JP7006904B2 - Method for manufacturing heat-resistant corrosion-resistant film, heat-resistant corrosion-resistant member and heat-resistant corrosion-resistant film - Google Patents

Method for manufacturing heat-resistant corrosion-resistant film, heat-resistant corrosion-resistant member and heat-resistant corrosion-resistant film Download PDF

Info

Publication number
JP7006904B2
JP7006904B2 JP2017143689A JP2017143689A JP7006904B2 JP 7006904 B2 JP7006904 B2 JP 7006904B2 JP 2017143689 A JP2017143689 A JP 2017143689A JP 2017143689 A JP2017143689 A JP 2017143689A JP 7006904 B2 JP7006904 B2 JP 7006904B2
Authority
JP
Japan
Prior art keywords
resistant
heat
corrosion
eutectic
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017143689A
Other languages
Japanese (ja)
Other versions
JP2019026862A (en
Inventor
俊吉 上野
直登 菅野
康介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2017143689A priority Critical patent/JP7006904B2/en
Publication of JP2019026862A publication Critical patent/JP2019026862A/en
Application granted granted Critical
Publication of JP7006904B2 publication Critical patent/JP7006904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、耐熱耐食皮膜、耐熱耐食部材及び耐熱耐食皮膜の製造方法に関する。 The present invention relates to a heat-resistant corrosion-resistant film, a heat-resistant corrosion-resistant member, and a method for producing a heat-resistant corrosion-resistant film.

高温ガスタービン、自動車エンジン用部材、航空機用耐熱部材等は、非常に高温かつ水蒸気の存在する環境下で使用される。そのため、耐熱性及び耐食性に優れた部材が求められている。 High-temperature gas turbines, automobile engine members, aircraft heat-resistant members, etc. are used in an environment where the temperature is extremely high and water vapor is present. Therefore, there is a demand for a member having excellent heat resistance and corrosion resistance.

例えば、特許文献1には、超合金基材上に、MCrAlX(MはNi、Co、Feから選択される1種以上の元素、XはY、Hf、Ta、Cs、Ce、La、Th、W、Si、Pt、Ybから選択される1種以上の元素)とAl合金溶射皮膜とを被覆した部材が記載されている。 For example, Patent Document 1 describes MCrAlX (M is one or more elements selected from Ni, Co, and Fe, X is Y, Hf, Ta, Cs, Ce, La, Th,) on a superalloy substrate. A member coated with one or more elements selected from W, Si, Pt, and Yb) and an Al alloy sprayed coating is described.

しかしながら、特許文献1に記載の部材は超合金基材自体の耐熱性が1350℃前後であり、MCrAlXで表記される中間層の耐酸化性も800℃前後である。そのため、耐熱性及び耐食性が充分とは言えなかった。 However, the member described in Patent Document 1 has a heat resistance of the superalloy base material itself of about 1350 ° C., and an oxidation resistance of the intermediate layer represented by MCrAlX is also about 800 ° C. Therefore, it cannot be said that the heat resistance and the corrosion resistance are sufficient.

そこで、窒化ケイ素セラミック構造体の表面にY、Yb、Er及びDy等の希土類シリケート皮膜を成膜した部材が検討されている(例えば、特許文献2~4)。しかしながら、希土類シリケート皮膜は多結晶構造であり、粒界に粒界ガラス相を有する。粒界ガラス相は、1500度を超える条件になると選択的に腐食され、多孔質化する。そのため、これらの部材も十分な耐熱性を有するとは言えなかった。 Therefore, a member in which a rare earth silicate film such as Y, Yb, Er, and Dy is formed on the surface of a silicon nitride ceramic structure has been studied (for example, Patent Documents 2 to 4). However, the rare earth silicate film has a polycrystalline structure and has a grain boundary glass phase at the grain boundaries. The grain boundary glass phase is selectively corroded and made porous when the temperature exceeds 1500 degrees. Therefore, it cannot be said that these members also have sufficient heat resistance.

一方で、本発明者らは、これらの部材とは別の系として、粒界ガラス相を内在しない複数の金属酸化物の共晶構造体を皮膜として備えた部材を開発した(特許文献5)。 On the other hand, the present inventors have developed a member having a eutectic structure of a plurality of metal oxides having no inclusion of a grain boundary glass phase as a film as a system different from these members (Patent Document 5). ..

特開2000-96206号公報Japanese Unexamined Patent Publication No. 2000-96206 特開平11-139883号公報Japanese Unexamined Patent Publication No. 11-139883 特開平11-12050号公報Japanese Unexamined Patent Publication No. 11-12050 特開平10-87386号公報Japanese Unexamined Patent Publication No. 10-87386 特開2016-69229号公報Japanese Unexamined Patent Publication No. 2016-69229

特許文献5に記載の皮膜は、1500℃を超える高温に対しても耐熱性を有する優れた皮膜である。一方で、タービン等は少しでも高い熱効率を実現することが求められている。そのため、1800℃を超える温度環境下でも動作できる部材が求められており、より耐熱性及び耐食性に優れる皮膜が求められている。 The film described in Patent Document 5 is an excellent film having heat resistance even at a high temperature exceeding 1500 ° C. On the other hand, turbines and the like are required to realize high thermal efficiency as much as possible. Therefore, there is a demand for a member that can operate even in a temperature environment exceeding 1800 ° C., and a film having higher heat resistance and corrosion resistance is required.

本発明は、高温環境下でも耐食性に優れる耐熱耐食皮膜及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a heat-resistant corrosion-resistant film having excellent corrosion resistance even in a high-temperature environment and a method for producing the same.

発明者らは、鋭意検討の結果、皮膜を構成する共晶をより緻密にすることで、より耐熱性及び耐食性に優れた耐熱耐食皮膜を得ることができることを見出した。
すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
As a result of diligent studies, the inventors have found that a heat-resistant corrosion-resistant film having more excellent heat resistance and corrosion resistance can be obtained by making the eutectic crystals constituting the film more dense.
That is, the present invention provides the following means for solving the above problems.

