of the can body at a low degree of processing decreases, and the strength of the can body at a low degree of processing decreases, which causes a product defect. Therefore, Mn is in the range of 0.01% or more and 0.6% or less. It is preferably in the range of 0.3% or more and 0.6% or less.

P:0.025%以下
Pは、0.025%を超えると鋼板が過剰に硬化して延性が低下するほか、溶接性を低下させる。したがって、P含有量は0.025%以下とする。好ましくは0.020%以下である。一方、Pは、鋼中に不可避的に混入する元素であるが、鋼の強化には有効である。そのため、0.001%以上含有させることが好ましい。
P: 0.025% or less
If P exceeds 0.025%, the steel sheet will be excessively hardened and the ductility will decrease, and the weldability will also decrease. Therefore, the P content should be 0.025% or less. It is preferably 0.020% or less. On the other hand, P is an element that is inevitably mixed in steel, but it is effective for strengthening steel. Therefore, it is preferable to contain 0.001% or more.

S:0.020%以下
Sは、鋼中に不可避的に混入する元素であり、MnSなどの介在物を生成して延性を低下させる。そのため、S含有量は0.020%以下とする。好ましくは0.015%以下である。一方、S含有量の下限は特に限定されないが、工業的には0.001%程度とするのが好ましい。なお、0.005%未満とすると鋼の精製に過剰なコストがかかるため、0.005%以上含まれるものとしても本発明に影響を与えない。
S: 0.020% or less
S is an element that is inevitably mixed in steel and forms inclusions such as MnS to reduce ductility. Therefore, the S content should be 0.020% or less. It is preferably 0.015% or less. On the other hand, the lower limit of the S content is not particularly limited, but industrially, it is preferably about 0.001%. If it is less than 0.005%, excessive cost is required for refining the steel, and even if it is contained in 0.005% or more, it does not affect the present invention.

Al:0.01%以上0.20%以下
Alは、脱酸剤として含有させる元素であり、さらに鋼中のNとAlNを形成することで、鋼中の固溶Nを減少させ、降伏伸びの低下に寄与する。この作用を得るためには0.01%以上の含有を要し、好ましくは0.03%以上である。一方、過剰に添加するとアルミナが多量に生成し延性を低下させるため、Al含有量を0.20%以下とする必要がある。好ましくは0.08%以下である。
Al: 0.01% or more and 0.20% or less
Al is an element contained as a deoxidizing agent, and further forms N and AlN in steel to reduce solid solution N in steel and contribute to a decrease in yield elongation. In order to obtain this effect, a content of 0.01% or more is required, preferably 0.03% or more. On the other hand, if it is added in an excessive amount, a large amount of alumina is generated and the ductility is lowered, so that the Al content needs to be 0.20% or less. It is preferably 0.08% or less.

N:0.0001%以上0.02%以下
Nは、Alなどの炭窒化物形成元素と結びつくことで析出物を形成し、強度向上や組織の微細化に寄与する。この効果を得るためには、0.0001%以上の含有が必要である。一方、固溶Nは降伏伸びを増加させる作用があるため、Nの0.02%超の添加は、降伏伸びの増加によるシワ発生の原因となる。したがって、Nは0.0001%以上0.02%以下とする。下限は好ましくは0.0015%以上である。上限は好ましくは0.01%以下である。
N: 0.0001% or more and 0.02% or less
N forms a precipitate by combining with a carbonitride-forming element such as Al, and contributes to the improvement of strength and the miniaturization of the structure. In order to obtain this effect, the content must be 0.0001% or more. On the other hand, since the solid solution N has the effect of increasing the yield elongation, the addition of more than 0.02% of N causes wrinkles due to the increase in the yield elongation. Therefore, N is 0.0001% or more and 0.02% or less. The lower limit is preferably 0.0015% or more. The upper limit is preferably 0.01% or less.

Ti:0.005%以上0.02%以下
Tiは、本発明において重要な添加元素の1つである。Tiは、析出強化元素として強度増加に有効であるほか、鋼中のNとTiNを形成しBNの生成を抑制することで、Bの焼入れ性向上効果を十分に得ることができる。この作用を得るためには、0.005%以上の含有が必要である。一方で、Tiの過剰添加は強度上昇による加工性の低下を招くので、上限は0.02%である。したがって、Ti含有量は0.005%以上0.02%以下とする。好ましくは、0.005%以上0.015%以下である。
Ti: 0.005% or more and 0.02% or less
Ti is one of the important additive elements in the present invention. Ti is effective for increasing strength as a precipitation strengthening element, and by forming N and TiN in steel and suppressing the formation of BN, the effect of improving the hardenability of B can be sufficiently obtained. In order to obtain this effect, a content of 0.005% or more is required. On the other hand, excessive addition of Ti causes a decrease in workability due to an increase in strength, so the upper limit is 0.02%. Therefore, the Ti content should be 0.005% or more and 0.02% or less. Preferably, it is 0.005% or more and 0.015% or less.

B:0.0005%以上0.02%以下
Bは本発明において重要な添加元素の1つである。Bは、焼き入れ性を向上させる効果があり、焼鈍冷却過程で起こるフェライトの生成を抑制し、所望量のマルテンサイトおよびベイナイトの生成に寄与する。この作用を得るためには、0.0005%以上の含有が必要である。一方で、その効果は0.02%で飽和する。したがって、Bは0.0005%以上0.02%以下とする。下限は好ましくは0.0015%以上である。上限は好ましくは0.01%以下である。
B: 0.0005% or more and 0.02% or less
B is one of the important additive elements in the present invention. B has the effect of improving the quenchability, suppresses the formation of ferrite that occurs in the annealing cooling process, and contributes to the formation of desired amounts of martensite and bainite. In order to obtain this effect, a content of 0.0005% or more is required. On the other hand, the effect saturates at 0.02%. Therefore, B is 0.0005% or more and 0.02% or less. The lower limit is preferably 0.0015% or more. The upper limit is preferably 0.01% or less.

本発明の鋼板は、以上の成分元素を必須として、残部は鉄および不可避的不純物とする。上記の必須元素を含有することで、本発明の鋼板は目的とする特性が得られるが、上記の必須元素に加え、さらに必要に応じて以下の元素を含有することができる。 The steel sheet of the present invention requires the above component elements as essential, and the balance is iron and unavoidable impurities. By containing the above essential elements, the steel sheet of the present invention can obtain the desired properties, but in addition to the above essential elements, the following elements can be further contained, if necessary.

Mo:0.05%以下、Ni:0.15%以下、Cr:0.10%以下、V:0.02%以下、Nb:0.02%以下、およびCu:0.02%以下より選ばれる1種または2種以上
Mo、Ni、Cr、V、Nbは、何れも焼入れ性を向上させる作用を有し、鋼の強化元素として有用である。また、NbおよびCuは析出強化元素であり、強度増加を図るうえで特に有効である。よって、任意で、かかる元素より選ばれる1種または2種以上を添加することができる。なお、それぞれの上限を超えて添加してもそれ以上の添加効果の向上は望めないことから、いずれも上記の範囲が適切である。下限は0%である。
Mo: 0.05% or less, Ni: 0.15% or less, Cr: 0.10% or less, V: 0.02% or less, Nb: 0.02% or less, and Cu: 0.02% or less.
Mo, Ni, Cr, V, and Nb all have the effect of improving hardenability and are useful as reinforcing elements for steel. In addition, Nb and Cu are precipitation-strengthening elements and are particularly effective in increasing the strength. Therefore, optionally, one or more selected from such elements can be added. It should be noted that the above range is appropriate in each case because further improvement in the addition effect cannot be expected even if the addition exceeds each upper limit. The lower limit is 0%.

