JP6999925B2 - Soil water drainage improving material - Google Patents

Soil water drainage improving material Download PDF

Info

Publication number
JP6999925B2
JP6999925B2 JP2017211597A JP2017211597A JP6999925B2 JP 6999925 B2 JP6999925 B2 JP 6999925B2 JP 2017211597 A JP2017211597 A JP 2017211597A JP 2017211597 A JP2017211597 A JP 2017211597A JP 6999925 B2 JP6999925 B2 JP 6999925B2
Authority
JP
Japan
Prior art keywords
wood
water
powder
soil
wood powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017211597A
Other languages
Japanese (ja)
Other versions
JP2019085430A (en
Inventor
文彦 久松
繁 村山
Original Assignee
有限会社グロ-バルコミュニケ-ションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社グロ-バルコミュニケ-ションズ filed Critical 有限会社グロ-バルコミュニケ-ションズ
Priority to JP2017211597A priority Critical patent/JP6999925B2/en
Publication of JP2019085430A publication Critical patent/JP2019085430A/en
Application granted granted Critical
Publication of JP6999925B2 publication Critical patent/JP6999925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、幼稚園を含む小・中学校などを主体とした各種学校の校庭や運動場、および各種の競技場や公園などのグランド部や通路部の水捌け性を改善するための材料及びその製造方法に関するものである。
The present invention relates to a material for improving the water drainage of various school playgrounds and playgrounds, mainly elementary and junior high schools including kindergartens, and grounds and passages of various stadiums and parks, and a method for producing the same. It is a thing.

雨後の各種学校の校庭や運動場、および各種の競技場や公園などのグランド部では、降水量で雨後への影響は異なるものの、校庭などのグラウンドの水捌けが悪い場合、雨後数時間はグラウンドが使用出来ないことがある。更に、グランウンド面積の大半は短時間で使用が可能になるが、一部に水捌けが悪い場所があってグラウンドの使用が制限されることがある。 In the school playgrounds and playgrounds of various schools after rain, and in the ground areas such as various stadiums and parks, although the effect on the ground after rain differs depending on the amount of precipitation, if the ground such as the school playground is poorly drained, the ground will be used for several hours after rain. There are things I can't do. In addition, most of the ground area can be used in a short time, but some areas may have poor drainage, limiting the use of the ground.

土壌の水捌け性改良材は、水捌け性改良材が使用される区域の全てで健康障害や環境汚染の原因になる物質、例えば、鉛およびその化合物、砒素およびその化合物、カドミウムおよびその化合物、六化クロムおよびその化合物、水銀およびその化合物、シアン化合物、四塩化炭素、トリクロロエチレン、ベンゼン、PCBなどの有害物質について環境保全に関する法律、例えば土壌汚染対策法に定められている基準値に適合しなければならない。 Soil water drainage improving materials are substances that cause health problems and environmental pollution in all areas where water drainage improving materials are used, such as lead and its compounds, arsenic and its compounds, cadmium and its compounds, Hexa. Hazardous substances such as chromium and its compounds, mercury and its compounds, cyanide compounds, carbon tetrachloride, trichloroethylene, benzene, and PCB must comply with the standard values stipulated in the Environmental Conservation Law, such as the Soil Contamination Countermeasures Law. ..

土壌の水捌け性の尺度は、透水係数で表示されるのが一般的である。透水係数は土中の水の移動する速度(水の流れやすさ)を表したものである。透水係数は土質力学で用いられている「ダルシ-の法則」によって導きだすことができる。ダルシ-の法則の式はQ=K・i・Aであり、式中のQは断面Aを流れる流量(cm/sec)、Kは透水係数(cm/sec)、iは動水勾配で式はI=h/Lであり式中のhは水頭差、Lは距離であり、Aは断面積(cm)である。 The measure of soil permeability is generally expressed as a hydraulic conductivity. The permeability coefficient expresses the speed at which water in the soil moves (easiness of water flow). The hydraulic conductivity can be derived from the "Darcy's Law" used in soil mechanics. The formula of Darcy's law is Q = K · i · A, where Q is the flow rate (cm 3 / sec) flowing through the cross section A, K is the hydraulic conductivity (cm / sec), and i is the hydraulic gradient. The formula is I = h / L, h in the formula is the head difference, L is the distance, and A is the cross-sectional area (cm 2 ).

地質学や土壌学などで用いられている、土質毎の透水係数(単位はcm/sec)の参考値を表-1に示す。水捌け性は土質が礫や砂であれば良好なので、水捌け性の悪い土壌の水捌け性を改善する場合の水捌け性改良材の敷き込み量の目安にすることができる。 尚、土質の分類で泥は英名ではシルト(Silt)と表示されている例が多い。

Figure 0006999925000001
Table 1 shows the reference values of the hydraulic conductivity (unit: cm / sec) for each soil used in geology and soil science. Since the water-drainability is good if the soil quality is gravel or sand, it can be used as a guideline for the amount of the water-drainability improving material to be spread when improving the water-drainability of the soil having poor water-drainability. In addition, in the classification of soil quality, mud is often displayed as silt in English.
Figure 0006999925000001

土壌の水捌け性を改善する方法として暗渠を設置する方法、地表に傾斜を付けておく方法、土全体を入れ替える方法、土壌に礫や砂を敷き込む方法、土壌に腐葉土・バ-ク堆肥・炭・パ-ライトを敷き込む方法などか知られている。 As a method to improve the drainage of the soil, a method of installing an underdrain, a method of sloping the ground surface, a method of replacing the entire soil, a method of laying gravel or sand in the soil, a method of humus, bark compost, charcoal in the soil・ It is known how to lay pebbles.

礫や砂の代わりに、無機質系粉末や木質系粉末を熱可塑性樹脂に練り込んで複合化した組成物を粒状化したものが礫や砂の代用品として使用できるが、これらを校庭などに使用した場合、熱可塑性樹脂と木質系粉末などを複合化する為に添加する酸化防止剤、耐候剤、殺菌剤、加工安定剤、カップリング剤などの添加剤および熱可塑性樹脂が土中に残存することになるので、これらが児童などの健康にどのような影響を及ぼすかはまだ完全には解明されていないので、取扱は慎重に行うことが必要である。 Instead of gravel and sand, granulated composition of inorganic powder or wood powder kneaded into thermoplastic resin can be used as a substitute for gravel and sand, but these are used for school gardens, etc. If this is the case, additives such as antioxidants, weathering agents, bactericides, processing stabilizers, coupling agents, etc., which are added to combine the thermoplastic resin and wood powder, and the thermoplastic resin remain in the soil. Therefore, it is necessary to handle it carefully because it is not yet fully understood how these affect the health of children and the like.

