JP7000981B2 - 物体検知装置 - Google Patents

物体検知装置 Download PDF

Info

Publication number
JP7000981B2
JP7000981B2 JP2018090095A JP2018090095A JP7000981B2 JP 7000981 B2 JP7000981 B2 JP 7000981B2 JP 2018090095 A JP2018090095 A JP 2018090095A JP 2018090095 A JP2018090095 A JP 2018090095A JP 7000981 B2 JP7000981 B2 JP 7000981B2
Authority
JP
Japan
Prior art keywords
amplitude
wave
frequency
peak
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018090095A
Other languages
English (en)
Other versions
JP2019196942A (ja
Inventor
優 小山
岳人 原田
勇太 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018090095A priority Critical patent/JP7000981B2/ja
Priority to DE102019111834.4A priority patent/DE102019111834A1/de
Publication of JP2019196942A publication Critical patent/JP2019196942A/ja
Application granted granted Critical
Publication of JP7000981B2 publication Critical patent/JP7000981B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/102Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics
    • G01S15/104Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、物体検知装置に関するものである。
超音波の送受信により障害物を検知する車載用の物体検知装置について、探査波の周波数を時間とともに変化させ、受信波と探査波の周波数を比較して、周辺を走行中の他の車両が送信する超音波との混信を回避する技術が提案されている(例えば、特許文献1参照)。
欧州特許第2373434号明細書
しかしながら、共振型マイクロホンによって超音波の送受信を行う物体検知装置では、反射波の受信開始時、受信終了時等に、受信信号の周波数波形が探査波と同様に変化することがある。そのため、周波数の比較のみによって受信波を識別する方法では、物体の検知精度が低下するおそれがある。
本発明は上記点に鑑みて、物体の検知精度を向上させることが可能な物体検知装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、車両に搭載されて車両の外部の物体を検知する物体検知装置であって、周波数が時間の経過とともに所定のパターンで変化する超音波を探査波として送信する送波部(1、2)と、超音波を受信する受波部(1、5)と、受波部が受信した超音波を受信波として、受信波の周波数と所定のパターンとの一致度を算出する周波数一致度算出部(11)と、受信波の振幅のピークを検出する振幅ピーク検出部(10)と、周波数一致度算出部が算出した一致度、および、振幅ピーク検出部による振幅のピークの検出結果に基づいて、物体との距離を判定する距離判定部(4)と、を備える。
探査波に含まれる周波数のパターンが反射波に現れるのは、反射波の振幅がある程度大きくなったときである。したがって、周波数の一致度と振幅のピークの検出結果とに基づいて物体との距離を判定することにより、物体の検知精度を向上させることができる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。
第1実施形態にかかる物体検知装置の構成を示す図である。 上りチャープ信号の周波数を示す図である。 下りチャープ信号の周波数を示す図である。 上りチャープ信号の周波数を示す図である。 振幅閾値および受波時刻について説明するための図である。 周波数オフセットを用いて一致度を算出する方法を説明するための図である。 第1実施形態における物体検知処理のフローチャートである。 第1実施形態における振幅ピーク検出処理のフローチャートである。 第1実施形態の効果について説明するための図である。 第2実施形態における物体検知処理のフローチャートである。 第3実施形態における残差平方和の算出方法について説明するための図である。 第3実施形態における振幅ピーク検出処理のフローチャートである。 第4実施形態における残差平方和の算出方法について説明するための図である。 第4実施形態における振幅ピーク検出処理のフローチャートである。 第5実施形態にかかる物体検知装置の構成を示す図である。 他の実施形態におけるチャープ信号の周波数を示す図である。 他の実施形態におけるチャープ信号の周波数を示す図である。 他の実施形態におけるチャープ信号の周波数を示す図である。 他の実施形態におけるチャープ信号の周波数を示す図である。 他の実施形態におけるチャープ信号の周波数を示す図である。 他の実施形態におけるチャープ信号の周波数を示す図である。 他の実施形態におけるチャープ信号の周波数を示す図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
第1実施形態について説明する。本実施形態の物体検知装置は、超音波ソナー装置であって、車両に搭載されて、車両の外部の物体を検知するものである。
図1に示すように、物体検知装置は、マイクロホン1と、送信回路2と、信号生成部3と、制御部4とを備えている。また、物体検知装置は、受信回路5と、信号処理部6と、振幅生成部7と、周波数生成部8と、振幅閾値判定部9と、振幅ピーク検出部10と、周波数判定部11と、参照波記憶部12とを備えている。