本発明の高強度鋼板は、板厚tが0.10mm以上1.0mm以下であることが好ましい。板厚が1.0mm以下であれば、結晶粒の微細化に必要な冷間圧延率を確保することが容易となる。一方、製品板厚が0.10mm以上であれば、比較的小さな荷重で圧延が可能となるため、圧延機への負荷を小さくできる。また、板厚が0.40mm以下であると、本発明の効果がより一層顕著に現れるので、より好ましくは0.10mm以上0.40mm以下である。 The high-strength steel plate of the present invention preferably has a plate thickness t of 0.10 mm or more and 1.0 mm or less. When the plate thickness is 1.0 mm or less, it becomes easy to secure the cold rolling ratio required for the miniaturization of crystal grains. On the other hand, if the product plate thickness is 0.10 mm or more, rolling can be performed with a relatively small load, so that the load on the rolling mill can be reduced. Further, when the plate thickness is 0.40 mm or less, the effect of the present invention appears more remarkably, so that it is more preferably 0.10 mm or more and 0.40 mm or less.

次に、本発明の高強度鋼板の重要な要件である金属組織について説明する。本発明の高強度鋼板の鋼組織は、主としてフェライトとマルテンサイトとベイナイトとの複合組織である。 Next, the metal structure, which is an important requirement for the high-strength steel sheet of the present invention, will be described. The steel structure of the high-strength steel plate of the present invention is mainly a composite structure of ferrite, martensite and bainite.

フェライトの面積率:84.0%以上
フェライトは鋼の延性向上に寄与する。フェライトの面積率が84.0%未満になると、所望する延性の確保が困難になるため、フェライトの面積率は、84.0%以上とする。好ましくは90.0%以上である。一方で、フェライトの面積率が99.4%超になるとマルテンサイトおよび/またはベイナイトの所望の面積率が確保できず、所望の強度および成形性を得ることができない。したがって、フェライトの面積率は、84.0%以上99.4%以下とする。下限は好ましくは90.0%以上である。上限は好ましくは98.0%以下である。
Area ratio of ferrite: 84.0% or more Ferrite contributes to improving the ductility of steel. If the area ratio of ferrite is less than 84.0%, it becomes difficult to secure the desired ductility. Therefore, the area ratio of ferrite should be 84.0% or more. It is preferably 90.0% or more. On the other hand, when the area ratio of ferrite exceeds 99.4%, the desired area ratio of martensite and / or bainite cannot be secured, and the desired strength and moldability cannot be obtained. Therefore, the area ratio of ferrite shall be 84.0% or more and 99.4% or less. The lower limit is preferably 90.0% or more. The upper limit is preferably 98.0% or less.

マルテンサイトの面積率:0.5%以上10.0%以下
マルテンサイトの面積率が10.0%超になると強度が過剰に上昇し、延性が低下するため、マルテンサイトの面積率は10.0%以下とする。一方で、マルテンサイトの面積率が0.5%未満であると所望の強度を得ることができない。したがって、マルテンサイトの面積率は、0.5%以上10.0%以下とする。下限は好ましくは3.0%以上である。上限は好ましくは8.0%以下である。
Area ratio of martensite: 0.5% or more and 10.0% or less When the area ratio of martensite exceeds 10.0%, the strength increases excessively and the ductility decreases, so the area ratio of martensite should be 10.0% or less. On the other hand, if the area ratio of martensite is less than 0.5%, the desired strength cannot be obtained. Therefore, the area ratio of martensite shall be 0.5% or more and 10.0% or less. The lower limit is preferably 3.0% or more. The upper limit is preferably 8.0% or less.

ベイナイトの面積率:0.1%以上10.0%以下
ベイナイトは本発明において重要な組織である。ベイナイトは、鋼の伸びを低下させたり降伏伸びを増加させることなく、上降伏強度と引張強さを増加させることができる。そのため、鋼中にベイナイトを適正量生成させることで、強度と成形性の両方に優れた鋼を得ることができる。かかる作用を得るためには、ベイナイトの面積率が0.1%以上必要である。一方で、ベイナイトの面積率が10.0%を超えると強度が過剰に増加し、延性が低下する。したがって、ベイナイトの面積率は0.1%以上10.0%以下とする。下限は好ましくは0.5%以上である。上限は好ましくは5.0%以下である。
Area ratio of bainite: 0.1% or more and 10.0% or less Bainite is an important tissue in the present invention. Bainite can increase the top yield strength and tensile strength without reducing the elongation of the steel or increasing the yield elongation. Therefore, by generating an appropriate amount of bainite in the steel, it is possible to obtain a steel having excellent strength and formability. In order to obtain such an effect, the area ratio of bainite needs to be 0.1% or more. On the other hand, when the area ratio of bainite exceeds 10.0%, the strength increases excessively and the ductility decreases. Therefore, the area ratio of bainite shall be 0.1% or more and 10.0% or less. The lower limit is preferably 0.5% or more. The upper limit is preferably 5.0% or less.

なお、前記金属組織において、フェライト、マルテンサイトおよびベイナイト以外の残部は特に限定する必要はない。例えば、残留オーステナイト、セメンタイト、パーライト等が含まれていてもよいものとする。かかる残部の組織は面積率で10.0%以下であれば、本発明に影響を与えない。もちろん、残部の組織がなくても(0%でも)よい。 In the metal structure, the rest other than ferrite, martensite and bainite need not be particularly limited. For example, retained austenite, cementite, pearlite and the like may be contained. If the area ratio of the remaining structure is 10.0% or less, the present invention is not affected. Of course, there may be no remaining tissue (0%).

フェライト平均結晶粒径:10.0μm以下
本発明の高強度鋼板の組織におけるフェライト平均結晶粒径を10.0μm以下とすることで、結晶粒微細化強化により強度の向上を図ることができる。ほかにも、フェライト粒の細粒化により粒界が増加し、オーステナイトの析出サイトとなる粒界三重点が増加することで、焼鈍中にオーステナイトが析出しやすくなることや、微細粒化によりフェライト粒中の固溶Cと粒界三重点の距離が短くなり、固溶Cが粒界に吐き出されやすくなることで、焼鈍中にオーステナイトの面積率が増加し、冷却中のマルテンサイトおよびベイナイトの形成に寄与し、焼き入れ性を向上させる効果がある。よって、フェライト平均結晶粒径は10.0μm以下が好ましい。より好ましくは、7.0μm以下である。フェライト平均結晶粒径の下限に制限はないが、延性の低下防止の観点からは3.0μm以上が好ましい。
Ferrite average crystal grain size: 10.0 μm or less By setting the ferrite average crystal grain size in the structure of the high-strength steel plate of the present invention to 10.0 μm or less, the strength can be improved by strengthening the crystal grain miniaturization. In addition, the grain boundaries increase due to the refinement of ferrite grains, and the number of grain boundary triple points that serve as austenite precipitation sites increases, which makes it easier for austenite to precipitate during quenching, and ferrite due to fine granulation. The distance between the solid-dissolved C in the grain and the grain boundary triple point is shortened, and the solid-dissolved C is easily discharged to the grain boundary, which increases the area ratio of austenite during quenching and increases the area ratio of austenite and bainite during cooling. It contributes to formation and has the effect of improving hardenability. Therefore, the average ferrite grain size is preferably 10.0 μm or less. More preferably, it is 7.0 μm or less. There is no limit to the lower limit of the ferrite average crystal grain size, but 3.0 μm or more is preferable from the viewpoint of preventing a decrease in ductility.

