JP6996911B2 - Oil-water separation filter - Google Patents

Oil-water separation filter Download PDF

Info

Publication number
JP6996911B2
JP6996911B2 JP2017170852A JP2017170852A JP6996911B2 JP 6996911 B2 JP6996911 B2 JP 6996911B2 JP 2017170852 A JP2017170852 A JP 2017170852A JP 2017170852 A JP2017170852 A JP 2017170852A JP 6996911 B2 JP6996911 B2 JP 6996911B2
Authority
JP
Japan
Prior art keywords
oil
water
water separation
woven fabric
separation filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017170852A
Other languages
Japanese (ja)
Other versions
JP2019042707A (en
Inventor
真也 白石
博史 腰山
修 坂谷
大輔 ▲高▼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jemco Inc filed Critical Jemco Inc
Priority to JP2017170852A priority Critical patent/JP6996911B2/en
Publication of JP2019042707A publication Critical patent/JP2019042707A/en
Application granted granted Critical
Publication of JP6996911B2 publication Critical patent/JP6996911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、簡易な構成で、油がエマルジョン化した乳化油又は水溶性油を水と油に分離可能な油水分離フィルターに関する。更に詳しくは、撥水性及び撥油性(以下、撥水撥油性ということもある。)を有する油水分離膜が不織布の繊維表面に形成された油水分離フィルターに関するものである。 The present invention relates to an oil-water separation filter capable of separating emulsified oil or water-soluble oil into water and oil with a simple structure. More specifically, the present invention relates to an oil-water separation filter in which an oil-water separation film having water-repellent and oil-repellent properties (hereinafter, also referred to as water-repellent oil-repellent properties) is formed on the fiber surface of a non-woven fabric.

一般に、水と油とを含む混合液体は、その油水の混合状態に応じて、水面に油が浮上する浮上油と、油の粒子が水中に浮遊している分散油と、油と水が混ざりエマルジョン化している乳化油又は水溶性油とに分類される。 Generally, a mixed liquid containing water and oil is a mixture of floating oil in which oil floats on the surface of the water, dispersed oil in which oil particles are suspended in water, and oil and water, depending on the mixed state of the oil and water. It is classified as an emulsified emulsified oil or a water-soluble oil.

本出願人は、水と油とを含む混合液体が流入する一面と、この一面に対向する他面との間を貫通する多数の気孔を備えた不織布からなる多孔質基材を有する油水分離多孔質体及びこれを備えた油水分離フィルターを提案した(特許文献1参照。)。この油水分離多孔質体は、気孔の開口径が0.1μm以上、180μm以下であり、気孔の表面に油水分離体が形成され、油水分離体が、撥油性付与基及び親水性付与基(以下、親水撥油性ということもある。)を有するフッ素系化合物を含む油水分離材を備える。 Applicants have an oil-water separation porous having a porous substrate made of a non-woven fabric having a large number of pores penetrating between one surface into which a mixed liquid containing water and oil flows and the other surface facing the other surface. A texture and an oil-water separation filter equipped with the structure have been proposed (see Patent Document 1). In this oil-water-separated porous body, the pore opening diameter is 0.1 μm or more and 180 μm or less, an oil-water separator is formed on the surface of the pores, and the oil-water separator is an oil-repellent imparting group and a hydrophilic imparting group (hereinafter,). , It is provided with an oil-water separating material containing a fluorine-based compound having hydrophilicity and oil repellency.

特開2016-64405号公報(請求項1、請求項7、段落[0020]、段落[0074])JP-A-2016-64405 (Claim 1, Claim 7, paragraph [0020], paragraph [0074]) 特開2000-202247号公報(請求項6、段落[0028]、図5)JP-A-2000-20247 (Claim 6, paragraph [0028], FIG. 5)

水と油とを含む混合液体が上述した浮上油や分散油、即ち非水溶性油である場合、図4(a)に示すように、非水溶性油1の油粒子1aの表面はCH3等のアルキル基1bで覆われている。このアルキル基1bは水との親和力1cがなく非親水性であるため、非水溶性油1を放置すると、油粒子1aは水1cより比重が小さいため、その表面張力を下げようとして、油粒子1a同士が結合しながら、浮上する。そのため、特許文献1に示される親水撥油性を有する油水分離体を備えた油水分離フィルターでは、混合液体が非水溶性油の場合には、この混合液体を水分と油分に分離して濾過することが可能である。 When the mixed liquid containing water and oil is the above-mentioned floating oil or dispersed oil, that is, a water-insoluble oil, the surface of the oil particles 1a of the water-insoluble oil 1 is CH 3 as shown in FIG. 4 (a). Etc. are covered with an alkyl group 1b. Since this alkyl group 1b has no affinity 1c with water and is non-hydrophilic, if the water-insoluble oil 1 is left unattended, the oil particles 1a have a smaller specific gravity than the water 1c. As 1a joins each other, they ascend. Therefore, in the oil-water separation filter provided with the oil-water separator having hydrophilic and oil-repellent properties shown in Patent Document 1, when the mixed liquid is a water-insoluble oil, the mixed liquid is separated into water and oil and filtered. Is possible.

一方、混合液体が油と水が混ざりエマルジョン化している乳化油又は水溶性油である場合、図4(b)に示すように、水溶性油2の油粒子2aの表面には水酸基2bで覆われている。この水酸基2bは水2cとの親和力が高く、水溶性油2を放置しても油粒子2aは水中で安定して分散している。特許文献1に示される油水分離フィルターでは、油水分離体が親水撥油性を有するフッ素系化合物であるため、水中で油粒子が安定して分散している水溶性油は、その水酸基で覆われた油粒子が親水性付与基を有する油水分離体で化学的に阻止されずに、不織布等の多孔質基材を通過してしまい、混合液体を水分と油分に分離できない課題があった。このため中空糸膜を用いた油水分離装置により、乳化油又は水性油を水と油に分離する技術が知られている(例えば、特許文献2参照。)が、こうした油水分離装置は構造が複雑である課題があった。 On the other hand, when the mixed liquid is an emulsified oil or a water-soluble oil in which oil and water are mixed and emulsified, the surface of the oil particles 2a of the water-soluble oil 2 is covered with a hydroxyl group 2b as shown in FIG. 4 (b). It has been. The hydroxyl group 2b has a high affinity with water 2c, and the oil particles 2a are stably dispersed in water even if the water-soluble oil 2 is left unattended. In the oil-water separation filter shown in Patent Document 1, since the oil-water separator is a fluorine-based compound having hydrophilic oil repellency, the water-soluble oil in which oil particles are stably dispersed in water is covered with its hydroxyl group. There is a problem that the oil particles pass through a porous substrate such as a non-woven fabric without being chemically blocked by the oil-water separator having a hydrophilicity-imparting group, and the mixed liquid cannot be separated into water and oil. Therefore, a technique for separating emulsified oil or water-based oil into water and oil by an oil-water separation device using a hollow fiber membrane is known (see, for example, Patent Document 2), but such an oil-water separation device has a complicated structure. There was a problem.

