JP7007563B2 - Evaluation method for 3D objects - Google Patents

Evaluation method for 3D objects Download PDF

Info

Publication number
JP7007563B2
JP7007563B2 JP2017205159A JP2017205159A JP7007563B2 JP 7007563 B2 JP7007563 B2 JP 7007563B2 JP 2017205159 A JP2017205159 A JP 2017205159A JP 2017205159 A JP2017205159 A JP 2017205159A JP 7007563 B2 JP7007563 B2 JP 7007563B2
Authority
JP
Japan
Prior art keywords
dimensional model
particle size
average particle
metal powder
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017205159A
Other languages
Japanese (ja)
Other versions
JP2019078613A (en
Inventor
善郎 岩井
正範 峠
拓也 ▲高▼澤
正裕 尾ノ井
豊 長澤
洋一 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui
Original Assignee
University of Fukui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui filed Critical University of Fukui
Priority to JP2017205159A priority Critical patent/JP7007563B2/en
Publication of JP2019078613A publication Critical patent/JP2019078613A/en
Application granted granted Critical
Publication of JP7007563B2 publication Critical patent/JP7007563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、層状に形成された金属粉末を焼結させて積層一体化された三次元造形物の評価方法に関する。 The present invention relates to a method for evaluating a three-dimensional model formed by sintering a layered metal powder and laminating and integrating them.

近年、金属粉末をテーブル上に層状に形成し、形成された粉末層に電子ビーム又はレーザ等を照射して照射部分の金属粉末を焼結して数十μmの厚さの焼結層を形成する工程を繰り返して焼結層を積層一体化した三次元造形物を製造する積層造形法が実用化されている。積層造形法は、複雑な形状の部品であっても特別な治具を用いることなく造形することが可能となり、航空宇宙分野、自動車分野、医療分野等の幅広い分野において装置や部品の製造に用いられている。 In recent years, metal powder is formed in layers on a table, and the formed powder layer is irradiated with an electron beam or a laser to sintered the metal powder in the irradiated portion to form a sintered layer having a thickness of several tens of μm. A laminated molding method for producing a three-dimensional molded product in which the sintered layers are laminated and integrated by repeating the steps of the above has been put into practical use. The laminated molding method makes it possible to model parts with complicated shapes without using special jigs, and is used for manufacturing equipment and parts in a wide range of fields such as aerospace, automobiles, and medical fields. Has been done.

さらに、金属粉末を原料として三次元造形物を得る手法として、特許文献1に記載されているように、熱間等方加圧法(HIP法;Hot Isostatic Pressing)を用いて造形する方法が実用化されている。 Further, as a method for obtaining a three-dimensional model using metal powder as a raw material, a method of modeling using a hot isostatic pressing method (HIP method) as described in Patent Document 1 has been put into practical use. Has been done.

こうした造形物の品質を評価する場合、硬度、寸法、表面粗さ等の物理的特性を定量的に評価することが行われているが、公知の硬度計を用いた測定では、測定範囲となる圧痕のサイズが造形物内部の不均一な部位よりも大きい場合、内部品質の評価を正確に行うことが難しい。 When evaluating the quality of such a model, physical properties such as hardness, dimensions, and surface roughness are quantitatively evaluated, but the measurement using a known hardness meter is within the measurement range. If the size of the indentation is larger than the non-uniform part inside the model, it is difficult to accurately evaluate the internal quality.

材料表面の品質を定量的に分析する手法としては、微小サイズの砥粒を被験体の表面に噴射して損傷痕を発生させて被験体の表面の強さを評価する方法(MSE法(登録商標);Micro Slurry-jet Erosion)が提案されており(特許文献2参照)、材料表面の強度の他に表面に形成された薄膜の品質や表面の変質・劣化等の評価に用いることが提案されている。また、非特許文献1では、HIP法を用いて製造したWC-Co系超硬合金材料に対してMSE法による試験を行い、超硬合金材料の耐表面損傷性を定量的に評価する手法が提案されている。 As a method for quantitatively analyzing the quality of the material surface, a method of injecting fine-sized abrasive grains onto the surface of the subject to generate damage marks and evaluating the strength of the surface of the subject (MSE method (registration)). (Trademark); Micro Slurry-jet Erosion) has been proposed (see Patent Document 2), and it is proposed to use it for evaluation of the quality of the thin film formed on the surface and the deterioration / deterioration of the surface in addition to the strength of the material surface. Has been done. Further, in Non-Patent Document 1, there is a method of quantitatively evaluating the surface damage resistance of the cemented carbide material by performing a test by the MSE method on the WC-Co cemented carbide material manufactured by the HIP method. Proposed.

特開2004-149826号公報Japanese Unexamined Patent Publication No. 2004-149826 特許第3356415号公報Japanese Patent No. 3356415

山本 康博 他2名、「超硬合金の耐表面損傷性の評価手法に関する研究(マイクロスラリージェットエロージョン(MSE)試験結果)」、設計工学(日本設計工学会誌)、2014年、第49巻、第12号、651頁-657頁Yasuhiro Yamamoto et al., "Study on Evaluation Method of Surface Damage Resistance of Cemented Carbide (Microslurry Jet Erosion (MSE) Test Results)", Design Engineering (Journal of Japan Society for Design Engineering), 2014, Vol. 49, No. No. 12, pp. 651-657

上述した積層造形法による造形物は、その製造プロセスに起因して、以下に説明するように不均一な品質となる。積層造形法は、レーザ等を平面内に走査しながら照射し、さらにそれを垂直方向に積層させて一体物として造形するため、原料の金属粉末の溶融及び凝固が均一に行われず、製造された造形物の内部は連続体ではなく、不連続な部分を有する。このような不連続な部分には空隙、穴、ボイドの発生や、組織、応力の変化等がみられる。このような変化した部分の範囲や数は、金属粉末の粒子径や粒子数、造形法により異なり、三次元造形物の強度等の品質に大きく影響する。このため、三次元造形物に対してHIP法等の後処理を行うことで、不連続な部分の少ない造形物に仕上げている。 Due to the manufacturing process of the above-mentioned modeled product by the laminated molding method, the quality becomes non-uniform as described below. In the laminated molding method, a laser or the like is irradiated while scanning in a plane, and the laser or the like is further laminated in the vertical direction to form an integral body. Therefore, the metal powder as a raw material is not uniformly melted and solidified, and is manufactured. The inside of the model is not a continuous body, but has a discontinuous part. Voids, holes, voids, textures, changes in stress, etc. are observed in such discontinuous portions. The range and number of such changed portions differ depending on the particle size and number of particles of the metal powder and the modeling method, and greatly affect the quality such as the strength of the three-dimensional model. For this reason, by performing post-treatment such as the HIP method on the three-dimensional modeled object, the modeled object with few discontinuous parts is finished.

しかしながら、こうした積層造形法による三次元造形物の評価に関して、不連続な部分に由来する引張・圧縮・曲げ・ねじり・曲げ疲労・耐衝撃性等の評価を簡便・正確に行う手法が開発されておらず、三次元造形物に対する後処理によりどの程度品質が改善されたかを定量的に把握することは難しい。三次元造形物の不連続な部分については、レントゲン撮影やコンピュータ断層撮影等により内部の様子を撮影することは可能であるが、強度等の品質を評価することは困難である。 However, regarding the evaluation of three-dimensional shaped objects by such a laminated molding method, a method has been developed that easily and accurately evaluates tension, compression, bending, torsion, bending fatigue, impact resistance, etc. derived from discontinuous parts. Therefore, it is difficult to quantitatively grasp how much the quality has been improved by the post-treatment of the 3D model. It is possible to photograph the inside of a discontinuous part of a three-dimensional model by X-ray photography, computed tomography, etc., but it is difficult to evaluate the quality such as strength.

そこで、本発明は、積層造形法による三次元造形物について不連続な部分に由来する品質評価を簡便かつ定量的に行うことができる評価方法を提供することを目的とする。なお、本明細書では、積層造形法による三次元造形物に関して内部に存在する不連続な部分を「内部品質の不均一」と称する。 Therefore, an object of the present invention is to provide an evaluation method capable of easily and quantitatively performing a quality evaluation derived from a discontinuous portion of a three-dimensional model by a laminated modeling method. In this specification, the discontinuous portion existing inside with respect to the three-dimensional model by the laminated modeling method is referred to as "non-uniformity of internal quality".

