JP6999898B2 - Detergent with antibacterial, deodorant, and self-cleaning properties and its manufacturing method - Google Patents

Detergent with antibacterial, deodorant, and self-cleaning properties and its manufacturing method Download PDF

Info

Publication number
JP6999898B2
JP6999898B2 JP2017185258A JP2017185258A JP6999898B2 JP 6999898 B2 JP6999898 B2 JP 6999898B2 JP 2017185258 A JP2017185258 A JP 2017185258A JP 2017185258 A JP2017185258 A JP 2017185258A JP 6999898 B2 JP6999898 B2 JP 6999898B2
Authority
JP
Japan
Prior art keywords
electrolyzed water
anatase
titanium dioxide
alkaline electrolyzed
dioxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017185258A
Other languages
Japanese (ja)
Other versions
JP2019059642A (en
Inventor
通子 山川
光一 齋藤
Original Assignee
通子 山川
日本緑州株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通子 山川, 日本緑州株式会社 filed Critical 通子 山川
Priority to JP2017185258A priority Critical patent/JP6999898B2/en
Publication of JP2019059642A publication Critical patent/JP2019059642A/en
Priority to JP2021203738A priority patent/JP2022046555A/en
Application granted granted Critical
Publication of JP6999898B2 publication Critical patent/JP6999898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Detergent Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、製造業、建設業、情報通信業、サービス業、及び、その他生活関連業等、あらゆる産業分野における、製造機械、中間製品、製品等から汚染を除去するために用いられる洗浄剤に関する。機能的には、優れた洗浄力を有し、殺菌・滅菌・消毒・消臭効果を備えた安全性の高い洗浄剤であって、その洗浄剤で洗浄された被洗浄物に抗菌性、消臭性、及び、自己洗浄効果を付与することができる洗浄剤に関する。 The present invention relates to a cleaning agent used for removing contamination from manufacturing machines, intermediate products, products, etc. in all industrial fields such as manufacturing industry, construction industry, information and communication industry, service industry, and other life-related industries. .. Functionally, it is a highly safe cleaning agent that has excellent detergency and has sterilizing, sterilizing, disinfecting, and deodorizing effects. The present invention relates to a cleaning agent capable of imparting an odorous and self-cleaning effect.

生活・文化用品、食料品、情報通信機器、電気・電子機器、医療機器、建材等、日常生活における洗浄は、洗浄剤として石鹸や洗剤に代表される界面活性剤を用い、その乳化作用により油脂等の汚れを取り除くことが一般的で、汚れを取り除くことに主眼が置かれてきた。 Cleaning in daily life such as daily life / cultural supplies, foodstuffs, information and communication equipment, electrical / electronic equipment, medical equipment, building materials, etc. uses surfactants such as soap and detergent as cleaning agents, and oils and fats due to their emulsifying action. It is common to remove stains such as, and the main focus has been on removing stains.

ところが、人間は、物質的に豊かな生活を享受すると、心身共に快適で洗練された生活環境や安心して美味しく食べることができる食生活に高い関心を抱くようになり、身辺に対する清潔志向が高まってきた(非特許文献1)。 However, when humans enjoy a materially rich life, they become more interested in a comfortable and sophisticated living environment both physically and mentally and a diet that allows them to eat deliciously with peace of mind, and their tendency toward cleanliness is increasing. (Non-Patent Document 1).

そのため、日常生活における洗浄で使用する洗浄剤に対し、油脂、粉塵等の汚れを単に除去することができる洗浄力だけでなく、除菌、滅菌、殺菌、消毒、消臭等の効果がある清潔性、並びに、無色、無臭で、有害な化学物質を含まない安全性が要求されてきた(非特許文献2)。これらの要求を物語るように、日常生活でよく利用される一般的な洗剤等でも、除菌、消毒等の表示がされた洗剤等が数多く出回っている。これらの成分表示によれば、消毒液としてよく使用されてきたアルコールや第4級アンモニウム塩等を界面活性剤水溶液に添加されているものが多い。また、生分解性及び安全性の観点も加味し、植物油、香辛料抽出物、ハーブ類等の天然系抗菌剤が利用される場合も増加してきた(非特許文献3)。調理場等のような、特に、殺菌、除菌、消毒が求められるところでは、アルコール、第4級アンモニウム塩(界面活性剤を含む)等に加え、次亜塩素酸ソーダ、過酸化水素、水酸化ナトリウム等が利用されている(非特許文献4)。 Therefore, the cleaning agent used for cleaning in daily life has not only detergency that can simply remove stains such as oils and dust, but also cleanliness that has effects such as sterilization, sterilization, sterilization, disinfection, and deodorization. There has been a demand for sex, colorlessness, odorlessness, and safety free of harmful chemical substances (Non-Patent Document 2). As shown in these demands, many detergents and the like that are labeled as sterilizing and disinfecting are on the market even in general detergents and the like that are often used in daily life. According to these component labels, alcohol, quaternary ammonium salts, and the like, which are often used as disinfectants, are often added to the aqueous surfactant solution. In addition, from the viewpoint of biodegradability and safety, the number of cases where natural antibacterial agents such as vegetable oils, spice extracts and herbs are used has increased (Non-Patent Document 3). In places where sterilization, sterilization, and disinfection are required, such as in kitchens, in addition to alcohol, quaternary ammonium salts (including surfactants), sodium hypochlorite, hydrogen peroxide, and water. Sodium oxide and the like are used (Non-Patent Document 4).

一方、機械、金属、電子機器、輸送機器等の分野の製造業においては、それぞれの生産工程に特有な汚れがあり、製品の品質向上及び生産工程削減等を目的とした様々な洗浄剤を用いた様々な洗浄方法が行われている(非特許文献5)。特に、洗浄剤としては、界面活性剤を用いた水系洗浄剤が約25%、並びに、炭化水素系溶剤、アルコール系溶剤、及び、塩素系溶剤を中心とした溶剤系洗浄剤が約70%を占めているが、社会的な環境問題に対処するため、優れた洗浄力を有する洗浄剤が、法規制により使用の禁止及び制限を受けつつあり、洗浄の目的を達成し、環境及び人体に悪影響を及ぼさない洗浄剤が求められている(非特許文献7)。 On the other hand, in the manufacturing industry in the fields of machinery, metal, electronic equipment, transportation equipment, etc., there are stains peculiar to each production process, and various cleaning agents are used for the purpose of improving product quality and reducing the production process. Various cleaning methods have been used (Non-Patent Document 5). In particular, as the cleaning agent, about 25% is a water-based cleaning agent using a surfactant, and about 70% is a solvent-based cleaning agent mainly composed of a hydrocarbon-based solvent, an alcohol-based solvent, and a chlorine-based solvent. In order to deal with social environmental problems, detergents with excellent detergency are being banned and restricted by laws and regulations, achieving the purpose of cleaning and adversely affecting the environment and the human body. There is a demand for a cleaning agent that does not reach the above (Non-Patent Document 7).

以上のような状況において、生活・文化、食品、医療等の分野の洗浄においても、機械、金属、電子機器、輸送機器等の分野の洗浄においても、機能水の一つであり、基礎的な解明が最も進んでいる電解水が注目を浴びている(非特許文献6~9)。電解水は、水道水や塩化物イオンを含む水溶液の電気分解によって得られる水溶液の総称であり、陽極側に生成するpHが6.5以下の酸性電解水と、陰極側に生成するpHが7.5以上のアルカリ性電解水とに大別される(非特許文献6)。 Under the above circumstances, it is one of the basic waters for cleaning in the fields of life / culture, food, medical care, etc., as well as in the fields of machinery, metal, electronic equipment, transportation equipment, etc. Electrolyzed water, which has been elucidated most, is drawing attention (Non-Patent Documents 6 to 9). Electrolyzed water is a general term for an aqueous solution obtained by electrolysis of an aqueous solution containing tap water or chloride ions, and is an acidic electrolyzed water having a pH of 6.5 or less generated on the anode side and a pH generated on the cathode side of 7. It is roughly classified into 0.5 or more alkaline electrolyzed water (Non-Patent Document 6).

特に、陽極と陰極が隔膜で仕切られた電解槽において、希薄な塩化ナトリウム(NaCl)水溶液の電気分解により陽極で生成される酸性電解水は、化学物質を含んでいない安全性と環境調和性を有しており、強力な殺菌力を発揮し、食品添加物に認められていることから、電解水の利用を促進した端緒であると考えられる(非特許文献7)。 In particular, in an electrolytic cell in which the anode and cathode are separated by a diaphragm, the acidic electrolyzed water produced at the anode by electrolysis of a dilute sodium chloride (NaCl) aqueous solution is safe and environmentally friendly without containing chemical substances. It is considered to be the beginning of promoting the use of electrolyzed water because it has strong bactericidal activity and is recognized as a food additive (Non-Patent Document 7).

一方、陽極と陰極が隔膜で仕切られていない電解槽において、希薄なNaCl水溶液の電気分解により生成されるアルカリ性電解水は、最初に食品分野で利用され、食品添加物として認可された電解水であり、飲用水として利用されてきた。しかし、近年では、陽極と陰極が隔膜で仕切られた電解槽において、炭酸カリウム(KCO)等の水溶液の電気分解により陰極で生成されるアルカリ性電解水の強力な洗浄力に着目され、新しい洗浄剤として期待され、その洗浄機構についても議論されている(非特許文献8及び9)。 On the other hand, in an electrolytic tank in which the anode and cathode are not separated by a diaphragm, the alkaline electrolyzed water produced by electrolysis of a dilute NaCl aqueous solution is the electrolyzed water first used in the food field and approved as a food additive. Yes, it has been used as drinking water. However, in recent years, attention has been paid to the powerful detergency of alkaline electrolyzed water generated at the cathode by electrolysis of an aqueous solution such as potassium carbonate (K 2 CO 3 ) in an electrolytic cell in which the anode and the cathode are separated by a diaphragm. It is expected as a new cleaning agent, and its cleaning mechanism is also discussed (Non-Patent Documents 8 and 9).

アルカリ性電解水の最大の魅力は、界面活性剤等の有機化学物質を含まず、純度の高い水で、環境にも人体にも無害、無刺激であり、無色、無臭であるにもかかわらず、高いアルカリ性を示し、優れた洗浄力に加え、優れた殺菌、滅菌、除菌、消毒、消臭等の効果を有することである。この優れた洗浄力の源が、油脂等の汚れに関しては、ヒドロキシイオン(OH)と水(HO)とが会合したクラスターの汚れに対する乳化作用、或いは、OHの油脂に対する加水分解(鹸化)作用であるといわれ、無機物や金属酸化物等の微粒子等の汚れに関しては、アルカリ性電解水中で負の電荷をもつ微粒子と被洗浄物間に生起する反発作用であるといわれている。また、アルカリ性電解水に生成される微小な水素の気泡がこれらの汚れを包み込み浮上させる効果があるともいわれている。 The most attractive feature of alkaline electrolyzed water is that it does not contain organic chemicals such as surfactants, is highly pure water, is harmless to the environment and the human body, is non-irritating, and is colorless and odorless. It exhibits high alkalinity and has excellent sterilization, sterilization, sterilization, disinfection, deodorization and other effects in addition to excellent detergency. The source of this excellent detergency is the emulsifying action of clusters of hydroxy ions (OH- ) and water ( H2O ) associated with stains such as oils and fats, or the hydrolysis of OH- on oils and fats (OH-). It is said to be a saponification) action, and with respect to stains such as fine particles such as inorganic substances and metal oxides, it is said to be a repulsive action that occurs between the fine particles having a negative charge and the object to be cleaned in alkaline electrolytic water. It is also said that minute hydrogen bubbles generated in alkaline electrolyzed water have the effect of wrapping and floating these stains.

更に、アルカリ性電解水は、塩素イオン(Cl)を有しておらず、酸化還元電位を有する還元性の水であるため、金属の洗浄において錆を発生させる心配がなく、この点は、金属、電子機器、輸送機器等の分野の洗浄において特に重要な特徴である。そして、界面活性剤を使用していないため、泡の発生がなく、濯ぎがいらず、節水効果がある上、界面活性剤、すなわち、有機化学物質が残存する心配もない。 Further, since the alkaline electrolyzed water does not have chloride ion ( Cl- ) and is a reducing water having an oxidation-reduction potential, there is no concern that rust will be generated when cleaning the metal. This is a particularly important feature in cleaning in fields such as electronic equipment and transportation equipment. Further, since no surfactant is used, there is no generation of bubbles, no rinsing is required, there is a water-saving effect, and there is no concern that the surfactant, that is, an organic chemical substance remains.