本発明の目的は、簡易な構成で、油がエマルジョン化した乳化油又は水溶性油を水と油に分離可能な油水分離フィルターを提供することにある。 An object of the present invention is to provide an oil-water separation filter capable of separating an emulsified oil or a water-soluble oil into water and oil with a simple structure.

本発明者らは、油水分離フィルターの不織布の繊維表面に形成する油水分離膜に撥水撥油性を有するフッ素系化合物(フッ素含有シラン)を含ませることにより、不織布の繊維表面が化学的に水溶性油の油粒子を弾かせ、かつ油水分離膜に水酸基を持つ加水分解物を主成分として用いることで不織布に通水性を保持し、油水分離フィルターの通気度を所定の値にすることにより、不織布の気孔を小さくして物理的に水溶性油の油粒子の通過を阻止するようにして、本発明に到達した。 By impregnating the oil-water separation membrane formed on the fiber surface of the non-woven fabric of the oil-water separation filter with a fluorine-based compound (fluorine-containing silane) having water- and oil-repellent properties, the fiber surface of the non-woven fabric is chemically water-soluble. By repelling oil particles of sex oil and using a hydrolyzate having a hydroxyl group in the oil-water separation membrane as the main component, the non-woven fabric retains water permeability and the air permeability of the oil-water separation filter is set to a predetermined value. As a result, the present invention was reached by reducing the pores of the nonwoven fabric to physically prevent the passage of oil particles of the water-soluble oil.

本発明の第1の観点は、水と油とを含む混合液体が流入する一面と、この一面に対向する他面との間を貫通する多数の気孔が繊維間に形成された不織布を含む油水分離フィルターであって、前記繊維表面に油水分離膜が前記不織布1m2当り0.1~30gの割合で形成され、前記油水分離膜は、ケイ素アルコキシドと、エポキシ基含有シランと、撥水性及び撥油性の双方の機能を有するフッ素含有シランとの加水分解物により形成され、前記フッ素含有シランは、前記加水分解物中、0.01~10質量%の割合で含まれ、前記油水分離フィルターの通気度が0.05~10ml/cm2/秒であって、前記フッ素含有シランは、下記の一般式(1)で示されるペルフルオロアミン構造を含むことを特徴とする油水分離フィルターである。 The first aspect of the present invention is oil-water containing a non-woven fabric in which a large number of pores penetrating between one surface into which a mixed liquid containing water and oil flows and the other surface facing the other surface are formed between fibers. In the separation filter, an oil-water separation film is formed on the surface of the fiber at a ratio of 0.1 to 30 g per 1 m 2 of the nonwoven fabric, and the oil-water separation film contains silicon alkoxide, epoxy group-containing silane, water repellency and water repellency. It is formed by a hydrolyzate with a fluorine-containing silane having both oily functions, and the fluorine-containing silane is contained in the hydrolyzate at a ratio of 0.01 to 10% by mass, and the oil-water separation filter is used. The fluorine-containing silane is an oil-water separation filter characterized by having a permeability of 0.05 to 10 ml / cm 2 / sec and containing a perfluoroamine structure represented by the following general formula (1).

Figure 0006996911000001
Figure 0006996911000001

上記式(1)中、m及びnは、それぞれ同一又は互いに異なる1~6の整数である。また、Rf1は、炭素数1~6のペルフルオロアルキレン基であって、直鎖状又は分枝状であってもよい。また上記式(1)中、Xは、炭素数2~10の炭化水素基であって、エーテル結合、CO-NH結合及びO-CO-NH結合から選択される1種以上の結合を含んでいてもよい。 In the above formula (1), m and n are integers of 1 to 6 that are the same or different from each other. Further, Rf 1 is a perfluoroalkylene group having 1 to 6 carbon atoms, and may be linear or branched. Further, in the above formula (1), X is a hydrocarbon group having 2 to 10 carbon atoms and contains one or more bonds selected from an ether bond, a CO-NH bond and an O-CO-NH bond. You may.

本発明の第2の観点は、第1の観点に基づく発明であって、前記加水分解物は、更に炭素数2~7のアルキル基成分を0.5~20質量%含む油水分離フィルターである。 The second aspect of the present invention is the invention based on the first aspect, wherein the hydrolyzate further contains 0.5 to 20% by mass of an alkyl group component having 2 to 7 carbon atoms. Is.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、前記不織布が単一層により構成されるか、又は複数層の積層体により構成される油水分離フィルターである。 A third aspect of the present invention is an invention based on the first or second aspect, which is an oil-water separation filter in which the nonwoven fabric is composed of a single layer or a laminate of a plurality of layers.

本発明の第4の観点は、第1ないし第3の観点のうちいずれかの観点に基づく発明であって、前記不織布を構成する繊維がポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属からなる群より選ばれた1種又は2種以上の繊維である油水分離フィルターである。 The fourth aspect of the present invention is an invention based on any one of the first to third aspects, wherein the fibers constituting the nonwoven fabric are polyethylene terephthalate (PET), polypropylene (PP), glass, and alumina. An oil-water separation filter that is one or more fibers selected from the group consisting of carbon, cellulose, pulp, nylon and metal.