水捌け性改良材は、人や動物の健康への影響、および自然環境への負荷を可能な限り除去しておくことが望ましく、この要望に近づけるためには、使用する素材は天然素材を主体とした材料を使用することが好ましい。 It is desirable that the water-drainability improving material removes the effects on human and animal health and the burden on the natural environment as much as possible, and in order to approach this demand, the materials used are mainly natural materials. It is preferable to use the material that has been prepared.

水捌け性を改善した土壌を作成するためには、改善したい土壌の水捌け性の実状値の確認と改善後の水捌け性のレベルを設定し、改善したい土壌に水捌け性改良材を敷き込む量と敷き込む深さを決めて使用し、校庭やグランドを常時使用可能にしておくことが望ましい。 In order to create soil with improved water drainage, check the actual value of water drainage of the soil to be improved, set the level of water drainage after improvement, and spread the amount and spread of the water drainage improving material on the soil to be improved. It is desirable to decide the depth to dig in and use it so that the school playground and the ground can be used at all times.

特開2004-91501号公報Japanese Unexamined Patent Publication No. 2004-91501

土壌の排水を改善することを目的として暗渠を敷設する例が多いが、敷設した暗渠を埋め戻している土壌の水捌け性が悪ければ、幼稚園を含む各種学校の校庭や運動場および各種の競技場や各種の公園のグランド部や散策路などは雨後数時間は使用に支障をきたすことがあるので、改善方法は別として雨後約1時間程度以内で使用できることが望まれている。 There are many cases where culverts are laid for the purpose of improving soil drainage, but if the drainage of the soil that is backfilling the culverts is poor, the school playgrounds and playgrounds of various schools including kindergartens and various stadiums Since the grounds and walking paths of various parks may interfere with the use for several hours after the rain, it is desired that they can be used within about one hour after the rain, apart from the improvement method.

土壌の水捌け性を改善させる別の方法として、小石などで構成されている砂利や礫を水捌けの悪い土壌に敷き込む方法があるが、敷き込む砂利や礫の粒径は大きい物では5φmm程度あるので転んだり滑り込んだりした時に怪我をすることがあるのが問題点としてあげられる。 Another method to improve the drainage of soil is to lay gravel or gravel composed of pebbles on poorly drained soil, but the particle size of the gravel or gravel to be laid is about 5φ mm. Therefore, the problem is that you may get injured when you fall or slip.

水捌け性を改善させる更なる方法として、土壌に腐葉土やバ-ク堆肥または炭を敷き込む方法があるが、腐葉土やバ-ク堆肥は木材の特定部位を醗酵させた物であるため非常に脆くなっており、踏まれるなどの小さな外力で容易に形状が破壊され微細化され、また木材をほぼ100%炭化させた炭も小さな外力で容易に破壊され微細化するため、水捌け性の改善に寄与できる期間は、醗酵させない木粉や炭化度を制御した木粉に比べて非常に短かくなるという問題がある。 As a further method to improve the water drainage, there is a method of laying foliage soil, carbonized compost or charcoal in the soil, but foliage soil or carbonized compost is very fragile because it is made by fermenting a specific part of wood. The shape is easily destroyed and refined by a small external force such as being stepped on, and charcoal that is almost 100% carbonized wood is also easily destroyed and refined by a small external force, which contributes to the improvement of water drainage. There is a problem that the period of time that can be formed is much shorter than that of unfermented wood flour or wood flour with controlled carbonization.

本発明は斯かる点に鑑みてなされたものであり、人や動物の健康への影響および自然環境への負荷をできる限り少なくするために天然素材を主体とした材料を使用して土壌の水捌け性を長期間改良することができる。 The present invention has been made in view of these points, and in order to minimize the impact on human and animal health and the burden on the natural environment, soil drainage using a material mainly composed of natural materials is used. The sex can be improved for a long period of time.

本発明に係る木粉から成る土壌の水捌け性改良材は、気乾比重が0.30以上の木材を粉砕して成る木粉の粒径が0.30~6.0mmφであり、木粉を炭化させてその炭化度が1~50重量%であることを特徴とする。
The water-drainability improving material for soil made of wood flour according to the present invention has a grain size of wood flour of 0.30 to 6.0 mmφ formed by crushing wood having an air-dry specific gravity of 0.30 or more, and can be used for wood flour. It is characterized in that it is carbonized and its carbonization degree is 1 to 50% by weight .

前記水捌け性改良材は、さらに、前記木粉に無機質系粉末を坦持させたことを特徴とする。
The water-drainability improving material is further characterized in that the wood powder is carried with an inorganic powder .

前記水捌け性改良材は、さらに、前記無機質系粉末が炭酸カルシウムであることを特徴とする。
The water-drainability improving material is further characterized in that the inorganic powder is calcium carbonate .

また、本発明に係る木粉から成る土壌の水捌け性改良材の製造方法は、気乾比重が0.30以上の木材を粉砕して成る木粉の粒径が0.30~6.0mmφであり、木粉を炭化させてその炭化度が1~50重量%にすることを特徴とする。

Further, in the method for producing a water-drainability improving material for soil made of wood powder according to the present invention, the grain size of wood powder made by crushing wood having an air-dry specific gravity of 0.30 or more is 0.30 to 6.0 mmφ. It is characterized in that wood powder is carbonized so that the carbonization degree is 1 to 50% by weight .

本発明によれば、人や動物の健康への影響および自然環境への負荷をできる限り少なくするために天然素材を主体とした材料を使用して土壌の水捌け性を長期間改良することができる。 According to the present invention, it is possible to improve the water drainage of soil for a long period of time by using a material mainly composed of natural materials in order to minimize the impact on human and animal health and the load on the natural environment. ..

土壌改良材を施した後の土壌を示した図である。It is the figure which showed the soil after applying the soil conditioner.

本発明者らは、上記課題を解決すべく鋭意研究を行った結果、「気乾比重が0.30以上の木材から成る粉末(木粉)でその粒径が0.3~6mmφ」、「木粉を炭化せ、炭化度が1~50重量%である炭化木粉」、「木粉に無機質系粉末を担持させた木粉」である事の少なくとも1つ以上を満たした木粉が、砂利や礫または腐葉土やバ-ク堆肥などによる土壌の水捌け性を改良するために挙げられる問題点について解決することができることを見出した。 As a result of diligent research to solve the above problems, the present inventors have found that "a powder (wood powder) made of wood having an air-dry specific gravity of 0.30 or more and having a particle size of 0.3 to 6 mmφ" and ". Wood powder that is filled with at least one of "carbonized wood powder that carbonizes wood powder and has a carbonization degree of 1 to 50% by weight" and "wood powder that carries an inorganic powder on wood powder" It has been found that the problems raised to improve the water drainage of soil due to gravel, gravel or leaf mold, bark compost, etc. can be solved.