このように、アルカリ性電解水による洗浄を行えば、被洗浄物表面は、殺菌、滅菌、除菌、消毒、消臭等が施され、清浄な表面を得ることができるが、アルカリ性電解水は分解して水になるだけであるため、殺菌、滅菌、除菌、消毒、消臭等の効能を維持することはできない。また、そのまま放置しておくと、短時間のうちに、汚れが付着してしまうという問題もある。 By cleaning with alkaline electrolyzed water in this way, the surface of the object to be cleaned is sterilized, sterilized, sterilized, disinfected, deodorized, etc., and a clean surface can be obtained, but the alkaline electrolyzed water is decomposed. Since it only becomes water, the effects of sterilization, sterilization, sterilization, disinfection, deodorization, etc. cannot be maintained. Further, if it is left as it is, there is a problem that dirt adheres in a short time.

このような問題に対する解決手段として、抗菌性、消臭性、及び、自己洗浄性等の特性を有する物質を固定化する技術が検討されてきた。例えば、抗菌性を有する第4級アンモニウム塩を洗浄後に被洗浄物に化学的に固定して効果を持続させる技術(特許文献1及び非特許文献10)、化粧品等に抗酸化性や抗菌性等を付与して、その効果を持続させるための物質として白金ナノ粒子を用いる技術(特許文献2及び3)、又、布に抗菌性を有する酸化チタン粒子を固定させるため、pH=3以下の強酸性電解水又はpH=10以上の強アルカリ性電解水に酸化チタン粒子を分散させた塗工液を適用する技術(特許文献4)等を挙げることができる。 As a means for solving such a problem, a technique for immobilizing a substance having properties such as antibacterial property, deodorant property, and self-cleaning property has been studied. For example, a technique for chemically fixing a quaternary ammonium salt having antibacterial activity to an object to be cleaned after washing (Patent Document 1 and Non-Patent Document 10), antioxidative property, antibacterial property, etc. for cosmetics and the like. (Patent Documents 2 and 3), a technique for using platinum nanoparticles as a substance for sustaining the effect, and a strong acid having a pH of 3 or less for immobilizing titanium oxide particles having antibacterial properties on a cloth. Examples thereof include a technique of applying a coating liquid in which titanium oxide particles are dispersed in hypochlorous acid water or hypochlorous acid water having a pH of 10 or more (Patent Document 4).

そこで、抗菌性、消臭性、及び、自己洗浄効果を有するアナターゼ型二酸化チタン微粒子(非特許文献11)を、強アルカリ電解水に分散させることによって、アルカリ性電解水の優れた洗浄力に加え、殺菌・滅菌・消毒・消臭効果を備え、高い安全性等その他アルカリ性電解水の洗剤としての優れた特徴を全て有しており、その洗浄剤で洗浄された被洗浄物に抗菌性、消臭性、及び、自己洗浄効果を付与することができる新たな洗浄剤の開発に着手した。 Therefore, by dispersing anatase-type titanium dioxide fine particles (Non-Patent Document 11) having antibacterial, deodorant, and self-cleaning effects in strong alkaline electrolyzed water, in addition to the excellent detergency of alkaline electrolyzed water, It has sterilizing, sterilizing, disinfecting, and deodorizing effects, and has all the excellent features of alkaline electrolyzed water as a detergent, such as high safety. We have started the development of a new cleaning agent that can impart sex and self-cleaning effects.

二酸化チタン微粒子は、一般的に、(1)硫酸チタニル、硫酸チタンなどの含チタン溶液を加水分解させる方法、(2)チタンアルコキシドなどの有機チタン化合物を加水分解させる方法、(3)三塩化チタンあるいは四塩化チタンなどのハロゲン化チタン水溶液を中和又は加水分解させる方法、(4)四塩化チタンを気相中で酸素と接触させ酸化させる気相法、(5)燃焼して水を生成する水素ガス等の可燃性ガスと酸素を燃焼バーナーに供給し火炎を形成し、この中に四塩化チタンを導入する火炎加水分解法等の方法で製造されており、ナノサイズの微粉末及びゾルを容易に手に入れることが可能である(特許文献5及び非特許文献12~14)。乾式法の方が、低コストで高純度の二酸化チタンを製造し易いと言われているが、ルチル化率が高く、水に対する分散性が悪い。これは、微粉末に共通して言えることで、そのままアルカリ性電解水に分散することが困難であり、多量の分散剤を使用する必要なため、二酸化チタンの機能を低下させる要因となる(特許文献3)。また、二酸化チタン微粉末が分散されたゾルが製造されているが、反応機構上酸性ゾルである場合が多く、アルカリ性電解水にはそのまま使用できないという問題がある(特許文献6)。また、中性ゾルであっても、多量の分散剤が含まれており、二酸化チタンの機能を低下させる要因となる(特許文献3)。特に、有機系の多量の分散剤の導入は、有機化学物質を含まない洗浄剤としてアルカリ性電解水が求められていることと矛盾している。 Titanium dioxide fine particles generally include (1) a method of hydrolyzing a titanium-containing solution such as titanyl sulfate or titanium sulfate, (2) a method of hydrolyzing an organic titanium compound such as titanium alkoxide, and (3) titanium trichloride. Alternatively, a method of neutralizing or hydrolyzing an aqueous solution of titanium halide such as titanium tetrachloride, (4) a vapor phase method of contacting titanium tetrachloride with oxygen in the gas phase to oxidize it, and (5) burning to generate water. It is manufactured by a method such as a flame hydrolysis method in which flammable gas such as hydrogen gas and oxygen are supplied to a combustion burner to form a flame and titanium tetrachloride is introduced into the flame, and nano-sized fine powder and sol are produced. It can be easily obtained (Patent Document 5 and Non-Patent Documents 12 to 14). It is said that the dry method is easier to produce high-purity titanium dioxide at low cost, but it has a high rutile formation rate and poor dispersibility in water. This can be said in common with fine powders, and it is difficult to disperse it in alkaline electrolyzed water as it is, and it is necessary to use a large amount of dispersant, which causes a factor of deteriorating the function of titanium dioxide (Patent Documents). 3). Further, although a sol in which fine powder of titanium dioxide is dispersed is produced, it is often an acidic sol due to the reaction mechanism, and there is a problem that it cannot be used as it is in alkaline electrolyzed water (Patent Document 6). Further, even a neutral sol contains a large amount of a dispersant, which causes a decrease in the function of titanium dioxide (Patent Document 3). In particular, the introduction of a large amount of organic dispersant is inconsistent with the demand for alkaline electrolyzed water as a cleaning agent containing no organic chemical substances.

従って、現状のアナターゼ型二酸化チタン微粒子をアルカリ性電解水に分散させて洗浄剤を製造することは困難を伴うため、湿式法で製造したアナターゼ型二酸化チタン微粒子の分散体をそのまま利用する方が容易ではないかと考えられる。 Therefore, it is difficult to produce a cleaning agent by dispersing the current anatase-type titanium dioxide fine particles in alkaline electrolyzed water, so it is not easy to use the dispersion of anatase-type titanium dioxide fine particles produced by the wet method as it is. It is thought that there is no such thing.

そのため、湿式法によるアナターゼ型酸化チタン微粒子の製造方法の改良技術を調査した。しかし、例えば、特許文献7に記載されているように、チタンアルコキシド等の加水分解によるアナターゼ型二酸化チタン微粒子の製造には、反応で生成する不純物を除去することが困難で、酸性の有機酸等の多量の分散剤を必要とし、有機溶媒に対する分散性に優れる場合が多い。また、例えば、特許文献8に記載されているように、三塩化チタンの酸化還元反応による酸化チタンの製造では、150~250℃の熱処理が必要である。更に、特許文献9に記載されているように、四塩化チタンの加水分解による酸化チタンの製造では、高温を必要としないが、十分に制御された温度管理が必要である上、アナターゼ型酸化チタンとするためには生成する二酸化チタンから塩酸を分離する必要がある。これは、四塩化チタンの加水分解で生成する水酸化チタンの重縮合反応初期に生成するアナターゼ型酸化チタンが、四塩化チタンの加水分解で生成する塩酸によりルチル型に変化していくことを抑制するためである。最後に、特許文献6には、酸性ゾルではなくアルカリ性ゾルの製造方法が記載されているが、糖類の多量の分散剤を必要としている。このように、酸化チタン微粒子をアルカリ性電解水に分散させて新たな洗浄剤を開発するには数多くの課題を解決する必要がある。 Therefore, we investigated the technique for improving the method for producing anatase-type titanium oxide fine particles by the wet method. However, as described in Patent Document 7, for example, in the production of anatase-type titanium dioxide fine particles by hydrolysis of titanium alkoxide or the like, it is difficult to remove impurities generated by the reaction, and an acidic organic acid or the like is used. It requires a large amount of dispersant and is often excellent in dispersibility in organic solvents. Further, for example, as described in Patent Document 8, the production of titanium oxide by the redox reaction of titanium trichloride requires a heat treatment at 150 to 250 ° C. Further, as described in Patent Document 9, the production of titanium oxide by hydrolysis of titanium tetrachloride does not require high temperature, but requires well-controlled temperature control and anatase-type titanium oxide. It is necessary to separate hydrochloric acid from the titanium dioxide produced. This suppresses the anatase-type titanium oxide produced at the initial stage of the polycondensation reaction of titanium hydroxide produced by the hydrolysis of titanium tetrachloride from being changed to the rutile type by the hydrochloric acid produced by the hydrolysis of titanium tetrachloride. To do. Finally, Patent Document 6 describes a method for producing an alkaline sol instead of an acidic sol, but requires a large amount of saccharide dispersant. As described above, it is necessary to solve many problems in order to develop a new cleaning agent by dispersing the titanium oxide fine particles in alkaline electrolyzed water.

特開2004-209241号公報Japanese Unexamined Patent Publication No. 2004-209241 特開2011-195931号公報Japanese Unexamined Patent Publication No. 2011-195931 特開2002-338417号公報Japanese Unexamined Patent Publication No. 2002-338417 特開2002-338417号公報Japanese Unexamined Patent Publication No. 2002-338417 特開2001-220141号公報Japanese Unexamined Patent Publication No. 2001-220141 特開2014-065632号公報Japanese Unexamined Patent Publication No. 2014-06632 特開2007-217268号公報Japanese Unexamined Patent Publication No. 2007-217268 特開2007-230809号公報Japanese Unexamined Patent Publication No. 2007-230809 再表2012-017752号公報Re-table 2012-017752