本発明の第5の観点は、第4の観点に基づく発明であって、前記水と油とを含む混合液体が流入する一面に相当する不織布を構成する繊維がガラス繊維である油水分離フィルターである。 A fifth aspect of the present invention is an invention based on the fourth aspect, wherein the fiber constituting the nonwoven fabric corresponding to one surface into which the mixed liquid containing water and oil flows is a glass fiber. be.

本発明の第1の観点の油水分離フィルターでは、繊維表面に油水分離膜が不織布1m2当り0.1~30gの割合で形成され、油水分離膜が、一般式(1)で示される撥水性及び撥油性の双方の機能を有するフッ素系化合物(以下、フッ素含有シランという。)を含むことから、また同時に油水分離フィルターの通気度を0.05~10ml/cm2/秒に規定して不織布の気孔を限定していることから、油水分離フィルター内に混合液体が浸入したときに、混合液体の油粒子が気孔の孔径より大きい場合には、物理的に混合液体の油粒子の通過を阻止する。そして混合液体の油粒子が気孔の孔径より僅かに小さい場合でも、不織布の繊維表面が化学的に水溶性油の油粒子を弾かせる。一方、ポリテトラフルオロエチレン等に代表される撥水撥油性を示す材料は、水酸基が無いため、不織布に通水性を付与することが困難であるが、本発明は、油水分離膜が水酸基を有している加水分解物を主成分としているため、不織布に通水性を付与することができる。この結果、混合液体が乳化油又は水溶性油であっても、油水分離フィルターに油が溜まり、水は油水分離フィルターを通過して、水と油に分離することができる。更に本発明の油水分離膜は、加水分解物を主成分として含むため、油水分離膜が不織布の繊維表面に強固に密着し耐久性がある。 In the oil-water separation filter according to the first aspect of the present invention, an oil-water separation film is formed on the fiber surface at a ratio of 0.1 to 30 g per 1 m 2 of the non-woven fabric, and the oil-water separation film is water-repellent represented by the general formula (1). Since it contains a fluorine-based compound having both oil-repellent and oil-repellent functions (hereinafter referred to as fluorine-containing silane), and at the same time, the air permeability of the oil-water separation filter is specified to be 0.05 to 10 ml / cm 2 / sec. Since the pores of the mixed liquid are limited, when the mixed liquid infiltrates into the oil-water separation filter, if the oil particles of the mixed liquid are larger than the pore diameter of the pores, the passage of the oil particles of the mixed liquid is physically blocked. do. The fiber surface of the non-woven fabric chemically repels the oil particles of the water-soluble oil even when the oil particles of the mixed liquid are slightly smaller than the pore diameter of the pores. On the other hand, since a material exhibiting water and oil repellency represented by polytetrafluoroethylene and the like does not have a hydroxyl group, it is difficult to impart water permeability to the nonwoven fabric. However, in the present invention, the oil-water separation membrane has a hydroxyl group. Since the main component is the hydrolyzed product, it is possible to impart water permeability to the non-woven fabric. As a result, even if the mixed liquid is an emulsified oil or a water-soluble oil, the oil collects in the oil-water separation filter, and the water can pass through the oil-water separation filter and be separated into water and oil. Further, since the oil-water separation membrane of the present invention contains a hydrolyzate as a main component, the oil-water separation membrane firmly adheres to the fiber surface of the non-woven fabric and is durable.

本発明の第2の観点の油水分離フィルターでは、油水分離膜に含まれるフッ素含有シランが、更に炭素数2~7のアルキル基成分を0.5~20質量%含むため、繊維との密着性が得られ、油水分離膜の厚さが均一になり、油水分離膜により一層優れた油水分離性能を付与することができる。 In the oil-water separation filter according to the second aspect of the present invention, the fluorine-containing silane contained in the oil-water separation membrane further contains an alkyl group component having 2 to 7 carbon atoms in an amount of 0.5 to 20% by mass, and therefore has good adhesion to fibers. The thickness of the oil-water separation membrane becomes uniform, and the oil-water separation membrane can impart even better oil-water separation performance.

本発明の第3の観点の油水分離フィルターでは、不織布が単一層により構成される場合には、簡単な構成の油水分離フィルターになり、不織布が複数層の積層体により構成される場合には、流入する混合液体の油分の含有割合、油粒子のサイズ等の性状に応じて各層を構成することができる。 The oil-water separation filter according to the third aspect of the present invention is an oil-water separation filter having a simple structure when the nonwoven fabric is composed of a single layer, and when the nonwoven fabric is composed of a multi-layer laminate, it becomes an oil-water separation filter. Each layer can be configured according to the properties such as the oil content ratio of the inflowing mixed liquid and the size of the oil particles.

本発明の第4の観点の油水分離フィルターでは、不織布を構成する繊維の材質を、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属から、流入する混合液体の油分の含有割合、油粒子のサイズ等の性状に応じて、或いは後述する油水分離膜を形成するための液組成物中のエポキシ基含有シラン(B)が加水分解してなる炭素数2~7のアルキル基成分の含有量に応じて、選択することができる。 In the oil-water separation filter according to the fourth aspect of the present invention, the material of the fiber constituting the non-woven fabric flows in from polyethylene terephthalate (PET), polypropylene (PP), glass, alumina, carbon, cellulose, pulp, nylon and metal. The number of carbon atoms obtained by hydrolysis of the polypropylene group-containing silane (B) in the liquid composition according to the oil content ratio of the mixed liquid, the size of the oil particles, etc., or in the liquid composition for forming the oil-water separation membrane described later. It can be selected according to the content of the alkyl group components of 2 to 7.

本発明の第5の観点の油水分離フィルターでは、水と油とを含む混合液体が流入する一面に相当する不織布を構成する繊維をガラス繊維にすることにより、加水分解物を主成分として含む油水分離膜が、より一層強固にガラス繊維に密着し、不織布の繊維から剥離しにくくなる。 The oil-water separation filter according to the fifth aspect of the present invention contains a hydrolyzate as a main component by making glass fibers the fibers constituting the non-woven fabric corresponding to one surface into which the mixed liquid containing water and oil flows. The oil-water separation membrane adheres more firmly to the glass fiber and becomes difficult to peel off from the non-woven fabric fiber.