本発明に係る三次元造形物の評価方法は、層状に形成された金属粉末を焼結硬化させて積層一体化された三次元造形物の内部品質の不均一を評価する方法であって、前記金属粉末の平均粒径と同程度又はそれ以下の平均粒径を有する砥粒を前記三次元造形物の表面に向かって噴射させて衝突させ、前記三次元造形物の表面に形成された損傷痕の形状及び前記砥粒の投射量に基づいて内部品質の不均一を評価する。さらに、前記損傷痕の深さ及び前記砥粒の投射量に基づいて算出されるエロージョン率により評価する。さらに、異なる平均粒径を有する複数種類の前記砥粒を使用して評価する。さらに、複数種類の前記砥粒には、少なくとも前記金属粉末の平均粒径に近い平均粒径を有する大粒子及び当該大粒子よりも小さな平均粒径の小粒子を選択する。さらに、前記大粒子の平均粒径は、前記金属粉末の平均粒径に対して20%~100%に設定し、前記小粒子の粒径は、前記金属粉末の平均粒径に対して1~5%に設定する。さらに、複数種類の前記砥粒を使用してそれぞれ算出される複数のエロージョン率を組み合せて評価する。さらに、前記三次元造形物に関する特性試験により得られたデータを組み合せて評価する。さらに、前記特性試験は、密度測定、引張強度試験、圧縮強度試験、曲げ強度試験、ねじり強度試験、回転曲げ動作による疲労強度試験のうち少なくとも1つを選択する。 The method for evaluating a three-dimensional model according to the present invention is a method for evaluating non-uniformity of the internal quality of a three-dimensional model formed by sintering and hardening a metal powder formed in a layer and laminating and integrating the metal powder. Abrasive particles having an average particle size equal to or less than the average particle size of the metal powder are jetted toward the surface of the three-dimensional model and collided with each other to cause damage marks formed on the surface of the three-dimensional model. Non-uniformity of internal quality is evaluated based on the shape of the above and the projection amount of the abrasive grains. Further, it is evaluated by the erosion rate calculated based on the depth of the damage scar and the projection amount of the abrasive grains. Further, a plurality of types of the abrasive grains having different average particle sizes are used for evaluation. Further, for the plurality of types of the abrasive grains, large particles having an average particle size close to the average particle size of the metal powder and small particles having an average particle size smaller than the large particles are selected. Further, the average particle size of the large particles is set to 20% to 100% with respect to the average particle size of the metal powder, and the particle size of the small particles is 1 to 1 to 100% with respect to the average particle size of the metal powder. Set to 5%. Further, a plurality of erosion rates calculated by using a plurality of types of the abrasive grains are combined and evaluated. Further, the data obtained by the characteristic test on the three-dimensional model is combined and evaluated. Further, for the characteristic test, at least one of a density measurement, a tensile strength test, a compressive strength test, a bending strength test, a torsional strength test, and a fatigue strength test by a rotary bending operation is selected.

本発明によれば、金属粉末の平均粒径と同程度又はそれ以下の平均粒径を有する砥粒を三次元造形物の表面に衝突させることで、内部品質の不均一による影響が顕在化するようになり、内部品質の不均一を定量的に評価することが可能となる。 According to the present invention, by colliding abrasive grains having an average particle size equal to or less than the average particle size of the metal powder against the surface of a three-dimensional model, the influence of non-uniformity of internal quality becomes apparent. This makes it possible to quantitatively evaluate the non-uniformity of internal quality.

本発明に係る評価方法を実施する試験装置に関する概略構成図である。It is a schematic block diagram about the test apparatus which carries out the evaluation method which concerns on this invention. 本発明に係る評価方法を実施する評価装置に関する概略構成図である。It is a schematic block diagram about the evaluation apparatus which carries out the evaluation method which concerns on this invention. エロージョン率の算出方法に関する説明図である。It is explanatory drawing about the calculation method of the erosion rate. 立方体の形状の三次元造形物に関するマッピング図である。It is a mapping diagram about a three-dimensional model of the shape of a cube. 算出されたエロージョン率を示すグラフである。It is a graph which shows the calculated erosion rate. HIP処理前の被験体1における表面を示す撮影画像である。It is a photographed image which shows the surface of the subject 1 before the HIP treatment. HIP処理後の被験体1における表面を示す撮影画像である。6 is a photographed image showing the surface of the subject 1 after the HIP treatment. HIP処理前の被験体2における表面を示す撮影画像である。It is a photographed image which shows the surface of the subject 2 before the HIP treatment. HIP処理後の被験体2における表面を示す撮影画像である。6 is a photographed image showing the surface of the subject 2 after the HIP treatment. 被験体のHIP処理前の断面を示す撮影画像である。It is a photographed image which shows the cross section of a subject before HIP processing. 被験体のHIP処理後の断面を示す撮影画像である。It is a photographed image which shows the cross section of a subject after HIP processing. 報告されたHIP処理後の疲労強度の増加を示すグラフである。It is a graph which shows the increase of the fatigue intensity after the reported HIP treatment.

以下、本発明について具体的に説明する。図1は、本発明に係る評価方法を実施するための試験装置の一例を示す概略構成図である。試験装置は、砥粒を三次元造形物の表面に向かって噴射させて衝突させる装置であり、タンク1内に被験体10とともに被験体10に対して砥粒を混在させたスラリー状の試験液を噴射させる噴射ノズル20を配置しており、タンク1の下部には試験液を回収する回収ポンプ3が取り付けられている。噴射ノズル20は、噴射部2の先端部に取り付けられており、噴射部2は、タンク1の側面部に貫通して支持固定されている。貯留容器4には、砥粒を所定濃度に調製した試験液が貯留されており、底部に設けられた撹拌器により常時撹拌されて砥粒が均一に分散するようにされている。貯留容器4は、噴射部2と接続管5を介して接続されるとともに回収ポンプ3と回収管6を介して接続されている。また、貯留容器4は、エアコンプレッサ8と空気管15を介して接続されている。噴射部2は、空気管7を介してエアコンプレッサ8と接続されており、エアコンプレッサ8から供給される圧縮空気により貯留容器4から供給される試験液が噴射ノズル20から噴射されるようになる。 Hereinafter, the present invention will be specifically described. FIG. 1 is a schematic configuration diagram showing an example of a test device for carrying out the evaluation method according to the present invention. The test device is a device that injects and collides the abrasive grains toward the surface of the three-dimensional model, and is a slurry-like test liquid in which the abrasive grains are mixed with the subject 10 together with the subject 10 in the tank 1. An injection nozzle 20 for injecting the test liquid is arranged, and a recovery pump 3 for collecting the test liquid is attached to the lower part of the tank 1. The injection nozzle 20 is attached to the tip end portion of the injection portion 2, and the injection portion 2 penetrates the side surface portion of the tank 1 and is supported and fixed. A test liquid prepared by adjusting the abrasive grains to a predetermined concentration is stored in the storage container 4, and is constantly stirred by a stirrer provided at the bottom so that the abrasive grains are uniformly dispersed. The storage container 4 is connected to the injection unit 2 via the connecting pipe 5, and is also connected to the recovery pump 3 via the recovery pipe 6. Further, the storage container 4 is connected to the air compressor 8 via an air pipe 15. The injection unit 2 is connected to the air compressor 8 via the air pipe 7, and the test liquid supplied from the storage container 4 is injected from the injection nozzle 20 by the compressed air supplied from the air compressor 8. ..

噴射部2に供給される試験液の量は流量計11によりリアルタイムで測定されるとともに空気量は流量計13によりリアルタイムで測定される。また、供給される空気の圧力は圧力計12により測定されるとともに噴射部2内の試験液の噴射圧力は圧力計14により測定される。 The amount of the test liquid supplied to the injection unit 2 is measured in real time by the flow meter 11, and the amount of air is measured in real time by the flow meter 13. Further, the pressure of the supplied air is measured by the pressure gauge 12, and the injection pressure of the test liquid in the injection unit 2 is measured by the pressure gauge 14.

試験液は、後述するように、平均粒径の異なる砥粒毎に調製されて貯留容器4に供給される。試験装置に複数の貯留容器4を接続しておき、貯留容器4のそれぞれに異なる砥粒を投入して、貯留容器4を切り換えて供給するように構成することもできる。この場合には、貯留容器の1つにクリーニング液を投入しておくことで、供給する砥粒を切り換える際に、装置の配管や噴射ノズル等のクリーニング処理を行うようにしてもよい。 As will be described later, the test liquid is prepared for each abrasive grain having a different average particle size and supplied to the storage container 4. It is also possible to connect a plurality of storage containers 4 to the test device and charge different abrasive grains into each of the storage containers 4 so as to switch and supply the storage containers 4. In this case, by charging the cleaning liquid into one of the storage containers, the piping of the device, the injection nozzle, and the like may be cleaned when the abrasive grains to be supplied are switched.

図2は、本発明に係る評価方法を実施する評価装置に関する概略構成図である。評価装置は、試験装置により所定の条件で試験を行った被験体10の損傷痕を測定する測定部101、測定部101で得られた測定データに基づいて解析を行う解析部100、解析に必要なデータや条件を設定する設定部102、測定データや解析データを記憶するとともに解析処理に関するプログラム等を記憶する記憶部103、及び、解析データをディスプレイ等に出力する出力部104を備えている。 FIG. 2 is a schematic configuration diagram of an evaluation device that implements the evaluation method according to the present invention. The evaluation device is a measurement unit 101 that measures the damage scar of the subject 10 that has been tested under predetermined conditions by the test device, an analysis unit 100 that performs analysis based on the measurement data obtained by the measurement unit 101, and is necessary for analysis. It is provided with a setting unit 102 for setting various data and conditions, a storage unit 103 for storing measurement data and analysis data and a program for analysis processing, and an output unit 104 for outputting analysis data to a display or the like.

被験体10は、所定の平均粒径(例えば、20μm~100μm)の、一般に市販されている金属粉末を層状に形成し焼結させて積層一体化された三次元造形物からなり、必要に応じて切断して切断面を評価することで、造形物の内部についても評価することができる。造形装置としては公知のものを用いることができる。金属種は、例えば、Ti-6Al-4V、Ti-48Al-2Cr-2Nb、Inconel718といったものが挙げられる。 The subject 10 is composed of a three-dimensional model formed by forming a generally commercially available metal powder having a predetermined average particle size (for example, 20 μm to 100 μm) into a layer, sintering the mixture, and laminating and integrating them, if necessary. By cutting and evaluating the cut surface, the inside of the modeled object can also be evaluated. A known modeling device can be used. Examples of the metal species include Ti-6Al-4V, Ti-48Al-2Cr-2Nb, and Inconel718.