(1)第1の態様にかかる耐熱耐食皮膜は、基材上に被覆される耐熱性及び耐腐食性を有する耐熱耐食皮膜であって、ZrO又はHfOを含む共晶を有する共晶構造層を備え、前記共晶構造層を前記基材と反対側の面から見た表面において、前記共晶構造層を構成する共晶のラメラ構造のラメラ幅が1μm以下である。 (1) The heat-resistant and corrosion-resistant film according to the first aspect is a heat-resistant and corrosion-resistant film coated on a substrate and has a eutectic structure containing ZrO 2 or HfO 2 . The lamellar width of the eutectic lamellar structure constituting the eutectic structure layer is 1 μm or less on the surface of the eutectic structure layer when the layer is provided and the eutectic structure layer is viewed from the surface opposite to the base material.

(2)上記態様にかかる耐熱耐食皮膜において、前記共晶構造層がカルシアで安定化されたジルコニア又はハフニアを含んでもよい。 (2) In the heat-resistant corrosion-resistant film according to the above embodiment, the eutectic structural layer may contain zirconia or hafnium stabilized with calcia.

(3)上記態様にかかる耐熱耐食皮膜において、前記表面におけるラメラ構造の形状が不定形であってもよい。 (3) In the heat-resistant corrosion-resistant film according to the above aspect, the shape of the lamellar structure on the surface may be irregular.

(4)上記態様にかかる耐熱耐食皮膜において、前記基材側の一面に、前記基材の酸化を防止する中間層をさらに備えてもよい。 (4) In the heat-resistant corrosion-resistant film according to the above aspect, an intermediate layer for preventing oxidation of the base material may be further provided on one surface on the base material side.

(5)上記態様にかかる耐熱耐食皮膜において、前記基材と反対側の面に、前記共晶構造層を構成する元素を含むポーラス酸化物を含む遮熱層をさらに備えてもよい。 (5) In the heat-resistant corrosion-resistant film according to the above embodiment, a heat-shielding layer containing a porous oxide containing an element constituting the eutectic structure layer may be further provided on the surface opposite to the base material.

(6)第2の態様にかかる耐熱耐食部材は、基材と、前記基材の外表面を被覆する上記態様にかかる耐熱耐食皮膜と、を備える。 (6) The heat-resistant and corrosion-resistant member according to the second aspect includes a base material and the heat-resistant and corrosion-resistant film according to the above aspect that covers the outer surface of the base material.

(7)第2の態様にかかる耐熱耐食皮膜の製造方法は、上記態様にかかる耐熱耐食皮膜の製造方法であって、基材の一面に、共晶組成物を含む塗膜を形成する塗布工程と、前記塗膜の一部を集光加熱により溶融する溶融工程と、溶融位置を移動させながら、溶融箇所を急冷する急冷凝固工程と、を有し、前記溶融位置の移動速度が500mm/h以上である。 (7) The method for producing a heat-resistant and corrosion-resistant film according to the second aspect is the method for producing a heat-resistant and corrosion-resistant film according to the above aspect, and is a coating step of forming a coating film containing a eutectic composition on one surface of a base material. It has a melting step of melting a part of the coating film by condensing heating and a quenching solidification step of rapidly cooling the melted portion while moving the melting position, and the moving speed of the melting position is 500 mm / h. That is all.

(8)上記態様にかかる耐熱耐食皮膜の製造方法において、前記溶融位置の移動速度が2000mm/h以上であってもよい。 (8) In the method for producing a heat-resistant corrosion-resistant film according to the above aspect, the moving speed of the melting position may be 2000 mm / h or more.

上記態様にかかる耐熱耐食皮膜及び耐熱耐食部材によれば、1800℃を超える温度に対しても耐熱性及び耐食性を維持することができる。 According to the heat-resistant corrosion-resistant film and the heat-resistant corrosion-resistant member according to the above aspect, the heat resistance and the corrosion resistance can be maintained even at a temperature exceeding 1800 ° C.

上記態様にかかる耐熱耐食皮膜の製造方法によれば、均一で微細な共晶構造を有する耐熱耐食皮膜を製造することができる。 According to the method for producing a heat-resistant and corrosion-resistant film according to the above aspect, it is possible to produce a heat-resistant and corrosion-resistant film having a uniform and fine eutectic structure.

本実施形態にかかる耐熱耐食部材の断面模式図である。It is sectional drawing of the heat-resistant and corrosion-resistant member which concerns on this embodiment. 本実施形態にかかる耐熱耐食皮膜の共晶構造層の基材と反対側の面を走査型電子顕微鏡(SEM)で測定した画像である。It is an image which measured the surface opposite to the substrate of the eutectic structure layer of the heat-resistant corrosion-resistant film which concerns on this embodiment with a scanning electron microscope (SEM). 本実施形態にかかる耐熱耐食皮膜の製造方法に用いることができるFZ方式(Floating Zone Method)の結晶製造装置を示す模式図である。It is a schematic diagram which shows the crystal manufacturing apparatus of the FZ method (Floating Zone Method) which can be used in the manufacturing method of the heat-resistant corrosion-resistant film which concerns on this embodiment. 本実施形態にかかる耐熱耐食皮膜の製造過程を模式的に示した図である。It is a figure which showed schematically the manufacturing process of the heat-resistant corrosion-resistant film which concerns on this embodiment. 本実施形態にかかる耐熱耐食皮膜の製造方法によって作製した耐熱耐食部材の写真である。It is a photograph of the heat-resistant and corrosion-resistant member produced by the manufacturing method of the heat-resistant and corrosion-resistant film according to this embodiment.

以下、本発明における好ましい実施形態を示す。しかし、本発明はこれらの実施形態に限定されるものではなく、形態が本発明の技術的思想を有するものである限り、本発明の範囲に含まれる。各実施形態における各構成及びそれらの組み合わせなどは一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 Hereinafter, preferred embodiments of the present invention will be shown. However, the present invention is not limited to these embodiments, and is included in the scope of the present invention as long as the embodiment has the technical idea of the present invention. Each configuration in each embodiment and a combination thereof are examples, and the configuration can be added, omitted, replaced, and other changes are possible without departing from the spirit of the present invention. Further, the present invention is not limited to the embodiments, but only to the scope of claims.

「耐熱耐食部材」
図1は、本実施形態にかかる耐熱耐食部材の断面模式図である。図1に示す耐熱耐食部材10は、基材1と中間層2と共晶構造層3とを備える。図1において耐熱耐食皮膜5は、中間層2と共晶構造層3とによって構成される。
"Heat and corrosion resistant material"
FIG. 1 is a schematic cross-sectional view of a heat-resistant and corrosion-resistant member according to the present embodiment. The heat-resistant and corrosion-resistant member 10 shown in FIG. 1 includes a base material 1, an intermediate layer 2, and a eutectic structure layer 3. In FIG. 1, the heat-resistant corrosion-resistant film 5 is composed of an intermediate layer 2 and a eutectic structure layer 3.