木粉を土壌に敷き込むと、土壌中に生息している微生物によって木粉は分解されるが、木粉の一部を炭化させることによって木粉が分解される期間を長期化させることができる。 また、木粉と校庭等を構成する砂との比重差は木粉に無機質系粉末を担持させることで 縮める事ができる。 When wood flour is laid in the soil, it is decomposed by microorganisms living in the soil, but by carbonizing a part of the wood flour, the period during which the wood flour is decomposed can be extended. .. In addition, the difference in specific gravity between the wood powder and the sand that constitutes the school playground can be reduced by supporting the inorganic powder on the wood powder.

木材の真比重は約1.5で、これは木材の種類が変わっても殆ど変わらない。従って木材に含まれる空気を主体とした気体を水で置換すれば木材は水に沈む。これは木粉でも同じであるが木粉(木材)中の気体は単純に水と木粉を接触させても容易に水と置換しないため、長時間水に浮くので、これを解消することを目的として木粉に無機質系粉末を担持させる事が有効になる。 The true relative density of wood is about 1.5, which is almost the same even if the type of wood changes. Therefore, if the air-based gas contained in the wood is replaced with water, the wood will sink in the water. This is the same for wood flour, but the gas in wood flour (wood) does not easily replace water even if it is simply brought into contact with water, so it floats on water for a long time. For the purpose, it is effective to support the inorganic powder on the wood powder.

本発明で言う気乾比重とは木材業界で使用されている特性値のことであり、その定義は、「木材を乾燥させた時の重さと、体積が同じ水の重さとを比べた値」である。気乾比重が小さいということは、その木材のポ-ラス度が高いということであり、逆に気乾比重が大きいということはその木材のポ-ラス度が低いということになる。木材の気乾比重と木材の硬さには一定の関係があり、気乾比重が大きいほど硬さが高い傾向がある。 The air-dry specific gravity referred to in the present invention is a characteristic value used in the wood industry, and its definition is "a value comparing the weight when the wood is dried and the weight of water having the same volume". Is. A small air-dry specific density means that the wood has a high degree of porousness, and a large air-dry specific density means that the wood has a low degree of porousness. There is a certain relationship between the air-dry specific density of wood and the hardness of wood, and the larger the air-dry specific gravity, the higher the hardness tends to be.

本発明で使用される木材の気乾比重は0.30以上、好ましくは0.40以上、より好ましくは0.50以上である。気乾比重が0.30未満だと、水に浮きやすくなって校庭などの冠水時には流失してしまう可能性が高まると共に、木粉の硬さが不足して、スパイク等で激しく踏まれた時に受ける激しい衝撃で木粉が砕けることが多くなるので好ましくない。 The air-dry specific gravity of the wood used in the present invention is 0.30 or more, preferably 0.40 or more, and more preferably 0.50 or more. If the air-dry specific density is less than 0.30, it will easily float on the water and will be more likely to be washed away when flooded in the school playground. It is not preferable because the wood powder often breaks due to the violent impact received.

木材の気乾比重は、バルサ0.12~0.20、キリ0.19~0.30、サワラ0.34、クロマツ0.37、スギ0.38、ヒノキ0.41、モミ0.35~0.52、ヒバ0.37~0.52、カリン0.40~0.90、コウヤマキ0.42、ポプラ0.45、エゾマツ0.45、ホワイトウッド0.46、ホオ0.48、キハダ0.48、ウエスタンヘムロック0.49、カラマツ0.50、アメリカンホワイトウッド0.50、カヤ0.51、クスノキ0.52、ニュ-ジ-ランドシルバ-ビ-チ0.53、トチ0.53、アカマツ53、イチイ0.45~0.62、エルム0.56、カツラ0.40~0.66、ヨ-ロピアンライム0.54、イチョウ0.55、タイガ-ウッド0.56、チ-ク、0.57~0.69、クワ0.6 2、ヤマザクラ0.60、ブナ0.50~0.70、マテバシイ0.61、ソフトメ- ブル0.61、ニレ0.63、イブキ0.65、タブノキ0.65、タケカンバ0.65、ナラ0.67、ホワイトアッシュ0.68、ケヤキ0.69、シラカバ0.64、ヨ-ロピアンアッシュ0.70、ツバキ0.81、レモンウッド0.52、オリ-ブ0.85、シラガシ0.83、アカガシ0.87、ツゲ0.74~1.14、シタン0.82~1.09、ビャクダン0.95~0.99、コクタン1.16、キングウッド1.20、ブラジルウッド1.20~1.28、リグナムバイダ1.15~1.31などを参考値として提示することができる。 The air-dry specific gravity of wood is balsa 0.12 to 0.20, drill 0.19 to 0.30, sawara 0.34, black pine 0.37, cedar 0.38, hinoki 0.41, fir 0.35 to 0.52, Hiba 0.37 to 0.52, Karin 0.40 to 0.90, Koyamaki 0.42, Poplar 0.45, Ezomatsu 0.45, Whitewood 0.46, Hoo 0.48, Kihada 0 .48, Western Hemlock 0.49, Karamatsu 0.50, American Whitewood 0.50, Kaya 0.51, Kusunoki 0.52, New Zealand Silver Beach 0.53, Tochi 0.53, Red pine 53, Ichii 0.45 to 0.62, Elm 0.56, Katsura 0.40 to 0.66, European lime 0.54, Ginkgo 0.55, Tiger-wood 0.56, Cheek, 0 .57-0.69, Kuwa 0.62, Yamazakura 0.60, Beech 0.50-0.70, Matebashii 0.61, Soft Table 0.61, Nire 0.63, Ibuki 0.65, Tabunoki 0.65, Takekamba 0.65, Nara 0.67, White ash 0.68, Keyaki 0.69, Shirakaba 0.64, European ash 0.70, Tsubaki 0.81, Lemonwood 0.52, Olive 0.85, Shiragashi 0.83, Akagashi 0.87, Tsuge 0.74 to 1.14, Sitan 0.82 to 1.09, Byakudan 0.95 to 0.99, Kokutan 1.16, King Wood 1.20, Brazil Wood 1.20 to 1.28, Lignum Bida 1.15 to 1.31 and the like can be presented as reference values.

気乾比重が異なる木材からなる木粉は二種類以上を混合使用することができ、混合する木粉の種類や混合比率には制限はない。従って気乾比重が0.30未満の木材からなる木粉でも気乾比重が大きい木材からなる木粉と組み合わせて混合した物の気乾比重が実質的に0.3以上であれば使用が可能である。 Two or more types of wood flour made of wood having different air-dry specific densities can be mixed and used, and there is no limitation on the type and mixing ratio of the wood flour to be mixed. Therefore, even wood flour made of wood with an air-dry specific density of less than 0.30 can be used if the air-dry specific density of the mixture mixed with wood flour made of wood having a large air-dry specific density is substantially 0.3 or more. Is.