試験液に含まれる砥粒は、被験体10の造形に用いた金属粉末の平均粒径を基準に設定された粒径のものを含む複数種類の砥粒が使用される。具体的には、金属粉末の平均粒径に近い平均粒径のもの(以下、大粒子という)及び大粒子よりも小さな平均粒径のもの(以下、小粒子という)を選択することが好ましい。大粒子の平均粒径は、金属粉末の平均粒径に対して20%~100%に設定することが好ましく、小粒子の粒径は、金属粉末の平均粒径に対して1%~5%に設定することが好ましい。より好ましくは、大粒子は、平均粒径が60%~70%で粒径変動係数が6%以内のものであり、小粒子は、平均粒径が1%~3%で粒径変動係数が25%以内のものである。 As the abrasive grains contained in the test liquid, a plurality of types of abrasive grains including those having a particle size set based on the average particle size of the metal powder used for modeling the subject 10 are used. Specifically, it is preferable to select one having an average particle size close to the average particle size of the metal powder (hereinafter referred to as large particles) and one having an average particle size smaller than that of the large particles (hereinafter referred to as small particles). The average particle size of the large particles is preferably set to 20% to 100% with respect to the average particle size of the metal powder, and the particle size of the small particles is 1% to 5% with respect to the average particle size of the metal powder. It is preferable to set to. More preferably, the large particles have an average particle size of 60% to 70% and a coefficient of variation of particle size of 6% or less, and the small particles have an average particle size of 1% to 3% and a coefficient of variation of particle size of 1% to 3%. It is within 25%.

ここで、砥粒の粒径は、電気抵抗法により測定された体積基準による球相当直径値であり、平均粒径は累積高さ50%点の値(メディアン径)である。 Here, the particle size of the abrasive grains is a sphere-equivalent diameter value based on the volume measured by the electric resistance method, and the average particle size is a value (median diameter) at a cumulative height of 50%.

金属粉末を層状に形成して焼結させた場合に生じる内部品質の不均一は、金属粉末の粒径と相関関係があると考えられる。そのため、大粒子を砥粒として用いる場合には、粒子のサイズに基づく衝突時の衝撃力が大きくなって、金属粉末の粒径と相関関係のあるサイズの空隙やボイドなどを起点としてき裂や脆性破壊が発生するようになり、こうした構造的に脆弱な部位において損傷が発生しやすくなる。金属粉末の粒径よりも大きい粒径の砥粒を用いる場合には、金属粉末の粒径と相関関係のあるサイズの空隙やボイドよりも砥粒のサイズが大きくなるため、こうした空隙やボイドよりも大きいサイズの構造的な要因による影響を受けやすくなると考えられる。したがって、積層造形物の内部品質の不均一に基づく破壊の影響が反映される大粒子を金属粉末の平均粒径と関連付けられた上記の平均粒径の範囲から選択することで、内部品質の不均一に関する定量的な評価が可能となる。 The non-uniformity of the internal quality that occurs when the metal powder is formed into layers and sintered is considered to have a correlation with the particle size of the metal powder. Therefore, when large particles are used as abrasive grains, the impact force at the time of collision based on the size of the particles becomes large, and cracks or cracks occur starting from voids or voids of a size that correlates with the particle size of the metal powder. Brittle fractures will occur and damage will be more likely to occur in these structurally vulnerable areas. When abrasive grains with a particle size larger than the particle size of the metal powder are used, the size of the abrasive grains is larger than the voids and voids of a size that correlates with the particle size of the metal powder. Is also considered to be susceptible to structural factors of large size. Therefore, by selecting large particles that reflect the effects of fracture due to non-uniformity of the internal quality of the laminated model from the above average particle size range associated with the average particle size of the metal powder, the internal quality is poor. Quantitative evaluation of uniformity is possible.

また、小粒子を用いる場合は、大粒子の平均粒径に対して小さいサイズとなるため、大粒子の衝突時のような大きな衝撃力を伴わない微細な損傷作用により積層造形物を微細かつ均一に損傷させるようになる。したがって、内部品質の不均一等の内部構造の影響よりも金属粉末の粒子単体の影響が反映されるようになるため、小粒子を金属粉末の平均粒径と関連付けられた上記の平均粒径の範囲から選択することで、金属粉末の粒子単体サイズの造形による組織変化に関する定量的な評価が可能となる。 In addition, when small particles are used, the size is smaller than the average particle size of the large particles, so the laminated model can be made fine and uniform by the minute damage action that does not involve a large impact force as in the case of collision of large particles. Will be damaged. Therefore, since the influence of the individual particles of the metal powder is reflected rather than the influence of the internal structure such as non-uniformity of the internal quality, the small particles are associated with the average particle size of the metal powder. By selecting from the range, it is possible to quantitatively evaluate the microstructural change due to the formation of the particle size of the metal powder.

なお、大粒子及び小粒子による試験はそれぞれ別々のバッチ処理で行うことが好ましく、図1に示す装置では、大粒子を含む試験液及び小粒子を含む試験液を交換して行うか、各試験液と貯留する複数の貯留容器を接続しておき適宜切り換えて供給するようにしてもよい。また、小粒子を含む試験液で試験を行った箇所は被験体への影響が小さいので、同一個所に続けて大粒子を含む試験液で試験することも可能である。そのため、被験体が希少価値を有する場合やサイズが小さい場合には、小さい衝突領域でも試験を行うことが可能となる。 It is preferable that the tests using large particles and small particles are performed in separate batch processes, and in the apparatus shown in FIG. 1, the test solution containing large particles and the test solution containing small particles are exchanged or each test is performed. A plurality of storage containers for storing the liquid may be connected and appropriately switched to supply. In addition, since the site where the test was performed with the test solution containing small particles has a small effect on the subject, it is possible to continue the test with the test solution containing large particles at the same site. Therefore, if the subject has a rarity value or is small in size, the test can be performed even in a small collision area.

使用する砥粒としては、金属、セラミックス、ガラス等からなる微粒子を用いることができ、被験体10の材質に応じて硬さや脆性・延性の観点から適宜選択するとよい。例えば、粒径の揃いやすいアルミナ粒子を用いることが好ましい。 As the abrasive grains to be used, fine particles made of metal, ceramics, glass or the like can be used, and it may be appropriately selected from the viewpoint of hardness, brittleness and ductility according to the material of the subject 10. For example, it is preferable to use alumina particles having a uniform particle size.

上述した試験装置による評価方法としては、砥粒の投射量(g)及び損傷痕の深さ(μm)に基づいて以下の式で算出されるエロージョン率(μm/g)が挙げられる。
エロージョン率(μm/g)=損傷痕の深さ(μm)/砥粒の投射量(g)
なお、損傷量を示すパラメータとしては、損傷痕の形状に基づいて設定することができ、上記の損傷痕の深さ以外に損傷により減少した体積を用いることもできる。
Examples of the evaluation method using the above-mentioned test apparatus include an erosion rate (μm / g) calculated by the following formula based on the projection amount (g) of the abrasive grains and the depth (μm) of the damage scar.
Erosion rate (μm / g) = Depth of damage scar (μm) / Projection amount of abrasive grains (g)
The parameter indicating the amount of damage can be set based on the shape of the damage mark, and the volume reduced by the damage can be used in addition to the depth of the damage mark described above.

図3は、エロージョン率の算出方法に関する説明図である。被験体10は、評価対象となる表面が噴射ノズル20からの試験液の噴射方向と任意の角度(0°~90°)になるようにセットされており、噴射された試験液は被験体10の表面に衝突して落下し、回収ポンプ3に流れ込むようになっている。噴射される試験液に含まれる砥粒の量(以下「投射量」という)は、流量計11で測定される流量と貯留容器4内の砥粒の濃度との積により算出することができる。試験液の衝突により生じた被験体10の表面の損傷量は、表面21に形成された損傷痕の中心部の断面形状を触針式粗さ計22等の計測器により測定し、測定データに基づいて損傷痕の深さを算出する。図3では、所定の投射量毎に損傷痕の深さを測定し、投射量が増加するにしたがい深さデータ(1)、(2)及び(3)を得ている。そして、得られた深さデータについて、投射量を横軸とし深さを縦軸とするグラフにプロットして、近似直線23を描き、近似直線23の傾きを計算することでエロージョン率を求めることができる。 FIG. 3 is an explanatory diagram relating to a method of calculating the erosion rate. The subject 10 is set so that the surface to be evaluated is at an arbitrary angle (0 ° to 90 °) with the injection direction of the test liquid from the injection nozzle 20, and the injected test liquid is the subject 10. It collides with the surface of the water, falls, and flows into the recovery pump 3. The amount of abrasive grains contained in the injected test liquid (hereinafter referred to as "projection amount") can be calculated by the product of the flow rate measured by the flow meter 11 and the concentration of the abrasive grains in the storage container 4. The amount of damage to the surface of the subject 10 caused by the collision of the test solution is obtained by measuring the cross-sectional shape of the central portion of the damage scar formed on the surface 21 with a measuring instrument such as a stylus type roughness meter 22 and using the measurement data. The depth of the damage scar is calculated based on this. In FIG. 3, the depth of the damage scar is measured for each predetermined projection amount, and depth data (1), (2) and (3) are obtained as the projection amount increases. Then, the obtained depth data is plotted on a graph having the projection amount as the horizontal axis and the depth as the vertical axis, an approximate straight line 23 is drawn, and the slope of the approximate straight line 23 is calculated to obtain the erosion rate. Can be done.