檜山圭一郎,「プラスチック製品の抗菌加工」,繊維製品消費科学会誌,Vol.40,No.9,576-584(1999).Keiichiro Hiyama, "Antibacterial Processing of Plastic Products", Journal of Textile Consumption Science, Vol. 40, No. 9,576-584 (1999). 登坂正樹,「洗剤の『除菌』表示と消費者意識(2)台所用・住居用洗剤の除菌標記について」,日本石鹸洗剤工業会洗浄剤部会,2006年11月21日開催,日本石鹸洗剤工業会ホームページ(http://jsda.org/w/01_katud/a_seminar061121_2.html.)Masaki Tosaka, "Detergent" Disinfection "Indication and Consumer Awareness (2) Detergent Marking for Kitchen and Residential Detergents", Detergent Subcommittee, Japan Soap and Detergent Industry Association, held on November 21, 2006, Japan Soap Detergent Industry Association website (http://jsda.org/w/01_katud/a_seminal061211-2.html.) 井原望,濱田信夫,「天然系抗菌・防カビ剤の利用の現状と将来」,生活衛生,Vol.54.,No.4,304-311(2010).Nozomi Ihara, Nobuo Hamada, "Current Status and Future of Use of Natural Antibacterial and Antifungal Agents", Living Hygiene, Vol. 54. , No. 4,304-311 (2010). 文部科学省,「調理場における洗浄・消毒マニュアルPart1」,文部科学省ホームページ(http://www.mext.go.jp/a_menu/sports/syokuiku/1266268.)Ministry of Education, Culture, Sports, Science and Technology, "Cleaning and disinfection manual in the kitchen Part 1", Ministry of Education, Culture, Sports, Science and Technology homepage (http://www.mext.go.jp/a_menu/sports/syokuiku/12662668.) みずほ情報総研株式会社,「平成20年度経済産業省委託調査報告書,「平成20年度化学物質安全確保・国際規制対策等(工業用洗浄剤の実態調査)調査報告書」,平成21年3月,経済産業省ホームページ(http://www.meti.go.jp/policy/chemical_management/other/itaku/pdf/h20/houkukokusho_senzai_h20.pdf.)Mizuho Information Research Institute Co., Ltd., "FY2008 Ministry of Economy, Trade and Industry Entrusted Survey Report," FY2008 Chemical Substance Safety Assurance, International Regulation Measures, etc. (Fact-finding Survey of Industrial Cleaning Agents) Survey Report, "March 2009 , Ministry of Economy, Trade and Industry website (http://www.meti.go.jp/policy/chemical_management/other/itaku/pdf/h20/houkokusho_senzai_h20.pdf.) 「機能水とは」,一般財団法人機能水研究振興財団ホームページ(http://www.fwf.or.jp/index.html.)"What is functional water?", Homepage of the Foundation for the Promotion of Functional Water Research (http://www.fwf.or.jp/index.html.) 岩本睦夫,「話題の機能水の現状と課題」,日本調理科学会誌,Vol.33,No.4,503-509(2000).Mutsuo Iwamoto, "Current Situation and Issues of Popular Functional Water", Journal of the Japanese Society of Cooking Science, Vol. 33, No. 4,503-509 (2000). 峠有利子,「アルカリ電解水の特性とその製法」,防錆管理,2009-12,468-475(2009).Toge Toko, "Characteristics of alkaline electrolyzed water and its manufacturing method", Rust prevention management, 2009-12, 468-475 (2009). 竹ノ内敏一,田中博志,若林信一,「アルカリ性電解水による金属表面の洗浄」,表面技術,Vol.54,No.11,818-822(2003).Toshikazu Takenouchi, Hiroshi Tanaka, Shinichi Wakabayashi, "Cleaning of Metal Surface with Alkaline Electrolyzed Water", Surface Technology, Vol. 54, No. 11,818-822 (2003). 二川浩樹,「材料表面の抗菌防臭加工処理剤-洗剤・洗浄剤としての応用-固定化抗菌剤を利用した洗剤(https://shingi.jst.go.jp/past_abst/p/07/09/cicA05.pdf.)Hiroki Nikawa, "Antibacterial and deodorant processing agent on the surface of materials-Application as a detergent / cleaning agent-Detergent using an immobilized antibacterial agent (https://shingi.jst.go.jp/past_abst/p/07/09/ cicA05.pdf.) 経済産業省産業技術環境局技術調査室,技術調査レポート(技術動向編),第2号、「酸化チタン光触媒に関する産業の現状と課題」,平成14年5月31日,経済産業省ホームページ(http://www.meti.go.jp/policy/tech_research/report/vol2-color.pdf.)Ministry of Economy, Trade and Industry, Industrial Technology and Environment Bureau, Technology Research Office, Technology Research Report (Technology Trends), No. 2, "Industry Status and Issues Related to Titanium Oxide Photocatalysts", May 31, 2002, Ministry of Economy, Trade and Industry website (https://) : //Www.meti.go.jp/polisy/tech_research/report/vol2-color.pdf.) 石原産業株式会社,光触媒酸化チタン,石原産業株式会社ホームページ(https://iskweb.co.jp/products/functional05.html.)Ishihara Sangyo Co., Ltd., Photocatalytic Titanium Oxide, Ishihara Sangyo Co., Ltd. Homepage (https://iskweb.co.jp/products/functional05.html.) 堺化学工業株式会社,酸化チタン,堺化学工業ホームページ(http://www.sakai-chem.co.jp/jp/products/product_01_04.html.)Sakai Chemical Industry Co., Ltd., Titanium Oxide, Sakai Chemical Industry Home Page (http://www.sakai-chem.co.jp/jp/products/product_01_04.html.) 多木化学株式会社,多木化学超微粒子酸化物ゾル一覧,多木化学株式会社ホームページ(http://www.takichem.co.jp/rd/pdf/sol_list.pdf.)Taki Chemical Co., Ltd., Taki Chemical Ultrafine Oxide Sol List, Taki Chemical Co., Ltd. Home Page (http://www.takichem.co.jp/rd/pdf/sol_list.pdf.) 土屋敏雄,西尾圭史,「ゾル・ゲル法によるセラミックスの合成“有機-無機ハイブリッドイオン電導材料”」,国立大学法人東京工業大学附属科学技術高等学校ホームページ(http://www.hst.titech.ac.jp/meb/Ceramics/hybrid/hybrid.htm.)Toshio Tsuchiya, Keishi Nishio, "Synthesis of Ceramics by Sol-Gel Method" Organic-Inorganic Hybrid Ion Conductive Material "", Tokyo Institute of Technology, Tokyo Institute of Technology, Science and Technology High School Homepage (http://www.hst.titch.ac. .Jp / meb / Ceramics / hybrid / hybrid.htm.) 松本太輝,「次元制御ゾル-ゲル法による酸化チタン合成と光触媒への展開」,第4回マツモト技術講演会,2013年5月24日(http://www.m-chem.co.jp/documents/pdf/20130614_02.pdf.)Taiki Matsumoto, "Synthesis of Titanium Oxide by Dimension-Controlled Sol-Gel Method and Development into Photocatalyst", 4th Matsumoto Technical Lecture, May 24, 2013 (http://www.m-chem.co.jp) /Documments/pdf/20130614_02.pdf.) 飯田武揚,山岡一彦,野尻成治,野崎弘,「四塩化チタンの加水分解による酸化チタンの結晶生成過程とその物性」,工業化学雑誌,第69巻,第11号,2087-2095(1966).Takeyo Iida, Kazuhiko Yamaoka, Seiji Nojiri, Hiroshi Nozaki, "Crystal Formation Process of Titanium Oxide by Hydrolysis of Titanium Tetrachloride and Its Physical Properties", Industrial Chemistry Magazine, Vol. 69, No. 11, 2087-2095 (1966) ..

本発明は、製造業、建設業、情報通信業、サービス業、及び、その他生活関連業等、あらゆる産業分野における、製造機械、中間製品、製品等から汚染を除去する優れた洗浄力と、殺菌・滅菌・消毒・消臭機能を備えた安全性の高い洗浄剤であって、その洗浄剤で洗浄された被洗浄物表面に抗菌性、消臭性、及び、自己洗浄機能を付与することができる洗浄剤を提供することを目的とする。また、このような洗浄剤に適した原料の製造方法及びその原料を用いた洗浄剤の製造方法を提供することを目的とする。 The present invention has excellent detergency and sterilization to remove contamination from manufacturing machines, intermediate products, products, etc. in all industrial fields such as manufacturing industry, construction industry, information and communication industry, service industry, and other life-related industries. -A highly safe cleaning agent with sterilization, disinfection, and deodorizing functions, and it is possible to impart antibacterial, deodorizing, and self-cleaning functions to the surface of the object to be cleaned washed with the cleaning agent. The purpose is to provide a cleaning agent that can be used. Another object of the present invention is to provide a method for producing a raw material suitable for such a cleaning agent and a method for producing a cleaning agent using the raw material.

更に具体的には、本発明は、強アルカリ性電解水による優れた洗浄力と、純度99.9%の水であるという高い安全性と、濯ぎが不要な節水効果とを有する、腐食性がない洗浄剤を提供することを目的とするものであって、その洗浄剤で洗浄された被洗浄物表面に、アナターゼ型二酸化チタンによる、抗菌性及び親水性と共に、汚れ等の化学物質を分解する自己洗浄機能を付与することが可能な洗浄剤を提供することを目的とする。また、このような洗浄剤に適したアナターゼ型二酸化チタンの製造方法及びそのアナターゼ型二酸化チタンを用いた洗浄剤の製造方法を提供することを目的とする。 More specifically, the present invention has excellent detergency by strongly alkaline electrolyzed water, high safety of 99.9% pure water, and water saving effect that does not require rinsing, and is not corrosive. The purpose is to provide a cleaning agent, which decomposes chemical substances such as stains on the surface of the object to be cleaned cleaned with the cleaning agent, as well as antibacterial and hydrophilic properties by anatase-type titanium dioxide. It is an object of the present invention to provide a cleaning agent capable of imparting a cleaning function. Another object of the present invention is to provide a method for producing anatase-type titanium dioxide suitable for such a cleaning agent and a method for producing a cleaning agent using the anatase-type titanium dioxide.

本発明者らは、市販されているアナターゼ型二酸化チタン微粒子の粉末が、pH=11~14の強アルカリ性電解水には、一般的な方法で分散させることによって、アナターゼ型二酸化チタン微粒子が均一に分散し、この粒子の沈降もない、アナターゼ型二酸化チタン微粒子を含有する強アルカリ性電解水が得られることを見出した。また、これを洗浄剤として使用することによって、優れた洗浄力と、殺菌・滅菌・消毒・消臭機能を備え、被洗浄物表面に抗菌性、消臭性、及び、自己洗浄機能を付与することができることも見出した。更に、強アルカリ性電解水中で、チタンアルコキシド又は四塩化チタンの加水分解、重縮合反応によって、アナターゼ型二酸化チタン微粒子が生成し、アナターゼ型二酸化チタン微粒子が強アルカリ性電解水に分散した洗浄剤を容易に製造できることを見出し、本発明の完成に至った。 The present inventors uniformly disperse the powder of commercially available anatase-type titanium dioxide fine particles in strongly alkaline electrolyzed water having a pH of 11 to 14 by a general method, whereby the anatase-type titanium dioxide fine particles are uniformly dispersed. It has been found that strongly alkaline electrolyzed water containing anatase-type titanium dioxide fine particles that are dispersed and that the particles do not settle can be obtained. In addition, by using this as a cleaning agent, it has excellent detergency, sterilization, sterilization, disinfection, and deodorant functions, and imparts antibacterial, deodorant, and self-cleaning functions to the surface of the object to be cleaned. I also found that I could do it. Furthermore, anatase-type titanium dioxide fine particles are generated by hydrolysis and polycondensation reaction of titanium alkoxide or titanium tetrachloride in strongly alkaline electrolytic water, and a cleaning agent in which anatase-type titanium dioxide fine particles are dispersed in strong alkaline electrolytic water can be easily prepared. It was found that it could be manufactured, and the present invention was completed.

すなわち、本発明は、pHが11~14の強アルカリ性電解水にアナターゼ型二酸化チタン微粒子が分散されていることを特徴とする洗浄剤である。特に、アナターゼ型二酸化チタン微粒子の強アルカリ電解水中への分散安定性という観点から、pHが12~14の強アルカリ電解水であることがより好ましい。 That is, the present invention is a cleaning agent characterized in that anatase-type titanium dioxide fine particles are dispersed in strongly alkaline electrolyzed water having a pH of 11 to 14. In particular, from the viewpoint of dispersion stability of anatase-type titanium dioxide fine particles in strong alkaline electrolyzed water, strong alkaline electrolyzed water having a pH of 12 to 14 is more preferable.

ここで使用することができる強アルカリ性電解水は、炭酸カリウム(KCO)、炭酸ナトリウム(NaCO)、メタ珪酸ナトリウム(NaSiO)、又は、オルト珪酸ナトリウム(NaSiO)から選択された少なくとも一種を電解質とする電解水の電気分解によって生成された強アルカリ性電解水であることが好ましく、KCOを電解質とする電解水の電気分解によって生成された強アルカリ性電解水であることがより好ましいが、水道水を用いることも可能である。電解質を用いる場合の電解水の濃度は、電解水の純度という観点から、0.05wt%以下であることが好ましく、0.02wt%以下であることがより好ましい。 The strongly alkaline electrolyzed water that can be used here is potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), sodium metasilicate (Na 2 SiO 3 ), or sodium orthosilicate (Na 4 SiO 3). It is preferably a strong alkaline electrolyzed water produced by electrolysis of electrolyzed water using at least one selected from 4 ) as an electrolyte , and strongly alkaline generated by electrolysis of electrolyzed water using K2 CO 3 as an electrolyte. Electrolyzed water is more preferable, but tap water can also be used. When an electrolyte is used, the concentration of the electrolyzed water is preferably 0.05 wt% or less, more preferably 0.02 wt% or less, from the viewpoint of the purity of the electrolyzed water.