本発明実施形態の油水分離フィルターを備えた油水分離装置の構成図である。It is a block diagram of the oil-water separation apparatus provided with the oil-water separation filter of the embodiment of this invention. 本実施形態の単一層の不織布の側面図である。It is a side view of the single-layered nonwoven fabric of this embodiment. 本実施形態の二層の不織布の側面図である。It is a side view of the two-layered nonwoven fabric of this embodiment. 図4(a)は水と油とを含む混合液体が非水溶性油である場合の油粒子の模式図であり、図4(b)は水と油とを含む混合液体が水溶性油である場合の油粒子の模式図である。FIG. 4A is a schematic diagram of oil particles when the mixed liquid containing water and oil is a water-insoluble oil, and FIG. 4B is a schematic diagram of the mixed liquid containing water and oil being a water-soluble oil. It is a schematic diagram of the oil particle in a certain case.

次に本発明を実施するための形態について図面を参照して説明する。 Next, a mode for carrying out the present invention will be described with reference to the drawings.

〔油水分離装置〕
図1に示すように、本実施形態の油水分離装置10は、水と油とを含む混合液体11が流入する筒状の混合液体流入部12と、混合液体11の油を水から分離するシート状の油水分離フィルター13と、油水分離フィルター13で分離した水14を集める漏斗状の集水部16と、集水部16から流入する水14を貯える有底筒状の貯水部17とを備える。混合液体流入部12の上方には混合液体の流入管18が設けられ、貯水部17の底部には排水管19が設けられる。図示しないが、油水分離フィルター13の下面全体には、混合液体流入部12内の混合液体の液圧にフィルター13が耐えられるように、金属製の多孔質の支持板が設けられ、油水分離フィルター13とこの支持板は 混合液体流入部12と集水部16により挟持される。
[Oil-water separator]
As shown in FIG. 1, the oil-water separation device 10 of the present embodiment has a tubular mixed liquid inflow section 12 into which the mixed liquid 11 containing water and oil flows in, and a sheet for separating the oil of the mixed liquid 11 from water. The oil-water separation filter 13 has a shape, a funnel-shaped water collecting unit 16 for collecting the water 14 separated by the oil-water separation filter 13, and a bottomed tubular water storage unit 17 for storing the water 14 flowing in from the water collecting unit 16. .. An inflow pipe 18 for the mixed liquid is provided above the mixed liquid inflow portion 12, and a drain pipe 19 is provided at the bottom of the water storage portion 17. Although not shown, a metal porous support plate is provided on the entire lower surface of the oil-water separation filter 13 so that the filter 13 can withstand the hydraulic pressure of the mixed liquid in the mixed liquid inflow portion 12. 13 and this support plate are sandwiched between the mixed liquid inflow section 12 and the water collecting section 16.

〔油水分離フィルター〕
本実施形態の油水分離フィルター13は、不織布とこの不織布の繊維表面に形成された油水分離膜とを備える。図2に示すように、この油水分離フィルター13の主たる構成要素である不織布20は、水と油とを含む混合液体が流入する一面20aと、この一面20aに対向する他面20bを有し、単一層からなる。図3に示すように、上層の不織布30と下層の不織布40の二層の積層体により構成される油水分離フィルター23でもよい。この場合、上層の不織布30の上面が水と油とを含む混合液体が流入する一面30aとなり、下層の不織布40の下面がこの一面30aに対向する他面40bとなる。なお、積層体は二層に限らず、三層、四層等の複数層から構成することもできる。
[Oil-water separation filter]
The oil-water separation filter 13 of the present embodiment includes a non-woven fabric and an oil-water separation film formed on the fiber surface of the non-woven fabric. As shown in FIG. 2, the nonwoven fabric 20 which is a main component of the oil-water separation filter 13 has one surface 20a into which a mixed liquid containing water and oil flows, and another surface 20b facing the one surface 20a. It consists of a single layer. As shown in FIG. 3, the oil-water separation filter 23 may be composed of a two-layer laminate of the upper non-woven fabric 30 and the lower non-woven fabric 40. In this case, the upper surface of the upper non-woven fabric 30 is one surface 30a into which the mixed liquid containing water and oil flows, and the lower surface of the lower layer non-woven fabric 40 is the other surface 40b facing the one surface 30a. The laminated body is not limited to two layers, and may be composed of a plurality of layers such as three layers and four layers.

図2の拡大図に示すように、不織布20は多数の繊維20cが絡み合って形成され、繊維と繊維の間には気孔20dが形成される。気孔20dは不織布20の一面20aと他面20bとの間を貫通する。不織布の繊維20cの表面には油水分離膜21が形成される。油水分離膜21は、不織布の繊維表面に不織布1m2当り0.1~30gの割合で形成される。油水分離膜21は、前述した一般式(1)で示される撥水撥油性を有するフッ素含有シランを含む加水分解物により形成される。フッ素含有シランは、加水分解物中、0.01~10質量%の割合で含まれる。繊維表面に油水分離膜21が形成された油水分離フィルター13の状態で、不織布20は0.05~10ml/cm2/秒の通気度を有するように作製される。通気度はJIS-L1913:2000に記載のフラジール形試験機を用いて測定される。 As shown in the enlarged view of FIG. 2, the nonwoven fabric 20 is formed by entwining a large number of fibers 20c, and pores 20d are formed between the fibers. The pores 20d penetrate between one surface 20a and the other surface 20b of the nonwoven fabric 20. An oil-water separation film 21 is formed on the surface of the non-woven fabric fiber 20c. The oil-water separation membrane 21 is formed on the fiber surface of the nonwoven fabric at a ratio of 0.1 to 30 g per 1 m 2 of the nonwoven fabric. The oil-water separation membrane 21 is formed of a hydrolyzate containing a fluorine-containing silane having water- and oil-repellent properties represented by the above-mentioned general formula (1). Fluorine-containing silane is contained in the hydrolyzate in a proportion of 0.01 to 10% by mass. In the state of the oil-water separation filter 13 in which the oil-water separation film 21 is formed on the fiber surface, the nonwoven fabric 20 is manufactured so as to have an air permeability of 0.05 to 10 ml / cm 2 / sec. The air permeability is measured using the Frazier type tester described in JIS-L1913: 2000.