<基材>
基材1は、耐熱性に優れる材料により構成されていることが好ましい。例えば、Ni超合金等の超合金部材、SiC等のセラミック部材は、基材1に用いることができる。超合金部材は、靱性等の機械的強度に優れる。セラミック部材は、単独での耐熱性に優れる。またセラミック部材は、SiCセラミックスに高強度・高剛性のSiC長繊維を複合化させたものを用いることが好ましい。この部材は、靭性・信頼性に優れる。
<Base material>
The base material 1 is preferably made of a material having excellent heat resistance. For example, a superalloy member such as Ni superalloy and a ceramic member such as SiC can be used for the base material 1. The superalloy member is excellent in mechanical strength such as toughness. The ceramic member alone has excellent heat resistance. Further, as the ceramic member, it is preferable to use a composite of SiC ceramics and SiC long fibers having high strength and high rigidity. This member has excellent toughness and reliability.

<中間層>
中間層2は、基材1と共晶構造層3の間に位置する。すなわち、中間層2は耐熱耐食皮膜5の基材1側の一面に形成される。中間層2は、必須の層ではないが、有していることが好ましい。
<Middle layer>
The intermediate layer 2 is located between the substrate 1 and the eutectic structure layer 3. That is, the intermediate layer 2 is formed on one surface of the heat-resistant and corrosion-resistant film 5 on the base material 1 side. The intermediate layer 2 is not an essential layer, but it is preferable to have it.

中間層2は、基材1と共晶構造層3との間の密着性を高める。中間層2は、共晶構造層3を通過した酸素元素により基材1が酸化されることを防ぐ。中間層2は、例えば、NiCrAlY等の合金組成物、シリコン等を用いることができる。 The intermediate layer 2 enhances the adhesion between the substrate 1 and the eutectic structure layer 3. The intermediate layer 2 prevents the base material 1 from being oxidized by the oxygen element that has passed through the eutectic structure layer 3. For the intermediate layer 2, for example, an alloy composition such as NiCrAlY, silicon, or the like can be used.

<共晶構造層>
共晶構造層3は、複数の金属酸化物の共晶構造体からなる。図2は、本実施形態にかかる耐熱耐食皮膜の共晶構造層3の基材1と反対側の面を走査型電子顕微鏡(SEM)で測定した画像である。図2に示すように、共晶構造層3を構成する共晶のラメラ構造は、微細化されている。
<Eutectic structure layer>
The eutectic structure layer 3 is composed of a eutectic structure of a plurality of metal oxides. FIG. 2 is an image obtained by measuring the surface of the eutectic structure layer 3 of the heat-resistant corrosion-resistant film according to the present embodiment on the opposite side of the substrate 1 with a scanning electron microscope (SEM). As shown in FIG. 2, the eutectic lamellar structure constituting the eutectic structure layer 3 is miniaturized.

図2に示す共晶構造層3は、基材1と反対側の面から見た表面において、共晶構造層3を構成する共晶のラメラ構造のラメラ幅が1μm以下であり、0.5μm以下であることが好ましい。ここでラメラ幅とは、隣接するラメラ晶間の距離を意味する。 The eutectic structure layer 3 shown in FIG. 2 has a lamellar width of 1 μm or less and 0.5 μm of the eutectic lamellar structure constituting the eutectic structure layer 3 on the surface viewed from the surface opposite to the substrate 1. It is preferably as follows. Here, the lamella width means the distance between adjacent lamella crystals.

ラメラ幅は、以下のような手順で求めることができる。まず走査型電子顕微鏡により共晶構造層3の表面画像を取得する。次いで、表面上に任意の線を引き、その線分上におけるラメラ幅を測定する。この線分上におけるラメラ幅は、隣接する二つのラメラ晶の中心間距離をそれぞれ計測することで求められる。同様の作業を任意の10本の線分上で行う。そして、測定した各線分上におけるラメラ幅をヒストグラフ化し、ヒストグラフの最大ピークとなるラメラ幅が、「共晶構造層のラメラ幅」となる。 The lamella width can be obtained by the following procedure. First, a surface image of the eutectic structure layer 3 is acquired by a scanning electron microscope. Then, an arbitrary line is drawn on the surface and the lamella width on the line segment is measured. The lamella width on this line segment is obtained by measuring the distance between the centers of two adjacent lamella crystals. Do the same work on any 10 line segments. Then, the lamella width on each measured line segment is made into a histograph, and the lamella width at the maximum peak of the histograph is the "eutectic structure layer lamella width".

共晶構造層3を構成する共晶のラメラ構造が微細化すると、中間層2と共晶構造層3との間(中間層2を有さない場合は、基材1と共晶構造層3との間)に生じる応力を緩和できる。このような応力は、それぞれの層の熱膨張係数の差によって生じる。微細化したラメラ構造を有する共晶構造層3は、組織が柔軟性を有しており、生じる応力を緩和しやすくなる。 When the eutectic lamellar structure constituting the eutectic structure layer 3 is miniaturized, between the intermediate layer 2 and the eutectic structure layer 3 (when the intermediate layer 2 is not provided, the base material 1 and the eutectic structure layer 3 are used. The stress generated between (and) can be relaxed. Such stress is caused by the difference in the coefficient of thermal expansion of each layer. The eutectic structure layer 3 having a miniaturized lamellar structure has a flexible structure, and it becomes easy to relieve the stress generated.

ラメラ幅が1μm以下である共晶構造層3は、組織が極めて微細であり、界面に大きな応力が生じても充分緩和可能である。例えば特許文献5の図4に示す共晶構造層はラメラ幅が数μm程度であり、この図と比較しても共晶構造層3の組織が微細化されていることが分かる。なお、共晶構造層3の結晶組織は、基材1に近づくほど微細化している。そのため、基材1側の表面におけるラメラ幅は、基材1と反対側の表面における共晶のラメラ幅(1μm以下)より小さい。 The eutectic structure layer 3 having a lamella width of 1 μm or less has an extremely fine structure and can be sufficiently relaxed even if a large stress is generated at the interface. For example, the eutectic structure layer shown in FIG. 4 of Patent Document 5 has a lamella width of about several μm, and it can be seen that the structure of the eutectic structure layer 3 is miniaturized as compared with this figure. The crystal structure of the eutectic structure layer 3 becomes finer as it approaches the substrate 1. Therefore, the eutectic lamella width on the surface on the substrate 1 side is smaller than the eutectic lamella width (1 μm or less) on the surface opposite to the substrate 1.