本発明で使用される木粉の粒径は0.3~6.0mmφであり、好ましくは1.0~5.0mmφ品である。粒径が0.3mmφより細かくなると、木粉単体の透水係数は約10-2cm/sec程度以下になるので、粒径が0.3mmφより細かい木粉を使用して土壌の水捌け性を大幅に改善させるためには木粉の敷き込み量は約35重量%程度以上となることがあり、この場合は校庭などのグラウンドに弾力性が生じるなどの弊害が発生する可能性があり実用性が失われる。また粒径が6mmφより大きくなっても水捌け性に支障は起こさないが、地表にある木粉がコロになって足を滑らせ転倒の原因になることがあるので好ましくない。 The grain size of the wood powder used in the present invention is 0.3 to 6.0 mmφ, preferably 1.0 to 5.0 mmφ. When the particle size becomes finer than 0.3 mmφ, the permeability coefficient of the wood powder alone becomes about 10-2 cm / sec or less, so the water drainage of the soil is greatly improved by using wood powder with a particle size finer than 0.3 mmφ. In order to improve the quality, the amount of wood powder spread may be about 35% by weight or more, and in this case, there is a possibility that the ground such as the school yard will have elasticity, which is practical. Lost. Further, even if the particle size is larger than 6 mmφ, the water drainage property is not hindered, but it is not preferable because the wood powder on the ground surface may become a roller and slip and cause a fall.

木粉の形状を本明細の請求項や明細書では、球形を示すφで表示しているが、本来の形状は指定している木粉の大きさを通すか通さないかの目開きの篩いで選別しているか否かであり、形状は球形、キュウビック、三角錐などのどれでも良く限定されるものではない。粒径の0.3mmφ以上とは粒径が0.3mm未満の木粉を篩い落とした木粉であり、粒径が6.0mm以下とは、粒径が6.0mmを超えた木粉を通さない篩いを使用して選別したことを意味する。 In the claims and specifications of the present specification, the shape of the wood flour is indicated by φ indicating a spherical shape, but the original shape is a sieve with an opening that allows or does not pass the specified size of the wood flour. The shape is not limited to any of spherical, cubic, triangular pyramid, etc. A particle size of 0.3 mmφ or more is wood powder obtained by sieving wood powder having a particle size of less than 0.3 mm, and a particle size of 6.0 mm or less means wood powder having a particle size exceeding 6.0 mm. It means that they were sorted using a non-passing sieve.

土壌に敷き込んだ木粉は腐食して機能を失うので、機能を失う迄の時間を延長させるために木粉を炭化させることが有効である。炭化の程度(炭化度)は1~50重量%であるが、好ましくは5~40重量%である。炭化度が1%未満だと木粉が腐食するまでの時間を充分に延長することができなく、炭化度が50重量%を超えると木粉が脆くなって砕け易くなるので好ましくない。 Since wood flour laid in the soil corrodes and loses its function, it is effective to carbonize the wood flour in order to prolong the time until it loses its function. The degree of carbonization (carbonization degree) is 1 to 50% by weight, preferably 5 to 40% by weight. If the carbonization degree is less than 1%, the time until the wood flour is corroded cannot be sufficiently extended, and if the carbonization degree exceeds 50% by weight, the wood flour becomes brittle and easily crushed, which is not preferable.

本発明で言う炭化度(%)は、一定重量の木粉を使用し、(絶乾状体まで乾燥した木粉の重量-絶乾状体まで乾燥した炭化処理した木粉の重量)/絶乾状体まで乾燥した木粉の重量×100とする。 尚、ここで言う絶乾状態とは、試験体を100℃で乾燥し、試験体の重量が変化しなくなった状態を言う。 The carbonization degree (%) referred to in the present invention uses a constant weight of wood flour (weight of wood flour dried to an absolute dry state-weight of carbonized wood flour dried to an absolute dry state) / absolute. The weight of wood flour dried to a dry state × 100. The term "absolutely dry state" as used herein means a state in which the test piece is dried at 100 ° C. and the weight of the test piece does not change.

木粉の炭化は、木粉粒子の表面だけより木粉の内部まで炭化させた方が、木粉の形状を長時間保持させる効果が大きいので、酸素の供給を制限した蒸し焼き状態で炭化させる事が好ましい。 For carbonization of wood flour, carbonizing the inside of the wood flour rather than only the surface of the wood flour particles has a greater effect of maintaining the shape of the wood flour for a long time. Is preferable.

木粉の炭化度を制御して炭化させる方法として、100℃以上、好ましく130℃以上に加熱されたロ-タリ-キルンやスクリュ-コンベアまたは押出機の中に木粉を通過させることによって作ることができる。これらの装置を通過させる場合は通過環境の気体の大半は不活性の窒素や炭酸ガスなどで置換しておくことが好ましい。炭化度は処理する温度と機器に滞留する時間および不活性ガスの濃度で制御できる。 As a method of controlling the carbonization of wood flour to carbonize it, it is made by passing the wood flour through a rotary kiln, a screw conveyor or an extruder heated to 100 ° C or higher, preferably 130 ° C or higher. Can be done. When passing through these devices, it is preferable to replace most of the gas in the passing environment with inert nitrogen, carbon dioxide, or the like. The degree of carbonization can be controlled by the temperature at which it is processed, the time it stays in the equipment, and the concentration of the inert gas.

乾燥している木粉が水に沈むための気乾比重は1.0以上が必要であるが、気乾比重が1.0以上の木材は限られる。汎用的に使用されている木粉を構成している原木の気乾比重は約0.7以下である。気乾比重が1.0未満の木材からなる木粉を水に沈ませるためには木粉中の気体を水で置換しなければならない。木粉中の気体を水で置換する方法としては木粉を水に長時間浸漬しておくことや、密閉されている容器や部屋の中で木粉を水に浸漬させておき、容器または部屋を減圧させることが有効であるが、木粉の処理量が多くなった場合などでは非現実的である。 The air-dry specific density for the dried wood powder to sink in water needs to be 1.0 or more, but the wood with an air-dry specific density of 1.0 or more is limited. The air-dry specific density of the raw wood that constitutes the wood flour that is commonly used is about 0.7 or less. In order to submerge wood flour made of wood with an air-dry specific density of less than 1.0 in water, the gas in the wood flour must be replaced with water. As a method of replacing the gas in the wood powder with water, the wood powder is immersed in water for a long time, or the wood powder is immersed in water in a closed container or room, and the container or room is used. Although it is effective to reduce the pressure, it is unrealistic when the amount of wood flour processed is large.