油水分離膜が不織布1m2当り0.1g未満又はフッ素含有シランが0.01質量%未満では、撥水撥油性の効果に乏しく、油水分離性能が不十分となり、不織布1m2当り30gを超えると、通気度が0.05ml/cm2/秒未満となる。フッ素含有シランが10質量%を超えると、不織布への密着性が悪くなる。不織布1m2当り0.5~10gが好ましい。またフッ素含有シランは加水分解物中、0.1~3質量%の範囲で含まれることが好ましい。通気度が0.05ml/cm2/秒未満では、通水性に劣り、ろ過液を得るのが困難になる。10ml/cm2/秒を超えると、不織布の気孔20dの大きさが混合液体中の油粒子22よりも遙かに大きくなり、油粒子22が水とともに不織布の気孔を通して油水分離フィルター13から抜け落ち、水と油とを分離することができない。通気度は0.1~5ml/cm2/秒であることが好ましい。 If the oil-water separation membrane is less than 0.1 g per 1 m 2 of the non-woven fabric or the fluorine-containing silane is less than 0.01% by mass, the effect of water- and oil-repellent properties is poor, the oil-water separation performance becomes insufficient, and if it exceeds 30 g per 1 m 2 of the non-woven fabric. , The air permeability is less than 0.05 ml / cm 2 / sec. If the amount of fluorine-containing silane exceeds 10% by mass, the adhesion to the non-woven fabric deteriorates. 0.5 to 10 g per 1 m 2 of the non-woven fabric is preferable. Further, the fluorine-containing silane is preferably contained in the hydrolyzate in the range of 0.1 to 3% by mass. If the air permeability is less than 0.05 ml / cm 2 / sec, the water permeability is poor and it becomes difficult to obtain a filtrate. When it exceeds 10 ml / cm 2 / sec, the size of the pores 20d of the non-woven fabric becomes much larger than that of the oil particles 22 in the mixed liquid, and the oil particles 22 come off from the oil-water separation filter 13 through the pores of the nonwoven fabric together with water. Water and oil cannot be separated. The air permeability is preferably 0.1 to 5 ml / cm 2 / sec.

このような油水分離フィルター13を備えた油水分離装置10の作用について説明する。図1に示すように、先ず油水分離フィルター13を混合液体流入部12と集水部16により挟持する。次いで流入管18から水と油とを含む混合液体11を混合液体流入部12に供給する。この実施形態の混合液体は水溶性油である。混合液体流入部12に貯えられた混合液体11は、油水分離フィルター13を構成する不織布20の一面20a(図2)に接触する。ここで油水分離フィルター13は所定の通気度を有するため、また油水分離膜21が撥水撥油性を示すため、水溶性油の水(図示せず)は油水分離膜21に弾かれながらも、加水分解物の水酸基の存在により、図2の拡大図に示す繊維20cと繊維20cの間に形成された気孔20dを通過して他面20bに至り、そこから滴下して集水部16に集められる。集められた水14は集水部16から貯水部17に流れ落ちて、貯水部17に溜まる。貯水部17に水14が一定量貯留された時点で、図示しない排水バルブを開いて排水管19より油と分離した水14を得る。 The operation of the oil-water separation device 10 provided with such an oil-water separation filter 13 will be described. As shown in FIG. 1, first, the oil-water separation filter 13 is sandwiched between the mixed liquid inflow section 12 and the water collecting section 16. Next, the mixed liquid 11 containing water and oil is supplied from the inflow pipe 18 to the mixed liquid inflow section 12. The mixed solution of this embodiment is a water-soluble oil. The mixed liquid 11 stored in the mixed liquid inflow section 12 comes into contact with one surface 20a (FIG. 2) of the nonwoven fabric 20 constituting the oil-water separation filter 13. Here, since the oil-water separation filter 13 has a predetermined air permeability and the oil-water separation membrane 21 exhibits water-repellent and oil-repellent properties, the water of the water-soluble oil (not shown) is repelled by the oil-water separation membrane 21 while being repelled . Due to the presence of the hydroxyl group of the hydrolyzate , it passes through the pores 20d formed between the fibers 20c and the fibers 20c shown in the enlarged view of FIG. 2 to reach the other surface 20b, and drops from there to the water collecting portion 16. Collected. The collected water 14 flows down from the water collecting unit 16 to the water storage unit 17 and collects in the water storage unit 17. When a certain amount of water 14 is stored in the water storage unit 17, a drain valve (not shown) is opened to obtain water 14 separated from oil from the drain pipe 19.

その一方、図2の拡大図に示すように、油粒子22は不織布20の繊維表面に形成された油水分離膜21の撥油性により、また油水分離フィルターの所定の通気度のため、気孔20dの孔径より粒径が大きい場合は勿論のこと、気孔20dの孔径より粒径が僅かに小さくても、油水分離フィルター13を通過できず、不織布20の繊維20cと繊維20cの間に留まる。不織布20に溜まった油は、定期的に油水分離フィルター13を油水分離装置10から取り外して、回収処理する。 On the other hand, as shown in the enlarged view of FIG. 2, the oil particles 22 have pores 20d due to the oil repellency of the oil-water separation membrane 21 formed on the fiber surface of the nonwoven fabric 20 and the predetermined air permeability of the oil-water separation filter. Not only when the particle size is larger than the pore size, but also when the particle size is slightly smaller than the pore size of the pore 20d, it cannot pass through the oil-water separation filter 13 and stays between the fibers 20c and the fibers 20c of the nonwoven fabric 20. The oil accumulated in the non-woven fabric 20 is recovered by periodically removing the oil-water separation filter 13 from the oil-water separation device 10.