また共晶構造層3のラメラ構造を構成するラメラ晶の密度は、40個/μm以上であることが好ましく、50個/μm以上であることがより好ましい。ラメラ晶の密度が当該範囲内であれば、共晶構造層3が充分微細化されていると言える。 Further, the density of the lamellar crystals constituting the lamellar structure of the eutectic structure layer 3 is preferably 40 pieces / μm or more, and more preferably 50 pieces / μm or more. If the density of the lamellar crystals is within the range, it can be said that the eutectic structure layer 3 is sufficiently finely divided.

ラメラ晶の密度は、以下のようにして求める。まず走査型電子顕微鏡により共晶構造層3の基材1と反対側の表面の任意の箇所を画像測定する。そして、画像内に任意の直線を引く。この直線が横切るラメラ構造の個数を単位長さ(μm)で割ったものが、ここでいうラメラ晶の密度に対応する。 The density of lamella crystals is determined as follows. First, an image is measured at an arbitrary portion on the surface of the eutectic structure layer 3 opposite to the substrate 1 by a scanning electron microscope. Then, draw an arbitrary straight line in the image. The number of lamellar structures crossed by this straight line divided by the unit length (μm) corresponds to the density of lamellar crystals here.

またラメラ構造の形状は、共晶構造層3を基材1と反対側から見た際に、不定形であることが好ましい。ラメラ構造の形状が不定形であるということは、共晶構造層3の組織が複雑化していることを意味する。共晶構造層3の組織が複雑化すると、共晶構造層3が応力等の歪により割れにくくなる。 Further, the shape of the lamellar structure is preferably amorphous when the eutectic structure layer 3 is viewed from the side opposite to the base material 1. The irregular shape of the lamellar structure means that the structure of the eutectic structure layer 3 is complicated. When the structure of the eutectic structure layer 3 becomes complicated, the eutectic structure layer 3 becomes difficult to crack due to strain such as stress.

共晶構造層3は、ZrO又はHfOを含む共晶を有する。これらの共晶体は、高い耐熱性を実現できる。例えば、CaHfO-HfO共晶体、CaZrO-ZrO共晶体等を共晶構造層3として用いることができる。 The eutectic structure layer 3 has a eutectic containing ZrO 2 or HfO 2 . These co-crystals can achieve high heat resistance. For example, CaHfO 3 -HfO 2 eutectic, CaZrO 3 -ZrO 2 eutectic and the like can be used as the eutectic structure layer 3.

また共晶構造層3を構成する金属酸化物は、カルシアで安定化されたジルコニア又はハフニアであることが好ましい。カルシアで安定化されたジルコニアを含む共晶体は、CaZrO-ZrO(CaO)で表記される。またカルシアで安定化されたハフニアを含む共晶体は、CaHfO-ZrO(HfO)で表記される。このような共晶体は、共晶体を構成する各結晶組織の組成が類似する。そのため、共晶体を構成するラメラ構造が微細化する。 Further, the metal oxide constituting the eutectic structure layer 3 is preferably zirconia or hafnia stabilized in calcia. A zirconia-stabilized zirconia-containing co-crystal is represented by CaZrO 3 -ZrO 2 (CaO) x . Also, a calcia-stabilized eutectic containing hafnia is represented by CaHfO 3 -ZrO 2 (HfO) x . Such a co-crystal has a similar composition of each crystal structure constituting the co-crystal. Therefore, the lamellar structure constituting the co-crystal becomes finer.

またこれらの共晶体は、カルシアで完全安定化されていることがより好ましい。ここで「完全安定化」とは、組成式におけるxが固溶可能な最大量存在していることを意味し、共晶を構成する二つの組織が最も類似することを意味する。 Further, it is more preferable that these co-crystals are completely stabilized in Calcia. Here, "complete stabilization" means that x in the composition formula is present in the maximum amount that can be dissolved, and that the two structures constituting the eutectic are most similar.

共晶構造層3は、粒界ガラス相を内在しない。これは後述する製造工程に由来するものであり、共晶組成物を短時間加熱することによって共晶構造体を生成することで、粒界ガラス相が排除される。粒界ガラス相は1100℃以上の高温で水蒸気及びアルカリ成分の存在雰囲気下で激しく腐食される。共晶構造層3が粒界ガラス相を内在しないことで、耐熱性及び耐食性を高めることができる。例えば、1300℃を超える温度で、水蒸気分圧が30%までの過酷な条件下でも、水蒸気腐食による基材の酸化と腐食を防止できる。 The eutectic structure layer 3 does not contain a grain boundary glass phase. This is derived from the manufacturing process described later, and the grain boundary glass phase is eliminated by forming a eutectic structure by heating the eutectic composition for a short time. The grain boundary glass phase is severely corroded at a high temperature of 1100 ° C. or higher in the presence atmosphere of water vapor and alkaline components. Since the eutectic structure layer 3 does not contain the grain boundary glass phase, heat resistance and corrosion resistance can be enhanced. For example, it is possible to prevent oxidation and corrosion of the base material due to steam corrosion even under severe conditions where the partial pressure of steam is up to 30% at a temperature exceeding 1300 ° C.

共晶構造層3の厚みは、10μm以上3000μm以下であることが好ましく、100μm以上500μm以下であることがより好ましい。共晶構造層3の厚みは厚いほど、最も高温になる外表面と基材1との距離を離すことができ、耐熱性の観点で有利である。また水蒸気腐食による基材の酸化及び腐食の防止と言う観点からも有利である。一方で、共晶構造層3の厚みが厚すぎると、共晶構造層3を形成するのに時間がかかり、また作製自体も難しくなる。 The thickness of the eutectic structure layer 3 is preferably 10 μm or more and 3000 μm or less, and more preferably 100 μm or more and 500 μm or less. The thicker the eutectic structure layer 3 is, the more the distance between the outer surface having the highest temperature and the base material 1 can be separated, which is advantageous from the viewpoint of heat resistance. It is also advantageous from the viewpoint of preventing oxidation and corrosion of the base material due to steam corrosion. On the other hand, if the thickness of the eutectic structure layer 3 is too thick, it takes time to form the eutectic structure layer 3, and the production itself becomes difficult.