強アルカリ性電解水の製造装置は、図1の代表的な電解水生成装置の模式図に示すように、電解槽に陽極と陰極を配備した1室型電解水生成装置(a)、電解槽が陽イオン交換膜で二つの電解室に区画され、一方の電解室に陽極、他方の電解室に陰極を配備した2室型電解水生成装置(b)、電解槽が陽イオン交換膜と陰イオン交換膜とで3つの電解室に区画され、陰イオン交換膜で仕切られた電解室に陽極を、陽イオン交換膜で仕切られた電解室に陰極を配備し、陰イオン交換膜と陽イオン交換膜とで仕切られた中間室に電解水を導入する3室型電解水生成装置(c)のいずれも用いることができるが、2室型又は3室型電解水生成装置、及び、これらを改良してアルカリ性電解水だけを取り出すことができるようにした電解水生成装置が好ましく用いられる。また、一室型電解水生成装置の場合、特殊なイオン吸着電極を用い、電極を交互に入れ替え、イオン吸着電極を陽極とした場合に強アルカリ性電解水が、イオン吸着電極を陰極とした場合に強酸性電解水が製造されるものである。そして、このような電解水製造装置は、例えば、(株)アルテック製アルトロンシリーズ、(株)エナジック製レベラックシリーズ、興研(株)製オキシライザ オーシャンCL、(株)テックコーポレーション製ESSシリーズ、ホシザキ(株)製ROXシリーズ、(株)東芝製EWMシリーズ、(株)Eプラン製UNIFLOW UF-15α、(株)ガイア製Win-G(登録商標)、アマノメンテナンスエンジニアリング(株)製α-Light、α-2000N、ラボII、Σ3000N、及び、σ1000K、日新精機(株)製NEWS、三浦電子(株)製OXILYZER(登録商標)、(有)ターナープロセス製AWシリーズ、(株)ウォーターデザイン研究所製アルトロンND-1000型及びレドックスR25-15型等として市販されており、使用することができる。 As shown in the schematic diagram of the typical electrolyzed water generator of FIG. 1, the strongly alkaline electrolyzed water production apparatus includes a one-chamber type electrolyzed water generator (a) in which an anode and a cathode are provided in the electrolyzer tank, and an electrolyzer tank. A two-chamber type electrolytic water generator (b) divided into two electrolytic chambers by a cation exchange membrane, with an anode in one electrolytic chamber and a cathode in the other electrolytic chamber, and the electrolytic tank is a cation exchange membrane and anions. It is divided into three electrolytic chambers by an exchange membrane, and an anode is placed in the electrolytic chamber partitioned by the anion exchange membrane, and a cathode is placed in the electrolytic chamber partitioned by the cation exchange membrane, and the anion exchange membrane and cation exchange are performed. Any of the three-chamber type electrolyzed water generator (c) that introduces the electrolyzed water into the intermediate chamber separated from the membrane can be used, but the two-chamber type or three-chamber type electrolyzed water generator and these are improved. An electrolyzed water generator capable of taking out only alkaline electrolyzed water is preferably used. In the case of a one-chamber type electrolyzed water generator, a special ion adsorption electrode is used, and the electrodes are alternately replaced. When the ion adsorption electrode is used as the anode, hypochlorous acid water is used, and when the ion adsorption electrode is used as the cathode. Strongly acidic electrolyzed water is produced. Such electrolyzed water production equipment includes, for example, Altron series manufactured by Altech Co., Ltd., Levelac series manufactured by Enagic Co., Ltd., Oxylyzer Ocean CL manufactured by Koken Co., Ltd., ESS series manufactured by Tech Corporation, and Hoshizaki Co., Ltd. ROX series manufactured by ROX series, EWM series manufactured by Toshiba Co., Ltd., UNIFLOW UF-15α manufactured by E-plan Co., Ltd., Win-G (registered trademark) manufactured by Gaia Co., Ltd., α-Light, α manufactured by Amano Maintenance Engineering Co., Ltd. -2000N, Lab II, Σ3000N, and σ1000K, NEWS manufactured by Nissin Seiki Co., Ltd., OXILYZER (registered trademark) manufactured by Miura Electronics Co., Ltd., AW series manufactured by Turner Process Co., Ltd., manufactured by Water Design Laboratory Co., Ltd. It is commercially available as Altron ND-1000 type, Redox R25-15 type and the like, and can be used.

アナターゼ型二酸化チタン微粒子は、市販されている一般的なものを使用することができ、その製造方法によって限定されるものではない。しかし、水やアルコール等の分散体は、有機酸や有機アミン等の分散剤が多量に使用されており、粉末であるものが好ましく、特に、有機物質による表面改質が施されていないものが好ましい。二酸化チタン微粒子の表面積が大きい程光触媒としての機能が向上するため、粒子径は小さい程好ましいが、光触媒としての機能を発現するための大きさを必要とするので、電子顕微鏡観察法による粒子径で500nm以下であればよいが、X線小角散乱法による粒子径で、5~200nmであることがより好ましく、5~20nmであることがより更に好ましい。例えば、堺化学工業(株)製SSPシリーズ及びSTAシリーズ、石原産業(株)製STシリーズ等を挙げることができる。 As the anatase-type titanium dioxide fine particles, commercially available general ones can be used, and the anatase-type titanium dioxide fine particles are not limited by the production method thereof. However, as the dispersion such as water and alcohol, a large amount of a dispersant such as an organic acid or an organic amine is used, and a powder is preferable, and a dispersion which has not been surface-modified with an organic substance is particularly preferable. preferable. The larger the surface area of the titanium dioxide fine particles, the better the function as a photocatalyst. Therefore, the smaller the particle size is, the more preferable. The particle size may be 500 nm or less, but the particle size according to the small-angle X-ray scattering method is more preferably 5 to 200 nm, and even more preferably 5 to 20 nm. For example, SSP series and STA series manufactured by Sakai Chemical Industry Co., Ltd., ST series manufactured by Ishihara Sangyo Co., Ltd., and the like can be mentioned.

このような粉末は、水やアルコール等の溶媒に一般的な方法で分散させることが困難であるため、従来は、上述したような分散剤が多量に使用されてきた。しかしながら、pHが11~14、より好ましくは、pHが12~14の強アルカリ電解水中では、容易に分散し、分散安定性に優れていることを見出した。この要因は定かではないが、例えば、非特許文献8及び特許文献4等から、アルカリ電解水は、負の酸化還元電位を有し、アルカリ電解水中では、金属酸化物微粒子が負に帯電することが知られており、pH11、より好ましくは、pH12を超えると、その効果が更に加速すると共に、アルカリ電解水中に数多く存在するOHの影響もうけ、金属酸化物微粒子間の電気的反発力が予想以上に大きくなり、分散が容易に行えたものと推測されるが、従来、その効果は認められていなかった。 Since it is difficult to disperse such a powder in a solvent such as water or alcohol by a general method, conventionally, a large amount of the above-mentioned dispersant has been used. However, it has been found that it disperses easily in strongly alkaline electrolyzed water having a pH of 11 to 14, more preferably 12 to 14, and is excellent in dispersion stability. Although this factor is not clear, for example, from Non-Patent Document 8 and Patent Document 4, the alkaline electrolyzed water has a negative redox potential, and the metal oxide fine particles are negatively charged in the alkaline electrolyzed water. Is known, and when the pH exceeds 11, more preferably pH 12, the effect is further accelerated, and the electric repulsive force between the metal oxide fine particles is expected due to the influence of OH which is abundantly present in the alkaline electrolyzed water. It is presumed that the dispersion became larger than that and the dispersion was easy, but the effect was not recognized in the past.

ところで、分散方法は、最も簡単なものでは、例えば、ホモジナイザーやヘンシェルミキサー等の容器に撹拌翼を備えた撹拌槽を使用する方法を用いることが可能であるが、分散力の分布が大きいため、次の様なせん断力が凝集した粉末に加わる分散機を用いて分散することが好ましい。例えば、高速の回転翼と外筒との狭い間隙へ凝集粒子を通すことにより分散する高速回転せん断型撹拌機、分散する処理液を高圧噴射し、固定板もしくは処理液同士に衝突させることにより分散する高圧噴射式分散機、超音波振動やキャビテーション等により分散する超音波分散機、回転容器内等に挿入された媒体(ボールなど)の衝突、摩擦により分散する容器駆動型ミル(回転ミル、振動ミル、遊星ミル等)、媒体であるボールやビーズを使用し、媒体の衝撃力とせん断力により分散する媒体撹拌ミル(アトライター、ビーズミル(サンドミル)を挙げることができる。 By the way, as the simplest dispersion method, for example, it is possible to use a method of using a stirring tank equipped with a stirring blade in a container such as a homogenizer or a Henschel mixer, but since the distribution of the dispersion force is large, it is possible to use. It is preferable to disperse using a disperser in which the following shearing force is applied to the aggregated powder. For example, a high-speed rotary shear type stirrer that disperses by passing agglomerated particles through a narrow gap between a high-speed rotary blade and an outer cylinder, a high-pressure injection of a disperse treatment liquid, and dispersion by colliding with a fixed plate or treatment liquids. High-pressure injection type disperser, ultrasonic disperser that disperses by ultrasonic vibration, cavitation, etc., container-driven mill (rotary mill, vibration) that disperses due to collision and friction of media (balls, etc.) inserted in a rotating container, etc. Mills, planetary mills, etc.), medium stirring mills (atriters, bead mills (sand mills)) that disperse by the impact force and shear force of the medium using balls or beads as the medium can be mentioned.

このように、pHが11~14の強アルカリ性電解水の特異性を利用して、強アルカリ性電解水にアナターゼ型二酸化チタン微粒子が分散されており、優れた洗浄力と、殺菌・滅菌・消毒・消臭機能を備え、被洗浄物表面に抗菌性、消臭性、及び、自己洗浄機能を付与することができる洗浄剤が、一般的な原材料及び分散方法を用いて製造することができるが、更に、本発明者らは、pHが11~14の強アルカリ電解水には、チタンアルコキシド又は四塩化チタンの加水分解、重縮合反応によって、アナターゼ型二酸化チタン微粒子が生成し易いことを見出し、上記機能を有する洗浄剤の原料となるアナターゼ型二酸化チタン微粒子分散液の製造法及びpHが11~14の強アルカリ性電解水にアナターゼ型二酸化チタン微粒子が分散されていることを特徴とする洗浄剤の製造方法を発明した。 In this way, anatase-type titanium dioxide fine particles are dispersed in the strongly alkaline electrolyzed water by utilizing the peculiarity of the strongly alkaline electrolyzed water having a pH of 11 to 14, and has excellent detergency and sterilization / sterilization / disinfection / disinfection. A detergent having a deodorizing function and capable of imparting antibacterial, deodorizing, and self-cleaning functions to the surface of the object to be cleaned can be produced using general raw materials and dispersion methods. Furthermore, the present inventors have found that anatase-type titanium dioxide fine particles are easily produced in strongly alkaline electrolyzed water having a pH of 11 to 14 by hydrolysis or polycondensation reaction of titanium alkoxide or titanium tetrachloride. A method for producing an anatase-type titanium dioxide fine particle dispersion, which is a raw material for a functional cleaning agent, and a method for producing a detergent, wherein the anatase-type titanium dioxide fine particles are dispersed in strongly alkaline electrolyzed water having a pH of 11 to 14. Invented the method.

本発明の第一のアナターゼ型二酸化チタン微粒子分散液の製造方法は、pHが11~14の強アルカリ電解水中において、チタンアルコキシドを加水分解、重縮合反応によってアナターゼ型二酸化チタン微粒子を生成することを特徴とするものである。 The first method for producing anatase-type titanium dioxide fine particle dispersion of the present invention is to hydrolyze titanium alkoxide in a strong alkaline electrolyzed water having a pH of 11 to 14 and generate anatase-type titanium dioxide fine particles by a polycondensation reaction. It is a feature.

チタンアルコキシドとしては、チタン(IV)テトラメトキシド、チタン(IV)テトラエトキシド、チタン(IV)テトラ-n-プロポキシド、チタン(IV)テトライソ-i-プロポキシド、チタン(IV)テトラ-n-ブトキシド、チタン(IV)テトラ-tert-ブトキシド、チタン(IV)テトラ(2-エチルヘキシル)オキシド等から少なくとも1種以上が選択されて用いることができる。しかし、後述するように、強アルカリ電解水中における塩基触媒反応において、3次元性が高く緻密な架橋構造の形成、アナターゼ型二酸化チタンの生成、及び、反応性のバランスという観点から、チタン(IV)テトラエトキシド、チタン(IV)テトラ-n-プロポキシド、チタン(IV)テトライソ-i-プロポキシド、チタン(IV)テトラ-n-ブトキシド、チタン(IV)テトラ-tert-ブトキシド、及び、チタン(IV)テトラ(2-エチルヘキシル)オキシドが好ましく、チタン(IV)テトラ-n-プロポキシド、チタン(IV)テトライソ-i-プロポキシド、チタン(IV)テトラ-n-ブトキシド、チタン(IV)テトラ-tert-ブトキシド、及び、チタン(IV)テトラ(2-エチルヘキシル)オキシドがより更に好ましい。 Examples of the titanium alkoxide include titanium (IV) tetramethoxydo, titanium (IV) tetraethoxydo, titanium (IV) tetra-n-propoxide, titanium (IV) tetraiso-i-propoxide, and titanium (IV) tetra-n. -At least one of buttoxide, titanium (IV) tetra-tert-butoxide, titanium (IV) tetra (2-ethylhexyl) oxide and the like can be selected and used. However, as will be described later, in the base-catalyzed reaction in strongly alkaline electrolytic water, titanium (IV) is formed from the viewpoint of forming a highly three-dimensional and dense crosslinked structure, producing anatase-type titanium dioxide, and balancing the reactivity. Tetraethoxydo, titanium (IV) tetra-n-propoxide, titanium (IV) tetraiso-i-propoxide, titanium (IV) tetra-n-butoxide, titanium (IV) tetra-tert-butoxide, and titanium ( IV) Tetra (2-ethylhexyl) oxide is preferred, titanium (IV) tetra-n-propoxide, titanium (IV) tetraiso-i-propoxide, titanium (IV) tetra-n-butoxide, titanium (IV) tetra- tert-butoxide and titanium (IV) tetra (2-ethylhexyl) oxide are even more preferred.