〔油水分離フィルターの製造方法〕
〔不織布の準備〕
先ず、0.3~10ml/cm2/秒の通気度を有する不織布を準備する。具体的には、後述する油水分離膜が不織布の繊維表面に形成された油水分離フィルターになった状態で、0.05~10ml/cm2/秒の通気度を有する不織布を準備する。油水分離膜が不織布1m2当り上記範囲にて多目に厚膜で形成される場合には、通気度の大きい不織布が選定され、油水分離膜が不織布1m2当り上記範囲にて少な目に薄膜で形成される場合には、通気度の小さい不織布が選定される。
[Manufacturing method of oil-water separation filter]
[Preparation of non-woven fabric]
First, a non-woven fabric having an air permeability of 0.3 to 10 ml / cm 2 / sec is prepared. Specifically, a non-woven fabric having a breathability of 0.05 to 10 ml / cm 2 / sec is prepared in a state where the oil-water separation membrane described later becomes an oil-water separation filter formed on the fiber surface of the non-woven fabric. When the oil-water separation membrane is formed with a thick film in the above range per 1 m 2 of the non-woven fabric, a non-woven fabric having high air permeability is selected, and the oil-water separation membrane is a thin film in the above range per 1 m 2 of the non-woven fabric. When formed, a non-woven fabric having a low air permeability is selected.

この不織布としては、例えば、セルロース混合エステル性のメンブレンフィルター、ガラス繊維ろ紙、ポリエチレンテレフタレート繊維とガラス繊維を混用した不織布(安積濾紙社製、商品名:356)がある。このように不織布は、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属からなる群より選ばれた1種又は2種以上の繊維から作られる。繊維は、2以上の繊維を混合した繊維でもよい。繊維の太さ(繊維径)は、上記通気度が得られるように、0.01~10μmの太さが好適である。不織布の厚さは、油水分離フィルターが単一層である場合には、0.1~5mm、複数層の積層体である場合には、積層体の厚さが0.3~7mmになる厚さである。本発明の油水分離膜形成材料の主成分が加水分解物であるため、繊維との密着性を得るために、水酸基をもつ材料が好ましい。その中でも、ガラス、アルミナ、セルロースナノ繊維等は、繊維径も細いものがあり、通気度を上記範囲内の低い値にすることができる。 Examples of this non-woven fabric include a cellulose mixed ester membrane filter, a glass fiber filter paper, and a non-woven fabric in which polyethylene terephthalate fiber and glass fiber are mixed (manufactured by Azumi Filter Paper Co., Ltd., trade name: 356). As described above, the nonwoven fabric is made from one or more fibers selected from the group consisting of polyethylene terephthalate (PET), polypropylene (PP), glass, alumina, carbon, cellulose, pulp, nylon and metal. The fiber may be a fiber in which two or more fibers are mixed. The fiber thickness (fiber diameter) is preferably 0.01 to 10 μm so that the above-mentioned air permeability can be obtained. The thickness of the non-woven fabric is 0.1 to 5 mm when the oil-water separation filter is a single layer, and 0.3 to 7 mm when the laminated body is a multi-layered body. Is. Since the main component of the oil-water separation membrane forming material of the present invention is a hydrolyzate , a material having a hydroxyl group is preferable in order to obtain adhesion to fibers. Among them, glass, alumina, cellulose nanofibers and the like have a small fiber diameter, and the air permeability can be set to a low value within the above range.

前述したように不織布が図3に示すように複数の不織布30、40を積層した積層体である場合、水と油とを含む混合液体が流入する一面に相当する不織布30を構成する繊維をガラス繊維にすることにより、加水分解物を主成分として含む油水分離膜が、より一層強固にガラス繊維に密着し、不織布の繊維から剥離しにくくなる。 As described above, when the nonwoven fabric is a laminate in which a plurality of nonwoven fabrics 30 and 40 are laminated as shown in FIG. 3, the fibers constituting the nonwoven fabric 30 corresponding to one surface into which the mixed liquid containing water and oil flow into are glass. By making the fibers, the oil-water separation film containing the hydrolyzate as a main component adheres more firmly to the glass fibers and becomes difficult to peel off from the fibers of the non-woven fabric.

〔不織布の繊維表面への油水分離膜の形成方法〕
本実施の形態の不織布の繊維表面に油水分離膜を形成するには、後述する油水分離膜形成用液組成物を、後述する沸点が120℃未満の炭素数1~4の範囲にあるアルコールで、液組成物に対する質量比(液組成物:アルコール)が1:1~50の割合になるように希釈した液を調製し、この希釈液に不織布をディッピングして希釈液から引上げ、大気中、室温で不織布を水平な金網等の上に拡げて一定の液分量になるまで脱液する。別法として、引き上げた不織布をマングルロール(絞り機)に通して脱液する。脱液した不織布は、大気中、25~140℃の温度で0.5~24時間乾燥する。これにより、図2の拡大図に示すように、不織布20を構成している繊維20cの表面に油水分離膜21が形成される。油水分離膜は、不織布1m2当り0.1~30gの範囲内で、脱液量が少ない場合には、厚膜に不織布の繊維表面に形成され、脱液量が多い場合には、薄膜に不織布の繊維表面に形成される。
[Method of forming an oil-water separation film on the fiber surface of a non-woven fabric]
In order to form an oil-water separation membrane on the fiber surface of the nonwoven fabric of the present embodiment, the liquid composition for forming an oil-water separation membrane described later is prepared with an alcohol having a boiling point of less than 120 ° C. and having a carbon number of 1 to 4 described below. Prepare a diluted solution so that the mass ratio (liquid composition: alcohol) to the liquid composition is 1: 1 to 50, dip the non-woven fabric in this diluted solution, pull it up from the diluted solution, and in the air, Spread the non-woven fabric on a horizontal wire net or the like at room temperature and drain until a certain amount of liquid is reached. Alternatively, the pulled up non-woven fabric is passed through a mangle roll (squeezer) to remove the liquid. The deflated non-woven fabric is dried in the air at a temperature of 25 to 140 ° C. for 0.5 to 24 hours. As a result, as shown in the enlarged view of FIG. 2, the oil-water separation film 21 is formed on the surface of the fibers 20c constituting the nonwoven fabric 20. The oil-water separation membrane is in the range of 0.1 to 30 g per 1 m 2 of the non-woven fabric, and is formed on the fiber surface of the non-woven fabric on a thick film when the amount of liquid removed is small, and on the thin film when the amount of liquid removed is large. It is formed on the fiber surface of the non-woven fabric.