乾燥状態の木粉の気乾比重または嵩比重が1.0を超えれば、その木粉は水に沈むことになる。乾比重または嵩比重が1.0未満の木粉の気乾比重または嵩比重が1.0を超えさせない方法として、木粉に無機質系粉末を担持させる方法が有効である。木粉の気乾比重または嵩比重を見かけ上1.0以上にするには木粉に無機質系粉末を混合すればできるが、単純に混合しても木粉と無機質系粉末は容易に分離してしまい、木粉は水に浮き、分離された無機質系粉末は微粉末であるため、土壌に浸透して水捌け性を悪化させる可能性がある。 If the air-dry specific density or bulk specific gravity of the dry wood powder exceeds 1.0, the wood powder will be submerged in water. As a method for preventing the air-dry specific density or bulk specific density of wood powder having a dry specific gravity or bulk specific gravity of less than 1.0 from exceeding 1.0, a method of supporting an inorganic powder on wood powder is effective. In order to make the air-dry specific density or bulk specific gravity of wood flour apparently 1.0 or more, it is possible to mix inorganic powder with wood powder, but even if it is simply mixed, wood powder and inorganic powder can be easily separated. Since the wood powder floats on water and the separated inorganic powder is a fine powder, it may permeate the soil and deteriorate the water-drainability.

木粉に無機質系粉末を坦持させる方法としては、木粉と無機質系粉末の混合物を加熱されている高速回転ミキサ-や押出機などで圧縮および剪断力を加えながら加熱混合や加熱混練することによって、木粉と無機質系粉末がある程度密着した状態にすることができ、これは木粉が含有する樹脂質やリグニンおよび木酢などの酸性物質などの影響によるものと考えられる。 As a method of carrying the inorganic powder in the wood powder, the mixture of the wood powder and the inorganic powder is heated and mixed or heat-kneaded while applying compression and shearing force with a heated high-speed rotary mixer or an extruder. Therefore, the wood powder and the inorganic powder can be brought into close contact with each other to some extent, which is considered to be due to the influence of the resinous substance contained in the wood powder and the acidic substances such as lignin and wood vinegar.

木粉に無機質系粉末を担持させる力が不足する場合は、担持力を強化するために担持力強化剤を使用して木粉と無機質系粉末の密着力を強化して木粉と無機質系粉末の分離を防止することができる。 If the ability to support the inorganic powder on the wood powder is insufficient, a supporting force enhancer is used to enhance the supporting force of the wood powder and the inorganic powder to enhance the adhesion between the wood powder and the inorganic powder. Can be prevented from separating.

本発明で使用される坦持物質である無機質系粉末としては、炭酸カルシウム、タルク、硫酸バリウム、二酸化ケイ素、クレ-、カオリン、ゼオライト、ケイ酸アルミニウム、ケイ酸カルシウム、マイカ等を例示することができる。例示以外品も使用できるが使用に際しては比重の大きい物質の方が好ましい。無機質系粉末の粒径には特に制限はないが、熱可塑性樹脂の充填剤などとして一般的に使用されている1~30μmφ程度の物が好ましいと言える。また配合量に制限は特にないが、無機質系粉末を坦持させた木粉の気乾比重または嵩比重が1.0を超えることが好ましい。 Examples of the inorganic powder used in the present invention as a carrier substance include calcium carbonate, talc, barium sulfate, silicon dioxide, clay, kaolin, zeolite, aluminum silicate, calcium silicate, and mica. can. Although products other than those shown in the examples can be used, substances having a high specific density are preferable in use. The particle size of the inorganic powder is not particularly limited, but it can be said that a powder having a size of about 1 to 30 μmφ, which is generally used as a filler for thermoplastic resins, is preferable. The blending amount is not particularly limited, but it is preferable that the air-dry specific gravity or the bulk specific gravity of the wood powder carrying the inorganic powder exceeds 1.0.

木粉と無機質系粉末の坦持力を改善させる強化剤には接着形と反応形があり、接着形には松ヤニに代表される天然ロジン(合成ロジン含む)がある。また反応形にはロジンをエステル化した物や無水マレイン酸で変性した物などがある。使用量に制限はなく、接着形と反応形を併用することもできる。使用量の目安としては、木粉の約3~10重量%程度が適当である。 There are two types of strengthening agents that improve the holding power of wood powder and inorganic powder: adhesive type and reactive type, and the adhesive type includes natural rosin (including synthetic rosin) represented by pine tar. In addition, reaction forms include those obtained by esterifying rosin and those modified with maleic anhydride. There is no limit to the amount used, and the adhesive type and the reaction type can be used together. As a guideline for the amount used, about 3 to 10% by weight of wood flour is appropriate.

本発明品には、合成樹脂関係、製紙関係、食品関係、木材関係、水処理関係などの産業分野で一般的に使用されている添加剤、例えば酸化防止剤、耐候剤、分散剤、滑剤、ワックス類、帯電防止剤、腐食防止剤、殺菌剤や殺虫剤、染料や顔料などを随時添加することができる。 The product of the present invention includes additives generally used in industrial fields such as synthetic resin-related, paper-making-related, food-related, wood-related, and water treatment-related, such as antioxidants, weather resistant agents, dispersants, and lubricants. Waxes, antistatic agents, corrosion inhibitors, bactericides and pesticides, dyes and pigments can be added at any time.

以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例により限定されることはない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.

木材は気乾比重が0.65のタブノキを使用し、皮を除去して乾燥されているタブノキを粉砕機を使用して粉砕・選別して粒径が本発明を満たさない0.20mmφ品と本発明を満たす3.0mmφ品の木粉を作成した。 For wood, Machilus thunbergii with an air-dry specific gravity of 0.65 is used, and Machilus thunbergii that has been dried after removing the skin is crushed and sorted using a crusher to obtain a 0.20 mmφ product whose particle size does not satisfy the present invention. A 3.0 mmφ product wood powder satisfying the present invention was prepared.

木粉の炭化は口径が90mmφの押出機を使用して行った。スクリュ-は緩圧縮タイプで圧縮比が2.0でL/Dが28の仕様品を使用した。木粉は220℃に加熱されている金型を取り付けてない押出機に供給して押し出し、炭化して押し出された木粉には直ちに水滴状の霧を吹き付けて冷却して燃焼を起こさせないようにした。尚、押出機には材料と共に窒素ガスを供給し、押出機内の酸素濃度は5%以下にして木粉を押し出して炭化させた。 Carbonization of wood powder was performed using an extruder having a diameter of 90 mmφ. The screw is a slow compression type with a compression ratio of 2.0 and an L / D of 28. The wood powder is supplied to an extruder heated to 220 ° C without a mold and extruded, and the carbonized and extruded wood powder is immediately sprayed with a water droplet-like mist to cool it so that it does not burn. I made it. Nitrogen gas was supplied to the extruder together with the material, and the oxygen concentration in the extruder was set to 5% or less, and wood flour was extruded and carbonized.

木粉に担持させる無機質系粉末は真比重が2.7の重質炭酸カルシウム(株式会社カルファイン社品)を使用した。木粉への炭酸カルシウムの担持は、木粉に木粉(乾燥品)の5重量%に相当するロジンを配合した組成物を押出機を使用して170℃の温度で押し出す方法で作成した。 As the inorganic powder to be supported on the wood powder, heavy calcium carbonate (manufactured by Calfine Co., Ltd.) having a true specific gravity of 2.7 was used. The support of calcium carbonate on wood flour was prepared by a method of extruding a composition of wood flour containing rosin corresponding to 5% by weight of wood flour (dried product) at a temperature of 170 ° C. using an extruder.