次に、本発明の高強度鋼板の製造方法について説明する。
本発明の高強度鋼板の製造方法は、上記の鋼組成を有する鋼素材を1150℃以上に加熱し、仕上げ温度800℃以上950℃以下、巻き取り温度700℃以下にて熱間圧延を施す熱間圧延工程と、次いで、圧下率80%以上で冷間圧延を行う冷間圧延工程と、焼鈍温度までの平均加熱速度を10℃/s以上として加熱し、焼鈍温度を700℃以上900℃以下の範囲の温度として5秒以上90秒以下で保持後、150℃以上600℃以下の冷却停止温度まで平均冷却速度50℃/s以上で冷却する焼鈍工程とを備えることを特徴とする。
さらに、必要に応じて、前記焼鈍工程を経た焼鈍板を、150℃以上600℃以下の温度域にて300秒以下の間保持した後、10℃/s以上の冷却速度で150℃未満の温度域まで冷却することができる。
Next, a method for manufacturing the high-strength steel sheet of the present invention will be described.
In the method for producing a high-strength steel plate of the present invention, a steel material having the above steel composition is heated to 1150 ° C or higher, and hot rolling is performed at a finishing temperature of 800 ° C or higher and 950 ° C or lower and a winding temperature of 700 ° C or lower. An inter-rolling process, then a cold rolling process in which cold rolling is performed at a rolling reduction of 80% or more, and heating with an average heating rate of 10 ° C / s or more to the annealing temperature, and an annealing temperature of 700 ° C or more and 900 ° C or less. It is characterized by being provided with an annealing step of cooling at an average cooling rate of 50 ° C./s or more to a cooling stop temperature of 150 ° C. or more and 600 ° C. or less after holding the temperature in the range of 5 seconds or more and 90 seconds or less.
Further, if necessary, the annealed plate that has undergone the annealing step is held in a temperature range of 150 ° C. or higher and 600 ° C. or lower for 300 seconds or less, and then at a cooling rate of 10 ° C./s or higher and a temperature of less than 150 ° C. It can be cooled to the range.

鋼素材の加熱温度:1150℃以上
熱間圧延前における鋼素材の加熱温度が低すぎるとTiNの一部が未溶解となり、成形性を低下させる粗大TiNの生成要因となるおそれがあるため、加熱温度を1150℃以上とする。一方、鋼素材の加熱温度の上限に制限はないが、鋼の加熱コストの低減と加熱炉の耐久性維持のため、好ましくは1250℃以下である。
Heating temperature of steel material: 1150 ° C or higher If the heating temperature of the steel material before hot rolling is too low, part of TiN will be undissolved, which may cause the formation of coarse TiN that reduces formability. The temperature should be 1150 ° C or higher. On the other hand, although there is no limit to the upper limit of the heating temperature of the steel material, it is preferably 1250 ° C. or lower in order to reduce the heating cost of the steel and maintain the durability of the heating furnace.

仕上げ温度:800℃以上950℃以下
熱間圧延の仕上げ温度が950℃を超えると、熱間圧延後の組織が粗大化し、その後の冷延鋼板の粒径が増加することで強度低下の原因となるほか、オーステナイトの析出サイトとなる粒界三重点が減少し、所望の組織および特性が得られなくなる恐れがある。また、仕上げ温度が800℃に満たない場合には、フェライトとオーステナイトとの2相域での圧延となり、鋼板表層にフェライトの粗大粒が発生しその後の冷延鋼板の粒径が増加するほか、圧延後の冷却および巻き取り処理時にパーライトが生じ、そのパーライト中のセメンタイトが後の焼鈍工程でも溶解せずに残り、マルテンサイトなどの第2相の生成を阻害し、強度低下やYP-Elの増加を招くおそれがある。したがって、仕上げ圧延温度は800℃以上950℃以下の範囲に限定する。好ましくは850℃以上950℃以下である。
Finishing temperature: 800 ° C or higher and 950 ° C or lower When the finishing temperature of hot rolling exceeds 950 ° C, the structure after hot rolling becomes coarse and the grain size of the cold-rolled steel sheet increases thereafter, which causes a decrease in strength. In addition, the number of grain boundary triple points that serve as austenite precipitation sites may decrease, and the desired structure and properties may not be obtained. If the finishing temperature is less than 800 ° C, rolling is performed in the two-phase region of ferrite and austenite, coarse grains of ferrite are generated on the surface layer of the steel sheet, and the particle size of the subsequently cold-rolled steel sheet increases. Pearlite is generated during the cooling and winding process after rolling, and the cementite in the pearlite remains undissolved even in the subsequent annealing step, which inhibits the formation of the second phase such as martensite, resulting in a decrease in strength and YP-El. May lead to an increase. Therefore, the finish rolling temperature is limited to the range of 800 ° C. or higher and 950 ° C. or lower. It is preferably 850 ° C. or higher and 950 ° C. or lower.

巻き取り温度:700℃以下
巻き取り温度が700℃を超えると、巻き取り時に結晶粒が粗大化しその後の冷延鋼板の粒径が増加することで強度低下の原因となる。ほかにも熱延鋼板に粗大な炭化物が形成し、焼鈍時に該粗大な炭化物が未固溶となり第2相の生成を阻害し、強度低下やYP-Elの増加を招くおそれがある。したがって、巻き取り温度は700℃以下とする。下限は特に限定されないが、低すぎると熱延鋼板が過剰に硬化して冷間圧延の作業性を阻害するおそれがあるため、巻取温度は450℃以上とすることが好ましい。より好ましくは、450℃以上650℃以下である。
Winding temperature: 700 ° C or less If the winding temperature exceeds 700 ° C, the crystal grains become coarse during winding and the grain size of the cold-rolled steel sheet increases thereafter, which causes a decrease in strength. In addition, coarse carbides are formed on the hot-rolled steel sheet, and the coarse carbides become unsolidified during annealing, which hinders the formation of the second phase, which may lead to a decrease in strength and an increase in YP-El. Therefore, the winding temperature should be 700 ° C or lower. The lower limit is not particularly limited, but if it is too low, the hot-rolled steel sheet may be excessively hardened and the workability of cold rolling may be hindered. Therefore, the winding temperature is preferably 450 ° C. or higher. More preferably, it is 450 ° C. or higher and 650 ° C. or lower.