〔油水分離膜形成用液組成物の製造方法〕
油水分離膜を形成するための液組成物は次の方法により製造される。
〔混合液の調製〕
先ず、ケイ素アルコキシド(A)としてのテトラメトキシシラン又はテトラエトキシシランと、エポキシ基含有シラン(B)と、フッ素含有シラン(C)、沸点が120℃未満の炭素数1~4の範囲にあるアルコールと、水とを混合して混合液を調製する。このケイ素アルコキシド(A)としては、具体的には、テトラメトキシシラン、そのオリゴマー又はテトラエトキシシラン、そのオリゴマーが挙げられる。例えば、耐久性の高い油水分離膜を得る目的には、テトラメトキシシランを用いることが好ましく、一方、加水分解時に発生するメタノールを避ける場合は、テトラエトキシシランを用いることが好ましい。
[Manufacturing method of liquid composition for forming an oil-water separation membrane]
The liquid composition for forming the oil-water separation membrane is produced by the following method.
[Preparation of mixture]
First, tetramethoxysilane or tetraethoxysilane as a silicon alkoxide (A), an epoxy group-containing silane (B), a fluorine-containing silane (C), and an alcohol having a boiling point of less than 120 ° C. and having 1 to 4 carbon atoms. And water are mixed to prepare a mixed solution. Specific examples of the silicon alkoxide (A) include tetramethoxysilane, an oligomer thereof or tetraethoxysilane, and an oligomer thereof. For example, it is preferable to use tetramethoxysilane for the purpose of obtaining a highly durable oil-water separation membrane, while it is preferable to use tetraethoxysilane when avoiding methanol generated during hydrolysis.

上記エポキシ基含有シラン(B)としては、具体的には、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン又は多官能エポキシシランが挙げられる。エポキシ基含有シラン(B)はケイ素アルコキシド(A)とエポキシ基含有シラン(B)の合計質量に対して1~40質量%、好ましくは2.5~20質量%含まれる。エポキシ基含有シラン(B)が下限値の1質量%未満では、水酸基を含まない不織布の繊維に膜を形成した場合に、繊維への密着性が不十分になる。また上限値の40質量%を超えると、形成した膜の耐久性が低くなる。エポキシ基含有シラン(B)を上記1~40質量%の範囲含むと、エポキシ基も加水分解重合過程において開環して重合に寄与し、これにより乾燥過程にレベリング性が改善し膜厚さが均一になる。なお、不織布の繊維がガラス繊維等の親水基を含む場合には、エポキシ基含有シランの含有量は極少量であるか、若しくはゼロでもよい。一方、不織布の繊維が親水基を含まない場合には、エポキシ基含有シラン(B)が後述する加水分解により炭素数2~7のアルキル基成分になったときに、このアルキル基成分を加水分解物(D)中、0.5~20質量%含むことが好ましい。 Specific examples of the epoxy group-containing silane (B) include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldiethoxy. Examples thereof include silane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane or polyfunctional epoxysilane. The epoxy group-containing silane (B) is contained in an amount of 1 to 40% by mass, preferably 2.5 to 20% by mass, based on the total mass of the silicon alkoxide (A) and the epoxy group-containing silane (B). If the epoxy group-containing silane (B) is less than the lower limit of 1% by mass, the adhesion to the fiber becomes insufficient when a film is formed on the fiber of the non-woven fabric containing no hydroxyl group. On the other hand, if it exceeds the upper limit of 40% by mass, the durability of the formed film becomes low. When the epoxy group-containing silane (B) is contained in the above range of 1 to 40% by mass, the epoxy group also opens a ring in the hydrolysis polymerization process and contributes to the polymerization, whereby the leveling property is improved in the drying process and the film thickness is increased. Become uniform. When the fiber of the non-woven fabric contains a hydrophilic group such as glass fiber, the content of the epoxy group-containing silane may be a very small amount or may be zero. On the other hand, when the fiber of the non-woven fabric does not contain a hydrophilic group, when the epoxy group-containing silane (B) becomes an alkyl group component having 2 to 7 carbon atoms by hydrolysis described later, the alkyl group component is hydrated. It is preferably contained in the decomposition product (D) in an amount of 0.5 to 20% by mass.

炭素数1~4の範囲にあるアルコールは、この範囲にある1種又は2種以上のアルコールが挙げられる。このアルコールとしては、例えば、メタノール(沸点64.7℃)、エタノール(沸点約78.3℃)、プロパノール(n-プロパノール(沸点97-98℃)、イソプロパノール(沸点82.4℃))が挙げられる。特にメタノール又はエタノールが好ましい。これらのアルコールは、ケイ素アルコキドとの混合がしやすいためである。上記水としては、不純物の混入防止のため、イオン交換水や純水等を使用するのが望ましい。ケイ素アルコキシド(A)及びエポキシ基含有シラン(B)に炭素数1~4の範囲にあるアルコールと水を添加して、好ましくは10~30℃の温度で5~20分間撹拌することにより混合液を調製する。 The alcohol in the range of 1 to 4 carbon atoms includes one kind or two or more kinds of alcohols in this range. Examples of this alcohol include methanol (boiling point 64.7 ° C.), ethanol (boiling point about 78.3 ° C.), propanol (n-propanol (boiling point 97-98 ° C.), isopropanol (boiling point 82.4 ° C.)). Be done. Methanol or ethanol is particularly preferable. This is because these alcohols are easily mixed with silicon alcohol. As the water, it is desirable to use ion-exchanged water, pure water, or the like in order to prevent impurities from being mixed. A mixed solution of silicon alkoxide (A) and epoxy group-containing silane (B) by adding alcohol and water in the range of 1 to 4 carbon atoms and stirring at a temperature of preferably 10 to 30 ° C. for 5 to 20 minutes. To prepare.