強アルカリ電解水は、pH=11~14であればよいが、触媒の機能として、また、粒子の分散安定性という観点からpH=12~14である方がより好ましい。製造方法は、段落0023及び0024に記載した通りである。 The strongly alkaline electrolyzed water may have a pH of 11 to 14, but is more preferably pH of 12 to 14 from the viewpoint of the function of the catalyst and the dispersion stability of the particles. The manufacturing method is as described in paragraphs 0023 and 0024.

そして、ホモジナイザー等の撹拌槽や超音波分散機等に投入された強アルカリ電解水を20~30℃に保ち、撹拌しながら、チタンアルコキシドを所定の速度で滴下した後、そのまま2時間撹拌を続け、更に、85~100℃で10~12時間撹拌を行うことによってアナターゼ型二酸化チタン微粒子分散液が製造される。チタンアルコキシドに対する強アルカリ電解水の配合比(モル比)も、3次元性が高く緻密な架橋構造の形成、アナターゼ型二酸化チタンの生成、及び、反応性のバランスという観点から、20~100であることが好ましく、30~70であることがより好ましく、40~60であることがより更に好ましい。ただし、この配合比は、強アルカリ性電解水をHO(分子量=18)として計算したものである。 Then, the strong alkaline electrolyzed water put into a stirring tank such as a homogenizer or an ultrasonic disperser is kept at 20 to 30 ° C., and titanium alkoxide is dropped at a predetermined speed while stirring, and then stirring is continued for 2 hours as it is. Further, the anatase-type titanium dioxide fine particle dispersion is produced by stirring at 85 to 100 ° C. for 10 to 12 hours. The compounding ratio (molar ratio) of strong alkaline electrolyzed water to titanium alkoxide is also 20 to 100 from the viewpoint of forming a highly three-dimensional and dense crosslinked structure, producing anatase-type titanium dioxide, and balancing reactivity. It is preferably 30 to 70, more preferably 40 to 60, and even more preferably 40 to 60. However, this compounding ratio is calculated by assuming that the strongly alkaline electrolyzed water is H 2 O (molecular weight = 18).

この方法で生成したアナターゼ型二酸化チタン微粒子は、X線小角散乱法による粒子径で、5~200nmの範囲にあり、強アルカリ電解水にアナターゼ型二酸化チタン微粒子を分散させた洗浄剤の原料として最適なものである。 The anatase-type titanium dioxide fine particles produced by this method have a particle size in the range of 5 to 200 nm by the small-angle X-ray scattering method, and are ideal as a raw material for a cleaning agent in which anatase-type titanium dioxide fine particles are dispersed in strongly alkaline electrolyzed water. It is a thing.

本発明のチタンアルコキシドの加水分解に引き続いて生起する重縮合反応が、pH=11~14、より好ましくは、12~14の強アルカリ性電解水中において行われると、アナターゼ型二酸化チタン微粒子が生成するメカニズムは定かではないが、塩基性触媒の加水分解及び重縮合反応は、反応速度は遅いが、酸性触媒と反応機構が異なり、酸性触媒の2次元性が高く線状構造を形成し易いのに対し、3次元性が高く緻密な架橋構造を形成し易いこと(非特許文献15及び16)、並びに、豊富に存在するOHが何らかの役割を果たしているものと考えられる。更に、85~100℃の熟成を行うことも重要な要因の一つであると推測している。 The mechanism by which anatase-type titanium dioxide fine particles are produced when the polycondensation reaction that occurs following the hydrolysis of the titanium alkoxide of the present invention is carried out in strongly alkaline electrolytic water having a pH of 11 to 14, more preferably 12 to 14. Although it is not clear, the hydrolysis and polycondensation reactions of the basic catalyst have a slow reaction rate, but the reaction mechanism is different from that of the acidic catalyst, and the two-dimensionality of the acidic catalyst is high and it is easy to form a linear structure. It is considered that the three-dimensionality is high and it is easy to form a dense crosslinked structure (Non-Patent Documents 15 and 16), and that the abundant OH plays a role. Furthermore, it is presumed that aging at 85 to 100 ° C. is also one of the important factors.

本発明の第二のアナターゼ型二酸化チタン微粒子分散液の製造方法は、pHが11~14の強アルカリ電解水中において、四塩化チタンを加水分解、重縮合反応によって、アナターゼ型二酸化チタン微粒子を生成することを特徴とするものであり、この場合も、強アルカリ性電解水のpHは、12~14であることがより好ましい。 The second method for producing anatase-type titanium dioxide fine particle dispersion of the present invention produces anatase-type titanium dioxide fine particles by hydrolysis of titanium tetrachloride and a polycondensation reaction in strongly alkaline electrolytic water having a pH of 11 to 14. In this case as well, the pH of the strongly alkaline electrolyzed water is more preferably 12 to 14.

この場合も、ホモジナイザー等の撹拌槽や超音波分散機等に投入された強アルカリ電解水をおよそ0℃に保ち、撹拌しながら、四塩化チタンを所定の速度で滴下した後、そのまま2時間撹拌を続け、更に、85~100℃で10~12時間撹拌を行うことによってアナターゼ型二酸化チタン微粒子分散液が製造される。四塩化チタンに対する強アルカリ性電解水の配合比(モル比)は、アナターゼ型二酸化チタン微粒子の生成及び反応性のバランスという観点から、70~150であることが好ましく、80~130であることがより好ましい。この配合比も、強アルカリ性電解水をHO(分子量=18)として計算したものである。 Also in this case, the strong alkaline electrolyzed water charged in a stirring tank such as a homogenizer or an ultrasonic disperser is kept at about 0 ° C., and titanium tetrachloride is added dropwise at a predetermined speed while stirring, and then the mixture is stirred as it is for 2 hours. Further, the mixture is further stirred at 85 to 100 ° C. for 10 to 12 hours to produce an anatase-type titanium dioxide fine particle dispersion. The compounding ratio (molar ratio) of the strongly alkaline electrolyzed water to titanium tetrachloride is preferably 70 to 150, more preferably 80 to 130, from the viewpoint of the balance between the formation of anatase-type titanium dioxide fine particles and the reactivity. preferable. This compounding ratio is also calculated with strongly alkaline electrolyzed water as H2O (molecular weight = 18).

この方法で生成したアナターゼ型二酸化チタン微粒子も、X線小角散乱法による粒子径で、5~200nmの範囲にあり、強アルカリ電解水にアナターゼ型二酸化チタン微粒子を分散させた洗浄剤の原料として最適なものである。 The anatase-type titanium dioxide fine particles produced by this method also have a particle size in the range of 5 to 200 nm by the small-angle X-ray scattering method, and are ideal as a raw material for a cleaning agent in which anatase-type titanium dioxide fine particles are dispersed in strongly alkaline electrolyzed water. It is a thing.

本発明の四塩化チタンの加水分解に引き続いて生起する重縮合反応が、pH=11~14、より好ましくは、12~14の強アルカリ性電解水中において行われると、アナターゼ型二酸化チタン微粒子が生成するメカニズムは定かではないが、この場合はチタンアルコキシドの場合と異なり、次のように考えられる。この反応系は、四塩化チタンの加水分解により生成した水酸化チタンが重縮合して二酸化チタンの結晶核が析出し、それが成長して一次粒子となる。この初期の結晶がアナターゼ型で、所定の四塩化チタン濃度にあると、成長した粒子もアナターゼ型であることが知られているが、反応の進行と共に生成する塩酸(HCl)の作用によって、アナターゼ型がルチル型に変化していくことも知られている(非特許文献17及び特許文献9)。しかし、本発明のように、反応系が強アルカリ電解水であるため、このHClが中和され、アナターゼ型二酸化チタン微粒子が安定して製造されるものであると考えられる。また、豊富に存在するOHが何らかの役割を果たし、85~100℃の熟成を行うことも重要な要因の一つになっているものと推測している。 When the polycondensation reaction that occurs following the hydrolysis of titanium tetrachloride of the present invention is carried out in strongly alkaline electrolyzed water having a pH of 11 to 14, more preferably 12 to 14, anatase-type titanium dioxide fine particles are produced. The mechanism is not clear, but in this case, unlike the case of titanium alkoxide, it is considered as follows. In this reaction system, titanium hydroxide produced by hydrolysis of titanium tetrachloride is polycondensed to precipitate crystal nuclei of titanium dioxide, which grow to become primary particles. It is known that these early crystals are anatase type, and when the concentration of titanium tetrachloride is at a predetermined concentration, the grown particles are also anatase type. However, due to the action of hydrochloric acid (HCl) generated as the reaction progresses, anatase It is also known that the type changes to a rutile type (Non-Patent Document 17 and Patent Document 9). However, since the reaction system is strongly alkaline electrolyzed water as in the present invention, it is considered that this HCl is neutralized and anatase-type titanium dioxide fine particles are stably produced. It is also speculated that the abundant OH - plays some role and that aging at 85 to 100 ° C is one of the important factors.

更に、本発明は、上記二通りの方法で製造されたアナターゼ型二酸化チタン微粒子分散液を用い、強アルカリ性電解水にアナターゼ型二酸化チタン微粒子が分散された洗浄剤の製造方法を提供するものである。 Further, the present invention provides a method for producing a detergent in which anatase-type titanium dioxide fine particles are dispersed in strongly alkaline electrolyzed water, using the anatase-type titanium dioxide fine particle dispersion liquid produced by the above two methods. ..

すなわち、本発明の第一の洗浄剤の製造方法は、pHが11~14の強アルカリ電解水中において、チタンアルコキシドを加水分解、重縮合反応によってアナターゼ型二酸化チタン微粒子を生成する第1の工程と、第1の工程で生成したアナターゼ型二酸化チタン微粒子の分散液の溶媒を90%以上除去する第2の工程と、第2の工程で得られた分散液を上記強アルカリ性電解水で希釈する第3の工程とからなることを特徴とするものである。 That is, the first method for producing a cleaning agent of the present invention comprises the first step of hydrolyzing titanium alkoxide and producing anatase-type titanium dioxide fine particles by a polycondensation reaction in strongly alkaline electrolyzed water having a pH of 11 to 14. The second step of removing 90% or more of the solvent of the dispersion liquid of the anatase-type titanium dioxide fine particles produced in the first step, and the second step of diluting the dispersion liquid obtained in the second step with the above-mentioned strongly alkaline electrolyzed water. It is characterized by consisting of three steps.

本発明の第二の洗浄剤の製造方法は、pHが11~14の強アルカリ電解水中において、四塩化チタンを加水分解、重縮合反応によって、アナターゼ型二酸化チタン微粒子を生成する第1の工程と、第1の工程で生成したアナターゼ型二酸化チタン微粒子の分散液の溶媒を90%以上除去する第2の工程と、第2の工程で得られた分散液を強アルカリ性電解水で希釈する第3の工程とから成ることを特徴とするものである。 The second method for producing a detergent of the present invention comprises a first step of hydrolyzing titanium tetrachloride and producing anatase-type titanium dioxide fine particles by a polycondensation reaction in strongly alkaline electrolyzed water having a pH of 11 to 14. The second step of removing 90% or more of the solvent of the dispersion liquid of the anatase-type titanium dioxide fine particles produced in the first step, and the third step of diluting the dispersion liquid obtained in the second step with strongly alkaline electrolyzed water. It is characterized by being composed of the above steps.