冷間圧延における圧下率:80%以上
冷間圧延における圧下率を80%以上とすることによって、冷間圧延後の結晶粒が微細となり、強度の増加に寄与する。また、オーステナイトの析出サイトとなる粒界三重点の減少やフェライト粒中の固溶Cと粒界三重点の距離の減少により、焼鈍板のマルテンサイトおよびベイナイトの形成に寄与し,焼き入れ性を向上させる効果がある。一方、圧下率が95%を超えると圧延荷重が大幅に増加し、圧延機への負荷が高まる。したがって、圧下率は80%以上であることが必要であり、95%以下であることが好ましい。
Reduction rate in cold rolling: 80% or more By setting the reduction rate in cold rolling to 80% or more, the crystal grains after cold rolling become finer, which contributes to the increase in strength. In addition, by reducing the number of grain boundary triple points that are the precipitation sites of austenite and the decrease in the distance between the solid solution C and the grain boundary triple points in the ferrite grains, it contributes to the formation of martensite and bainite in the annealed plate, and improves the quenchability. It has the effect of improving. On the other hand, when the rolling reduction ratio exceeds 95%, the rolling load increases significantly and the load on the rolling mill increases. Therefore, the reduction rate needs to be 80% or more, and preferably 95% or less.

冷間圧延工程は、1回のみ行っても、中間焼鈍工程を挟んで2回以上行ってもよい。1回又は2回以上の冷間圧延工程を行った直後に焼鈍工程を行ってもよい。あるいは、1回又は2回以上の冷間圧延工程を行った後、焼鈍工程前に適宜ほかの常法に従う工程、例えば、酸洗などのクリーニング工程やレベラー加工などの形状矯正工程を行ってもよい。冷間圧延工程が2回以上の場合は、いずれかの圧下率が80%以上であればよい。 The cold rolling step may be performed only once, or may be performed twice or more with an intermediate annealing step in between. The annealing step may be performed immediately after the cold rolling process is performed once or twice or more. Alternatively, after performing one or more cold rolling steps, a step according to another conventional method as appropriate before the annealing step, for example, a cleaning step such as pickling or a shape correction step such as leveler processing may be performed. good. When the cold rolling process is performed twice or more, the rolling reduction ratio may be 80% or more.

焼鈍温度までの平均加熱速度が10℃/s以上
焼鈍温度までの平均加熱速度が10℃/s未満となると、焼鈍温度に達する前に鋼中のオーステナイトに焼入れ性元素の分配が完了してしまい、その後の冷却工程でベイナイトを得ることが困難となる。したがって、焼鈍温度までの平均加熱速度は10℃/s以上とする。一方、上限は特に制限はないが、工業的には、50℃/s以下が好ましい。
If the average heating rate to the annealing temperature is 10 ° C / s or more and the average heating rate to the annealing temperature is less than 10 ° C / s, the distribution of hardenable elements to austenite in the steel will be completed before the annealing temperature is reached. , It becomes difficult to obtain bainite in the subsequent cooling step. Therefore, the average heating rate up to the annealing temperature should be 10 ° C / s or higher. On the other hand, the upper limit is not particularly limited, but industrially, it is preferably 50 ° C./s or less.

焼鈍温度:700℃以上900℃以下
焼鈍温度(均熱温度)が700℃よりも低い場合、所望量のマルテンサイトおよびベイナイトを得ることが出来ず、鋼板の強度と成形性が低下する。一方、焼鈍温度を900℃超とすると、連続焼鈍においてヒートバックルなどの通板トラブルが発生しやすくなる。したがって、焼鈍温度は700℃以上900℃以下の範囲に制限する。より好ましくは、750℃以上820℃以下である。また、かかる焼鈍温度での保持時間は、5~90秒である。5秒より短い場合は、マルテンサイトおよびベイナイトと前組織となるオーステナイトの生成および焼き入れ性元素の分配が完了しないため、その後の冷却工程でマルテンサイトおよびベイナイトを得ることが困難となる。一方、90秒より長い場合は、鋼中のオーステナイトに焼入れ性元素の分配が完了してしまい、その後の冷却工程でベイナイトを得ることが困難となる。
なお、上記保持時間中の温度は、700℃以上900℃以下の範囲であればよく、必ずしも一定温度である必要はない。
Annealing temperature: 700 ° C or higher and 900 ° C or lower When the annealing temperature (soaking temperature) is lower than 700 ° C, the desired amounts of martensite and bainite cannot be obtained, and the strength and formability of the steel plate deteriorate. On the other hand, when the annealing temperature is more than 900 ° C, troubles such as heat buckles are likely to occur in continuous annealing. Therefore, the annealing temperature is limited to the range of 700 ° C or higher and 900 ° C or lower. More preferably, it is 750 ° C. or higher and 820 ° C. or lower. The holding time at the annealing temperature is 5 to 90 seconds. If it is shorter than 5 seconds, it becomes difficult to obtain martensite and bainite in the subsequent cooling step because the formation of martensite and bainite and the pre-structured austenite and the distribution of the quenchable element are not completed. On the other hand, if it is longer than 90 seconds, the distribution of the hardenable element to the austenite in the steel is completed, and it becomes difficult to obtain bainite in the subsequent cooling step.
The temperature during the holding time may be in the range of 700 ° C. or higher and 900 ° C. or lower, and does not necessarily have to be a constant temperature.

焼鈍保持後、冷却停止温度まで平均冷却速度50℃/s以上
平均冷却速度が50℃/sに満たない場合、冷却中にフェライトの成長およびベイナイトの過剰な生成が生じ、マルテンサイトの生成が抑制され、所望量のマルテンサイトが得られずに、鋼板の強度が低下する。従って、平均冷却速度は50℃/s以上とする。一方、上限は特に制限されないが、好ましくは、80℃/s以上250℃/s以下である。なお、この冷却は、ガス冷却の他、炉冷、気水冷却、ロール冷却および水冷などの1種または2種以上を組み合わせて行うことが可能である。
After annealing, the average cooling rate is 50 ° C / s or more until the cooling stop temperature. If the average cooling rate is less than 50 ° C / s, ferrite growth and excessive bainite formation occur during cooling, and martensite formation is suppressed. Therefore, the desired amount of martensite cannot be obtained, and the strength of the steel plate is lowered. Therefore, the average cooling rate should be 50 ° C / s or higher. On the other hand, the upper limit is not particularly limited, but is preferably 80 ° C./s or more and 250 ° C./s or less. In addition to gas cooling, this cooling can be performed by one type or a combination of two or more types such as furnace cooling, air-water cooling, roll cooling, and water cooling.

冷却停止温度:150℃以上600℃以下
焼鈍後の冷却停止温度を600℃以下とすることにより、マルテンサイト変態とベイナイト変態が生じ、所望量のマルテンサイトを得ることができる。一方、冷却停止温度を150℃未満としてもマルテンサイトの生成量増加に寄与せず、冷却コストが過剰となる。したがって、焼鈍後の冷却停止温度は150℃以上600℃以下とする。好ましい下限は200℃以上である。好ましい上限は400℃以下である。必要とするマルテンサイトおよびベイナイトの面積率に応じて上述の範囲内で冷却停止温度を決定することができる。
Cooling stop temperature: 150 ° C or more and 600 ° C or less By setting the cooling stop temperature after annealing to 600 ° C or less, martensitic transformation and bainite transformation occur, and a desired amount of martensite can be obtained. On the other hand, even if the cooling shutdown temperature is less than 150 ° C., it does not contribute to the increase in the amount of martensite produced, and the cooling cost becomes excessive. Therefore, the cooling shutdown temperature after annealing should be 150 ° C or higher and 600 ° C or lower. The preferred lower limit is 200 ° C. or higher. The preferred upper limit is 400 ° C. or lower. The cooling shutdown temperature can be determined within the above range depending on the area ratio of martensite and bainite required.