制御部4、信号処理部6等は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って各種演算などの処理を実行する。また、制御部4等が、信号処理回路を備えるASICで構成されてもよい。
マイクロホン1は、車両の外表面に面して配置され、物体を検知するための探査波である超音波を車両の外側に向けて送信するものである。具体的には、マイクロホン1は、互いに対向する2つの電極の間に圧電層が配置された構成の図示しない圧電素子を備えている。そして、2つの電極は送信回路2に接続されており、送信回路2から交流電圧が印加されて圧電層が変形することにより、マイクロホン1から車両の外側へ超音波が送信される。
送信回路2は、入力された信号に昇圧等の処理を施して出力するものである。送信回路2にはパルス信号を生成する信号生成部3が接続されており、送信回路2は、信号生成部3から入力されたパルス信号を交流信号に変換した後昇圧し、これにより生成された交流電圧をマイクロホン1に印加する。
このように、マイクロホン1および送信回路2は、信号生成部3が生成した交流信号としてのパルス信号が入力されることにより、パルス信号の周波数に応じた周波数の探査波を送信するものであり、送波部に相当する。
なお、信号生成部3は、制御部4からの送波指示に応じて、周波数が時間とともに所定のパターンで変化するチャープ信号を含むパルス信号を生成する。これにより、周波数が時間とともに所定のパターンで変化するチャープ信号を含む超音波が探査波としてマイクロホン1から送信される。さらに、異なる種類のチャープ信号を含む複数のパターンの探査波がマイクロホン1から送信されるようになっており、探査波のパターンは、制御部4から信号生成部3に出される送波指示によって定まる。なお、探査波の振幅を一定とするために、信号生成部3および送信回路2は、パルス信号の振幅およびマイクロホン1に入力される交流電圧の振幅が一定となるように制御される。
本実施形態では、時間の経過とともに周波数が単調増加するチャープ信号、および、周波数が単調減少するチャープ信号を用いる。
具体的には、制御部4から信号生成部3に第1パターンの送波指示が出されると、信号生成部3は図2に示すように周波数が時間の経過とともに線形に増加するパルス信号を生成する。これにより、周波数が時間の経過とともに増加する上りチャープ信号を含む第1探査波がマイクロホン1から送信される。
また、制御部4から信号生成部3に第2パターンの送波指示が出されると、信号生成部3は図3に示すように周波数が時間の経過とともに線形に減少するパルス信号を生成する。これにより、周波数が時間の経過とともに減少する下りチャープ信号を含む第2探査波がマイクロホン1から送信される。
なお、マイクロホン1の共振周波数をfとすると、信号生成部3は、共振周波数fとは異なる周波数からパルス信号の周波数の掃引を開始する。具体的には、信号生成部3は、共振周波数fよりも低い周波数と高い周波数との間でパルス信号の周波数を掃引する。信号生成部3が生成するパルス信号の周波数、および、探査波の周波数は、連続的に変化してもよいし、図4に示すように離散的に変化してもよい。
マイクロホン1は、超音波を送信するとともに、超音波を受信し、受信した超音波の音圧に応じた電圧を出力するように構成されている。具体的には、マイクロホン1が備える圧電素子の2つの電極は、受信回路5にも接続されており、超音波を受信して圧電層が変形したときに2つの電極間に生じる電圧が受信回路5に入力されるようになっている。受信回路5は、マイクロホン1から入力された微弱な電圧を、所望の電圧となるように図示しない増幅器で増幅し、必要に応じてバンドパスフィルタでノイズを除去した後、A/D変換する。受信回路5は、これにより生成された信号を出力する。
このように、マイクロホン1および受信回路5は、超音波を受信して、受信した超音波の振幅および周波数に応じた信号を出力するように構成されており、受波部に相当する。マイクロホン1が受信した超音波を受信波とする。
信号処理部6は、受信回路5がA/D変換によって生成した信号から受信波の周波数および振幅を検出する。
具体的には、信号処理部6は、直交復調を用いて、信号生成部3が生成する基準信号と受信信号とのミキシング信号からIとQを算出する。なお、信号生成部3が生成する基準信号の周波数をfとし、tを時間として、Iは、受信回路5の出力信号にsin(2πft)を掛けた後、周波数が2f以上の成分を除去して得られる信号の大きさである。また、Qは、受信回路5の出力信号にcos(2πft)を掛けた後、周波数が2f以上の成分を除去して得られる信号の大きさである。周波数fは、マイクロホン1の共振帯域の中で共振周波数fに近い値とされる。また、f=fとしてもよい。
振幅生成部7は、受信波の振幅をAとしてA=(I+Q1/2によりAを算出する。また、周波数生成部8は、受信波の位相をPとしてP=atan(Q/I)によりPを算出し、受信波の周波数をfとし、f=1/(2π)・dP/dt+fによりfを算出する。
振幅生成部7は、算出した振幅Aに基づいて、振幅Aの波形を生成する。周波数生成部8は、算出した周波数fに基づいて、周波数fの波形を生成する。振幅生成部7が生成した振幅波形は、振幅閾値判定部9および振幅ピーク検出部10に送信されるようになっている。また、周波数生成部8が生成した周波数波形は、周波数判定部11に送信されるようになっている。
振幅閾値判定部9は、振幅生成部7が生成した振幅波形に基づいて、受信波の振幅が所定の振幅閾値よりも大きいか否かを判定するものである。振幅閾値判定部9の判定結果は、制御部4に送信される。なお、振幅閾値を一定値としてもよいし、探査波の送信から経過した時間に応じて変化させてもよい。例えば図5に示すように、振幅閾値を時間の経過とともに離散的に減少させてもよい。
マイクロホン1が探査波を送信した時刻を送波時刻とし、該探査波の反射波をマイクロホン1が受信した時刻を受波時刻とし、送波時刻から受波時刻までの伝播時間をTとし、物体との距離をDとし、音速をcとすると、T=2D/cとなる。物体検知装置では、伝播時間Tに対し所定の振幅閾値が設定されており、振幅閾値判定部9は、受信波の振幅を振幅閾値と比較して反射波を検出する。振幅閾値判定部9は、探査波が送信されてから所定時間が経過するまでの間に反射波が検出されたか否かを判定する。