木粉の嵩比重と真比重はJISに準じた方法で測定した。尚、真比重はJISの密度勾配菅法によって測定した。 The bulk specific density and true specific gravity of wood flour were measured by a method according to JIS. The true specific gravity was measured by the JIS density gradient tube method.

木粉の潰れ難さは、底張のある100cm×100cm×高さ30cmの木枠に木粉を各75kg(深さは約15cm)入れ、その上を体重80kgの人がスパイクを履いて毎日25,000歩踏みつき、これを60日間実施して踏みつけを1,500,000歩(校庭などでの一日の踏みつけ回数を4,000歩とすると、約1年相当の375日になる)の踏みつけを実施した後の木粉を、60メッシュ(目開き約0.25mmφ)の篩いで選別し、篩いを通過しない量が90%以上品はA、80%以上品はB、70%以上品はC,60%以上品はD、50%以下品はEとしてランク付けをし、DとEは使用に際して注意が必要である。 The difficulty of crushing wood powder is that 75 kg of wood powder (about 15 cm in depth) is put in a wooden frame with a bottom of 100 cm x 100 cm x 30 cm in height, and a person weighing 80 kg wears spikes every day. Step on 25,000 steps, carry out this for 60 days and step on 1,500,000 steps (If the number of steps per day in the school playground is 4,000 steps, it will be 375 days equivalent to about one year) The wood flour after trampling is sorted by a sieve of 60 mesh (opening about 0.25 mmφ), and the amount that does not pass through the sieve is A for 90% or more, B for 80% or more, 70% or more. Products are ranked as C, products with 60% or more as D, and products with 50% or less as E, and care must be taken when using D and E.

水捌け性の測定は、長さが60cmで径が50cmφの透明パイプの下部に12メッシュ(目開き約1.4cm)の金網を取り付け、その上に小石を高さ5cm詰め、小石の上に48メッシュ(目開き約0.297mm)の金網を取り付けた試験装置を使用した。試験装置に試験体をパイプの上部から15cm下まで充填し(試験体の充填高さは40cmになる)、パイプの上部から水を一気に約196g注ぎ(集中豪雨による降水量が約100mm相当と想定)、注いだ水が試験体の上面から水溜まりが消えるまでの時間を測定した。 To measure the water drainage, a wire mesh of 12 mesh (opening about 1.4 cm) is attached to the bottom of a transparent pipe with a length of 60 cm and a diameter of 50 cmφ, and pebbles are packed 5 cm in height on it, and 48 on the pebbles. A test device equipped with a mesh (opening of about 0.297 mm) wire mesh was used. Fill the test device with the test piece from the top of the pipe to 15 cm below (the filling height of the test piece will be 40 cm), and pour about 196 g of water from the top of the pipe at once (assuming that the amount of precipitation due to torrential rain is equivalent to about 100 mm). ), The time it took for the poured water to disappear from the upper surface of the test piece was measured.

経年の水捌け性の推定は次の方法で行った。この試験装置による試験用の試験体は、水捌け性が余り良くない校庭の砂に各試験例(1~6)毎に本開発品を各々0重量%(砂単体品)、7重量%(木粉は乾燥基準)、15重量%(木粉は乾燥基準)を均一に混合して試験装置に各々充填し、毎月100mmレベルの集中降豪雨が3回あるとして水捌け性を各々108回(3回×12月×3年)測定し、36回目の測定値を1年経過時の水捌け性の推定値、108回目の測定値を3年経過後の水捌け性の推定値として評価した。 The water drainage property over time was estimated by the following method. The test specimens for testing with this test device are 0% by weight (single sand) and 7% by weight (wood) of this developed product for each test example (1 to 6) in the sand of the school yard where the water drainage is not very good. The powder is uniformly mixed with 15% by weight (drying standard for wood powder) and filled in each test device, and the water drainage is 108 times (3 times), assuming that there are 3 times of concentrated heavy rainfall of 100 mm level every month. (× December × 3 years), the 36th measured value was evaluated as the estimated value of water drainage after 1 year, and the 108th measured value was evaluated as the estimated value of water drainage after 3 years.

校庭を使用しての実証試験も行った、実施場所は都内の小学校の校庭を使用し、広さ100cm×100cmを鉄板で囲い、囲われた内側の土壌に本発明品を深さ30cm迄敷き詰めて試験場を作成した。本発明品を敷き込まない場合は鉄板で周囲を囲った場所を試験場とした。水捌け性の評価は、各試験場所に水100リッタ-を一気に注ぎ、地表から水溜まりが消えるまでの時間を測定し、これを108回繰り返して行った。尚、この試験は本発明品の経時劣化を観察するため、月に9回の給水を1年間継続して行った。尚、この試験場は校庭であるため雨による給水もあるのが、108回の給水結果を3年経過後の水捌け性の推定値として評価した。 A demonstration test using the school playground was also conducted. The place of implementation was the school playground of an elementary school in Tokyo, the area was 100 cm x 100 cm surrounded by an iron plate, and the product of the present invention was spread to a depth of 30 cm in the enclosed inner soil. Created a test site. When the product of the present invention was not laid, the test site was a place surrounded by an iron plate. The water drainage property was evaluated by pouring 100 liters of water into each test site at once, measuring the time until the puddle disappeared from the ground surface, and repeating this 108 times. In this test, in order to observe the deterioration of the product of the present invention over time, water was continuously supplied 9 times a month for 1 year. Since this test site is a school playground, water is supplied by rain, but the results of 108 water supplies were evaluated as estimated values of water drainage after 3 years.

本発明の水捌け性改良材の耐久性は、上記校庭で測定を行った。評価は水の供給回数が36、72、108回毎に、地表から15cmにある改質材の一部を採取し、採取した改質剤を水洗した後に形状を目視で観察し、形状保持率を%で表示した。 The durability of the water drainage improving material of the present invention was measured in the above school playground. For evaluation, every 36, 72, and 108 times of water supply, a part of the modifier 15 cm from the ground surface was collected, the collected modifier was washed with water, and then the shape was visually observed to maintain the shape. Was displayed in%.

木粉に担持させた炭酸カルシウムの担持力は、上記校庭で採取した試料の一部を使用し、試料を水洗・乾燥後に密度勾配菅法で真比重を測定してこれをBとし、試験前の真比重をAとした場合、B/A×100(%)を担持力の持続性として評価した。 For the supporting capacity of calcium carbonate supported on wood flour, a part of the sample collected in the above school garden was used, and after washing and drying the sample, the true specific density was measured by the density gradient tube method and used as B before the test. When the true specific density of was A, B / A × 100 (%) was evaluated as the sustainability of the supporting force.