いずれの方法も、強アルカリ電解水のpHは、12~14であり、段落0023及び0024に記載した強アルカリ電解水を用いることが好ましい。また、いずれの第3の工程における強アルカリ性電解水の希釈は、最終的な洗浄剤におけるアナターゼ型二酸化チタン微粒子が、1×10-1~5×10-6mol/Lとなるように行われることが好ましいが、1×10-1~5×10-5mol/Lであることがより好ましく、1×10-1~5×10-4であることがより更に好ましい。濃度が低すぎると、アナターゼ型二酸化チタンの光触媒機能が乏しく、濃度が高すぎると、分散安定性が低下すると共に、被洗浄物上の汚染の原因になる。 In either method, the pH of the strongly alkaline electrolyzed water is 12 to 14, and it is preferable to use the strong alkaline electrolyzed water described in paragraphs 0023 and 0024. Further, the dilution of the strongly alkaline electrolyzed water in any of the third steps is carried out so that the anatase-type titanium dioxide fine particles in the final cleaning agent are 1 × 10 -1 to 5 × 10 -6 mol / L. It is preferable, but it is more preferably 1 × 10 -1 to 5 × 10 -5 mol / L, and even more preferably 1 × 10 -1 to 5 × 10 -4 . If the concentration is too low, the photocatalytic function of the anatase-type titanium dioxide is poor, and if the concentration is too high, the dispersion stability is lowered and the object to be cleaned is contaminated.

本発明の、pH11~14の強アルカリ性電解水にアナターゼ型二酸化チタン微粒子を分散した洗浄剤は、製造業、建設業、情報通信業、サービス業、及び、その他生活関連業等、あらゆる産業分野における、製造機械、中間製品、製品等から汚染を除去する優れた洗浄力と、殺菌・滅菌・消毒・消臭機能を備えた安全性の高い洗浄剤であって、その洗浄剤で洗浄された被洗浄物表面に抗菌性、消臭性、及び、自己洗浄機能を付与することができる。 The cleaning agent of the present invention in which anatase-type titanium dioxide fine particles are dispersed in strongly alkaline electrolyzed water having a pH of 11 to 14 is used in all industrial fields such as manufacturing, construction, information and communication, service, and other life-related industries. A highly safe cleaning agent with excellent detergency that removes contamination from manufacturing machines, intermediate products, products, etc., and sterilization, sterilization, disinfection, and deodorizing functions. Antibacterial, deodorant, and self-cleaning functions can be imparted to the surface of the cleaned object.

しかも、市販されているアナターゼ型二酸化チタン微粒子粉末を水又はアルコール等へ分散するには分散剤を必要とするが、本発明の洗浄剤は、市販されているアナターゼ型二酸化チタン微粒子粉末を強アルカリ性電解水に、一般的な方法でそのまま分散するだけで容易に製造できるという効果もある。従って、本発明の洗浄剤は分散剤を含まないため、洗浄後の有機系化学物質による汚染の問題がなく、被洗浄物表面に付着したアナターゼ型二酸化チタンの光触媒機能が低下することがないという効果もある。 Moreover, a dispersant is required to disperse the commercially available anatase-type titanium dioxide fine particle powder in water, alcohol, or the like, but the detergent of the present invention makes the commercially available anatase-type titanium dioxide fine particle powder strongly alkaline. It also has the effect that it can be easily produced by simply dispersing it in electrolytic water as it is by a general method. Therefore, since the cleaning agent of the present invention does not contain a dispersant, there is no problem of contamination by organic chemical substances after cleaning, and the photocatalytic function of anatase-type titanium dioxide adhering to the surface of the object to be cleaned is not deteriorated. There is also an effect.

一方、本発明のアナターゼ型二酸化チタン微粒子分散液の製造方法は、チタンアルコキシドを用いる方法と四塩化チタンを用いる方法とでは、強アルカリ電解水の作用効果は異なるが、いずれについても、強アルカリ性電解水にアナターゼ型二酸化チタン微粒子を分散した洗浄剤を製造するために適したアナターゼ型二酸化チタン微粒子分散液であり、それに適した方法である。特に、分散剤が不要である上、アナターゼ型二酸化チタン微粒子粉末とするための乾燥、熱処理が不要で、極めて容易に製造することができるという効果がある。従って、本発明のアナターゼ型二酸化チタン微粒子分散液を用いた、本発明の洗浄剤の製造方法も極めて容易な製造方法を提供するものである。 On the other hand, in the method for producing the anatase-type titanium dioxide fine particle dispersion of the present invention, the action and effect of the strong alkaline electrolyzed water are different between the method using titanium alkoxide and the method using titanium tetrachloride, but in each case, the strong alkaline electrolysis is performed. It is an anatase-type titanium dioxide fine particle dispersion suitable for producing a cleaning agent in which anatase-type titanium dioxide fine particles are dispersed in water, and is a suitable method. In particular, it does not require a dispersant and does not require drying or heat treatment to obtain anatase-type titanium dioxide fine particle powder, and has the effect of being extremely easy to produce. Therefore, the method for producing the cleaning agent of the present invention using the anatase-type titanium dioxide fine particle dispersion of the present invention also provides an extremely easy production method.

以上、本発明の洗浄剤、洗浄剤を製造するための原料の製造方法、及び、洗浄剤の製造方法は、pH=11~14の強アルカリ性電解水を使用することによってもたらされる技術であって、従来にない、新たな洗浄剤、新たな二酸化チタン微粒子の製造方法、及び、新たな洗浄剤の製造方法を提供するものである。 As described above, the cleaning agent of the present invention, the method for producing a raw material for producing the cleaning agent, and the method for producing the cleaning agent are techniques brought about by using strongly alkaline electrolyzed water having a pH of 11 to 14. , A new cleaning agent, a new method for producing titanium dioxide fine particles, and a new method for producing a cleaning agent, which have never existed before.

強アルカリ性電解水を製造することが可能な電解水製造装置の概念図である。It is a conceptual diagram of the electrolyzed water production apparatus capable of producing strongly alkaline electrolyzed water. 二酸化チタン微粒子分散液の合成装置の概念図である。It is a conceptual diagram of the synthesis apparatus of the titanium dioxide fine particle dispersion liquid. アナターゼ型二酸化チタン微粒子の自己洗浄性能評価方法を示す概念図である。It is a conceptual diagram which shows the self-cleaning performance evaluation method of anatase type titanium dioxide fine particles.

以下、本発明を、一実施形態を用いてより詳細に説明するが、本発明は、これに限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能であり、特許請求の範囲に記載した技術思想によってのみ限定されるものである。 Hereinafter, the present invention will be described in more detail using one embodiment, but the present invention is not limited thereto, and various modifications may be made without departing from the gist of the present invention. It is possible and limited only by the technical ideas described in the claims.

≪実施例1≫
市販されているアナターゼ型二酸化チタン微粒子粉末を強アルカリ性電解水に分散させた洗浄剤は、次のようにして作製した。強アルカリ性電解水は、(株)ガイア製Win-G(登録商標)を用いて作製した、pH=13.0の強アルカリ性電解水を使用し、アナターゼ型二酸化チタン微粒子粉末は、堺化学工業(株)製のSPP-20(X線粒子径=12nm)をそのまま使用した。
<< Example 1 >>
A commercially available cleaning agent in which anatase-type titanium dioxide fine particle powder was dispersed in strongly alkaline electrolyzed water was prepared as follows. The strong alkaline electrolyzed water used was a strong alkaline electrolyzed water having a pH of 13.0 prepared by using Win-G (registered trademark) manufactured by Gaia Co., Ltd., and the anatase-type titanium dioxide fine particle powder was produced by Sakai Chemical Industry Co., Ltd. SPP-20 (X-ray particle size = 12 nm) manufactured by SPP Co., Ltd. was used as it was.

まず、ボールミルで分散させた後、更に、濃度を下げてビーズミルで分散した。ボールミルは、フリッチュ社製遊星型ボールミル・プレミアムラインP-7を用い、高硬度ステンレス製80ml容器に直径10mmのボールを25個で、強アルカリ性電解水30mlに上記二酸化チタン微粒子3.99gを分散した。これを2バッチ作製し、これらの分散液60mlに強アルカリ電解水940mlを加えて、日本コークス工業(株)製湿式アトライターS型で分散した。更に、強アルカリ電解水を1000ml加えて、日本コークス工業(株)製湿式ビーズミルSC型及びMSC型で分散して、本発明のアナターゼ型二酸化チタン微粒子が強アルカリ電解水に分散した洗浄剤を得ることができた。この分散液は透明で、マイクロトラック・ベル(株)製動的光散乱式粒子径分布測定装置NanotracWaveII-UT151を用いて粒度分布を測定した結果、カタログ値のX線粒子径に近似した平均粒子径を示した。この洗浄剤は、二酸化チタン濃度が約0.05mol/Lで、洗浄剤No.1とする。 First, after dispersing with a ball mill, the concentration was further reduced and dispersed with a bead mill. As the ball mill, a planetary ball mill Premium Line P-7 manufactured by Fritsch was used, and 25 balls having a diameter of 10 mm were dispersed in a high-hardness stainless steel 80 ml container, and 3.99 g of the titanium dioxide fine particles were dispersed in 30 ml of strongly alkaline electrolyzed water. .. Two batches of this were prepared, 940 ml of strong alkaline electrolyzed water was added to 60 ml of these dispersions, and the mixture was dispersed with a wet attritor S type manufactured by Nippon Coke Industries, Ltd. Further, 1000 ml of strong alkaline electrolyzed water is added and dispersed by a wet bead mill SC type and MSC type manufactured by Nippon Coke Industries Co., Ltd. to obtain a cleaning agent in which the anatase-type titanium dioxide fine particles of the present invention are dispersed in the strong alkaline electrolyzed water. I was able to. This dispersion is transparent, and as a result of measuring the particle size distribution using the dynamic light scattering type particle size distribution measuring device NanotracWaveII-UT151 manufactured by Microtrac Bell Co., Ltd., the average particles approximated to the X-ray particle size of the catalog value. The diameter is shown. This cleaning agent has a titanium dioxide concentration of about 0.05 mol / L, and the cleaning agent No. Let it be 1.

≪実施例2≫
チタンアルコキシドの加水分解、重縮合反応によるアナターゼ型二酸化チタン微粒子分散液を作製した後、分散溶媒を置換して、本発明のアナターゼ型二酸化チタン微粒子が強アルカリ電解水に分散した洗浄剤を作製した。強アルカリ性電解水は、(株)ガイア製Win-G(登録商標)を用いて作製した、pH=13.0の強アルカリ性電解水を使用し、チタンアルコキシドは、和光純薬工業(株)製チタン(IV)テトラブトキシド一級品をそのまま用いた。また、チタン(IV)テトラブトキシドの滴下速度を制御するための希釈剤として和光純薬工業(株)製n-ブタノール一級品を用いた。
<< Example 2 >>
After preparing an anatase-type titanium dioxide fine particle dispersion by hydrolysis and polycondensation reaction of titanium alkoxide, the dispersion solvent was replaced to prepare a cleaning agent in which the anatase-type titanium dioxide fine particles of the present invention were dispersed in strong alkaline electrolyzed water. .. The strongly alkaline electrolyzed water used was a strongly alkaline electrolyzed water having a pH of 13.0 prepared by using Win-G (registered trademark) manufactured by Gaia Co., Ltd., and the titanium alkoxide was manufactured by Wako Pure Chemical Industries, Ltd. The first-class titanium (IV) tetrabutoxide was used as it was. Further, as a diluent for controlling the dropping rate of titanium (IV) tetrabutoxide, a first-class n-butanol product manufactured by Wako Pure Chemical Industries, Ltd. was used.

図2に示すように、マグネチックスターラー、冷却器、定量滴下ポンプを備えたフラスコ合成装置をオイルバス内に設置し、強アルカリ電解水130gを投入し、約25℃の室温に保った。チタン(IV)テトラブトキシド46.4gをn-ブタノール20gで希釈し、定量滴下ポンプを用い、1ml/minの速度で滴下した。滴下が完了した後、フラスコ合成装置を100℃にまで昇温し、12時間反応を続けた。その結果、強アルカリ電解水/n-ブタノール混合溶媒のアナターゼ型二酸化チタン微粒子分散液を作製することができた。アナターゼ型二酸化チタン微粒子の粒子径は、マイクロトラック・ベル(株)製動的光散乱式粒子径分布測定装置NanotracWaveII-UT151を用いて粒度分布を測定した結果、メイジアン径=32nmであった。結晶型は、上記分散液からサンプリングした電子顕微鏡観察における電子線回折によりアナターゼ型であることを確認した。 As shown in FIG. 2, a flask synthesizer equipped with a magnetic stirrer, a cooler, and a metering drip pump was installed in an oil bath, 130 g of strong alkaline electrolyzed water was added, and the temperature was maintained at about 25 ° C. at room temperature. 46.4 g of titanium (IV) tetrabutoxide was diluted with 20 g of n-butanol and added dropwise at a rate of 1 ml / min using a metered dose pump. After the dropping was completed, the temperature of the flask synthesizer was raised to 100 ° C., and the reaction was continued for 12 hours. As a result, it was possible to prepare an anatase-type titanium dioxide fine particle dispersion of a strong alkaline electrolyzed water / n-butanol mixed solvent. The particle size of the anatase-type titanium dioxide fine particles was as a result of measuring the particle size distribution using a dynamic light scattering type particle size distribution measuring device NanotracWaveII-UT151 manufactured by Microtrac Bell Co., Ltd., and the particle size distribution was 32 nm. The crystal type was confirmed to be an anatase type by electron diffraction in electron microscope observation sampled from the above dispersion.