送波時刻は、例えば、信号生成部3から送信回路2に交流信号が入力され始めた時刻とされる。受波時刻は、例えば、図5の時刻t1のように受信波の振幅が振幅閾値よりも大きくなった時刻や、図5の時刻t2のように受信波の振幅が極大となった時刻とされる。また、図5において、受信波の振幅が振幅閾値よりも大きくなったt1以外の時刻や、受信波の振幅が極大となったt2以外の時刻を受波時刻としてもよい。
また、後述するように振幅ピーク検出部10によって受信波の振幅の傾きが傾き閾値と比較されるが、振幅の傾きの絶対値が傾き閾値よりも小さくなった時刻を受波時刻としてもよい。また、後述するように周波数判定部11によって周波数の一致度が一致度閾値と比較されるが、一致度が一致度閾値よりも大きくなったときの時刻を受波時刻としてもよい。また、一致度がピークをとる時刻を受波時刻としてもよい。
振幅閾値判定部9の判定結果、伝播時間等は、制御部4に送信されるようになっている。また、制御部4には波高値も送信されるようになっている。波高値としては、受信波の振幅の極大値、受波時刻の振幅値、振幅閾値と比較した振幅値を用いることができる。また、振幅閾値を時間により変化させる場合に、受波時刻の振幅閾値を波高値としてもよい。
制御部4は、振幅閾値判定部9から送信された情報に基づいて物体との距離を算出し、車両から所定距離内に物体が存在するか否かを判定し、判定結果に応じて、運転者への報知等を行う。制御部4は、距離判定部に相当する。
振幅ピーク検出部10は、振幅生成部7が生成した振幅波形から受信波の振幅のピークを検出するものである。本実施形態では、振幅ピーク検出部は、受信波の振幅の傾きと所定の傾き閾値とを比較することにより、受信波の振幅のピークを検出する。
なお、受信波の振幅波形はマイクロホン1、送信回路2、受信回路5の周波数特性によって変化する。そのため、マイクロホン1および送信回路2で構成される送波部と、マイクロホン1および受信回路5で構成される受波部の一方または両方の周波数特性に基づいて傾き閾値が設定される。例えば、マイクロホン1の共振帯域が狭いほど傾き閾値が小さくされ、帯域が広いほど傾き閾値が大きくされる。
周波数判定部11は、周波数生成部8が生成した波形に基づいて、周波数が探査波と同様に変化する信号が受信波に含まれているか否かを判定するものである。周波数判定部11は、受信波の周波数と所定のパターンとの一致度を算出する周波数一致度算出部としての機能を備えており、算出した一致度に基づいて、周波数が所定のパターンで変化する信号が受信波に含まれているか否かを判定する。
なお、マイクロホン1は、探査波の反射波を受信したとき、時間の経過とともに探査波とは逆向きに、あるいは、探査波よりも緩やかに周波数が変化した後、探査波と同様に周波数が変化する信号を出力する。これは、送信回路2から交流電圧が印加され始めるとマイクロホン1が共振周波数f付近で微小に振動し始めるため、また、マイクロホン1がパルス信号の周波数で振動する状態になるまでに時間がかかるためであると考えられる。また、同様に、マイクロホン1が反射波を受信したときに、共振周波数f付近で微小に振動し始め、反射波の周波数で振動する状態になるまでに時間がかかるためであると考えられる。
例えば、マイクロホン1が上りチャープ信号を含む第1探査波を送信した場合、受信波には、パルス信号と同様に周波数が変化する上りチャープ信号の前に、パルス信号よりも緩やかに周波数が単調増加する信号が現れる。あるいは、パルス信号と同様に周波数が変化する上りチャープ信号の前に、周波数が単調減少する信号が現れる。
また、マイクロホン1が下りチャープ信号を含む第2探査波を送信した場合、受信波には、パルス信号と同様に周波数が変化する下りチャープ信号の前に、周波数が単調増加する信号が現れる。あるいは、パルス信号と同様に周波数が変化する下りチャープ信号の前に、パルス信号よりも緩やかに周波数が単調減少する信号が現れる。
そこで本実施形態では、受信波に含まれるチャープ信号と、チャープ信号の前の部分とを用いて受信波の判定を行う。具体的には、参照波記憶部12には、各チャープ信号について、チャープ信号およびチャープ信号の前の部分に対応した参照波が記憶されている。そして、周波数判定部11は、周波数生成部8から送信された波形と、参照波記憶部12に記憶された参照波の波形との一致度を算出し、受信波に含まれるチャープ信号を判定する。
なお、このような共振型のマイクロホン1では、反射波の受信開始時、受信終了時、ノイズの受信時等に上記のような信号に似た信号が出力される。この信号と探査波に対応するチャープ信号を区別するために、本実施形態では、後述するように、周波数の一致度と振幅のピークを用いて受信波の判定を行う。
上りチャープ信号に対応する参照波の波形としては、例えば、信号生成部3が生成するパルス信号よりも緩やかに周波数が増加した後、パルス信号と同じ変化率で周波数が増加する波形が用いられる。また、例えば、周波数が減少した後、パルス信号と同じ変化率で周波数が増加する波形が用いられる。
下りチャープ信号に対応する参照波の波形としては、例えば、信号生成部3が生成するパルス信号よりも緩やかに周波数が減少した後、パルス信号と同じ変化率で周波数が減少する波形が用いられる。また、例えば、周波数が増加した後、パルス信号と同じ変化率で周波数が減少する波形が用いられる。
このように、参照波記憶部12には、探査波と同様の周波数の変化パターンを含む参照波が記憶されている。周波数判定部11は、周波数生成部8が生成した波形と参照波の一致度が所定の一致度閾値よりも大きいときに、受信波にチャープ信号が含まれていると判定する。
周波数判定部11は、例えば周波数のオフセットを用いて一致度を求める。図6は、上りチャープ信号について、参照波の周波数をR(t)とし、周波数オフセットをΔfとして、Δfを用いて参照波の周波数R(t)を受信波の周波数f(t)に近似して、R(t)+Δfとf(t)の相関を残差平方和で評価して一致度を求める方法を示している。
サンプル数をNとし、標準偏差をσとすると、残差平方和Eは、数式1に示すようになる。
Figure 0007000981000001
残差平方和Eが最小となるのは、数式2が成り立つときであり、このときのΔfは、数式3のようになる。
Figure 0007000981000002
Figure 0007000981000003
このΔfを数式1に代入し、これにより得られた残差平方和Eを数式4に代入することで、一致度Mが求められる。
Figure 0007000981000004
下りチャープ信号についても、下りチャープ信号用の参照波を用いて、同様に一致度Mを求めることができる。