また共晶構造層3を構成する材料の組成比は、厚さ方向に段階的に変化してもよい。例えば、共晶構造層3がCaZrO-ZrO共晶体である場合、基材1に近い領域はZrCがリッチ(例えば、組成比で90%以上)な相であり、基材1から離れた領域はCaZrO、ZrOがリッチ(例えば、組成比で90%以上)な相であるという構成でもよい。このように、CaZrO、ZrOがリッチな相からZrCがリッチな相に向かって、CaZrO、ZrOの割合が減少していくとともに、ZrCの割合が増加していくと、積層界面におけるケミカルポテンシャル差を小さくできる。その結果、応力により界面が剥離することを抑制できる。 Further, the composition ratio of the materials constituting the eutectic structure layer 3 may be changed stepwise in the thickness direction. For example, when the eutectic structure layer 3 is a CaZrO 3 -ZrO 2 eutectic, the region close to the substrate 1 is a phase rich in ZrC (for example, 90% or more in composition ratio) and separated from the substrate 1. The region may be configured such that CaZrO 3 and ZrO 2 are in a rich phase (for example, 90% or more in composition ratio). In this way, as the proportions of CaZrO 3 and ZrO 2 decrease and the proportion of ZrC increases from the phase rich in CaZrO 3 and ZrO 2 to the phase rich in ZrC, the proportion of ZrC increases at the laminated interface. The difference in chemical potential can be reduced. As a result, it is possible to prevent the interface from peeling due to stress.

上述のように、本実施形態にかかる耐熱耐食部材は、共晶構造層3の組織が微細化されているため、中間層2と共晶構造層3との間(中間層2を有さない場合は、基材1と共晶構造層3との間)に生じる応力を緩和できる。そのため、積層界面の剥離、共晶構造層3の割れ等を避けることができる。その結果、本実施形態にかかる耐熱耐食皮膜は、1800℃を超える耐熱性を有し、2200℃と言う過酷な温度環境下でも耐えることができる。したがって、本実施形態にかかる耐熱耐食部材を用いることで、タービン等の熱効率をさらに高めることができる。 As described above, the heat-resistant corrosion-resistant member according to the present embodiment has a microstructure of the eutectic structure layer 3 and therefore has no intermediate layer 2 between the intermediate layer 2 and the eutectic structure layer 3. In this case, the stress generated between the substrate 1 and the eutectic layer 3) can be relaxed. Therefore, peeling of the laminated interface, cracking of the eutectic structure layer 3 and the like can be avoided. As a result, the heat-resistant and corrosion-resistant film according to the present embodiment has a heat resistance of more than 1800 ° C. and can withstand even a harsh temperature environment of 2200 ° C. Therefore, by using the heat-resistant and corrosion-resistant member according to the present embodiment, the thermal efficiency of the turbine or the like can be further improved.

以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments and varies within the scope of the gist of the present invention described in the claims. Can be transformed / changed.

例えば、共晶構造層3の基材1と反対側の面には、遮熱層をさらに有してもよい。遮熱層は、共晶構造層3を構成する元素を含むポーラス酸化物を含むことが好ましい。例えば共晶構造層がCaZrO-ZrOの共晶体の場合、遮熱層はポーラスZrOであることが好ましい。遮熱層を設けることで、最も高温になる外表面と基材1との距離を離すことができる。共晶構造層3のみで十分な膜厚を確保することが理想的ではあるが、共晶構造層3より製造が容易な遮熱層を設けることで、より簡便に耐熱性に優れる部材を得ることができる。また共晶構造層3と遮熱層が同一元素を含むことで、これらの界面も高い密着性を保つことができる。 For example, a heat shield layer may be further provided on the surface of the eutectic structure layer 3 opposite to the base material 1. The heat shield layer preferably contains a porous oxide containing an element constituting the eutectic structure layer 3. For example, when the eutectic structure layer is a eutectic of CaZrO 3 -ZrO 2 , the heat shield layer is preferably porous ZrO 2 . By providing the heat shield layer, the distance between the outer surface having the highest temperature and the base material 1 can be separated. Ideally, only the eutectic structure layer 3 should secure a sufficient film thickness, but by providing a heat shield layer that is easier to manufacture than the eutectic structure layer 3, a member having excellent heat resistance can be obtained more easily. be able to. Further, since the eutectic structure layer 3 and the heat shield layer contain the same element, high adhesion can be maintained at their interfaces.

「耐熱耐食皮膜の製造方法」
上述した耐熱耐食部材の製造方法について説明する。
図3は、本実施形態にかかる耐熱耐食皮膜の製造方法に用いることができるFZ方式(Floating Zone Method)の結晶製造装置を示す模式図である。
"Manufacturing method of heat resistant corrosion resistant film"
The method for manufacturing the above-mentioned heat-resistant and corrosion-resistant member will be described.
FIG. 3 is a schematic view showing a crystal manufacturing apparatus of the FZ method (Floating Zone Method) that can be used in the method for manufacturing the heat-resistant corrosion-resistant film according to the present embodiment.

図3に示すように、結晶製造装置30は、石英管31と、ガス供給機構32と、キセノンランプ33と、楕円鏡34と、撮像装置35と、試料移動機構36とを備える。試料Qは、石英管31の内部に保持される。この石英管31の内部は、ガス供給機構32により不活性ガスで置換される。そしてキセノンランプ33からの光(熱線)を試料Qに向けて集光することで、試料Qの一部を溶融させる。試料Qの溶融箇所は、試料移動機構36によって試料Qが回転、上下動することで、移動する。試料Qの加熱の様子は、撮像装置35により外部から観察できる。 As shown in FIG. 3, the crystal manufacturing apparatus 30 includes a quartz tube 31, a gas supply mechanism 32, a xenon lamp 33, an elliptical mirror 34, an image pickup apparatus 35, and a sample moving mechanism 36. The sample Q is held inside the quartz tube 31. The inside of the quartz tube 31 is replaced with an inert gas by the gas supply mechanism 32. Then, the light (heat rays) from the xenon lamp 33 is focused toward the sample Q to melt a part of the sample Q. The melting point of the sample Q moves by rotating and moving the sample Q up and down by the sample moving mechanism 36. The state of heating of the sample Q can be observed from the outside by the image pickup apparatus 35.