このようにして得られた二酸化チタン微粒子分散液の混合溶媒の95%を除去し、上記強アルカリ電解水2700gを加えて、本発明のアナターゼ型二酸化チタン微粒子が強アルカリ電解水に分散した洗浄剤を得ることができた。この洗浄剤は、二酸化チタン濃度が約0.05mol/Lで、洗浄剤No.2とする。 A detergent in which 95% of the mixed solvent of the titanium dioxide fine particle dispersion thus obtained is removed, 2700 g of the above-mentioned strong alkaline electrolyzed water is added, and the anatase-type titanium dioxide fine particles of the present invention are dispersed in the strong alkaline electrolyzed water. I was able to get. This cleaning agent has a titanium dioxide concentration of about 0.05 mol / L, and the cleaning agent No. Let it be 2.

≪実施例3≫
四塩化チタンの加水分解、重縮合反応によるアナターゼ型二酸化チタン微粒子分散液を作製した後、分散溶媒を置換して、本発明のアナターゼ型二酸化チタン微粒子が強アルカリ電解水に分散した洗浄剤を作製した。強アルカリ性電解水は、(株)ガイア製Win-G(登録商標)を用いて作製した、pH=13.0の強アルカリ性電解水を使用し、四塩化チタンは、和光純薬工業(株)製四塩化チタン一級品をそのまま用いた。また、四塩化チタンの滴下速度を制御するための希釈剤として和光純薬工業(株)製n-ブタノール一級品を用いた。
<< Example 3 >>
After preparing an anatase-type titanium dioxide fine particle dispersion by hydrolysis and polycondensation reaction of titanium tetrachloride, the dispersion solvent was replaced to prepare a cleaning agent in which the anatase-type titanium dioxide fine particles of the present invention were dispersed in strong alkaline electrolyzed water. did. The strongly alkaline electrolyzed water used was a strongly alkaline electrolyzed water having a pH of 13.0 prepared by using Win-G (registered trademark) manufactured by Gaia Co., Ltd., and titanium tetrachloride was produced by Wako Pure Chemical Industries, Ltd. The first-class titanium tetrachloride first-class product was used as it was. In addition, a first-class n-butanol product manufactured by Wako Pure Chemical Industries, Ltd. was used as a diluent for controlling the dropping rate of titanium tetrachloride.

図2に示すように、マグネチックスターラー、冷却器、定量滴下ポンプを備えたフラスコ合成装置をオイルバス内に設置し、強アルカリ電解水130gを投入し、約25℃の室温に保った。14.2gをn-ブタノール20gで希釈し、定量滴下ポンプを用い、1ml/minの速度で滴下した。滴下が完了した後、フラスコ合成装置を100℃にまで昇温し、12時間反応を続けた。その結果、強アルカリ電解水/n-ブタノール混合溶媒のアナターゼ型二酸化チタン微粒子分散液を作製することができた。アナターゼ型二酸化チタン微粒子の粒子径は、マイクロトラック・ベル(株)製動的光散乱式粒子径分布測定装置NanotracWaveII-UT151を用いて粒度分布を測定した結果、メイジアン径=24nmであった。結晶型は、上記分散液からサンプリングした電子顕微鏡観察における電子線回折によりアナターゼ型であることを確認した。 As shown in FIG. 2, a flask synthesizer equipped with a magnetic stirrer, a cooler, and a metering drip pump was installed in an oil bath, 130 g of strong alkaline electrolyzed water was added, and the temperature was maintained at about 25 ° C. at room temperature. 14.2 g was diluted with 20 g of n-butanol and added dropwise at a rate of 1 ml / min using a quantitative dropping pump. After the dropping was completed, the temperature of the flask synthesizer was raised to 100 ° C., and the reaction was continued for 12 hours. As a result, it was possible to prepare an anatase-type titanium dioxide fine particle dispersion of a strong alkaline electrolyzed water / n-butanol mixed solvent. The particle size of the anatase-type titanium dioxide fine particles was as a result of measuring the particle size distribution using a dynamic light scattering type particle size distribution measuring device Nanotrac WaveII-UT151 manufactured by Microtrac Bell Co., Ltd., and the particle size distribution was 24 nm. The crystal type was confirmed to be an anatase type by electron diffraction in electron microscope observation sampled from the above dispersion.

このようにして得られた二酸化チタン微粒子分散液の混合溶媒の95%を除去し、上記強アルカリ電解水1490gを加えて、本発明のアナターゼ型二酸化チタン微粒子が強アルカリ電解水に分散した洗浄剤を得ることができた。この洗浄剤は、二酸化チタン濃度が約0.05mol/Lで、洗浄剤No.3とする。 A detergent in which 95% of the mixed solvent of the titanium dioxide fine particle dispersion thus obtained is removed, 1490 g of the above-mentioned strong alkaline electrolyzed water is added, and the anatase-type titanium dioxide fine particles of the present invention are dispersed in the strong alkaline electrolyzed water. I was able to get. This cleaning agent has a titanium dioxide concentration of about 0.05 mol / L, and the cleaning agent No. Let it be 3.

≪性能評価1≫洗浄力評価
JIS3362:2008家庭用合成洗剤試験方法に準じ、25℃に温度調節された室内において評価した。牛脂及び大豆油を1:1(体積比)で混合した油脂20g、モノオレイン0.25g、及び、オイルレッド0.1gをクロロホルム60mlに溶解した汚垢浴を調整し、スライドグラス6枚一組で浸漬し、ほぼ一定量の汚垢を付着させ、1時間以上風乾して試験片とした。洗浄は、pH=13の強アルカリ性電解水単体、洗浄剤No.1、洗浄剤No.2、及び、洗浄剤No.3を、マグネチックスターラーを備えたリーナツ形容器にいれ、回転数500rpmで撹拌しながら、一組の試験片を5分浸漬して行い、乾燥させた。このような試験の各工程におけるスライドグラスの重量変化により洗浄力を5段階評価したところ、いずれも十分な洗浄力を示す5の評価が得られ、いずれも優れた洗浄力があることが分かった。
<< Performance Evaluation 1 >> Detergency Evaluation JIS3362: 2008 Evaluation was made in a room where the temperature was controlled to 25 ° C. according to the household synthetic detergent test method. A set of 6 slide glasses was prepared by dissolving 20 g of fat and oil mixed with beef tallow and soybean oil in a ratio of 1: 1 (volume ratio), 0.25 g of monoolein, and 0.1 g of oil red in 60 ml of chloroform. It was soaked in, and a substantially constant amount of dirt was attached, and the test piece was air-dried for 1 hour or more to prepare a test piece. For cleaning, use a simple substance of strongly alkaline electrolyzed water with pH = 13, and use detergent No. 1. Detergent No. 2. And the cleaning agent No. 3 was placed in a linatsu-shaped container equipped with a magnetic stirrer, and a set of test pieces was immersed for 5 minutes while stirring at a rotation speed of 500 rpm, and dried. When the detergency was evaluated on a 5-point scale based on the change in the weight of the slide glass in each step of such a test, 5 evaluations showing sufficient detergency were obtained, and it was found that all had excellent detergency. ..

≪性能評価2≫アナターゼ型二酸化チタン微粒子の自己洗浄性能評価
JIS1703-1:2007サインセラミックス-光触媒材料のセルフクリーニング性能試験方法-第1部:水接触角の測定に準じ、20℃、65%に温湿度が調節された室内において評価した。10cm×10cmのガラス板をpH=13の強アルカリ性電解水単体、洗浄剤No.1、洗浄剤No.2、及び、洗浄剤No.3に30分浸漬した後風乾しした。そして、これらのガラス板を、オレイン酸のヘプタン溶液(0.5vol%)を用いてディップコーティング(引き上げ速度:60cm/min)した後、70℃で15分乾燥させて試験片とした。図3に示したように、この試験片に微小な水滴を載せ、放射照度2.0mW/cmの紫外線を照射して、水滴の形状の変化を観察した。48時間後、強アルカリ性電解水で処理したガラス板上の水滴の形状変化は認められなかったのに対し、洗浄剤No.1、洗浄剤No.2、及び、洗浄剤No.3で処理したガラス板の水滴はガラス板に濡れるように形状が変化した。このことから、アナターゼ型二酸化チタン微粒子を強アルカリ性電解水に分散した洗浄剤を用いて洗浄された被洗浄物には、アナターゼ型二酸化チタン微粒子が付着し、洗浄後被洗浄物に自己洗浄機能が付与されることが明らかとなった。
<< Performance evaluation 2 >> Self-cleaning performance evaluation of anatase-type titanium dioxide fine particles JIS1703-1: 2007 Sign ceramics-Self-cleaning performance test method for photocatalytic materials-Part 1: Water contact angle measurement, 20 ° C, 65% The evaluation was made in a room where the temperature and humidity were controlled. A 10 cm × 10 cm glass plate was used as a simple substance of strongly alkaline electrolyzed water having a pH of 13, and the cleaning agent No. 1. Detergent No. 2. And the cleaning agent No. After soaking in 3 for 30 minutes, it was air-dried. Then, these glass plates were dip-coated (pulling speed: 60 cm / min) with a heptane solution (0.5 vol%) of oleic acid, and then dried at 70 ° C. for 15 minutes to prepare test pieces. As shown in FIG. 3, minute water droplets were placed on this test piece, irradiated with ultraviolet rays having an irradiance of 2.0 mW / cm 2 , and changes in the shape of the water droplets were observed. After 48 hours, no change in the shape of the water droplets on the glass plate treated with strongly alkaline electrolyzed water was observed, whereas the detergent No. 1. Detergent No. 2. And the cleaning agent No. The shape of the water droplets on the glass plate treated in 3 changed so as to get wet with the glass plate. For this reason, anatase-type titanium dioxide fine particles adhere to the object to be cleaned using a cleaning agent in which anatase-type titanium dioxide fine particles are dispersed in strong alkaline electrolyzed water, and the object to be cleaned has a self-cleaning function after cleaning. It became clear that it would be granted.

本発明は、製造業、建設業、情報通信業、サービス業、及び、その他生活関連業等、あらゆる産業分野における、製造機械、中間製品、製品等から汚染を除去する優れた洗浄力と、殺菌・滅菌・消毒・消臭機能を備えた安全性の高い洗浄剤であって、その洗浄剤で洗浄された被洗浄物表面に抗菌性、消臭性、及び、自己洗浄機能を付与することができる洗浄剤であるが、用途はこれらに限定されるものではない。例えば、食品加工業では、食材原料殺菌、容器殺菌、冷却水、作業衣除菌等、サービス業では、食材殺菌、食器殺菌、生鮮食品乾燥防止、浴湯殺菌、客室除菌等、農林水産業では、種子除菌、果樹除菌、魚介類殺菌、養魚場除菌等、保健衛生業では、厨房衛生管理、トイレ清掃、手指除菌、浴室除菌、介護器具除菌等、更に、水処理業では、上水殺菌、放流廃水殺菌、ビル空気除菌除臭等にも適用することができる。 The present invention has excellent detergency and sterilization to remove contamination from manufacturing machines, intermediate products, products, etc. in all industrial fields such as manufacturing industry, construction industry, information and communication industry, service industry, and other life-related industries. -A highly safe cleaning agent with sterility, disinfection, and deodorizing functions, and it is possible to impart antibacterial, deodorizing, and self-cleaning functions to the surface of the object to be cleaned that has been cleaned with the cleaning agent. It is a cleaning agent that can be used, but its use is not limited to these. For example, in the food processing industry, food material sterilization, container sterilization, cooling water, work clothes sterilization, etc., in the service industry, food material sterilization, tableware sterilization, fresh food drying prevention, bath water sterilization, guest room sterilization, etc. In the health and hygiene industry, kitchen hygiene management, toilet cleaning, hand sterilization, bathroom sterilization, nursing equipment sterilization, etc., and water treatment, etc. In the industry, it can also be applied to clean water sterilization, discharged waste water sterilization, building air sterilization and deodorization.