周波数判定部11は、一致度Mを一致度閾値と比較し、一致度Mが一致度閾値よりも大きい場合にチャープ信号が受信波に含まれていると判定する。具体的には、周波数判定部11は、上りチャープ信号についての一致度Mが一致度閾値よりも大きい場合に、上りチャープ信号が受信波に含まれていると判定する。また、周波数判定部11は、下りチャープ信号についての一致度Mが一致度閾値よりも大きい場合に、下りチャープ信号が受信波に含まれていると判定する。
本実施形態では、周波数判定部11の判定結果が振幅ピーク検出部10に送信されるようになっており、振幅ピーク検出部10は、周波数判定部11の判定結果を用いて振幅のピークを検出する。また、振幅ピーク検出部10の検出結果は振幅閾値判定部9に送信されるようになっており、振幅閾値判定部9は、振幅ピーク検出部10の検出結果に基づいて振幅の判定を行う。
具体的には、振幅ピーク検出部10は、周波数判定部11によって、受信波に周波数が所定のパターンで変化する信号が含まれていると判定されたときに、振幅ピークの検出処理を行う。振幅ピーク検出部10は、周波数判定部11が算出した一致度が一致度閾値よりも大きくなった時刻を基準に、時間範囲である振幅ピーク検出範囲を設定する。そして、振幅ピーク検出部10は、振幅ピーク検出範囲における振幅の傾きを算出し、算出した傾きの絶対値が傾き閾値よりも小さいか否かを判定する。
振幅閾値判定部9は、振幅ピーク検出部10によって、受信波の振幅の傾きの絶対値が傾き閾値よりも小さいと判定されたときに、受信波の振幅を振幅閾値と比較する。
物体検知装置の作動について説明する。制御部4が信号生成部3に送波指示を送ると、信号生成部3がパルス信号の生成を開始する。信号生成部3が生成したパルス信号は送信回路2によって交流信号に変換され、送信回路2からマイクロホン1に交流電圧が印加されて、マイクロホン1から探査波が送信される。このとき、信号生成部3は、制御部4からの送波指示に応じて、生成するパルス信号の周波数を時間とともに変化させる。これにより、マイクロホン1から第1探査波または第2探査波が送信される。
その後、制御部4が信号処理部6に受波指示を出すと、図7に示すステップS1~S7の処理が実行される。ステップS1では、受信波のデータが更新される。具体的には、受信回路5は、マイクロホン1の出力電圧を増幅した後にA/D変換し、信号処理部6に出力する。そして、信号処理部6は、受波指示に応じて、受信回路5から入力された信号に対してフィルタ処理等を行う。
振幅生成部7は、信号処理部6の出力から振幅波形を生成する。また、周波数生成部8は、信号処理部6の出力から周波数波形を生成する。
物体検知装置はステップS1からステップS2に進み、受信波の周波数波形と参照波の波形が一致しているか否かを判定する。具体的には、周波数判定部11は、周波数生成部8が生成した周波数波形と参照波記憶部12に記憶されている参照波の波形とを比較して一致度を求め、一致度が一致度閾値よりも大きいか否かを判定する。一致度が一致度閾値よりも大きいと判定されると、物体検知装置はステップS3に進み、一致度が一致度閾値以下であると判定されると、物体検知装置はステップS1に進む。
ステップS3では、振幅ピーク検出部10は、振幅生成部7が生成した振幅波形から振幅ピークを検出する。ステップS3では、詳細には、図8に示す処理が行われる。すなわち、振幅ピーク検出部10は、ステップS31にて振幅波形の正規化を行った後に、ステップS32にて振幅の傾きを算出し、ステップS33にて傾きが所定範囲内にあるか否かを判定する。傾き値が所定範囲内にあると判定されれば、物体検知装置は、受信波の振幅が極大となるピーク付近であるとしてステップS4に進み、傾き値が所定範囲内にないと判定されれば物体検知装置はステップS1に進む。
本実施形態のステップS31では、具体的には、次のように振幅波形の正規化を行う。すなわち、ステップS2にて周波数波形が一致したときの時刻を基準に振幅ピーク検出範囲を設定する。そして、振幅ピーク検出範囲に含まれるサンプルの振幅値を代表振幅値で割って得られた値を新たな振幅値とする。ステップS32では、新たな振幅値から傾きを算出し、算出された傾きをステップS33にて傾き閾値と比較する。
反射波の振幅の傾きは振幅レベルによって変化するため、振幅生成部7が生成した振幅波形をそのまま用いて傾きを判定する場合には、反射波の振幅レベルに応じて傾き閾値を変化させる必要があり、処理が複雑になる。これに対して、受信波の振幅を正規化することにより、傾き閾値を一定としたまま判定を行うことが可能となる。
振幅ピーク検出範囲は、例えば、周波数の一致度が一致度閾値よりも大きくなった時刻を基準時刻として、基準時刻の前から後の時間範囲が用いられる。また、基準時刻の所定時間前から基準時刻までの時間範囲、基準時刻よりも前の2つの時刻の間の時間範囲、基準時刻の後の時間範囲等を用いてもよい。また、ステップS31の処理が開始された時刻を基準時刻としてもよい。
また、代表振幅値としては、例えば、基準時刻の振幅、基準時刻より所定時間前の振幅、基準時刻から所定時間後の振幅を用いることができる。また、代表振幅値として、振幅ピーク検出範囲内の振幅の最大値、最小値、振幅ピーク検出範囲内の最初のサンプルの振幅、最後のサンプルの振幅を用いてもよい。また、代表振幅値として、振幅ピーク検出範囲内の振幅の平均値、中央値を用いてもよい。
本実施形態のステップS32では、振幅ピーク検出範囲の最初のサンプルの振幅をAとし、最後のサンプルの振幅をAとし、振幅ピーク検出範囲の長さをTslopeとし、傾きをSとして、S=(A-A)/TslopeによりSを求める。なお、最初のサンプル、最後のサンプルは、それぞれ、振幅ピーク検出範囲の開始時刻、終了時刻に取得されたものとする。
そして、ステップS33では、傾きSの絶対値が傾き閾値よりも小さいときに傾きが所定範囲内にあると判定され、傾きSの絶対値が傾き閾値以上であるときに傾きが所定範囲内にないと判定される。
図7のステップS4にて、振幅閾値判定部9は、受信波の振幅値が振幅閾値よりも大きいか否かを判定する。受信波の振幅値が振幅閾値よりも大きいと判定されると、物体検知装置はステップS5に進み、ステップS4での判定結果が振幅閾値判定部9に保存される。一方、受信波の振幅値が振幅閾値よりも大きくないと判定されると、物体検知装置はステップS1に進む。