150℃以上600℃以下の温度域で300秒以下の間保持
上記冷却停止後に、600℃から150℃までの上記冷却停止温度域で保持することにより、未変態であるオーステナイトをベイナイトに変態させることができ、成形性を損なうことなく上降伏応力を上昇させることができる。この保持時間が300秒を超える場合、かかる保持中にマルテンサイトの焼戻しが生じるため、強度が低下する。また、本発明においては、150℃以上600℃の温度域で300秒以下の時間、鋼板を維持できれば所望のベイナイトを生成することができる。そのため、冷却停止後に、冷却停止温度と同一の温度で保持せずに、続けて緩冷却することも可能である。また前記温度域内の所定温度での保持と緩冷却とを任意の順序および回数で組み合わせてもよい。なお、保持温度が150℃を下回るとベイナイト変態が生じないため、所望の上降伏強さが得にくくなる。したがって、本発明では、上記冷却停止後に、600℃から150℃までの温度域での保持時間を300秒以下とする。なお、かかる保持時間の下限は特に限定されないが、工業的には、20秒程度が好ましい。
Holding for 300 seconds or less in a temperature range of 150 ° C or higher and 600 ° C or lower After the cooling stop, the untransformed austenite is transformed into bainite by holding it in the cooling stop temperature range from 600 ° C to 150 ° C. It is possible to increase the top yield stress without impairing the formability. If this retention time exceeds 300 seconds, the strength will decrease due to the tempering of martensite during such retention. Further, in the present invention, desired bainite can be produced if the steel sheet can be maintained for a time of 300 seconds or less in a temperature range of 150 ° C. or higher and 600 ° C. or lower. Therefore, after the cooling is stopped, it is possible to continue slow cooling without keeping the temperature at the same temperature as the cooling stop temperature. Further, holding at a predetermined temperature within the temperature range and slow cooling may be combined in any order and number of times. If the holding temperature is lower than 150 ° C., bainite transformation does not occur, so that it becomes difficult to obtain the desired yield strength. Therefore, in the present invention, after the cooling is stopped, the holding time in the temperature range from 600 ° C to 150 ° C is set to 300 seconds or less. The lower limit of the holding time is not particularly limited, but industrially, about 20 seconds is preferable.

前記温度域での保持後、150℃未満の温度域まで平均冷却速度10℃/s以上で冷却
前記150℃以上600℃以下の温度域で300秒以下の間保持した後、さらに150℃未満の温度域の最終冷却停止温度まで10℃/s以上で冷却することが好ましい。本工程により、必要以上のベイナイトを生成せず、所望の特性に応じた鋼組織を得ることができる。またマルテンサイトの焼き戻しが生じることなく、強度の低下を抑えられる。平均冷却速度が10℃/s以下になると、過剰なベイナイトの生成やマルテンサイトの焼き戻しが生じるため、前記保持温度より150℃未満の温度域まで平均冷却速度10℃/s以上で冷却することが好ましい。平均冷却速度の上限は特に規定しないが、過剰な冷却速度は冷却コストの上昇につながるため、40℃/s以下が好ましい。最終冷却停止温度(150℃未満の温度域)の下限は室温である。
After holding in the above temperature range, cool to a temperature range of less than 150 ° C at an average cooling rate of 10 ° C / s or more. It is preferable to cool at 10 ° C./s or higher to the final cooling stop temperature in the temperature range. By this step, it is possible to obtain a steel structure according to a desired property without producing more bainite than necessary. In addition, the decrease in strength can be suppressed without tempering of martensite. When the average cooling rate is 10 ° C / s or less, excessive bainite formation and martensite tempering occur. Therefore, cool the temperature range below 150 ° C from the holding temperature at an average cooling rate of 10 ° C / s or more. Is preferable. The upper limit of the average cooling rate is not particularly specified, but an excessive cooling rate leads to an increase in cooling cost, so 40 ° C./s or less is preferable. The lower limit of the final cooling shutdown temperature (temperature range below 150 ° C) is room temperature.

調質圧延工程
焼鈍工程後、圧下率10%以下の調質圧延を行ってもよい。圧下率を大きくすると、加工時に導入される歪みが大きくなり、全伸びが低下する。本発明では15%以上の全伸びを確保する必要があるため、調質圧延工程を行う場合の圧下率は10%以下とすることが好ましい。また、圧下率の下限は特に規定しないが、調質圧延工程には上降伏応力を増加させる効果や降伏伸びを低減する役割があるため、用途に応じた圧下率とすることでより好ましい高強度鋼板を得ることができる。下限は好ましくは0.5%以上である。上限は、より好ましくは5%以下である。
Temperable rolling step After the annealing step, temper rolling with a rolling reduction of 10% or less may be performed. When the reduction rate is increased, the strain introduced during processing increases and the total elongation decreases. In the present invention, it is necessary to secure a total elongation of 15% or more, so that the rolling reduction ratio when performing the temper rolling step is preferably 10% or less. Although the lower limit of the rolling reduction is not particularly specified, the temper rolling process has the effect of increasing the top yield stress and the role of reducing the yield elongation, so it is more preferable to set the rolling ratio according to the application. A steel plate can be obtained. The lower limit is preferably 0.5% or more. The upper limit is more preferably 5% or less.

なお、調質圧延工程前に適宜ほかの常法に従う工程、例えば、酸洗などのクリーニング工程やレベラー加工などの形状矯正工程が含まれてもよい。焼鈍工程の直後に調質圧延工程を行ってもよい。かくして得られた冷延鋼板は、その後、必要に応じて、鋼板表面に、例えば電気めっきにより、錫めっき、クロムめっき、ニッケルめっき等のめっき処理を施してめっき層を形成し、めっき鋼板として使用に供してもよい。また、塗装焼付け処理工程、フィルムラミネート等の工程を行ってもよい。なお、めっき等の表面処理の膜厚は、板厚に対して十分に小さいため、鋼板の機械特性への影響は無視できる程度である。
以上の工程を経て、本発明の高強度鋼板が得られる。なお、上記に記載のない工程や条件は、鋼板の製造にかかる常法によればよい。
In addition, before the temper rolling step, a step according to another conventional method, for example, a cleaning step such as pickling and a shape straightening step such as leveler processing may be included. The temper rolling step may be performed immediately after the annealing step. The cold-rolled steel sheet thus obtained is then used as a plated steel sheet by subjecting the surface of the steel sheet to a plating treatment such as tin plating, chrome plating, or nickel plating, if necessary, by electroplating, for example. May be offered to. Further, a process such as a coating baking process and a film laminating process may be performed. Since the film thickness of the surface treatment such as plating is sufficiently small with respect to the plate thickness, the influence on the mechanical properties of the steel sheet is negligible.
Through the above steps, the high-strength steel plate of the present invention can be obtained. The processes and conditions not described above may be according to a conventional method for manufacturing a steel sheet.