1-1 セパラブルフラスコ上
1-2 セパラブルフラスコ下
2 クーラー
3 マグネチックスターラー
4 オイルバス
5 ヒーター
6 温度コントローラー
7 定量滴下ポンプ
8 反応液
9 滴下試料
10 試験片
11 オレイン酸
12 水
1-1 Above separable flask 1-2 Below separable flask 2 Cooler 3 Magnetic stirrer 4 Oil bath 5 Heater 6 Temperature controller 7 Quantitative dripping pump 8 Reaction solution 9 Dripping sample 10 Specimen 11 Oleic acid 12 Water

Claims (6)

pHが11~14の強アルカリ電解水中において、
チタンアルコキシドを加水分解、重縮合反応によってアナターゼ型二酸化チタン微粒子を生成することを特徴とするアナターゼ型二酸化チタン微粒子分散液の製造方法。
In strongly alkaline electrolyzed water having a pH of 11-14,
A method for producing an anatase-type titanium dioxide fine particle dispersion, which comprises producing anatase-type titanium dioxide fine particles by hydrolysis of titanium alkoxide and a polycondensation reaction.
pHが11~14の強アルカリ電解水中において、四塩化チタンを加水分解、重縮合反応によってアナターゼ型二酸化チタン微粒子を生成することを特徴とするアナターゼ型二酸化チタン微粒子分散液の製造方法。 A method for producing an anatase-type titanium dioxide fine particle dispersion, which comprises hydrolyzing titanium tetrachloride and producing anatase-type titanium dioxide fine particles by a polycondensation reaction in strongly alkaline electrolytic water having a pH of 11 to 14. pHが11~14の強アルカリ電解水中において、
チタンアルコキシドを加水分解、重縮合反応によってアナターゼ型二酸化チタン微粒子を生成する第1の工程と、
前記第1の工程で生成した前記アナターゼ型二酸化チタン微粒子の分散液の溶媒を90%以上除去する第2の工程と、
前記第2の工程で得られた分散液を前記強アルカリ性電解水で希釈する第3の工程と、
からなることを特徴とする洗浄剤の製造方法。
In strongly alkaline electrolyzed water having a pH of 11-14,
The first step of hydrolyzing titanium alkoxide and producing anatase-type titanium dioxide fine particles by polycondensation reaction,
The second step of removing 90% or more of the solvent of the dispersion liquid of the anatase-type titanium dioxide fine particles produced in the first step, and the second step.
The third step of diluting the dispersion liquid obtained in the second step with the strongly alkaline electrolyzed water, and the third step.
A method for producing a cleaning agent, which comprises.
pHが11~14の強アルカリ電解水中において、
四塩化チタンを加水分解、重縮合反応によってアナターゼ型二酸化チタン微粒子を生成する第1の工程と、
前記第1の工程で生成した前記アナターゼ型二酸化チタン微粒子の分散液の溶媒を90%以上除去する第2の工程と、
前記第2の工程で得られた分散液を前記強アルカリ性電解水で希釈する第3の工程と、
から成ることを特徴とする洗浄剤の製造方法。
In strongly alkaline electrolyzed water having a pH of 11-14,
The first step of hydrolyzing titanium tetrachloride and producing anatase-type titanium dioxide fine particles by polycondensation reaction,
The second step of removing 90% or more of the solvent of the dispersion liquid of the anatase-type titanium dioxide fine particles produced in the first step, and the second step.
The third step of diluting the dispersion liquid obtained in the second step with the strongly alkaline electrolyzed water, and the third step.
A method for producing a cleaning agent, which comprises.
前記強アルカリ性電解水が、炭酸カリウム、炭酸ナトリウム、メタ珪酸ナトリウム、又は、オルト珪酸ナトリウムから選択された少なくとも一種を電解質とする電解水の電気分解によって生成された強アルカリ性電解水であることを特徴とする請求項又はに記載のアナターゼ型二酸化チタン微粒子分散液の製造方法。 The strong alkaline electrolyzed water is characterized by being strongly alkaline electrolyzed water produced by electrolysis of electrolyzed water having at least one selected from potassium carbonate, sodium carbonate, sodium metasilicate, or sodium orthosilicate as an electrolyte. The method for producing an anatase-type titanium dioxide fine particle dispersion according to claim 1 or 2 . 前記強アルカリ性電解水が、炭酸カリウム、炭酸ナトリウム、メタ珪酸ナトリウム、又は、オルト珪酸ナトリウムから選択された少なくとも一種を電解質とする電解水の電気分解によって生成された強アルカリ性電解水であることを特徴とする請求項又はに記載の洗浄剤の製造方法。 The strong alkaline electrolyzed water is characterized by being strongly alkaline electrolyzed water produced by electrolysis of electrolyzed water having at least one selected from potassium carbonate, sodium carbonate, sodium metasilicate, or sodium orthosilicate as an electrolyte. The method for producing a cleaning agent according to claim 3 or 4 .
JP2017185258A 2017-09-26 2017-09-26 Detergent with antibacterial, deodorant, and self-cleaning properties and its manufacturing method Active JP6999898B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017185258A JP6999898B2 (en) 2017-09-26 2017-09-26 Detergent with antibacterial, deodorant, and self-cleaning properties and its manufacturing method
JP2021203738A JP2022046555A (en) 2017-09-26 2021-12-15 Detergent including antibacterial property, deodorant property and self washing property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185258A JP6999898B2 (en) 2017-09-26 2017-09-26 Detergent with antibacterial, deodorant, and self-cleaning properties and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021203738A Division JP2022046555A (en) 2017-09-26 2021-12-15 Detergent including antibacterial property, deodorant property and self washing property

Publications (2)

Publication Number Publication Date
JP2019059642A JP2019059642A (en) 2019-04-18
JP6999898B2 true JP6999898B2 (en) 2022-02-10

Family

ID=66176160

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017185258A Active JP6999898B2 (en) 2017-09-26 2017-09-26 Detergent with antibacterial, deodorant, and self-cleaning properties and its manufacturing method
JP2021203738A Pending JP2022046555A (en) 2017-09-26 2021-12-15 Detergent including antibacterial property, deodorant property and self washing property

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021203738A Pending JP2022046555A (en) 2017-09-26 2021-12-15 Detergent including antibacterial property, deodorant property and self washing property

Country Status (1)

Country Link
JP (2) JP6999898B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11819580B2 (en) 2016-10-18 2023-11-21 PurWorld Technologies LLC Method of chemically disinfecting a vehicle
JP6880300B1 (en) * 2020-10-25 2021-06-02 久美 田中 Laundry detergent / disinfectant set, laundry detergent, disinfectant for laundry

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038054A (en) 2000-05-16 2002-02-06 Kansai Paint Co Ltd Coating agent for forming titanium oxide film, method for forming titanium oxide film and photocatalyst
JP2002326910A (en) 2001-02-27 2002-11-15 Kankyo Device Kenkyusho:Kk Bleaching composition and method for bleaching tooth
JP2002338417A (en) 2001-05-14 2002-11-27 Takayuki Yoshikawa Aqueous solution of titanium oxide in electrolytic water having photo catalytic function for processing product
JP2003176223A (en) 2001-12-13 2003-06-24 Nissan Chem Ind Ltd Coating method
JP2004350834A (en) 2003-05-28 2004-12-16 Yuichiro Irie Toothbrush with lighting, lighting device for toothbrush, toothbrush apparatus and electric toothbrush
JP2007161977A (en) 2005-12-16 2007-06-28 Chemicoat & Co Ltd Detergent composition
JP2009291760A (en) 2008-06-09 2009-12-17 Rastaabijon:Kk Cleaning water, and method and device for manufacturing cleaning water
JP2013203781A (en) 2012-03-27 2013-10-07 Miike Iron Works Co Ltd Method for producing water-oil mixed fuel, water-oil mixed fuel and production apparatus
JP2016074851A (en) 2014-10-08 2016-05-12 オリンパス株式会社 Rinse water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923682A (en) * 1989-03-30 1990-05-08 Kemira, Inc. Preparation of pure titanium dioxide with anatase crystal structure from titanium oxychloride solution

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038054A (en) 2000-05-16 2002-02-06 Kansai Paint Co Ltd Coating agent for forming titanium oxide film, method for forming titanium oxide film and photocatalyst
JP2002326910A (en) 2001-02-27 2002-11-15 Kankyo Device Kenkyusho:Kk Bleaching composition and method for bleaching tooth
JP2002338417A (en) 2001-05-14 2002-11-27 Takayuki Yoshikawa Aqueous solution of titanium oxide in electrolytic water having photo catalytic function for processing product
JP2003176223A (en) 2001-12-13 2003-06-24 Nissan Chem Ind Ltd Coating method
JP2004350834A (en) 2003-05-28 2004-12-16 Yuichiro Irie Toothbrush with lighting, lighting device for toothbrush, toothbrush apparatus and electric toothbrush
JP2007161977A (en) 2005-12-16 2007-06-28 Chemicoat & Co Ltd Detergent composition
JP2009291760A (en) 2008-06-09 2009-12-17 Rastaabijon:Kk Cleaning water, and method and device for manufacturing cleaning water
JP2013203781A (en) 2012-03-27 2013-10-07 Miike Iron Works Co Ltd Method for producing water-oil mixed fuel, water-oil mixed fuel and production apparatus
JP2016074851A (en) 2014-10-08 2016-05-12 オリンパス株式会社 Rinse water

Also Published As

Publication number Publication date
JP2019059642A (en) 2019-04-18
JP2022046555A (en) 2022-03-23

Similar Documents

Publication Publication Date Title
Guo et al. The antibacterial activity of Ta-doped ZnO nanoparticles
Rodríguez-González et al. An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes
Amininezhad et al. The antibacterial activity of SnO2 nanoparticles against Escherichia coli and Staphylococcus aureus
Yadav et al. Developments in photocatalytic antibacterial activity of nano TiO 2: A review
JP2022046555A (en) Detergent including antibacterial property, deodorant property and self washing property
Neppolian et al. Graphene oxide based Pt–TiO2 photocatalyst: ultrasound assisted synthesis, characterization and catalytic efficiency
Hu et al. Efficient destruction of pathogenic bacteria with NiO/SrBi2O4 under visible light irradiation
Fu et al. Anatase TiO2 nanocomposites for antimicrobial coatings
Zhu et al. Enhanced photocatalytic disinfection of E. coli 8099 using Ag/BiOI composite under visible light irradiation
Wu et al. Visible-light-induced bactericidal activity of titanium dioxide codoped with nitrogen and silver
Peiris et al. TiO2 nanoparticles from baker’s yeast: A potent antimicrobial
KR101935499B1 (en) Composition and method to form a self decontaminating surface
Shang et al. Effective photocatalytic disinfection of E. coli and S. aureus using polythiophene/MnO2 nanocomposite photocatalyst under solar light irradiation
JP2008080253A (en) Photocatalyst titanium oxide sol and coating composition and component using the same
Khan et al. Synthesis of Silver‐Doped Titanium TiO2 Powder‐Coated Surfaces and Its Ability to Inactivate Pseudomonas aeruginosa and Bacillus subtilis
Okab et al. Synergistic behavior between the plasmonic Ag metal and the mesoporous β-Bi2O3/SiO2 heterostructure for the photocatalytic destruction of bacterial cells under simulated sunlight illumination: Schottky junction electron-transfer pathway
CN103752298A (en) Nanoscale photocatalyst and preparation method thereof
Mohagheghian et al. Enhanced photocatalytic activity of Fe3O4-WO3-APTES for azo dye removal from aqueous solutions in the presence of visible irradiation
US9757715B2 (en) Composite photocatalyst, manufacturing method thereof, kits containing composite photocatalyst, and bactericide photocatalyst
CN103861573A (en) Preparation method for photocatalyst hydrosol
Sirimahachai et al. Evaluation of bactericidal activity of TiO 2 photocatalysts: a comparative study of laboratory-made and commercial TiO 2 samples.
Zhu et al. Cellular-level insight into biointerface: From surface charge modulation to boosted photocatalytic oxidative disinfection
Behin et al. Ultrasound‐Assisted Synthesis of Cu and Cu/Ni Nanoparticles on NaP Zeolite Support as Antibacterial Agents
Ikram et al. Facile synthesis of La-and chitosan-doped CaO nanoparticles and their evaluation for catalytic and antimicrobial potential with molecular docking studies
Lia et al. Effect of the surface morphology of TiO2 nanotubes on photocatalytic efficacy using electron-transfer-based assays and antimicrobial tests

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6999898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150