試験結果を表-2に示す

Figure 0006999925000002
The test results are shown in Table-2.
Figure 0006999925000002

木粉の嵩比重は、木粉の炭化度が70%でも0.65程度(試験例4)であり、炭化度20%の木粉に炭酸カルシウムを35重量%担持させても0.82程度(試験例6)であるので乾燥した物は直ちに水に浮くことはない。 The bulk specific density of wood flour is about 0.65 even if the carbonization of wood flour is 70% (Test Example 4), and about 0.82 even if 35% by weight of calcium carbonate is carried on wood flour with 20% carbonization. Since it is (Test Example 6), the dried material does not immediately float on water.

真比重は何れも1以上ある。未処理の木粉の真比重は約1.49前後であり、木粉を炭化処理すると比重は大きくなり炭化度が20%の試験例3では1.58%になる。また炭酸カルシウムを25重量%担持させた試験例5の真比重は1.83まで大きくなっている。真比重はいずれも1.0を超えているので、処理の有無に関わらず木粉を水に浸けて木粉中の気体を水で置換すれば水に沈む。木粉を炭化処理したり無機質系粉末を担持させたりすることによって木粉中の気体量は少なくなるので容易に水と置換して水に沈むようになると考えられる。 The true relative density is 1 or more in each case. The true specific gravity of the untreated wood powder is about 1.49, and when the wood powder is carbonized, the specific gravity becomes large and it becomes 1.58% in Test Example 3 having a carbonization degree of 20%. Further, the true specific gravity of Test Example 5 in which 25% by weight of calcium carbonate was supported increased to 1.83. Since the true specific densities are all over 1.0, if the wood flour is immersed in water and the gas in the wood flour is replaced with water regardless of the presence or absence of treatment, the wood flour will sink in the water. It is considered that the amount of gas in the wood powder is reduced by carbonizing the wood powder or supporting the inorganic powder, so that the wood powder can be easily replaced with water and submerged in water.

木粉の潰れ難さは、木粉の粒径が細かすぎる試験例1がEランク、木粉の炭化度が高すぎる試験例4はDランクであり、潰れ易いことが判る。 Regarding the difficulty of crushing the wood powder, Test Example 1 in which the grain size of the wood powder is too fine is ranked E, and Test Example 4 in which the carbonization of the wood powder is too high is ranked D, indicating that the wood powder is easily crushed.

試験装置による校庭砂単体(木粉量0%)の水捌け性は、試験回数を重ねるに従って長時間を要するようになり、試験回数が3年相当の108回目では364分(約6.1時間)を要し、これは掘り起こさない校庭の375分(約6.3時間)と殆ど同じであった。このことは、本試験装置によるデ-タは信頼できることを意味している。 The water drainage of the school playground sand alone (wood powder amount 0%) by the test device takes a long time as the number of tests increases, and it takes 364 minutes (about 6.1 hours) for the 108th test, which is equivalent to 3 years. This was almost the same as 375 minutes (about 6.3 hours) in the school playground without digging. This means that the data from this test device is reliable.

砂に本発明品を混合した試験体を試験装置で水捌け性を測定した結果、砂に本発明品を混合することで水捌け性は飛躍的に改善され、本発明品の混合量が多いほど水捌け性は良好になることが判明した、例えば砂に本発明品を7重量%混合した場合の水捌けに要する時間は試験例3の経年3年相当で108分(1.8時間)、混合量が15重量%では72分(1.2時間)であった。一方、木粉の粒径が小さい試験例1の混合量が7重量%では247分(4.1時間)、混合量が15%では183分(3.0時間)であり水捌け性の改善効果は小さい。試験例2,3,5の水捌けに要する時間はほぼ同じである。尚、試験例4は水捌け性には問題ないが木粉の潰れ難さに問題があった。 As a result of measuring the water-drainability of a test piece in which the product of the present invention was mixed with sand with a test device, the water-drainability was dramatically improved by mixing the product of the present invention with sand. It was found that the properties were good. For example, when 7% by weight of the product of the present invention was mixed with sand, the time required for water drainage was 108 minutes (1.8 hours), which was equivalent to 3 years of Test Example 3, and the mixing amount was At 15% by weight, it was 72 minutes (1.2 hours). On the other hand, when the mixing amount of Test Example 1 having a small grain size of wood powder is 7% by weight, it takes 247 minutes (4.1 hours), and when the mixing amount is 15%, it takes 183 minutes (3.0 hours), which is an effect of improving water drainage. Is small. The time required for draining Test Examples 2, 3 and 5 is almost the same. In Test Example 4, there was no problem in water drainage, but there was a problem in the difficulty of crushing wood powder.

校庭を使用した実証試験の試験結果は、試験装置による試験結果と近似した値であった。水捌けの余り良くない校庭やグラウンドなどでは大雨後に使用が可能になるためには約5~6時間を要したが、本は発明の水捌け性改良材を使用すれは約1.3~1.8時間で使用ができるようになると言える。 The test results of the verification test using the school playground were close to the test results of the test equipment. It took about 5 to 6 hours to be able to use it after heavy rain in school playgrounds and grounds where the water drainage is not so good, but this book uses the water drainage improvement material of the invention about 1.3 to 1.8. It can be said that it will be available in time.

水捌け性改良材の形状保持性は、試験回数を重ねる程悪くなる。木粉の粒径が大きい方が形状保持性は優れ、木粉を炭化することによって形状保持性は飛躍的に改善されるが、木粉に無機質系粉末を担持させても形状保持性が大きく変わることはない。 The shape retention of the water-drainage improving material deteriorates as the number of tests increases. The larger the particle size of the wood powder, the better the shape retention, and the shape retention is dramatically improved by carbonizing the wood powder, but the shape retention is large even if the wood powder is supported by the inorganic powder. It doesn't change.

担持力の持続性は、試験回数を重ねる程低下するが、3年相当に該当する108回の試験後でも、担持力は当初の約78%を保持しているので実用的には特に問題ないと言える。 The sustainability of the supporting force decreases as the number of tests increases, but there is no particular problem in practical use because the supporting force remains about 78% of the initial value even after 108 tests corresponding to 3 years. It can be said that.