表1に示す成分組成を含有し、残部はFeおよび不可避的不純物からなる鋼を転炉で溶製し、連続鋳造することにより鋼素材である鋼スラブを得た。ここで得られた鋼スラブに対し、表2に示すスラブ加熱温度、仕上圧延温度、巻取り温度での熱間圧延を施した。次いで、表2に示した圧下率で冷間圧延を行い、同じく表2に示した連続焼鈍条件にて連続焼鈍を行い、適宜、調質圧延(SKP)を施して試験用の各鋼板を得た。No.44の鋼板は、連続焼鈍工程における焼鈍保持を、第一の均熱温度:775℃に達した直後から21秒かけて第二の均熱温度:755℃まで低下させる緩冷却によって実施した。当該第一および第二の均熱温度での保持は行わなかったため、焼鈍保持時間は21秒であった。No.47の鋼板は、連続焼鈍工程における焼鈍後の冷却を600℃で停止し、続いて緩冷却しながら150℃までの温度域にて59秒間保持した。 A steel slab containing the composition shown in Table 1 and having the balance of Fe and unavoidable impurities was melted in a converter and continuously cast to obtain a steel slab as a steel material. The steel slab obtained here was subjected to hot rolling at the slab heating temperature, finish rolling temperature, and winding temperature shown in Table 2. Next, cold rolling is performed at the rolling reduction ratio shown in Table 2, continuous annealing is performed under the continuous annealing conditions also shown in Table 2, and temper rolling (SKP) is appropriately performed to obtain each steel sheet for testing. rice field. For the No. 44 steel sheet, the annealing retention in the continuous annealing process was carried out by slow cooling in which the second soaking temperature: 755 ° C was lowered over 21 seconds immediately after reaching the first soaking temperature: 775 ° C. .. Since the first and second soaking temperatures were not held, the annealing holding time was 21 seconds. The No. 47 steel sheet was kept at 600 ° C. for cooling after annealing in the continuous annealing step, and then held for 59 seconds in a temperature range up to 150 ° C. while slowly cooling.

Figure 0007014341000001
Figure 0007014341000001

Figure 0007014341000002
Figure 0007014341000003
Figure 0007014341000002
Figure 0007014341000003

組織全体に占める各組織の面積率は、次のように求めた。各鋼板から試験片を採取して、圧延方向断面で、圧延方向断面の板厚1/2位置の面にて3%ナイタール溶液でエッチングして粒界を現出させた。これを、走査型電子顕微鏡を用いて3000倍の倍率で写真撮影した。撮影した写真に、画像処理ソフト(Fiji、WEKA)を用いて画像処理を行って、視野全体に対する各組織の占有面積率を求めて、各組織の面積率とした。無作為に選んだ計5箇所の視野について同様の測定を行い、平均値を求めた。 The area ratio of each organization to the entire organization was calculated as follows. Test pieces were collected from each steel sheet and etched with a 3% nital solution on the surface at the plate thickness 1/2 position in the rolling direction cross section to reveal grain boundaries. This was photographed at a magnification of 3000 times using a scanning electron microscope. Image processing was performed on the photographed photographs using image processing software (Fiji, WEKA), and the occupied area ratio of each tissue with respect to the entire visual field was obtained and used as the area ratio of each tissue. Similar measurements were made for a total of 5 randomly selected visual fields, and the average value was calculated.

なお、比較的平滑な表面を有する塊状として観察される白色領域をマルテンサイトと見なし、その面積率をマルテンサイトの面積率とした。また、白色であるが塊状ではなく線状である領域をベイナイトとみなし、その面積率をベイナイトの面積率とした。塊状として観察される黒色領域で内部にマルテンサイトを含まないものをフェライトと見なし、その面積率をフェライトの面積率とした。 The white region observed as a mass having a relatively smooth surface was regarded as martensite, and the area ratio thereof was taken as the area ratio of martensite. Further, a region that was white but linear rather than lumpy was regarded as bainite, and the area ratio thereof was defined as the area ratio of bainite. The black region observed as a lump and not containing martensite inside was regarded as ferrite, and the area ratio thereof was taken as the area ratio of ferrite.

フェライト平均結晶粒径は、次のように求めた。各鋼板から試験片を採取し、圧延方向断面の板厚1/2位置の面にてフェライト組織を3%ナイタール溶液でエッチングして粒界を現出させた。これを、光学顕微鏡を用いて400倍の倍率で写真撮影した。撮影した写真を用い、JIS G 0551の鋼-結晶粒度の顕微鏡試験方法に準拠し、切断法により平均結晶粒径を測定して、フェライト平均結晶粒径とした。無作為に選んだ計3箇所について同様の測定を行い、平均値を求めた。 The ferrite average crystal grain size was determined as follows. A test piece was collected from each steel sheet, and the ferrite structure was etched with a 3% nital solution on the surface at the plate thickness 1/2 position in the cross section in the rolling direction to reveal grain boundaries. This was photographed at a magnification of 400 times using an optical microscope. Using the photographed photograph, the average crystal grain size was measured by the cutting method in accordance with the microscopic test method of steel-crystal grain size of JIS G 0551, and the ferrite average crystal grain size was obtained. Similar measurements were made on a total of three randomly selected locations to determine the average value.

機械特性
機械特性(引張強さTS、上降伏応力U-YP、降伏伸びYP-El、全伸びEl)は、圧延方向を長手方向(引張方向)とし、JIS Z 2241に記載の5号試験片を用い、JIS Z 2241に準拠した引張試験を行って評価した。
Mechanical properties Mechanical properties (tensile strength TS, top yield stress U-YP, yield elongation YP-El, total elongation El) have the rolling direction as the longitudinal direction (tensile direction), and the No. 5 test piece described in JIS Z 2241. Was evaluated by performing a tensile test in accordance with JIS Z 2241.

表3に評価結果を示す。発明例は、いずれも15%以上の全伸び、500MPa以上の引張強さ、10%以下の低降伏伸び、400MPa以上の上降伏応力を有する。よって、異形缶に適用した場合、高い延性(全伸び)を有するため、拡缶加工・ビード加工などの強い缶胴加工や、フランジ加工などを行うことが可能となる。また、400MPa以上の上降伏応力という鋼板の高強度化により缶の薄肉化の進行に伴う強度低下を補償し、500MPa以上の引張強さによって高い缶体強度を確保することが可能である。さらに、低い降伏伸びを有することから、缶体にシワが発生することもない。 Table 3 shows the evaluation results. All of the invention examples have a total elongation of 15% or more, a tensile strength of 500 MPa or more, a low yield elongation of 10% or less, and a top yield stress of 400 MPa or more. Therefore, when applied to a deformed can, it has high ductility (total elongation), so that it is possible to perform strong can body processing such as can expansion processing and bead processing, and flange processing. In addition, it is possible to compensate for the decrease in strength due to the progress of thinning of the can by increasing the strength of the steel sheet, which is the upper yield stress of 400 MPa or more, and to secure the high strength of the can body by the tensile strength of 500 MPa or more. Furthermore, since it has a low yield elongation, wrinkles do not occur on the can body.