図4は、本実施形態にかかる耐熱耐食皮膜の製造過程を模式的に示した図である。本実施形態にかかる耐熱耐食皮膜の製造方法は、基材1の一面に、共晶組成物を含む塗膜6を形成する塗布工程と、塗膜6の一部を集光加熱により溶融する溶融工程と、溶融位置を移動させながら、溶融箇所7を急冷する急冷凝固工程と、を有する。 FIG. 4 is a diagram schematically showing the manufacturing process of the heat-resistant and corrosion-resistant film according to the present embodiment. The method for producing a heat-resistant corrosion-resistant film according to the present embodiment includes a coating step of forming a coating film 6 containing a eutectic composition on one surface of a base material 1, and melting of a part of the coating film 6 by condensing heating. It has a step and a quenching solidification step of quenching the melting point 7 while moving the melting position.

まず塗布工程では、基材1の一面に、共晶組成物を含む塗膜6を形成する。ここで、基材1の一面は、中間層2を有する場合(図1参照)は中間層2の一面となる。共晶組成物を含む塗膜としては、共晶構造層3をCaZrO-ZrO共晶体から構成する場合には、CaO粉末とZrO粉末とを混合してペースト状にしたものが挙げられる。 First, in the coating step, the coating film 6 containing the eutectic composition is formed on one surface of the base material 1. Here, one surface of the base material 1 becomes one surface of the intermediate layer 2 when the intermediate layer 2 is provided (see FIG. 1). Examples of the coating film containing the eutectic composition include, when the eutectic structure layer 3 is composed of CaZrO 3 -ZrO 2 eutectic, CaO powder and ZrO 2 powder are mixed to form a paste. ..

次に、この塗膜6を形成した基材1を短時間加熱によって溶融する(溶融工程)。こうした短時間加熱の方法としては、FZ方式の結晶製造装置30を用いた集光加熱が好ましい。塗膜6を形成した基材1からなる試料Qを石英管31の内部に固定し、石英管31の内部をガス供給機構32によって、例えばアルゴンガスで置換する。 Next, the base material 1 on which the coating film 6 is formed is melted by heating for a short time (melting step). As such a short-time heating method, condensing heating using an FZ-type crystal manufacturing apparatus 30 is preferable. The sample Q made of the base material 1 on which the coating film 6 is formed is fixed inside the quartz tube 31, and the inside of the quartz tube 31 is replaced with, for example, argon gas by the gas supply mechanism 32.

そして、キセノンランプ33を発光させて、生じた熱線を楕円鏡34で反射させ、基材20の一か所に集光させる。集光した光が、図4における光Lに対応する。この時、熱線の焦点部分となった試料Qの塗膜6の一部(溶融箇所7)は、3000℃程度に昇温される。そして、3000℃程度に加熱された、塗膜6を構成するCaO粉末とZrO粉末は瞬時に溶融される。 Then, the xenon lamp 33 is made to emit light, the generated heat rays are reflected by the elliptical mirror 34, and the generated heat rays are focused on one place of the base material 20. The focused light corresponds to the light L in FIG. At this time, a part of the coating film 6 (melting portion 7) of the sample Q, which is the focal portion of the heat ray, is heated to about 3000 ° C. Then, the CaO powder and the ZrO 2 powder constituting the coating film 6 heated to about 3000 ° C. are instantly melted.

次いで、急冷凝固工程として、試料移動機構36によって試料Qを回転させつつ上下方向に沿って移動させる。試料Qと光Lとの位置を相対移動させることで、溶融箇所7が移動する。すなわち、光Lにより溶融していた溶融箇所7は、次のタイミングには光Lが照射されていないことになる。つまり、ある瞬間の溶融箇所7は、次の瞬間には急冷凝固される。共晶組成物であるCaO粉末とZrO粉末とを含む塗膜6を高温で短時間溶融させてから凝固させることで、CaOとZrOとが共晶反応を起こし、CaZrO-ZrO共晶体からなる共晶構造層3が得られる。 Next, as a quenching and solidifying step, the sample Q is rotated and moved along the vertical direction by the sample moving mechanism 36. By moving the positions of the sample Q and the light L relative to each other, the melting point 7 moves. That is, the melted portion 7 melted by the light L is not irradiated with the light L at the next timing. That is, the melted portion 7 at a certain moment is rapidly cooled and solidified at the next moment. By melting the coating film 6 containing the eutectic composition CaO powder and ZrO 2 powder at a high temperature for a short time and then solidifying it, CaO and ZrO 2 cause a eutectic reaction, and both CaZrO 3 and ZrO 2 are co-crystallized. The eutectic structure layer 3 made of crystals is obtained.

この急冷凝固工程における溶融位置の移動速度は、500mm/h以上であることが好ましく、1000mm/h以上であることがより好ましい。2000mm/h以上であることがさらに好ましい。単結晶を作製する際における溶融帯の移動速度が1~5mm/hであることを考慮すると、この移動速度が極めて早いことが分かる。 The moving speed of the melting position in this quenching and solidifying step is preferably 500 mm / h or more, and more preferably 1000 mm / h or more. It is more preferably 2000 mm / h or more. Considering that the moving speed of the melting zone in producing a single crystal is 1 to 5 mm / h, it can be seen that this moving speed is extremely high.

溶融位置の移動速度を、上記速度まで早めることで、塗膜6の溶融箇所7は急冷される。その結果、急冷された部分の組織が微細化し、ラメラ構造のラメラ幅が1μm以下である共晶を有する共晶構造層3(図1参照)を作製することができる。また、塗膜を短時間溶融させる際に、粒界ガラス相が排除され、粒界ガラス相が内在しない、共晶体からなる共晶構造層3が形成される。 By increasing the moving speed of the melting position to the above speed, the melting portion 7 of the coating film 6 is rapidly cooled. As a result, the structure of the rapidly cooled portion becomes finer, and a eutectic structure layer 3 (see FIG. 1) having a eutectic having a lamellar width of 1 μm or less can be produced. Further, when the coating film is melted for a short time, the grain boundary glass phase is eliminated, and the eutectic structure layer 3 made of a eutectic body having no internal grain boundary glass phase is formed.