なお、ステップS4にて振幅閾値と比較する振幅値は、例えば前述した基準時刻に基づいて設定された時間範囲である振幅値判定範囲における受信波の振幅の極大値とされるが、極大値がない場合には振幅値判定範囲内の最大値でもよい。また、振幅閾値と比較する振幅値として、振幅値判定範囲内の2つ以上の振幅値の平均値を用いてもよい。
また、振幅値判定範囲は、振幅ピーク検出範囲と同じでもよいし、振幅ピーク検出範囲とは異なっていてもよい。例えば、振幅値判定範囲を振幅ピーク検出範囲よりも後の時間範囲としてもよい。
物体検知装置はステップS5からステップS6に進み、計測終了時刻を経過したか否かを判定する。計測終了時刻は、探査波の送信を開始してから所定時間後の時刻とされる。物体検知装置は、計測終了時刻を経過したと判定するとステップS7に進み、計測終了時刻を経過していないと判定するとステップS1に進む。
ステップS7では、振幅閾値判定部9は、振幅値の判定結果、反射波の波高値、受波時刻、チャープ信号の検出結果等を制御部4に送信する。制御部4は、振幅値の判定結果、および、波高値の大きさに応じて、運転者への報知等を行う。
本実施形態の効果について説明する。マイクロホン1が上りチャープ信号を含む第1探査波を送信し、振幅生成部7、周波数生成部8によって例えば図9に示す振幅波形および周波数波形が生成されると、次のようにしてチャープ信号が検出される。
すなわち、図9の時刻t3において、一点鎖線で示す上りチャープ信号の参照波と受信波の周波数の波形がよく一致しているので、時刻t3についてステップS2が実行されると、周波数の一致度が大きくなり、物体検知装置はステップS3に進む。振幅のグラフの一点鎖線で示すように、時刻t3では振幅の傾きが小さいので、ステップS3において振幅がピーク付近であると判定され、物体検知装置はステップS4に進み、振幅の大きさによっては物体が検知される。
一方、図9の時刻t4において、二点鎖線で示す下りチャープ信号の参照波と受信波の周波数の波形がよく一致しているので、時刻t4についてステップS2が実行されると、周波数の一致度が大きくなり、物体検知装置はステップS3に進む。しかし、振幅のグラフの二点鎖線で示すように、時刻t4では振幅の傾きが大きいので、ステップS3において振幅がピーク付近でないと判定され、振幅閾値判定部9による物体検知処理が行われずに物体検知装置はステップS1に進む。
このように、本実施形態では、周波数の一致度が大きくなっても、振幅の傾きが大きい場合には距離判定を行わずにステップS1に戻る。
探査波に含まれるチャープ信号は受信信号がある程度大きくなったときに現れ、このチャープ信号を検出することで伝播時間および物体との距離を精度よく測定することができる。しかしながら、このチャープ信号とは別に、反射波の受信開始時、受信終了時、ノイズの発生時の周波数にチャープ信号に似た波形が現れることがあり、この波形に基づいて受波時刻を決定すると、伝播時間および物体との距離の測定精度が低下する。
反射波の受信開始時、受信終了時、ノイズの発生時には振幅が大きく変化するのに対し、振幅のピーク付近では振幅の変化が小さい。したがって、振幅の傾きから振幅のピークを検出することができる。そして、上記のように、周波数の一致度が大きく、かつ、振幅がピーク付近となる時刻に基づいて受波時刻を決定することにより、伝播時間および物体との距離の測定精度を向上させることができる。また、混信の回避および複数のマイクロホンでの同時計測が可能となり、計測の信頼性の向上および計測周期の向上を図ることができる。
(第2実施形態)
第2実施形態について説明する。本実施形態は、第1実施形態に対して受信波の判定方法を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図10に示すように、本実施形態では、物体検知装置はステップS1からステップS3に進み、振幅のピークを検出する。そして、振幅ピーク検出部10によって振幅がピーク付近であると判定されると、物体検知装置はステップS3からステップS2に進む。
本実施形態のステップS2では、周波数判定部11は、振幅がピーク付近となる時刻における周波数の一致度と一致度閾値とを比較する。ステップS2にて一致度が一致度閾値よりも大きいと判定されると、物体検知装置はステップS2からステップS4に進み、振幅値の判定を行う。
このようにステップS2とステップS3の順序を入れ替えた本実施形態においても、第1実施形態と同様の効果が得られる。
なお、本実施形態ではステップS2とステップS3の順序を入れ替えたが、ステップS2~S4の順序を入れ替え、例えば、ステップS1の後、ステップS4、S2、S3の順に処理を実行してもよい。すなわち、受信波の振幅を振幅閾値と比較し、振幅が振幅閾値よりも大きくなった時刻について、周波数の一致度を一致度閾値と比較する。そして、一致度が一致度閾値よりも大きい場合には、振幅がピーク付近であるか否かを判定し、振幅がピーク付近であれば、波高値等に応じて運転者への報知を行う。
また、ステップS1の後、ステップS4、S3、S2の順に処理を行ってもよい。すなわち、受信波の振幅を振幅閾値と比較し、振幅が振幅閾値よりも大きくなった時刻について、振幅がピーク付近であるか否かを判定する。そして、振幅がピーク付近である場合には、周波数の一致度を算出し、一致度が一致度閾値よりも大きければ、波高値等に応じて運転者への報知を行う。
(第3実施形態)
第3実施形態について説明する。本実施形態は、第1実施形態に対して振幅ピークの検出方法を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
本実施形態では、振幅ピーク検出部10は、受信波の振幅波形から振幅のピークを検出するための振幅参照波形を記憶している。図11に示すように、振幅参照波形は、正規化された後の振幅波形のうち、ピーク付近の部分に一致する波形とされており、振幅ピーク検出部10は、受信波の振幅波形と振幅参照波形とを比較することにより、受信波の振幅のピークを検出する。
例えば、物体検知装置の製造時に、物体検知装置の周囲に物体が置かれた状態で上りチャープ信号、下りチャープ信号が送信され、そのときの受信波の振幅波形のうちピーク付近の部分が振幅参照波形として振幅ピーク検出部10に記憶される。