エロージョン率は、投射量に対する損傷痕の進行速度を示すパラメータで、大粒子を含む砥粒の場合、内部品質の不均一が拡がっている場合には、進行速度が速くなってエロージョン率が大きくなる。また、内部品質の不均一が拡がっていない場合には、進行速度が遅くなってエロージョン率が小さくなる。そのため、エロージョン率に基づいて内部品質の不均一に由来する品質評価を定量的に示すことができる。また、小粒子を含む砥粒の場合、金属粉末の粒子単体サイズの劣化や脆化といった組織変化が発生している場合にはエロージョン率が大きくなり、組織変化において劣化のない場合や強化されている場合にはエロージョン率が小さくなる。 The erosion rate is a parameter that indicates the progress rate of damage scars with respect to the projection amount. In the case of abrasive grains containing large particles, if the internal quality non-uniformity is widespread, the progress rate becomes faster and the erosion rate increases. .. Further, if the non-uniformity of the internal quality is not widespread, the progress speed becomes slow and the erosion rate becomes small. Therefore, it is possible to quantitatively show the quality evaluation derived from the non-uniformity of the internal quality based on the erosion rate. In addition, in the case of abrasive grains containing small particles, the erosion rate increases when structural changes such as deterioration or embrittlement of the size of individual particles of the metal powder occur, and when there is no deterioration or strengthening due to structural changes. If so, the embrittlement rate becomes smaller.

エロージョン率に基づく内部品質の不均一を定量的に評価する方法としては、例えば、以下のような方法を挙げることができる。 As a method for quantitatively evaluating the non-uniformity of internal quality based on the erosion rate, for example, the following method can be mentioned.

(1)三次元造形物における内部品質の不均一の分布状態を評価する方法
積層造形法により三次元造形物を製造する場合、三次元造形物の下部(積層初期)と上部(積層後期)ではレーザ等の焦点位置やスポット径等の形状が変化するようになる。そのため、上方の部位で造形された層ほど内部品質の不均一の分布が多くなる傾向がある。そのため、三次元造形物に対して、積層方向に沿って異なった位置の部位で試験を行うことで、三次元造形物における内部品質の不均一の分布状態を評価することができる。
(1) Method for evaluating non-uniform distribution of internal quality in 3D model When manufacturing a 3D model by the layered model, the lower part (early stage of layering) and the upper part (late layer) of the 3D model The shape such as the focal position of the laser and the spot diameter will change. Therefore, the layer formed in the upper part tends to have more uneven distribution of internal quality. Therefore, it is possible to evaluate the non-uniform distribution state of the internal quality in the three-dimensional model by conducting the test at different positions along the stacking direction on the three-dimensional model.

まず、積層方向に沿って三次元造形物を切断し、切断面の積層方向に沿う異なった位置の複数の部位を選択し、砥粒として大粒子及び小粒子を用いて同じ条件で上述した試験を行う。試験により形成された損傷痕から損傷深さを算出して各部位のエロージョン率を求める。求められたエロージョン率について各部位の間の差分を算出し、差分の大小関係により内部品質の不均一のバラツキの程度を定量的に評価することができる。 First, a three-dimensional model is cut along the stacking direction, multiple sites at different positions along the stacking direction of the cut surface are selected, and large particles and small particles are used as abrasive grains in the above-mentioned test under the same conditions. I do. The damage depth is calculated from the damage scars formed by the test to obtain the erosion rate of each part. The difference between each part can be calculated for the obtained erosion rate, and the degree of non-uniform variation in internal quality can be quantitatively evaluated based on the magnitude relationship of the difference.

各部位のエロージョン率に基づいて各部位における内部品質の不均一を定量的に評価し、エロージョン率が小さい部位ほど内部品質の不均一が小さいと評価される。また、各部位の間におけるエロージョン率の差により内部品質の不均一の差を定量的に評価する。エロージョン率に関しては、2つのエロージョン率の差の変化率を所定の許容範囲内となるように定量的に評価するようにしてもよい。 The non-uniformity of internal quality in each part is quantitatively evaluated based on the erosion rate of each part, and the smaller the erosion rate, the smaller the non-uniformity of internal quality is evaluated. In addition, the difference in non-uniformity of internal quality is quantitatively evaluated by the difference in erosion rate between each part. Regarding the erosion rate, the rate of change of the difference between the two erosion rates may be quantitatively evaluated so as to be within a predetermined allowable range.

(2)三次元造形物のHIP処理による内部品質の不均一の低減を評価する方法
積層造形された三次元造形物の内部品質の不均一については、積層造形後の後処理としてHIP処理を行うことで低減することができる。そのため、HIP処理による低減効果をエロージョン率により定量的に評価することが可能となる。
(2) Method for evaluating reduction of non-uniformity of internal quality by HIP treatment of 3D modeled object For non-uniformity of internal quality of 3D modeled 3D model, HIP treatment is performed as post-treatment after layered modeling. It can be reduced by this. Therefore, it is possible to quantitatively evaluate the reduction effect of the HIP treatment by the erosion rate.

まず、積層造形法により製造された三次元造形物に対して砥粒として大粒子及び小粒子を用いて同じ条件で上述した試験を行う。試験により形成された損傷痕から損傷深さを算出してエロージョン率を求める。次に、三次元造形物に対してHIP処理を行った後、処理前と同様の試験を行い、形成された損傷痕に基づいてエロージョン率を求める。こうして得られたHIP処理の前後のエロージョン率の変化に基づいてHIP処理による低減効果を定量的に評価する。そして、エロージョン率の変化の程度から、HIP処理による内部品質の不均一の改善状態を分析することができる。 First, the above-mentioned test is performed under the same conditions using large particles and small particles as abrasive grains on a three-dimensional model manufactured by a laminated modeling method. The damage depth is calculated from the damage scars formed by the test to obtain the erosion rate. Next, after the HIP treatment is performed on the three-dimensional model, the same test as before the treatment is performed, and the erosion rate is obtained based on the formed damage marks. The reduction effect of the HIP treatment is quantitatively evaluated based on the change in the erosion rate before and after the HIP treatment thus obtained. Then, from the degree of change in the erosion rate, it is possible to analyze the improvement state of the non-uniformity of the internal quality by the HIP treatment.

また、上述した(1)の評価方法と同様に、三次元造形物の各部位においてHIP処理前後のエロージョン率の変化の程度を分析することで、各部位におけるHIP処理による低減効果を評価することができる。また、エロージョン率のバラツキをみることでHIP処理の有効な適用方法を定量的に分析することが可能となる。 Further, similarly to the evaluation method of (1) described above, the reduction effect of the HIP treatment in each part is evaluated by analyzing the degree of change in the erosion rate before and after the HIP treatment in each part of the three-dimensional model. Can be done. In addition, by observing the variation in the erosion rate, it is possible to quantitatively analyze the effective application method of the HIP treatment.

(3)他の評価パラメータと組み合せて三次元造形物の内部品質の不均一を総合的に評価する方法
積層造形された三次元造形物の内部品質の不均一は、分布の状態やその程度から三次元造形物の強度や密度等の三次元造形物全体に関する各種特性と相関関係を有すると考えられる。そして、三次元造形物のマクロ的な観点からみた評価パラメータである各種特性をミクロ的な観点からみたエロージョン率と組み合せて評価することで、三次元造形物の内部品質の不均一を多面的な観点で総合的に評価することができる。
(3) Method for comprehensively evaluating the non-uniformity of the internal quality of the 3D model in combination with other evaluation parameters The non-uniformity of the internal quality of the laminated 3D model is based on the state of distribution and its degree. It is considered to have a correlation with various characteristics related to the entire 3D model such as strength and density of the 3D model. Then, by evaluating various characteristics, which are evaluation parameters from a macroscopic point of view, in combination with the erosion rate from a microscopic point of view, the non-uniformity of the internal quality of the 3D model is multifaceted. It can be evaluated comprehensively from the viewpoint.

まず、積層造形法により製造された三次元造形物に対して砥粒として大粒子を用いて所定の条件で上述した試験を行う。試験により形成された損傷痕から損傷深さを算出してエロージョン率を求める。次に、三次元造形物に対して、密度測定(例;JIS Z 2501:2000)、引張強度試験(例;JIS Z 2241:2011)、圧縮強度試験(例;ASTM E9-09、JIS Z 2509:2004)、曲げ強度試験(例;JIS Z 2248:2006)、ねじり強度試験、回転曲げ動作による疲労強度試験(例;JIS Z 2274:1978)等の各種特性試験を行う。こうして得られた各種特性試験の結果及びエロージョン率に基づいて内部品質の不均一を総合的に評価することができる。例えば、得られた各試験の結果から、エロージョン率が小さく密度や疲労強度が高ければ、三次元造形物は内部品質の不均一が少なく、かつ十分な強度を有すると判定することができ、三次元造形物の内部品質の不均一を多面的かつ包括的に評価可能となる。 First, the above-mentioned test is performed under predetermined conditions using large particles as abrasive grains on a three-dimensional model manufactured by a laminated modeling method. The damage depth is calculated from the damage scars formed by the test to obtain the erosion rate. Next, for the three-dimensional model, density measurement (eg, JIS Z 2501: 2000), tensile strength test (eg, JIS Z 2241: 2011), compressive strength test (eg, ASTM E9-09, JIS Z 2509). : 2004), bending strength test (eg, JIS Z 2248: 2006), torsional strength test, fatigue strength test by rotary bending operation (eg, JIS Z 2274: 1978), and various other characteristic tests are performed. Non-uniformity of internal quality can be comprehensively evaluated based on the results of various characteristic tests and the erosion rate obtained in this way. For example, from the results of each test obtained, if the erosion rate is small and the density and fatigue strength are high, it can be determined that the three-dimensional model has less unevenness in internal quality and has sufficient strength, and is tertiary. It is possible to evaluate the non-uniformity of the internal quality of the original model in a multifaceted and comprehensive manner.