図5は、本実施形態にかかる耐熱耐食皮膜の製造方法によって作製した耐熱耐食部材の写真である。図5に示す耐熱耐食皮膜は、基材1をセラミックス基材(SiC)、塗膜6をCaO粉末とZrO粉末とを含む塗膜とし、急冷凝固工程における溶融位置の移動速度を2000mm/hとして作製した。図5に示す耐熱耐食部材の表面を走査型電子顕微鏡(SEM)で測定した写真が図2に対応する。すなわち、本実施形態にかかる耐熱耐食皮膜の製造方法を用いることで、共晶のラメラ構造のラメラ幅が1μm以下の共晶構造層が作製されていることが分かる。 FIG. 5 is a photograph of a heat-resistant and corrosion-resistant member produced by the method for producing a heat-resistant and corrosion-resistant film according to the present embodiment. In the heat-resistant corrosion-resistant film shown in FIG. 5, the base material 1 is a ceramic base material (SiC) and the coating film 6 is a coating film containing CaO powder and ZrO 2 powder, and the moving speed of the melting position in the quenching and solidifying step is 2000 mm / h. Made as. A photograph of the surface of the heat-resistant and corrosion-resistant member shown in FIG. 5 measured with a scanning electron microscope (SEM) corresponds to FIG. That is, it can be seen that a eutectic structure layer having a eutectic lamellar structure having a lamellar width of 1 μm or less is produced by using the method for producing a heat-resistant corrosion-resistant film according to the present embodiment.

上述のように、本実施形態にかかる耐熱耐食皮膜の製造方法によれば、ラメラ構造のラメラ幅が1μm以下である均一で微細な共晶構造を有する耐熱耐食皮膜を、容易に製造できる。 As described above, according to the method for producing a heat-resistant corrosion-resistant film according to the present embodiment, a heat-resistant corrosion-resistant film having a uniform and fine eutectic structure having a lamellar width of 1 μm or less can be easily produced.

なお、図5では、棒状の基材を用いた例示しているが、例えば、実際に航空機エンジンの動翼や静翼の製造に用いる場合には、より大型の集光加熱装置を用いて、これら動翼や静翼の表面形状に沿って熱線の集光焦点を移動させて、共晶組成物を含む塗膜の短時間溶融を行えばよい。 In addition, although FIG. 5 exemplifies the use of a rod-shaped base material, for example, when actually used for manufacturing a moving blade or a stationary blade of an aircraft engine, a larger condensing heating device is used. The focused focus of the heat rays may be moved along the surface shapes of these blades and blades to melt the coating film containing the eutectic composition for a short time.

本実施形態にかかる耐熱耐食皮膜及び耐熱耐食部材は、強度等の機械的性質に優れ、高温下での耐酸化性、耐食性も備える。そのため、構造用材料、特に高温ガスタービン用部材又は自動車エンジン用部材あるいは超高速航空機用耐熱部材等に活用することができる。 The heat-resistant corrosion-resistant film and the heat-resistant corrosion-resistant member according to the present embodiment are excellent in mechanical properties such as strength, and also have oxidation resistance and corrosion resistance at high temperatures. Therefore, it can be utilized as a structural material, particularly a member for a high-temperature gas turbine, a member for an automobile engine, a heat-resistant member for an ultra-high-speed aircraft, and the like.

1 基材
2 中間層
3 共晶構造層
5 耐熱耐食皮膜
6 塗膜
7 溶融箇所
10 耐熱耐食部材
30 結晶製造装置
31 石英管
32 ガス供給機構
33 キセノンランプ
34 楕円鏡
35 撮像装置
36 試料移動機構
Q 試料
L 光
1 Base material 2 Intermediate layer 3 Eutectic structure layer 5 Heat-resistant corrosion-resistant film 6 Coating film 7 Melted part 10 Heat-resistant corrosion-resistant member 30 Crystal manufacturing equipment 31 Quartz tube 32 Gas supply mechanism 33 Xenon lamp 34 Elliptical mirror 35 Image pickup device 36 Sample movement mechanism Q Sample L light

Claims (6)

基材上に被覆される耐熱性及び耐腐食性を有する耐熱耐食皮膜であって、
カルシアで安定化されたジルコニア又はハフニアを含む共晶を有する共晶構造層を備え、
前記共晶構造層を前記基材と反対側の面から見た表面において、前記共晶構造層を構成する共晶のラメラ構造のラメラ幅が1μm以下である、耐熱耐食皮膜。
A heat-resistant and corrosion-resistant film having heat resistance and corrosion resistance coated on a base material.
It comprises a eutectic structural layer with eutectics containing zirconia or hafnium stabilized in Calcia.
A heat-resistant corrosion-resistant film having a lamellar width of 1 μm or less in the eutectic lamellar structure constituting the eutectic structure layer on the surface of the eutectic structure layer viewed from the surface opposite to the substrate.
前記表面におけるラメラ構造の形状が不定形である、請求項1に記載の耐熱耐食皮膜。 The heat-resistant and corrosion-resistant film according to claim 1, wherein the shape of the lamellar structure on the surface is irregular. 前記基材側の一面に、NiCrAlY合金組成物又はシリコンを含む中間層をさらに備える、請求項1又は2に記載の耐熱耐食皮膜。 The heat-resistant corrosion-resistant film according to claim 1 or 2, further comprising an intermediate layer containing a NiCrAlY alloy composition or silicon on one surface on the substrate side. 前記基材と反対側の面に、前記共晶構造層を構成する元素を含むポーラス酸化物を含む遮熱層をさらに備える、請求項1~3のいずれか一項に記載の耐熱耐食皮膜。 The heat-resistant corrosion-resistant film according to any one of claims 1 to 3, further comprising a heat-shielding layer containing a porous oxide containing an element constituting the eutectic structural layer on the surface opposite to the base material. 基材と、前記基材の外表面を被覆する請求項1~4のいずれか一項に記載の耐熱耐食皮膜と、を備える、耐熱耐食部材。 A heat-resistant and corrosion-resistant member comprising a base material and the heat-resistant and corrosion-resistant film according to any one of claims 1 to 4, which covers the outer surface of the base material. 請求項1~4のいずれか一項に記載の耐熱耐食皮膜の製造方法であって、
基材の一面に、CaO粉末と、HfO粉末又はZrO粉末とを混合してペースト状にした塗膜を形成する塗布工程と、
前記塗膜の一部を集光加熱により溶融する溶融工程と、
溶融位置を移動させながら、溶融箇所を急冷する急冷凝固工程と、を有し、
前記溶融位置の移動速度が2000mm/h以上である、耐熱耐食皮膜の製造方法。
The method for producing a heat-resistant corrosion-resistant film according to any one of claims 1 to 4.
A coating step of mixing CaO powder and HfO powder or ZrO 2 powder to form a paste-like coating film on one surface of a base material.
A melting process in which a part of the coating film is melted by condensing and heating,
It has a quenching solidification process that quenches the melting part while moving the melting position.
A method for producing a heat-resistant corrosion-resistant film, wherein the moving speed of the melting position is 2000 mm / h or more.
JP2017143689A 2017-07-25 2017-07-25 Method for manufacturing heat-resistant corrosion-resistant film, heat-resistant corrosion-resistant member and heat-resistant corrosion-resistant film Active JP7006904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017143689A JP7006904B2 (en) 2017-07-25 2017-07-25 Method for manufacturing heat-resistant corrosion-resistant film, heat-resistant corrosion-resistant member and heat-resistant corrosion-resistant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017143689A JP7006904B2 (en) 2017-07-25 2017-07-25 Method for manufacturing heat-resistant corrosion-resistant film, heat-resistant corrosion-resistant member and heat-resistant corrosion-resistant film