図12に示すように、本実施形態のステップS3では、物体検知装置はステップS31からステップS34に進み、正規化された振幅波形と振幅参照波形との残差平方和を算出する。具体的には、ステップS3が開始された時刻や、周波数の一致度が一致度閾値よりも大きくなった時刻に基づいて、時間範囲である振幅ピーク検出範囲が設定される。そして、振幅ピーク検出範囲に含まれるi番目のサンプルの振幅をAとし、振幅Aを正規化したものをA’とし、振幅参照波形のうちi番目のサンプルに対応する部分の振幅をRAiとして、数式5により残差平方和Eが算出される。
Figure 0007000981000005
物体検知装置はステップS34からステップS35に進み、残差平方和Eが所定の残差平方和閾値よりも小さいか否かを判定する。残差平方和Eが残差平方和閾値よりも小さいと判定されれば、物体検知装置は受信波の振幅がピーク付近であるとしてステップS4に進み、残差平方和Eが残差平方和閾値以上であると判定されれば、物体検知装置はステップS1に進む。
このように、受信波の振幅波形と振幅参照波形とを比較して振幅のピークを検出する本実施形態においても、第1実施形態と同様の効果が得られる。
なお、本実施形態における振幅ピークの検出方法を第2実施形態に適用してもよい。この場合にも、第2実施形態と同様の効果が得られる。
(第4実施形態)
第4実施形態について説明する。本実施形態は、第3実施形態に対して残差平方和の算出方法を変更したものであり、その他については第3実施形態と同様であるため、第3実施形態と異なる部分についてのみ説明する。
本実施形態の振幅ピーク検出部10は、図13に示すように、受信波の振幅波形と、振幅参照波形に振幅倍率を掛けたものとを比較して振幅のピークを検出する。
具体的には、物体検知装置がステップS2からステップS3に進むと、図14に示すように、ステップS36にて、振幅ピーク検出部10は振幅倍率kを算出する。振幅ピーク検出部10はステップS36からステップS34に進み、数式6によって残差平方和Eを算出する。
Figure 0007000981000006
振幅倍率kは、残差平方和Eが最小となるように算出される。残差平方和Eが最小となるのは、数式7が成り立つときであり、このときの振幅倍率kは、数式8のようになる。
Figure 0007000981000007
Figure 0007000981000008
振幅ピーク検出部10はステップS34からステップS35に進み、第3実施形態と同様に判定を行う。
このように振幅倍率を用いて残差平方和を算出する本実施形態においても、振幅を正規化する第1実施形態と同様の効果が得られる。
(第5実施形態)
第5実施形態について説明する。本実施形態は、第1実施形態に対して受波部を追加したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図15に示すように、本実施形態の物体検知装置は、受信回路5とは別に受信回路13を備えており、マイクロホン1の出力が受信回路5および受信回路13に入力される。受信回路13は、受信回路5と同様に、マイクロホン1の出力信号に対して増幅、ノイズ除去、A/D変換等の処理を行うが、受信回路5よりも利得が低くされている。マイクロホン1と受信回路13は低利得受波部に相当する。
信号処理部6には、受信回路5が生成した信号と、受信回路13が生成した信号が送信されるようになっている。そして、信号処理部6および振幅生成部7は、2つの入力信号に基づいて2つの振幅波形を生成し、振幅ピーク検出部10に2つの振幅波形が送信される。
振幅ピーク検出部10は、受信波の振幅が所定値以下であるときには、マイクロホン1および受信回路2の出力信号から生成された振幅波形に基づいて、振幅ピークの検出を行う。そして、振幅ピーク検出部10は、受信波の振幅が所定値よりも大きいときには、受信回路13の出力信号から生成された振幅波形に基づいて、振幅ピークの検出を行う。
受波部を1つのみ備える場合において、受信波の振幅が大きいと、受波部の出力が信号処理部6に入力できる信号の上限を超え、波形の情報が失われ、振幅ピークの検出精度が低下するおそれがある。これに対して、受信波の振幅が所定値よりも大きいときに、振幅ピーク検出部10が低利得受波部の出力に基づいて振幅ピークを検出することにより、振幅ピークの検出精度の低下を抑制することができる。
(他の実施形態)
なお、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
例えば、上記第1実施形態では、周波数が線形に増加するチャープ信号および周波数が線形に減少するチャープ信号を用いたが、図16、図17に示すように周波数が非線形に増加するチャープ信号および周波数が非線形に減少するチャープ信号を用いてもよい。例えば、交流信号の周波数を時間の経過とともに対数的に変化させてもよい。また、この場合に、図18に示すように、交流信号の周波数を離散的に変化させてもよい。
また、図19、図20に示すように周波数が所定時間一定とされた後に変化するチャープ信号を用いてもよい。この場合に、チャープ信号の周波数を線形に変化させてもよいし、非線形に変化させてもよい。また、チャープ信号の周波数を変化させた後に所定時間一定としてもよい。また、チャープ信号の周波数を離散的に変化させてもよい。
また、図21、図22に示すように周波数が減少した後に増加するチャープ信号、および、周波数が増加した後に減少するチャープ信号を用いてもよい。この場合に、チャープ信号の周波数を線形に変化させてもよいし、非線形に変化させてもよい。また、これらのパターンを組み合わせて用いてもよい。
また、上記第1実施形態では、1つのマイクロホン1が送波部および受波部として機能するが、送波部として機能するマイクロホンとは別に、受波部として機能するマイクロホンを配置してもよい。
また、上記第1実施形態とは異なる方法で振幅の傾きを求めてもよい。例えば、サンプリング毎に最も新しいサンプルとその前のサンプルとの振幅の傾きを求め、振幅ピーク検出範囲に含まれるサンプルについて求めた傾きの平均を、振幅ピーク検出範囲の全体における振幅の傾きとしてもよい。この場合、振幅ピーク検出範囲が同じであれば第1実施形態と同じ値が算出されるが、サンプリング毎に傾きを求めることにより、振幅ピーク検出範囲の変更に対応しやすくなる。また、振幅波形を最小二乗法により線形回帰モデルに近似して傾きを求めてもよい。また、振幅ピーク検出範囲を、送波時刻からの経過時間に応じて変化させてもよい。
また、上記第3実施形態において、振幅参照波形および残差平方和閾値のうち一方または両方を、送波部および受波部のうち一方または両方の周波数特性に基づいて設定してもよい。