また、各種特性試験の結果及びエロージョン率に関するデータを複数のサンプルについて蓄積することで、両者の相関関係を統計的に分析することで、エロージョン率に基づいて各種特性を定量的に推測することも可能となり、簡易な方法で三次元造形物を多観点で評価することができる。 In addition, by accumulating the results of various characteristic tests and data on the erosion rate for multiple samples, it is possible to quantitatively estimate various characteristics based on the erosion rate by statistically analyzing the correlation between the two. This makes it possible to evaluate a three-dimensional model from multiple perspectives using a simple method.

(4)三次元造形物の内部品質の不均一を含む総合的な品質を評価する方法
積層造形に用いる金属粉末の平均粒径に対応して設定された複数の異なる平均粒径の砥粒を使用した試験により求められた複数のエロージョン率に基づいて、内部品質の不均一や金属粉末の粒子サイズの組織変化を含めた三次元造形物の総合的な品質評価を行なうことも可能である。
(4) Method for evaluating the overall quality including non-uniformity of the internal quality of the three-dimensional model. Abrasive grains with different average particle sizes set according to the average particle size of the metal powder used for laminated modeling are used. Based on the multiple erosion rates obtained by the tests used, it is also possible to perform a comprehensive quality evaluation of the three-dimensional model including non-uniformity of internal quality and structural changes in the particle size of the metal powder.

まず、積層造形法により製造された三次元造形物に対して砥粒として大粒子及び小粒子を使用して上述した試験を行い、それぞれの試験により形成された損傷痕から損傷深さを算出してエロージョン率を求める。大粒子を使用した場合のエロージョン率(El)に基づいて三次元造形物の内部品質の不均一に関する品質評価を行ない、小粒子を使用した場合のエロージョン率(Es)に基づいて金属粉末の粒子単体サイズの組織変化に関する評価を行なう。 First, the above-mentioned tests are performed on a three-dimensional model manufactured by the laminated molding method using large particles and small particles as abrasive grains, and the damage depth is calculated from the damage marks formed by each test. To find the erosion rate. Quality evaluation is performed on the non-uniformity of the internal quality of the three-dimensional model based on the erosion rate (E l ) when large particles are used, and the metal powder is performed based on the erosion rate (E s ) when small particles are used. We will evaluate the microstructural changes in the size of individual particles.

次に、両エロージョン率を関連付けて評価することで、総合的な品質評価を行なうことができる。例えば、両エロージョン率の比(El/Es)を求め、求めた比率が所定の範囲内であるか評価することで、内部品質の不均一が少なく金属粉末の粒子単体サイズの劣化が生じていないといったバランスのとれた総合的な評価を行うことができる。なお、両エロージョン率の比を算出する際、大粒子を使用した場合のエロージョン率(El)及び小粒子を使用した場合のエロージョン率(Es)は、被験体の材料などに応じて設定された標準値で除することにより無次元化した値を用いてもよい。 Next, by associating and evaluating both erosion rates, a comprehensive quality evaluation can be performed. For example, by obtaining the ratio of both erosion rates (E l / E s ) and evaluating whether the obtained ratio is within a predetermined range, there is little non-uniformity in internal quality and deterioration of the particle size of the metal powder occurs. It is possible to make a well-balanced comprehensive evaluation such as not being able to do so. When calculating the ratio of both erosion rates, the erosion rate (E l ) when large particles are used and the erosion rate (E s ) when small particles are used are set according to the material of the subject. A dimensionless value may be used by dividing by the given standard value.

例えば、両エロージョン率の比(El/Es)が小さい場合には、金属粉末の粒子単体サイズの劣化の少なさや強化具合に比べて、内部品質の不均一の少なさが顕著であると判定できる。また、両エロージョン率の比(El/Es)が大きい場合には、内部品質の不均一の少なさよりも粒子単体サイズの劣化の少なさや強化具合が顕著であると判定できる。また、両エロージョン率の比(El/Es)が中程度である場合には、内部品質の不均一の少なさ及び粒子単体サイズの劣化の少なさや強化具合のバランスがとれていると判定できる。 For example, when the ratio of both erosion rates (E l / E s ) is small, the non-uniformity of the internal quality is remarkable compared to the small deterioration and strengthening of the single particle size of the metal powder. It can be judged. Further, when the ratio of both erosion rates (E l / E s ) is large, it can be determined that the degree of deterioration of the particle size and the degree of strengthening are more remarkable than the small non-uniformity of the internal quality. When the ratio of both erosion rates (E l / E s ) is medium, it is judged that the internal quality is less uneven, the particle size is less deteriorated, and the degree of strengthening is balanced. can.

また、積層造形物の部位毎に大粒子を使用した場合のエロージョン率(El)及び小粒子を使用した場合のエロージョン率(Es)を求めて、両エロージョン率の比(El/Es)を算出し、三次元造形物の各部位の位置関係に対応して平面図又は立体図上に表示してマッピング処理を行うこともできる。図4は、立方体の形状の三次元造形物に関するマッピング図である。この例では、積層方向に沿う3箇所の切断面でそれぞれ4つの部位におけるエロージョン率を数値及びグラフで表示している。こうしたマッピング表示されたデータを分析することで、各種砥粒のエロージョン率や両エロージョン率の比の大小から、内部品質の不均一、金属粉末の粒子単体サイズの品質、両者のバランスなどを三次元造形物の部位毎に視覚的に判定することができる。 In addition, the erosion rate (E l ) when large particles are used and the erosion rate (E s ) when small particles are used are obtained for each part of the laminated model, and the ratio of both erosion rates (E l / E) is obtained. It is also possible to calculate s ) and display it on a plan view or a three-dimensional view corresponding to the positional relationship of each part of the three-dimensional model to perform the mapping process. FIG. 4 is a mapping diagram relating to a three-dimensional model having the shape of a cube. In this example, the erosion rate at each of the four cut surfaces at the three cut surfaces along the stacking direction is displayed numerically and graphically. By analyzing the data displayed in such mapping, the erosion rate of various abrasive grains and the ratio of both erosion rates can be determined three-dimensionally, such as non-uniformity of internal quality, quality of individual particle size of metal powder, and balance between the two. It can be visually determined for each part of the modeled object.

以上説明したように、層状に形成された金属粉末を焼結させて積層一体化された三次元造形物の内部品質の不均一を評価する方法であって、金属粉末の平均粒径に基づいて設定された平均粒径を有する砥粒を三次元造形物の表面に向かって噴射させて衝突させ、三次元造形物の表面に形成された損傷痕の形状及び砥粒の投射量に基づいて内部品質の不均一を評価することができる。 As described above, it is a method of evaluating the non-uniformity of the internal quality of a three-dimensional model formed by sintering a layered metal powder and laminating and integrating the metal powder, based on the average particle size of the metal powder. Abrasive particles having a set average particle size are jetted toward the surface of the three-dimensional model and collided with each other, and the inside is based on the shape of the damage scar formed on the surface of the three-dimensional model and the projection amount of the abrasive grains. Non-uniformity of quality can be evaluated.

また、本発明に係る三次元造形物の評価方法では、金属粉末の平均粒径に基づいて設定された平均粒径を有する砥粒を用いて三次元造形物の評価が行われるが、金属粉末に合せて砥粒を準備しておくことが必要となる。上述した試験の条件が規格化されることで、共通の条件下で試験結果を得ることができるようになれば、積層造形による三次元造形物を客観的に評価することが可能となる。そのため、規格化された条件に合せて金属粉末に対応する平均粒径の異なる複数種類の砥粒を所定量ずつパッケージした標準的な評価キットを作成しておくとよい。こうした標準的な評価キットを使用することで、規格化された条件下で精度よく試験を行うことができるようになる。 Further, in the method for evaluating a three-dimensional model according to the present invention, the three-dimensional model is evaluated using abrasive grains having an average particle size set based on the average particle size of the metal powder. It is necessary to prepare the abrasive grains according to the above. If the above-mentioned test conditions are standardized and test results can be obtained under common conditions, it will be possible to objectively evaluate a three-dimensional model by laminated modeling. Therefore, it is advisable to prepare a standard evaluation kit in which a predetermined amount of a plurality of types of abrasive grains having different average particle sizes corresponding to the metal powder are packaged according to the standardized conditions. By using such a standard evaluation kit, it becomes possible to perform an accurate test under standardized conditions.

また、三次元造形物を製造する場合において、積層造形法により造形された三次元造形物をHIP処理により処理する前に、三次元造形物の複数の部位について上述した試験を行い、算出された各部位のエロージョン率に基づいてHIP処理の条件を調整することで、内部品質の不均一のバラツキの小さい三次元造形物を製造することができる。 Further, in the case of manufacturing a three-dimensional model, the above-mentioned test was performed on a plurality of parts of the three-dimensional model before processing the three-dimensional model formed by the laminated modeling method by the HIP treatment, and the calculation was performed. By adjusting the conditions of the HIP treatment based on the erosion rate of each part, it is possible to manufacture a three-dimensional model having a small variation in internal quality unevenness.