Publications (2)

Publication Number Publication Date
JP2019026862A JP2019026862A (en) 2019-02-21
JP7006904B2 true JP7006904B2 (en) 2022-02-10

Family

ID=65477818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143689A Active JP7006904B2 (en) 2017-07-25 2017-07-25 Method for manufacturing heat-resistant corrosion-resistant film, heat-resistant corrosion-resistant member and heat-resistant corrosion-resistant film

Country Status (1)

Country Link
JP (1) JP7006904B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342553A (en) 2000-06-02 2001-12-14 Osaka Gas Co Ltd Method for forming alloy protection coating
JP2003328107A (en) 2002-05-02 2003-11-19 National Institute Of Advanced Industrial & Technology Method of forming oxide-ceramic composite material
JP2006199574A (en) 2005-01-21 2006-08-03 General Electric Co <Ge> Environmental barrier coating with physical barrier layer for silicon-containing material
JP2012052206A (en) 2010-09-03 2012-03-15 Hitachi Ltd Heat-masking coating film, process for production thereof, and heat-resistant alloy member using the same
JP2016069229A (en) 2014-09-30 2016-05-09 学校法人日本大学 Steam-corrosion resistant multi-layered coating and production process therefor
JP2016532617A (en) 2013-03-15 2016-10-20 ゼネラル・エレクトリック・カンパニイ Thinning resistant ceramic matrix composite and environmental coating
JP2017030006A (en) 2015-07-30 2017-02-09 住友金属鉱山株式会社 Au-Ge SOLDER ALLOY, AND ELECTRONIC SYSTEM AND ELECTRONIC APPARATUS USING THE SAME

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852804B2 (en) * 1998-03-26 2006-12-06 独立行政法人科学技術振興機構 Method for producing oxide-based eutectic ceramic fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342553A (en) 2000-06-02 2001-12-14 Osaka Gas Co Ltd Method for forming alloy protection coating
JP2003328107A (en) 2002-05-02 2003-11-19 National Institute Of Advanced Industrial & Technology Method of forming oxide-ceramic composite material
JP2006199574A (en) 2005-01-21 2006-08-03 General Electric Co <Ge> Environmental barrier coating with physical barrier layer for silicon-containing material
JP2012052206A (en) 2010-09-03 2012-03-15 Hitachi Ltd Heat-masking coating film, process for production thereof, and heat-resistant alloy member using the same
JP2016532617A (en) 2013-03-15 2016-10-20 ゼネラル・エレクトリック・カンパニイ Thinning resistant ceramic matrix composite and environmental coating
JP2016069229A (en) 2014-09-30 2016-05-09 学校法人日本大学 Steam-corrosion resistant multi-layered coating and production process therefor
JP2017030006A (en) 2015-07-30 2017-02-09 住友金属鉱山株式会社 Au-Ge SOLDER ALLOY, AND ELECTRONIC SYSTEM AND ELECTRONIC APPARATUS USING THE SAME

Also Published As

Publication number Publication date
JP2019026862A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
RU2413791C2 (en) Procedure for coating with ceramic material of tungsten bronze structure and part of turbine with heat-resistant coating
JP6362683B2 (en) Environmental barrier for heat-resistant substrates containing silicon
JP2004345945A (en) Article comprising silicon base material, and bonding layer and top protective layer provided on this base material
JP2007270245A (en) Thermal shield coating member and manufacturing method therefor, and thermal shield coating member, gas turbine and sintered body
JP2005154885A (en) Material for thermal barrier coating
RU2600781C2 (en) Method of performing heat barrier in multilayer metal part protection system and part equipped with such protective system
JP2001521993A (en) Products, especially structural members of gas turbines with ceramic insulation layers
Charpentier et al. High temperature oxidation of Zr-and Hf-carbides: influence of matrix and sintering additive
JP6374677B2 (en) Calcium magnesium aluminosilicate resistant coating and method for forming calcium magnesium aluminosilicate resistant coating
JP2009511752A5 (en)
JP5552435B2 (en) BSAS powder
Darthout et al. Thermal cycling and high-temperature corrosion tests of rare earth silicate environmental barrier coatings
Ren et al. Nonoxide polymer-derived CMCs for “super” turbines
JP7006904B2 (en) Method for manufacturing heat-resistant corrosion-resistant film, heat-resistant corrosion-resistant member and heat-resistant corrosion-resistant film
RU2722376C2 (en) Gas turbine engine part comprising a protective ceramic coating, a method of making and using such part
JP6399510B2 (en) Steam corrosion resistant multilayer coating and method for producing the same
JP3770404B2 (en) Directionally solidified eutectic reinforced fiber
JP2005213081A (en) Silicon nitride sintered body and member for molten metal using the same
JP6204783B2 (en) Gas distribution member
JP4117377B2 (en) Non-oxide ceramic structure having high-temperature corrosion-resistant layer and manufacturing method thereof
JPH08253390A (en) Ceramic composite material
Ueno et al. Crystallization and microstructure formation of glass with Y2Si2O7-mullite eutectic composition
Ueno et al. Corrosion and recession mechanism of Lu2Si2O7/mullite eutectic
RU2685905C1 (en) Material for heat-resistant protective coating
RU2662520C1 (en) Two-layer heat resistant coating on articles from carbon-carbon composite materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7006904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150