一方、比較例では、全伸び、引張強さ、降伏伸び、上降伏応力のいずれか1つ以上が劣っていた。
すなわち、焼き入れ性や強度向上に寄与する元素の添加量が少ない鋼種(No.1,19,21)では、マルテンサイトや合金析出物が十分に形成できなかったため、引張強さや上降伏応力のいずれかまたは両方が要求特性未達となった。
On the other hand, in the comparative example, any one or more of total elongation, tensile strength, yield elongation, and upper yield stress was inferior.
That is, in the steel grades (No. 1, 19, 21) in which the amount of elements added that contribute to the improvement of hardenability and strength was small, martensite and alloy precipitates could not be sufficiently formed, so that the tensile strength and the yield yield stress increased. Either or both failed to meet the required characteristics.

反対に焼き入れ性や強度向上に寄与する元素が過剰に添加された鋼種(No.6,9,18,20)においては、マルテンサイトや合金析出物が過剰に形成されることで強度が向上したものの、全伸びは低下した。 On the other hand, in steel grades (No.6,9,18,20) to which elements that contribute to hardenability and strength improvement are excessively added, the strength is improved by the excessive formation of martensite and alloy precipitates. However, the total growth decreased.

仕上げ圧延出側温度が800℃以下のNo.31、巻取り温度が700℃以上のNo.32、あるいは圧下率80%以下のNo.33は、フェライト粒の粗大化が生じたとともに,所望のマルテンサイトが形成できなかったため、強度が低下した。特に、No.31およびNo.32は熱延時に生成したパーライトおよび炭化物が焼鈍後も溶け残っているため、YP-Elが増加した. No. 31 with a finish rolling output side temperature of 800 ° C or less, No. 32 with a take-up temperature of 700 ° C or more, or No. 33 with a reduction ratio of 80% or less causes coarsening of ferrite grains and is desired. Since martensite could not be formed, the strength decreased. In particular, in No. 31 and No. 32, YP-El increased because the pearlite and carbides produced during hot rolling remained undissolved even after annealing.

均熱温度が700℃以下のNo.34、冷却速度が50℃/s以下のNo.35、冷却停止温度が600℃以上のNo.39は、冷却中にフェライトの成長が生じたとともに、マルテンサイトではなくベイナイトが多く形成されたことで十分な強度と低降伏伸びが得られなかった。特に、No.39は、ベイナイト面積率が10%を超えているため、全伸びが低下し要求特性未達となった。 No. 34 with a soaking temperature of 700 ° C or less, No. 35 with a cooling rate of 50 ° C / s or less, and No. 39 with a cooling stop temperature of 600 ° C or more have ferrite growth during cooling and martensite. Sufficient strength and low yield elongation could not be obtained due to the formation of a large amount of bainite instead of sites. In particular, in No. 39, the bainite area ratio exceeded 10%, so the total elongation decreased and the required characteristics were not achieved.

冷却停止後保持時間が300秒以上のNo.40では、マルテンサイトの焼戻しが生じ、所望量のマルテンサイトを得ることが出来ずに強度がやや低下したものの実用上は問題のない程度である。 In No. 40, where the holding time after cooling is stopped is 300 seconds or more, the martensite is tempered, and the desired amount of martensite cannot be obtained and the strength is slightly lowered, but there is no problem in practical use.

調質圧延を10%以上施したNo.43においては、強度が増加し降伏伸びが低減された一方で延性が低下したものの実用上は問題のない程度である。 In No. 43, which had been subjected to temper rolling by 10% or more, the strength was increased and the yield elongation was reduced, but the ductility was reduced, but there was no problem in practical use.

焼鈍時の保持時間が5秒以下であるNo.45では、焼鈍時オーステナイトの生成ができずに所望量のマルテンサイトを得ることができず、強度が低下し降伏強度が増加した。 In No. 45, which had a retention time of 5 seconds or less during annealing, austenite could not be produced during annealing and a desired amount of martensite could not be obtained, resulting in a decrease in strength and an increase in yield strength.

焼鈍温度までの平均加熱速度が10℃/s未満であるNo.49では、所望量のベイナイトを得ることができず、降伏強度が低下した。焼鈍保持後、冷却停止温度まで平均冷却速度50℃/s以下であるNo.50では、マルテンサイトの生成が抑制され、所望量のマルテンサイトが得られずに、鋼板の強度が低下し降伏伸びが増加した。 In No. 49, where the average heating rate to the annealing temperature was less than 10 ° C./s, the desired amount of bainite could not be obtained, and the yield strength decreased. At No. 50, where the average cooling rate is 50 ° C / s or less until the cooling stop temperature after annealing, the formation of martensite is suppressed, the desired amount of martensite cannot be obtained, and the strength of the steel sheet decreases and yield elongation occurs. increased.

Figure 0007014341000004
Figure 0007014341000005
Figure 0007014341000004
Figure 0007014341000005

Claims (6)