また、所定時間内の2つの時刻の受信波について、ステップS2、S3でチャープ信号および振幅のピークが検出されたときに、該2つの時刻の受信波のうち、振幅の傾きの絶対値が小さい方の受信波の振幅に基づいて、物体との距離を判定するようにしてもよい。また、振幅の残差平方和が小さい方の受信波の振幅に基づいて物体との距離を判定してもよい。
また、上記第1実施形態では受信波の振幅を代表振幅値で割って正規化したが、受信波の振幅を他の方法で補正してもよい。例えば、受信波の代表振幅値をAとし、振幅参照波形の代表振幅値をRAdとし、ΔA=RAd-Aとして、A+ΔAを補正後の振幅としてもよい。また、ΔA=(1/N)Σ(RAi-A)としてもよい。ここで、Σはiについての1からNまでの総和を意味する。また、E=Nσ =Σ((A+ΔA)-RAiとし、∂E/∂(ΔA)=0となる条件から、ΔA=(1/N)Σ(A-RAi)としてもよい。また、k=A/RAd、(1/N)Σ(A/RAi)、ΣA/ΣRAiとし、A/kを補正後の振幅としてもよい。また、E=Nσ =Σ(A/k-RAiとし、∂E/∂k=0となる条件から、k=Σ(AAi)/Σ(RAi )としてもよい。
また、上記第4実施形態において、k=A/RAdとしてもよい。また、k=(1/N)Σ(A/RAi)としてもよい。また、k=ΣA/ΣRAiとしてもよい。
また、上記第4実施形態において、ΔA=RAd-Aとし、AとRAi-ΔAとを比較してもよい。また、ΔA=(1/N)Σ(RAi-A)としてもよい。また、E=Nσ =Σ(A-(RAi-ΔA))とし、∂E/∂(ΔA)=0となる条件から、ΔA=(1/N)Σ(A-RAi)としてもよい。
1 マイクロホン
2 送信回路
4 制御部
5 受信回路
10 振幅ピーク検出部
11 周波数判定部

Claims (16)

  1. 車両に搭載されて前記車両の外部の物体を検知する物体検知装置であって、
    周波数が時間の経過とともに所定のパターンで変化する超音波を探査波として送信する送波部(1、2)と、
    超音波を受信する受波部(1、5)と、
    前記受波部が受信した超音波を受信波として、前記受信波の周波数と前記所定のパターンとの一致度を算出する周波数一致度算出部(11)と、
    前記受信波の振幅のピークを検出する振幅ピーク検出部(10)と、
    前記周波数一致度算出部が算出した一致度、および、前記振幅ピーク検出部による振幅のピークの検出結果に基づいて、物体との距離を判定する距離判定部(4)と、を備える物体検知装置。
  2. 前記振幅ピーク検出部は、前記受信波の振幅の波形と所定の振幅参照波形とを比較することにより、前記受信波の振幅のピークを検出する請求項1に記載の物体検知装置。
  3. 前記振幅ピーク検出部は、前記受信波の振幅の波形と前記振幅参照波形との残差平方和が、所定の残差平方和閾値よりも小さくなったときに、前記受信波の振幅のピークを検出する請求項2に記載の物体検知装置。
  4. 所定時間内の2つの時刻の前記受信波について、前記一致度が所定の一致度閾値よりも大きいと判定され、かつ、前記振幅ピーク検出部によって、前記受信波の振幅のピークが検出されたとき、
    前記距離判定部は、該2つの時刻の前記受信波のうち、振幅の波形と前記振幅参照波形との残差平方和が小さい方の前記受信波の振幅に基づいて物体との距離を判定する請求項3に記載の物体検知装置。
  5. 前記振幅参照波形および前記残差平方和閾値のうち一方または両方は、前記送波部および前記受波部のうち一方または両方の周波数特性に基づいて設定されている請求項3または4に記載の物体検知装置。
  6. 前記振幅ピーク検出部は、前記受信波の振幅の傾きと所定の傾き閾値とを比較することにより、前記受信波の振幅のピークを検出する請求項1に記載の物体検知装置。
  7. 前記振幅ピーク検出部は、前記受信波の振幅の傾きの絶対値が前記傾き閾値よりも小さくなったときに、前記受信波の振幅のピークを検出する請求項6に記載の物体検知装置。
  8. 前記振幅ピーク検出部は、前記受信波の振幅を正規化した後に、前記受信波の振幅の傾きと前記傾き閾値とを比較する請求項7に記載の物体検知装置。
  9. 所定時間内の2つの時刻の前記受信波について、前記一致度が所定の一致度閾値よりも大きいと判定され、かつ、前記振幅ピーク検出部によって、前記受信波の振幅の傾きの絶対値が前記傾き閾値よりも小さいと判定されたとき、
    前記距離判定部は、該2つの時刻の前記受信波のうち、振幅の傾きの絶対値が小さい方の前記受信波の振幅に基づいて物体との距離を判定する請求項7または8に記載の物体検知装置。
  10. 前記傾き閾値は、前記送波部および前記受波部のうち一方または両方の周波数特性に基づいて設定されている請求項7ないし9のいずれか1つに記載の物体検知装置。
  11. 前記距離判定部は、前記一致度が所定の一致度閾値よりも大きく、かつ、前記振幅ピーク検出部によって振幅のピークが検出されたとき、受信波の振幅に基づいて物体との距離を判定する請求項1ないし10のいずれか1つに記載の物体検知装置。
  12. 前記一致度が所定の一致度閾値よりも大きくなった時刻の前から後までの所定の時間範囲を振幅ピーク検出範囲として、
    前記振幅ピーク検出部は、前記振幅ピーク検出範囲における前記受信波の振幅に基づいて前記受信波の振幅のピークを検出する請求項1ないし11のいずれか1つに記載の物体検知装置。
  13. 前記受波部よりも利得の低い低利得受波部(1、13)を備え、
    前記振幅ピーク検出部は、前記受信波の振幅が所定値よりも大きいとき、前記低利得受波部が受信した超音波の振幅に基づいて振幅のピークを検出する請求項2ないし12のいずれか1つに記載の物体検知装置。
  14. 前記探査波は、周波数が時間の経過とともに単調増加または単調減少する請求項1ないし13のいずれか1つに記載の物体検知装置。
  15. 前記受波部は、前記探査波の反射波を受信したとき、時間の経過とともに前記探査波とは逆向きに周波数が変化した後、前記探査波と同様に周波数が変化する信号を出力する請求項14に記載の物体検知装置。
  16. 前記所定のパターンで周波数が変化する波形を含む参照波を記憶する参照波記憶部(12)を備え、
    前記周波数一致度算出部は、前記参照波記憶部に記憶されている前記参照波の周波数と前記受信波の周波数とを比較して前記一致度を算出する請求項1ないし15のいずれか1つに記載の物体検知装置。