具体的には、層状に形成された金属粉末を焼結させて積層一体化された三次元造形物を造形した後、金属粉末の平均粒径に基づいて設定された平均粒径を有する砥粒を三次元造形物の複数の部位の表面に向かって噴射させて衝突させ、各部位の表面に形成された損傷痕の深さ及び砥粒の投射量に基づいてエロージョン率を算出する。そして、算出された複数のエロージョン率の差を許容範囲内となるようにHIP処理の条件を調整して処理することで、良好な品質の三次元造形物を製造することが可能となる。 Specifically, after sintering a layered metal powder to form a three-dimensional model that is laminated and integrated, abrasive grains having an average particle size set based on the average particle size of the metal powder. Is jetted toward the surfaces of a plurality of parts of the three-dimensional model and collided with each other, and the erosion rate is calculated based on the depth of the damage marks formed on the surface of each part and the projection amount of the abrasive grains. Then, by adjusting the conditions of the HIP processing so that the difference between the calculated erosion rates is within the permissible range, it becomes possible to manufacture a three-dimensional model of good quality.

例えば、各部位のうち最も大きいエロージョン率に対応してHIP処理の温度及び圧力を調整すれば、エロージョン率を減少させてエロージョン率の変化率を所定の許容範囲内とすることができる。 For example, by adjusting the temperature and pressure of the HIP treatment corresponding to the largest erosion rate among the respective parts, the erosion rate can be reduced and the rate of change of the erosion rate can be within a predetermined allowable range.

次に本発明を具体的に実施例で説明するが、本発明はこれらの実施例に限定されるものではない。 Next, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

<三次元造形物の製造>
金属粉末として、合金(Ti-6Al-4V)用粉末(平均粒径65μm)を準備した。三次元電子ビーム積層造形(EBM)装置(Arcam AB社製;Arcam A2X)を用いて積層ピッチ0.05mmで軸方向に積層して円柱体(直径10mm、高さ140mm)からなる三次元造形物を製造した。得られた三次元造形物の相対密度は99%以上であった。ここで、相対密度とは、原料となる合金の密度に対する造形物の密度の比率である。
<Manufacturing of 3D objects>
As a metal powder, a powder for an alloy (Ti-6Al-4V) (average particle size 65 μm) was prepared. A three-dimensional model consisting of a cylinder (diameter 10 mm, height 140 mm) laminated axially at a stacking pitch of 0.05 mm using a three-dimensional electron beam laminated molding (EBM) device (Arcam AB; Arcam A2X). Manufactured. The relative density of the obtained three-dimensional model was 99% or more. Here, the relative density is the ratio of the density of the modeled object to the density of the alloy as a raw material.

<三次元造形物のHIP処理>
三次元造形物に対して、アルゴンガス圧力50MPa~150MPa及び温度700℃~1000℃で30分間以上の処理時間でHIP処理を行った。処理後の三次元造形物の相対密度は99.9%以上となった。
<HIP processing of 3D model>
The three-dimensional model was subjected to HIP treatment at an argon gas pressure of 50 MPa to 150 MPa and a temperature of 700 ° C. to 1000 ° C. for a treatment time of 30 minutes or more. The relative density of the three-dimensional model after the treatment was 99.9% or more.

<MSE法による評価試験>
図1に示す構成と同様の構成を備えている試験装置(パルメソ株式会社製;MSE-B)を用いて、評価試験を行った。被験体として、HIP処理されていない円柱体及びHIP処理した円柱体についてそれぞれその中心部を厚さ2mmで軸方向に切断して形成した矩形状の板状体を準備した。砥粒として、白色溶融アルミナ粒子(株式会社フジミインコーポレーテッド製)を用い、大粒子には、WA#320(平均粒径40μm)、WA#600(平均粒径20μm)を準備し、小粒子にはWA#8000(平均粒径1μm)を準備した。砥粒の平均粒径の金属粉末の平均粒径に対する比率は、WA#320で62%、WA#600で31%、WA#8000で1.5%となる。
<Evaluation test by MSE method>
An evaluation test was conducted using a test apparatus (manufactured by Parumeso Co., Ltd .; MSE-B) having the same configuration as that shown in FIG. As a subject, a rectangular plate-shaped body formed by axially cutting the central portion of each of a non-HIP-treated cylinder and a HIP-treated cylinder with a thickness of 2 mm was prepared. White molten alumina particles (manufactured by Fujimi Incorporated Co., Ltd.) are used as abrasive particles, and WA # 320 (average particle size 40 μm) and WA # 600 (average particle size 20 μm) are prepared as large particles to make small particles. Prepared WA # 8000 (average particle size 1 μm). The ratio of the average particle size of the abrasive grains to the average particle size of the metal powder is 62% for WA # 320, 31% for WA # 600, and 1.5% for WA # 8000.

試験では、大粒子では純水に0.3質量%の濃度となるように混在させて試験液を調製し、小粒子では純水に3質量%の濃度となるように混在させて試験液を調製した。空気圧力を0.22MPaに設定するとともに噴射部での試験液の圧力を0.17MPaに設定して試験液を被験体の表面に向かって直交する方向(噴射方向90°)で噴射させて衝突させた。衝突位置は、被験体である板状体の積層方向(軸方向)の上部位置(上端から4mm下側の位置)及び下部位置(下端から4mm上側の位置)の2箇所を設定した。 In the test, a test solution was prepared by mixing large particles with pure water so as to have a concentration of 0.3% by mass, and for small particles, mixing the test solution with pure water so as to have a concentration of 3% by mass. Prepared. The air pressure is set to 0.22 MPa and the pressure of the test solution at the injection section is set to 0.17 MPa, and the test solution is injected in a direction orthogonal to the surface of the subject (injection direction 90 °) to collide. I let you. Two collision positions were set: the upper position (position 4 mm lower from the upper end) and the lower position (position 4 mm upper from the lower end) in the stacking direction (axial direction) of the plate-shaped body as the subject.

砥粒の投射量がWA#320では0.8g、WA#600では1.6g、WA#8000では8gとなるまで試験液の噴射を継続した後噴射を停止し、被験体に形成された損傷痕について触針式粗さ計(株式会社東京精密製)により測定した。測定結果に基づいて、非特許文献1に記載されているように、損傷痕の中心部の断面曲線をプロファイルして最深位置の深さを損傷痕の深さとした。そして、砥粒の投射量及び損傷痕の深さに基づいてエロージョン率を算出した。 The injection of the test solution was continued until the projection amount of the abrasive grains reached 0.8 g for WA # 320, 1.6 g for WA # 600, and 8 g for WA # 8000, and then the injection was stopped, and the damage formed on the subject. The marks were measured with a stylus type roughness meter (manufactured by Tokyo Seimitsu Co., Ltd.). Based on the measurement results, as described in Non-Patent Document 1, the cross-sectional curve at the center of the damage scar was profiled and the depth at the deepest position was defined as the depth of the damage scar. Then, the erosion rate was calculated based on the projection amount of the abrasive grains and the depth of the damage scar.

<評価結果について>
図5は、算出されたエロージョン率(μm/g)を示すグラフである。試験例N1は、上部位置での試験例であり、試験例N2は、下部位置での試験例である。
<About the evaluation result>
FIG. 5 is a graph showing the calculated erosion rate (μm / g). Test Example N1 is a test example in the upper position, and Test Example N2 is a test example in the lower position.

砥粒の粒径が20μm及び40μmの場合には、HIP処理前に比べてHIP処理後にエロージョン率が低下している。図6A及び図6Bは、試験例N1における表面を走査型電子顕微鏡(SEM)により観察した結果を示す撮影画像であり、図6Aは、試験例N1のHIP処理前の画像を示し、図6Bは、HIP処理後の画像を示している。図7A及び図7Bは、同じく試験例N2のSEM画像であり、図7Aは、HIP処理前、図7Bは、HIP処理後の画像を示している。これらの画像をみると、黒い点で表示されている内部空孔がHIP処理前に比べてHIP処理後に減少していることがわかる。空孔の数は特定の範囲内において試験例N1、N2ともにHIP前は50個前後であったものがHIP後は10個程度まで減少しており、平均粒径が20μm及び40μmの大粒子を使用した試験により算出されたエロージョン率に基づいて内部品質の不均一の差を定量的に評価可能であることを示している。 When the grain size of the abrasive grains is 20 μm and 40 μm, the erosion rate is lower after the HIP treatment than before the HIP treatment. 6A and 6B are photographed images showing the results of observing the surface of Test Example N1 with a scanning electron microscope (SEM), FIG. 6A shows an image of Test Example N1 before HIP processing, and FIG. 6B shows an image. , The image after HIP processing is shown. 7A and 7B are SEM images of Test Example N2 as well, FIG. 7A shows an image before HIP processing, and FIG. 7B shows an image after HIP processing. Looking at these images, it can be seen that the internal pores displayed as black dots are reduced after the HIP treatment as compared with before the HIP treatment. The number of pores was about 50 before HIP in both Test Examples N1 and N2 within a specific range, but decreased to about 10 after HIP, and large particles with an average particle size of 20 μm and 40 μm were produced. It is shown that the difference in non-uniformity of internal quality can be quantitatively evaluated based on the erosion rate calculated by the test used.