1 土壌改良材を施した土壌
2 土壌改良材
11 地表
12 土壌改良材を施す前の旧地表

1 Soil with soil conditioner 2 Soil conditioner 11 Ground surface 12 Old surface before soil conditioner

Claims (4)

気乾比重が0.30以上の木材を粉砕して成る木粉の粒径が0.30~6.0mmφであり、木粉を炭化させてその炭化度が1~50重量%であることを特徴とした、木粉から成るグラウンドの水捌け性改良材。 The particle size of wood flour made by crushing wood with an air-dry specific gravity of 0.30 or more is 0.30 to 6.0 mmφ, and the carbonization of wood flour is 1 to 50% by weight . A characteristic material for improving the water drainage of the ground made of wood powder. 前記木粉に無機質系粉末を坦持させたことを特徴とした、請求項に記載の水捌け性改良材。 The water-drainability improving material according to claim 1 , wherein the wood powder is carried with an inorganic powder. 前記無機質系粉末が、炭酸カルシウムである請求項に記載の水捌け性改良材。 The water-soluble improving material according to claim 2 , wherein the inorganic powder is calcium carbonate. 気乾比重が0.30以上の木材を粉砕して成る木粉の粒径が0.30~6.0mmφであり、木粉を炭化させてその炭化度が1~50重量%にすることを特徴とした、木粉から成るグラウンドの水捌け性改良材の製造方法。The grain size of wood flour made by crushing wood with an air-dry specific gravity of 0.30 or more is 0.30 to 6.0 mmφ, and the carbonization of wood flour is carbonized to 1 to 50% by weight. A characteristic method for producing a ground water-drainability improving material made of wood powder.
JP2017211597A 2017-11-01 2017-11-01 Soil water drainage improving material Active JP6999925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017211597A JP6999925B2 (en) 2017-11-01 2017-11-01 Soil water drainage improving material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017211597A JP6999925B2 (en) 2017-11-01 2017-11-01 Soil water drainage improving material

Publications (2)

Publication Number Publication Date
JP2019085430A JP2019085430A (en) 2019-06-06
JP6999925B2 true JP6999925B2 (en) 2022-01-19

Family

ID=66762331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017211597A Active JP6999925B2 (en) 2017-11-01 2017-11-01 Soil water drainage improving material

Country Status (1)

Country Link
JP (1) JP6999925B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302381A (en) 2000-04-14 2001-10-31 Mitsumasa Morizaki Pyroligneous acid-containing pulverized charcoal fertilizer
JP2002301708A (en) 2001-04-04 2002-10-15 Toei Shoji:Kk Method for useful treatment of junk wood
JP2004187519A (en) 2002-12-09 2004-07-08 National Institute Of Advanced Industrial & Technology Eelgrass dissemination material and method for producing the same
JP2004195321A (en) 2002-12-17 2004-07-15 Matsushita Electric Ind Co Ltd Soil or ground water treatment method
JP2004290118A (en) 2003-03-27 2004-10-21 Shimizu Corp Greening material, and planting base using the greening material
JP2005015534A (en) 2003-06-24 2005-01-20 Riswood Kk Soil-conditioning material
WO2012004874A1 (en) 2010-07-08 2012-01-12 橘 和之 Soil improvement method and soil improvement structure
KR101645407B1 (en) 2015-12-16 2016-08-03 주식회사 상림 농업회사법인 soil conditioner using charcoal and calcareous algae, manufacturing method thereof, bed soil and growing media for horticulture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185902A (en) * 1986-02-12 1987-08-14 古川 定石 Buffering heat insulating water holding material
JPH07247472A (en) * 1994-03-12 1995-09-26 Clean Atsupu Syst:Kk Composition containing bamboo powder
JPH1017390A (en) * 1996-06-28 1998-01-20 Chie Igami Wood chip charcoal, its production, fertilizer containing the same, treatment of waste mushroom culture medium, carbonization product of the same waste medium and fertilizer containing the same carbonization product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302381A (en) 2000-04-14 2001-10-31 Mitsumasa Morizaki Pyroligneous acid-containing pulverized charcoal fertilizer
JP2002301708A (en) 2001-04-04 2002-10-15 Toei Shoji:Kk Method for useful treatment of junk wood
JP2004187519A (en) 2002-12-09 2004-07-08 National Institute Of Advanced Industrial & Technology Eelgrass dissemination material and method for producing the same
JP2004195321A (en) 2002-12-17 2004-07-15 Matsushita Electric Ind Co Ltd Soil or ground water treatment method
JP2004290118A (en) 2003-03-27 2004-10-21 Shimizu Corp Greening material, and planting base using the greening material
JP2005015534A (en) 2003-06-24 2005-01-20 Riswood Kk Soil-conditioning material
WO2012004874A1 (en) 2010-07-08 2012-01-12 橘 和之 Soil improvement method and soil improvement structure
KR101645407B1 (en) 2015-12-16 2016-08-03 주식회사 상림 농업회사법인 soil conditioner using charcoal and calcareous algae, manufacturing method thereof, bed soil and growing media for horticulture

Also Published As

Publication number Publication date
JP2019085430A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
Horn et al. Soil compaction processes and their effects on the structure of arable soils and the environment
Thompson et al. Physical and hydraulic properties of engineered soil media for bioretention basins
Janeau et al. Soil crusting and infiltration on steep slopes in northern Thailand
Nayak et al. Hydraulic and compaction characteristics of leachate-contaminated lateritic soil
Christianson et al. Hydraulic property determination of denitrifying bioreactor fill media
Alhassan Permeability of lateritic soil treated with lime and rice husk ash
Modak et al. Stabilization of black cotton soil using admixtures
Shrestha et al. Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio
US20070113756A1 (en) Erosion resistant barrier with varying permeabilities
Suarez et al. Effects of the dissolved organic carbon of treated municipal wastewater on soil infiltration as related to sodium adsorption ratio and pH
Eberemu Desiccation induced shrinkage of compacted tropical clay treated with rice husk ash
Hill et al. The effect of intraparticle porosity and interparticle voids on the hydraulic properties of soilless media
Atahu The effect of coffee husk ash on geotechnical properties of expansive soil
JP6999925B2 (en) Soil water drainage improving material
Mombeni et al. Effect of bagasse lignocellulose microfibers on sand stabilization: A laboratory study
Moodley et al. Effects of a water treatment residue, lime, gypsum, and polyacrylamide on the water retention and hydraulic conductivity of two contrasting soils under field conditions in KwaZulu-Natal, South Africa
Ravi et al. Enhancing the clay soil characteristics using copper slag stabilization
Ilori et al. Investigation of geotechnical properties of a lateritic soil with sawdust ash
Materechera Soil physical and biological properties as influenced by growth of vetiver grass (Vetiveria zizanioides L.) in a semi-arid environment of South Africa
Wiltshire Sustainable development and its application to mine tailings of deep sea minerals
Sileshi et al. Statistical analyses of flow rates of stormwater treatment bioretention media
Adeniran et al. Engineering properties of termite mound bricks as a construction material for agricultural buildings
Vidal‐Beaudet et al. Physical and mechanical properties of washed sediment mixed with organic matter
Asare et al. Geotechnical and geochemical assessment of natural sands in Ahanta west area, southwestern Ghana
JP2018178679A (en) Method for producing water shielding earth, and water shielding earth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211216

R150 Certificate of patent or registration of utility model

Ref document number: 6999925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150