質量%で、
C:0.03%以上0.13%以下、
Si:0.05%以下、
Mn:0.01%以上0.6%以下、
P:0.025%以下、
S:0.020%以下、
Al:0.01%以上0.20%以下、
N:0.0001%以上0.02%以下、
Ti:0.005%以上0.02%以下および
B:0.0005%以上0.02%以下、
を含有し、
残部が鉄および不可避的不純物の成分組成を有し、
面積率で、84.0%以上のフェライト、0.5%以上10.0%以下のマルテンサイト0.1%以上10.0%以下のベイナイトおよび0%以上10.0%以下の残部組織を含み、該フェライトの平均結晶粒径が3.0μm以上12.1μm以下である金属組織を有する、
鋼板。
By mass%,
C: 0.03% or more and 0.13% or less,
Si: 0.05% or less,
Mn: 0.01% or more and 0.6% or less,
P: 0.025% or less,
S: 0.020% or less,
Al: 0.01% or more and 0.20% or less,
N: 0.0001% or more and 0.02% or less,
Ti: 0.005% or more and 0.02% or less and
B: 0.0005% or more and 0.02% or less,
Contains,
The balance has a composition of iron and unavoidable impurities,
In terms of area ratio, it contains 84.0% or more ferrite, 0.5% or more and 10.0% or less martensite , 0.1% or more and 10.0% or less bainite, and 0% or more and 10.0% or less residual structure , and the average grain size of the ferrite is It has a metallographic structure of 3.0 μm or more and 12.1 μm or less .
Steel plate.
前記成分組成に加えて質量%で、
Mo:0.05%以下、
Ni:0.15%以下、
Cr:0.10%以下、
V:0.02%以下、
Nb:0.02%以下および
Cu:0.02%以下
より選ばれる1種または2種以上を含有する、請求項1に記載の鋼板。
In addition to the above component composition, by mass%,
Mo: 0.05% or less,
Ni: 0.15% or less,
Cr: 0.10% or less,
V: 0.02% or less,
Nb: 0.02% or less and
Cu: The steel sheet according to claim 1, which contains one or more selected from 0.02% or less.
前記フェライトの平均結晶粒径が10μm以下である、請求項1または2に記載の鋼板。 The steel sheet according to claim 1 or 2, wherein the average crystal grain size of the ferrite is 10 μm or less. 缶用鋼板である、請求項1~3のいずれか1項に記載の鋼板。 The steel sheet according to any one of claims 1 to 3, which is a steel sheet for cans. 請求項1~4のいずれか1項に記載の鋼板を製造する方法であって、
請求項1又は2に記載の成分組成を有する鋼素材を1150℃以上に加熱し、
仕上げ温度800℃以上950℃以下、巻き取り温度700℃以下にて熱間圧延を施す熱間圧延工程、
該熱間圧延工程を経た熱延板に圧下率80%以上の冷間圧延を施す冷間圧延工程および、
該冷間圧延工程を経た冷延板に平均加熱速度10℃/s以上で加熱を施し、700℃以上900℃以下の温度域で5秒以上90秒以下保持後、平均冷却速度50℃/s以上で150℃以上600℃以下の温度域まで冷却する焼鈍工程を備える、鋼板の製造方法。
The method for manufacturing a steel sheet according to any one of claims 1 to 4.
The steel material having the component composition according to claim 1 or 2 is heated to 1150 ° C. or higher, and then the steel material has a temperature of 1150 ° C. or higher.
Hot rolling process in which hot rolling is performed at a finishing temperature of 800 ° C or higher and 950 ° C or lower and a winding temperature of 700 ° C or lower.
A cold rolling process in which cold rolling with a rolling reduction of 80% or more is performed on a hot rolled plate that has undergone the hot rolling process, and a cold rolling process.
The cold-rolled sheet that has undergone the cold rolling process is heated at an average heating rate of 10 ° C / s or more, held in a temperature range of 700 ° C or more and 900 ° C or less for 5 seconds or more and 90 seconds or less, and then has an average cooling rate of 50 ° C / s. A method for manufacturing a steel sheet, which comprises an annealing process for cooling to a temperature range of 150 ° C. or higher and 600 ° C. or lower.
前記焼鈍工程を経た焼鈍板を前記150℃以上600℃以下の温度域にて300秒以下で保持し、その後、平均冷却速度10℃/s以上で150℃未満の温度域まで冷却する、請求項5に記載の鋼板の製造方法。
The claimed plate is held in the temperature range of 150 ° C. or higher and 600 ° C. or lower for 300 seconds or less, and then cooled to a temperature range of 10 ° C./s or higher and less than 150 ° C. at an average cooling rate of 10 ° C./s or higher. 5. The method for manufacturing a steel sheet according to 5.
JP2021539855A 2020-02-21 2021-02-18 Steel plate and steel plate manufacturing method Active JP7014341B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020028466 2020-02-21
JP2020028466 2020-02-21
PCT/JP2021/006212 WO2021167023A1 (en) 2020-02-21 2021-02-18 Sheet steel and method for manufacturing sheet steel

Publications (2)

Publication Number Publication Date
JPWO2021167023A1 JPWO2021167023A1 (en) 2021-08-26
JP7014341B2 true JP7014341B2 (en) 2022-02-01

Family

ID=77392187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021539855A Active JP7014341B2 (en) 2020-02-21 2021-02-18 Steel plate and steel plate manufacturing method

Country Status (6)

Country Link
JP (1) JP7014341B2 (en)
KR (1) KR20220127912A (en)
CN (1) CN115176042B (en)
MY (1) MY197776A (en)
TW (1) TWI750033B (en)
WO (1) WO2021167023A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293083A (en) 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd Hot rolled steel sheet and method of producing hot rolled steel sheet and cold rolled steel sheet
JP2016003393A (en) 2014-06-13 2016-01-12 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Method for producing aluminum-coated steel for packaging
WO2016157878A1 (en) 2015-03-31 2016-10-06 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing steel sheet for cans
WO2020105406A1 (en) 2018-11-21 2020-05-28 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337049A (en) * 1991-05-13 1992-11-25 Kawasaki Steel Corp Cold rolled steel sheet for can manufacturing having high strength and superior workability and its production
JP4235247B1 (en) 2007-09-10 2009-03-11 新日本製鐵株式会社 High-strength steel sheet for can manufacturing and its manufacturing method
JP5182386B2 (en) * 2011-01-31 2013-04-17 Jfeスチール株式会社 High-strength cold-rolled steel sheet having a high yield ratio with excellent workability and method for producing the same
WO2016067514A1 (en) * 2014-10-28 2016-05-06 Jfeスチール株式会社 Steel sheet for two-piece can and manufacturing method therefor
EP3187612B1 (en) 2014-11-12 2019-06-19 JFE Steel Corporation Steel sheet for cans and method for manufacturing steel sheet for cans
JP6123958B1 (en) * 2015-08-19 2017-05-10 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
MY193012A (en) * 2017-10-31 2022-09-21 Jfe Steel Corp High-strength steel sheet and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293083A (en) 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd Hot rolled steel sheet and method of producing hot rolled steel sheet and cold rolled steel sheet
JP2016003393A (en) 2014-06-13 2016-01-12 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Method for producing aluminum-coated steel for packaging
WO2016157878A1 (en) 2015-03-31 2016-10-06 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing steel sheet for cans
WO2020105406A1 (en) 2018-11-21 2020-05-28 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing same

Also Published As

Publication number Publication date
MY197776A (en) 2023-07-13
WO2021167023A1 (en) 2021-08-26
KR20220127912A (en) 2022-09-20
TW202136537A (en) 2021-10-01
TWI750033B (en) 2021-12-11
JPWO2021167023A1 (en) 2021-08-26
CN115176042A (en) 2022-10-11
CN115176042B (en) 2023-10-20

Similar Documents

Publication Publication Date Title
EP3372703B1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
US10752968B2 (en) Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
EP2811047A1 (en) Hot-dip galvanized steel sheet and production method therefor
WO2012060294A1 (en) High-strength cold-rolled steel sheet having excellent deep-drawability and bake hardenability, and method for manufacturing same
JP6835046B2 (en) Thin steel sheet and its manufacturing method
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
JP5811725B2 (en) High-tensile cold-rolled steel sheet excellent in surface distortion resistance, bake hardenability and stretch flangeability, and method for producing the same
JP6007571B2 (en) High-strength cold-rolled steel sheet and high-strength galvanized steel sheet
KR20130106142A (en) Ultra high strength cold rolled steel sheet having excellent elongation and bendability and method for manufacturing the same
JP3525812B2 (en) High strength steel plate excellent in impact energy absorption and manufacturing method thereof
JP6843245B2 (en) High-strength galvanized steel sheet with excellent bendability and stretch flangeability and its manufacturing method
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
EP4234750A1 (en) Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof
US20230357874A1 (en) High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these
JP2005350737A (en) Thin steel sheet for can provided with strong can body strength and press workability and its production method
JP7014341B2 (en) Steel plate and steel plate manufacturing method
JP5678695B2 (en) High strength steel plate and manufacturing method thereof
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
JP2004124123A (en) Low yield ratio type high strength cold rolled steel sheet having excellent workability and shape fixability, and production method therefor
CN111051554B (en) High-strength steel sheet and method for producing same
JP7022825B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent cold formability and its manufacturing method
JP6225733B2 (en) High strength hot rolled steel sheet and method for producing the same
JP6210045B2 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof
JP2007224408A (en) Hot-rolled steel sheet having excellent strain aging property and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210707

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103