また、砥粒の平均粒径が1μmの場合には、HIP処理後にエロージョン率が上昇しており、平均粒径が20μm及び40μmの場合と逆の結果を示している。図8Aは、HIP処理前の三次元造形物の断面を撮影したSEM画像であり、図8Bは、HIP処理後の三次元造形物の断面を撮影したSEM画像である。2つの画像を比較すると、HIP処理の前後で組織のサイズや形状が変化していることがわかる。これは、HIP処理により結晶粒子サイズで組織が変化し、金属粉末の粒子単体サイズの組織変化がHIP処理後に生じていることを示していると考えられ、小粒子によるエロージョン率は金属粉末の粒子単体サイズの組織変化を評価できることがわかる。 Further, when the average particle size of the abrasive grains is 1 μm, the erosion rate is increased after the HIP treatment, and the results opposite to those when the average particle size is 20 μm and 40 μm are shown. FIG. 8A is an SEM image of a cross section of the three-dimensional model before the HIP process, and FIG. 8B is an SEM image of the cross section of the three-dimensional model after the HIP process. Comparing the two images, it can be seen that the size and shape of the tissue changed before and after the HIP processing. This is considered to indicate that the structure changes depending on the crystal particle size due to the HIP treatment, and the structure change of the particle size of the metal powder occurs after the HIP treatment, and the erosion rate due to the small particles is the particles of the metal powder. It can be seen that the tissue change of a single size can be evaluated.

上述した試験結果では、三次元造形物において上部位置と下部位置とで内部品質の不均一の差がある場合、エロージョン率も対応して変化すると考えられる。これは、三次元造形物において上部位置と下部位置との間など、部位による内部品質の不均一の差をエロージョン率に基づいて定量的に評価できることを示している。 According to the above-mentioned test results, if there is a non-uniform difference in internal quality between the upper position and the lower position in the three-dimensional model, it is considered that the erosion rate also changes accordingly. This indicates that the difference in non-uniformity of internal quality depending on the part, such as between the upper position and the lower position in a three-dimensional model, can be quantitatively evaluated based on the erosion rate.

また、上述した検討結果よれば、HIP処理の前後で内部空孔の数が減少していることが確認されており、HIP処理により内部品質の不均一が減少したことを示している。そして、こうした内部品質の不均一の減少に対応して大粒子を使用した試験によるエロージョン率が減少していることから、HIP処理による内部品質の不均一に対する改善効果をエロージョン率に基づいて定量的に評価可能であることを示している。 Further, according to the above-mentioned examination results, it was confirmed that the number of internal vacancies decreased before and after the HIP treatment, indicating that the non-uniformity of the internal quality was reduced by the HIP treatment. Since the erosion rate in the test using large particles is reduced in response to the decrease in the non-uniformity of the internal quality, the improvement effect of the HIP treatment on the non-uniformity of the internal quality is quantitatively based on the erosion rate. It shows that it can be evaluated.

また、上述したように、HIP処理により三次元造形物の密度が上昇することが確認されており、HIP処理による疲労強度の増加についても報告されている(Hiroshige Masuo 他6名、「Effects of Defects, Surface Roughness and HIP on Fatigue Strength of Ti-6Al-4V manufactured by Additive Manufacturing」、3rd International Symposium on Fatigue Design and Material Defects, FDMD 2017, 19-22 September 2017, Lecco, Italy)。図9は、報告されたHIP処理後の疲労強度の増加を示すグラフである。疲労強度に関する試験は、 金属材料の回転曲げ疲れ試験方法(JIS Z 2274-1978)により、2種類の試験片でHIP処理を行っていないものとHIP処理を行ったもの(□印で示す)をそれぞれ準備し、回転周波数60Hz(回転数3600回/分)で行った。グラフでは、縦軸に応力振幅σa、横軸に破断繰返し数Nfをとっている。HIP処理を行っていないもの(○印で示す)に比べてHIP処理を行ったもの(□印で示す)の方が強度が増加していることがわかる。 In addition, as mentioned above, it has been confirmed that the density of 3D shaped objects is increased by HIP treatment, and it has been reported that the fatigue strength is increased by HIP treatment (Hiroshige Masuo et al., 6 people, "Effects of Defects". , Surface Roughness and HIP on Fatigue Strength of Ti-6Al-4V manufactured by Additive Manufacturing ”, 3rd International Symposium on Fatigue Design and Material Defects, FDMD 2017, 19-22 September 2017, Lecco, Italy). FIG. 9 is a graph showing the reported increase in fatigue intensity after HIP treatment. Fatigue strength tests are conducted by the rotary bending fatigue test method (JIS Z 2274-1978) for metal materials, in which two types of test pieces are HIP-treated and HIP-treated (indicated by □). Each was prepared and carried out at a rotation frequency of 60 Hz (rotation speed 3600 times / minute). In the graph, the vertical axis represents the stress amplitude σa and the horizontal axis represents the number of fracture repetitions Nf. It can be seen that the strength of the product subjected to the HIP treatment (indicated by the □ mark) is higher than that of the product not subjected to the HIP treatment (indicated by the circle).

上述した試験結果では、HIP処理前後でエロージョン率の減少がみられることから、HIP処理前後のエロージョン率をHIP処理による密度や疲労強度の変化との相関関係をみることで、エロージョン率を他の特性データと組み合せて総合的に評価できることを示している。 In the above-mentioned test results, the erosion rate decreases before and after the HIP treatment. Therefore, by looking at the correlation between the erosion rate before and after the HIP treatment and the change in density and fatigue intensity due to the HIP treatment, the erosion rate can be changed to another. It shows that it can be evaluated comprehensively in combination with characteristic data.

上述した試験結果により、HIP処理後の三次元造形物ではHIP処理前に比較して大粒子を使用した場合のエロージョン率は減少しているが、小粒子を使用した場合のエロージョン率は増加している。こうした両エロージョン率の異なる変化は、それぞれ異なる特性を評価していることを示しており、両エロージョン率を複合的に用いて評価を行うことで三次元造形物の総合的な品質評価を行なうことができることを示している。 According to the above-mentioned test results, in the three-dimensional model after HIP treatment, the erosion rate when large particles are used is smaller than that before HIP treatment, but the erosion rate is increased when small particles are used. ing. These different changes in both erosion rates indicate that different characteristics are being evaluated, and a comprehensive quality evaluation of the three-dimensional model can be performed by performing evaluation using both erosion rates in combination. Shows that it can be done.

1・・・タンク、2・・・噴射部、3・・・回収ポンプ、4・・・貯留容器、5・・・接続管、6・・・回収管、7・・・空気管、8・・・エアコンプレッサ、10・・・被験体、11・・・流量計、12・・・圧力計、13・・・流量計、15・・・空気管、20・・・噴射ノズル 1 ... tank, 2 ... injection part, 3 ... recovery pump, 4 ... storage container, 5 ... connection pipe, 6 ... recovery pipe, 7 ... air pipe, 8 ... ... Air compressor, 10 ... Subject, 11 ... Flow meter, 12 ... Pressure gauge, 13 ... Flow meter, 15 ... Air pipe, 20 ... Injection nozzle

Claims (10)