JP2018090095A 2018-05-08 2018-05-08 物体検知装置 Active JP7000981B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018090095A JP7000981B2 (ja) 2018-05-08 2018-05-08 物体検知装置
DE102019111834.4A DE102019111834A1 (de) 2018-05-08 2019-05-07 Objekterfassungsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018090095A JP7000981B2 (ja) 2018-05-08 2018-05-08 物体検知装置

Publications (2)

Publication Number Publication Date
JP2019196942A JP2019196942A (ja) 2019-11-14
JP7000981B2 true JP7000981B2 (ja) 2022-01-19

Family

ID=68336911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018090095A Active JP7000981B2 (ja) 2018-05-08 2018-05-08 物体検知装置

Country Status (2)

Country Link
JP (1) JP7000981B2 (ja)
DE (1) DE102019111834A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014166A (ja) 2000-06-30 2002-01-18 Nippon Soken Inc 音波計測装置
JP2005249770A (ja) 2003-12-17 2005-09-15 Denso Corp 距離検出装置、物体検出装置
US20180031701A1 (en) 2016-07-26 2018-02-01 Semiconductor Components Industries, Llc Obstacle monitoring using motion-compensated distance
JP2018059827A (ja) 2016-10-06 2018-04-12 京セラ株式会社 測距装置、測距方法及び車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014166A (ja) 2000-06-30 2002-01-18 Nippon Soken Inc 音波計測装置
JP2005249770A (ja) 2003-12-17 2005-09-15 Denso Corp 距離検出装置、物体検出装置
US20180031701A1 (en) 2016-07-26 2018-02-01 Semiconductor Components Industries, Llc Obstacle monitoring using motion-compensated distance
JP2018059827A (ja) 2016-10-06 2018-04-12 京セラ株式会社 測距装置、測距方法及び車両

Also Published As

Publication number Publication date
DE102019111834A1 (de) 2019-11-14
JP2019196942A (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
JP6888506B2 (ja) 物体検知装置
US11209542B2 (en) Object detection device
JP7009896B2 (ja) 物体検知装置
JP6066635B2 (ja) 超音波検査装置と方法
US11619614B2 (en) Method and apparatus for determining an intermediate layer characteristic
JP2007271559A (ja) 移動物体検知装置
JP6610977B2 (ja) 目標探知システム、方法およびプログラム
JP6190374B2 (ja) 軟組織軟骨境界面検出方法、軟組織軟骨境界面検出装置、および軟組織軟骨境界面検出プログラム
US20230236152A1 (en) Acoustic resonance fluid flow measurement device and method
JP7000981B2 (ja) 物体検知装置
EP2149335B1 (en) Biological information measurement apparatus and method
JPWO2013175867A1 (ja) 伝播速度測定装置、伝播速度測定プログラム、及び伝播速度測定方法
CN108697408B (zh) 超声波解析装置、超声波解析方法及存储介质
JP2019095306A (ja) 物体検知装置
JP6133130B2 (ja) 厚み測定方法、及び厚み測定装置
WO2020071105A1 (ja) 物体検知装置
US9918698B2 (en) System and method for gradient-based k-space search for shear wave velocity dispersion estimation
JP2019200059A (ja) 物体検知装置
US20240118415A1 (en) Displacement detection device and method
JP6621706B2 (ja) 音源検出装置
JP2003070789A (ja) 超音波ドプラ診断装置
JP2022102460A (ja) 浮体検知装置
JP2023176726A (ja) 物体検知装置
JP2002350541A (ja) アクティブソーナー装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 7000981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150