層状に形成された金属粉末を焼結硬化させて積層一体化された三次元造形物の内部品質の不均一を評価する方法であって、前記金属粉末の平均粒径と同程度又はそれ以下の平均粒径を有する砥粒を前記三次元造形物の表面に向かって噴射させて衝突させ、前記三次元造形物の表面に形成された損傷痕の形状及び前記砥粒の投射量に基づいて内部品質の不均一を評価する三次元造形物の評価方法。 It is a method of evaluating the non-uniformity of the internal quality of a three-dimensional model formed by sintering and hardening a layered metal powder and laminating and integrating the metal powder, which is equal to or less than the average particle size of the metal powder. Abrasive particles having an average particle size are jetted toward the surface of the three-dimensional model and collided with each other, and the inside is based on the shape of the damage scar formed on the surface of the three-dimensional model and the projection amount of the abrasive grains. An evaluation method for three-dimensional shaped objects that evaluates non-uniformity of quality. 前記損傷痕の深さ及び前記砥粒の投射量に基づいて算出されるエロージョン率により評価する請求項1に記載の三次元造形物の評価方法。 The method for evaluating a three-dimensional model according to claim 1, wherein the erosion rate is calculated based on the depth of the damage scar and the projection amount of the abrasive grains. 異なる平均粒径を有する複数種類の前記砥粒を使用して評価する請求項1又は2に記載の三次元造形物の評価方法。 The method for evaluating a three-dimensional model according to claim 1 or 2, wherein a plurality of types of the abrasive grains having different average particle sizes are used for evaluation. 複数種類の前記砥粒には、少なくとも前記金属粉末の平均粒径に近い平均粒径を有する大粒子及び当該大粒子よりも小さな平均粒径の小粒子を選択する請求項3に記載の三次元造形物の評価方法。 The three-dimensional according to claim 3, wherein large particles having an average particle size close to the average particle size of the metal powder and small particles having an average particle size smaller than the large particles are selected for the plurality of types of the abrasive grains. Evaluation method of the modeled object. 前記大粒子の平均粒径は、前記金属粉末の平均粒径に対して20%~100%に設定し、前記小粒子の粒径は、前記金属粉末の平均粒径に対して1~5%に設定する請求項4に記載の三次元造形物の評価方法。 The average particle size of the large particles is set to 20% to 100% with respect to the average particle size of the metal powder, and the particle size of the small particles is 1 to 5% with respect to the average particle size of the metal powder. The method for evaluating a three-dimensional model according to claim 4, which is set in 1. 複数種類の前記砥粒を使用してそれぞれ算出される複数のエロージョン率を組み合せて評価する請求項3から5のいずれかに記載の三次元造形物の評価方法。 The evaluation method for a three-dimensional model according to any one of claims 3 to 5, wherein a plurality of erosion rates calculated by using a plurality of types of the abrasive grains are combined and evaluated. 前記三次元造形物に関する特性試験により得られたデータを組み合せて評価する請求項1から6のいずれかに記載の三次元造形物の評価方法。 The evaluation method for a three-dimensional model according to any one of claims 1 to 6, wherein the data obtained by the characteristic test for the three-dimensional model is combined and evaluated. 前記特性試験は、密度測定、引張強度試験、圧縮強度試験、曲げ強度試験、ねじり強度試験、回転曲げ動作による疲労強度試験のうち少なくとも1つを選択する請求項7に記載の三次元造形物の評価方法。 The three-dimensional model according to claim 7, wherein the characteristic test selects at least one of a density measurement, a tensile strength test, a compressive strength test, a bending strength test, a torsional strength test, and a fatigue strength test by a rotary bending operation. Evaluation methods. 請求項3から8のいずれかに記載の三次元造形物の評価方法に用いる評価キットであって、前記金属粉末に対応する平均粒径の異なる複数種類の前記砥粒を所定量ずつパッケージした評価キット。 An evaluation kit used in the evaluation method for a three-dimensional model according to any one of claims 3 to 8, wherein a plurality of types of abrasive grains having different average particle sizes corresponding to the metal powder are packaged in predetermined amounts. kit. 層状に形成された金属粉末を焼結させて積層一体化された三次元造形物を造形する工程と、前記金属粉末の平均粒径と同程度又はそれ以下の平均粒径を有する砥粒を前記三次元造形物の複数の部位の表面に向かって噴射させて衝突させ、各部位の表面に形成された損傷痕の形状及び砥粒の投射量に基づいてエロージョン率を算出する評価工程と、算出された複数のエロージョン率に基づいて熱間等方加圧法の条件を調整して前記三次元造形物を熱間等方加圧法により処理する処理工程とを含む三次元造形物の製造方法。 The steps of sintering a layered metal powder to form a laminated and integrated three-dimensional model, and the abrasive grains having an average particle size equal to or less than the average particle size of the metal powder are described above. An evaluation process and calculation to calculate the erosion rate based on the shape of the damage scars formed on the surface of each part and the projection amount of the abrasive grains by injecting and colliding with the surfaces of multiple parts of the three-dimensional model. A method for manufacturing a three-dimensional model including a processing step of adjusting the conditions of the hot isotropic pressurization method based on a plurality of erosion rates and treating the three-dimensional model by the hot isotropic pressurization method.
JP2017205159A 2017-10-24 2017-10-24 Evaluation method for 3D objects Active JP7007563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205159A JP7007563B2 (en) 2017-10-24 2017-10-24 Evaluation method for 3D objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205159A JP7007563B2 (en) 2017-10-24 2017-10-24 Evaluation method for 3D objects

Publications (2)

Publication Number Publication Date
JP2019078613A JP2019078613A (en) 2019-05-23
JP7007563B2 true JP7007563B2 (en) 2022-02-10

Family

ID=66626479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205159A Active JP7007563B2 (en) 2017-10-24 2017-10-24 Evaluation method for 3D objects

Country Status (1)

Country Link
JP (1) JP7007563B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452887B2 (en) * 2022-01-28 2024-03-19 株式会社パルメソ Material strength distribution color image display method
JP7399504B2 (en) 2022-05-23 2023-12-18 国立大学法人福井大学 Surface internal evaluation method of solid materials

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183279A (en) 1999-12-22 2001-07-06 Macoho Co Ltd Film evaluation tester and film evaluation testing method
JP2005282396A (en) 2004-03-29 2005-10-13 Ebara Corp Determination method and system for wear amount of fluid machine
JP2010121187A (en) 2008-11-20 2010-06-03 Panasonic Electric Works Co Ltd Three-dimensional shaped article and method for producing the same
US20100192663A1 (en) 2009-02-03 2010-08-05 Robert J. Jenkins & Company Method for testing abrasion resistance of a test specimen
JP2010237071A (en) 2009-03-31 2010-10-21 Macoho Co Ltd Coating evaluation device
JP2013050378A (en) 2011-08-31 2013-03-14 Palmeso Co Ltd Slurry injector used for specimen evaluation
US20140271322A1 (en) 2013-03-13 2014-09-18 Honeywell International Inc. Methods for forming dispersion-strengthened aluminum alloys
JP2015533939A (en) 2012-09-12 2015-11-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method for the manufacture of wear-resistant parts
JP2016002698A (en) 2014-06-17 2016-01-12 三菱鉛筆株式会社 Writing ball formed by powder sintering laminate shaping method, and writing instrument having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161533A (en) * 1981-03-30 1982-10-05 Matsuda Pump Seisakusho:Kk Method and device for testing sand erosion and corrosion
JPS63282221A (en) * 1987-05-15 1988-11-18 Hitachi Ltd Manufacture of composite sintered material
JPH0336230A (en) * 1989-06-30 1991-02-15 Toshiba Corp Erosion-resistant alloy steel and its manufacture
JPH06170584A (en) * 1992-11-30 1994-06-21 Hitachi Ltd High-c-and high-si-content weld metal powder and equipment member having its coating layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183279A (en) 1999-12-22 2001-07-06 Macoho Co Ltd Film evaluation tester and film evaluation testing method
JP2005282396A (en) 2004-03-29 2005-10-13 Ebara Corp Determination method and system for wear amount of fluid machine
JP2010121187A (en) 2008-11-20 2010-06-03 Panasonic Electric Works Co Ltd Three-dimensional shaped article and method for producing the same
US20100192663A1 (en) 2009-02-03 2010-08-05 Robert J. Jenkins & Company Method for testing abrasion resistance of a test specimen
JP2010237071A (en) 2009-03-31 2010-10-21 Macoho Co Ltd Coating evaluation device
JP2013050378A (en) 2011-08-31 2013-03-14 Palmeso Co Ltd Slurry injector used for specimen evaluation
JP2015533939A (en) 2012-09-12 2015-11-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method for the manufacture of wear-resistant parts
US20140271322A1 (en) 2013-03-13 2014-09-18 Honeywell International Inc. Methods for forming dispersion-strengthened aluminum alloys
JP2016002698A (en) 2014-06-17 2016-01-12 三菱鉛筆株式会社 Writing ball formed by powder sintering laminate shaping method, and writing instrument having the same

Also Published As

Publication number Publication date
JP2019078613A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
Kim et al. Literature review of metal additive manufacturing defects
Sander et al. Corrosion of additively manufactured alloys: a review
Miranda et al. Predictive models for physical and mechanical properties of 316L stainless steel produced by selective laser melting
Jacob et al. Effects of powder recycling on stainless steel powder and built material properties in metal powder bed fusion processes
JP7007563B2 (en) Evaluation method for 3D objects
US20200368816A1 (en) Powder mixture for use in the manufacture of a three-dimensional object by means of an additive manufacturing method
Bagehorn et al. Surface finishing of additive manufactured Ti-6Al-4V-a comparison of electrochemical and mechanical treatments
Rekedal et al. Fatigue life of selective laser melted and hot isostatically pressed Ti-6Al-4V absent of surface machining
Stegall et al. Indentation size effect in FCC metals: An examination of experimental techniques and the bilinear behavior
Palousek et al. Processing of nearly pure iron using 400 W selective laser melting—Initial study
EP3254783A1 (en) Powder mixture for use in the manufacture of a three-dimensional object by means of an additive manufacturing method
JP7366047B2 (en) jackhammer insert
JP7120524B2 (en) Diamond bonded body and method for manufacturing diamond bonded body
Lucon et al. Effect of Precrack Configuration and Lack-of-Fusion on the Elastic-Plastic Fracture Toughness of Additively Manufactured Ti-6Al-4V parts
Krishnan et al. Influence of post-processing operations on mechanical properties of AlSi10Mg parts by DMLS
US20190210103A1 (en) Powder mixture for use in the manufacture of a three-dimensional object by means of an additive manufacturing method
Zhu et al. Influence of inclination angle, shape and size of the flow channels on the AlSi10Mg complex products fabricated by selective laser melting
Kundera et al. Assessment of mechanical properties of pa 3200 gf polyamide models made by SLS
Naiju et al. Evaluation of fatigue strength for the reliability of parts produced by direct metal laser sintering (DMLS)
Venkatesh et al. Optimization of FDM process parameters for ABS component by using Taguchi method
Mikado et al. Fatigue lifetime and crack growth behavior of WC-Co cemented carbide
Wilson-Heid Additively Manufactured Metals: Effect of Microstructure and Defects on Multiaxial Plasticity and Fracture Behavior
Ushakova Modeling of the stress-strain state of rocket-space technology structural elements manufactured by using additive technologies
Soares Mechanical and tribological behavior of 3D parts manufactured by additive processes
Ye et al. EXPERIMENTAL EVALUATION OF HIERARCHICAL FUNCTIONALLY GRADED LATTICES USING DIGITAL IMAGE CORRELATION AND MICRO-CT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 7007563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150