〔加水分解物の調製〕
上記調製された混合液と有機酸、無機酸又はチタン化合物からなる触媒とを混合する。このとき液温を好ましくは30~80℃の温度に保持して好ましくは1~24時間撹拌する。これにより、ケイ素アルコキシド(A)とエポキシ基含有シラン(B)とフッ素含有シラン(C)の加水分解物(D)が調製される。加水分解物(D)は、ケイ素アルコキシドを2~50質量%、エポキシ基含有シランを最大30質量%まで、フッ素含有シランを0.005~3質量%、炭素数1~4の範囲にあるアルコールを20~98質量%、水を0.1~40質量%、有機酸、無機酸又はチタン化合物を触媒として0.01~5質量%の割合で混合してケイ素アルコキシド、エポキシ基含有シラン及びフッ素含有シランの加水分解反応を進行させることで得られる。フッ素含有シラン(C)が下限値の0.005質量%未満では、形成した膜に撥水撥油性が生じにくく、上限値の3質量%を超えると、不織布の繊維表面に密着しにくい。
[Preparation of hydrolyzate ]
The above-prepared mixture is mixed with a catalyst composed of an organic acid, an inorganic acid or a titanium compound. At this time, the liquid temperature is preferably maintained at a temperature of 30 to 80 ° C., and the mixture is preferably stirred for 1 to 24 hours. As a result, a hydrolyzate (D ) of the silicon alkoxide (A), the epoxy group-containing silane (B), and the fluorine-containing silane (C) is prepared. The hydrolyzate (D) contains 2 to 50% by mass of silicon alkoxide, up to 30% by mass of silane containing an epoxy group, 0.005 to 3% by mass of silane containing fluorine, and an alcohol having 1 to 4 carbon atoms. 20 to 98% by mass, water 0.1 to 40% by mass, organic acid, inorganic acid or titanium compound as a catalyst at a ratio of 0.01 to 5% by mass, silicon alkoxide, epoxy group-containing silane and fluorine. It is obtained by advancing the hydrolysis reaction of the contained silane. If the fluorine-containing silane (C) is less than the lower limit of 0.005% by mass, the formed film is less likely to have water and oil repellency, and if it exceeds the upper limit of 3% by mass, it is less likely to adhere to the fiber surface of the nonwoven fabric.

炭素数1~4の範囲にあるアルコールの割合を上記範囲に限定したのは、アルコールの割合が下限値未満では、ケイ素アルコキシドが、溶液中に溶解せず分離してしまうこと、加水分解反応中に反応液がゲル化しやすく、一方、上限値を超えると、加水分解に必要な水、触媒量が相対的に少なくなるために、加水分解の反応性が低下して、重合が進まず、膜の密着性が低下するためである。水の割合を上記範囲に限定したのは、下限値未満では加水分解速度が遅くなるために、重合が進まず、塗布膜の密着性が不十分になり、一方、上限値を超えると加水分解反応中に反応液がゲル化し、水が多過ぎるためケイ素アルコキシド化合物がアルコール水溶液に溶解せず、分離する不具合を生じるからである。 The reason why the proportion of alcohol in the range of 1 to 4 carbon atoms is limited to the above range is that if the proportion of alcohol is less than the lower limit, the silicon alkoxide does not dissolve in the solution and separates, and during the hydrolysis reaction. On the other hand, when the upper limit is exceeded, the amount of water and catalyst required for hydrolysis is relatively small, so that the reactivity of hydrolysis is reduced, the polymerization does not proceed, and the film is not formed. This is because the adhesion of the material is reduced. The reason why the ratio of water is limited to the above range is that if the value is less than the lower limit, the hydrolysis rate becomes slower, so that the polymerization does not proceed and the adhesion of the coating film becomes insufficient. This is because the reaction solution gels during the reaction and the amount of water is too large, so that the silicon alkoxide compound does not dissolve in the alcohol aqueous solution and causes a problem of separation.

加水分解物中のSiO2濃度(SiO2分)は1~40質量%であるものが好ましい。加水分解物のSiO2濃度が下限値未満では、重合が不十分であり、膜の密着性の低下やクラックの発生が起こりやすく、上限値を超えると、相対的に水の割合が高くなりケイ素アルコキシドが溶解せず、反応液がゲル化する不具合を生じる。 The SiO 2 concentration (SiO 2 minute) in the hydrolyzate is preferably 1 to 40% by mass. If the SiO 2 concentration of the hydrolyzate is less than the lower limit, polymerization is insufficient, and the adhesion of the film is likely to decrease and cracks are likely to occur. If the upper limit is exceeded, the proportion of water becomes relatively high and silicon. The alkoxide does not dissolve, causing a problem that the reaction solution gels.

有機酸、無機酸又はチタン化合物は加水分解反応を促進させるための触媒として機能する。有機酸としてはギ酸、シュウ酸が例示され、無機酸としては塩酸、硝酸、リン酸が例示され、チタン化合物としてはテトラプロポキシチタン、テトラブトキシチタン、テトライソプロポキシチタン、乳酸チタン等が例示される。触媒は上記のものに限定されない。上記触媒の割合を上記範囲に限定したのは、下限値未満では反応性に乏しく重合が不十分になるため、膜が形成されず、一方、上限値を超えても反応性に影響はないが、残留する酸による不織布の繊維の腐食等の不具合を生じる。 The organic acid, inorganic acid or titanium compound functions as a catalyst for promoting the hydrolysis reaction. Examples of organic acids include formic acid and oxalic acid, examples of inorganic acids include hydrochloric acid, nitric acid, and phosphoric acid, and examples of titanium compounds include tetrapropoxytitanium, tetrabutoxytitanium, tetraisopropoxytitanium, and titanium lactate. .. The catalyst is not limited to the above. The reason why the ratio of the catalyst is limited to the above range is that if the value is less than the lower limit, the reactivity is poor and the polymerization is insufficient, so that the film is not formed. On the other hand, if the value exceeds the upper limit, the reactivity is not affected. , The residual acid causes problems such as corrosion of the fibers of the non-woven fabric.

フッ素含有シラン(C)は、下記一般式(2)で示される。上記式(2)中の含窒素ペルフルオロアルキル基としては、より具体的には、下記式(3)~(14)で示されるペルフルオロアミン構造を挙げることができる。 The fluorine-containing silane (C) is represented by the following general formula (2). More specifically, examples of the nitrogen-containing perfluoroalkyl group in the above formula (2) include perfluoroamine structures represented by the following formulas (3) to (14).

Figure 0006996911000002
Figure 0006996911000002

Figure 0006996911000003
Figure 0006996911000003

Figure 0006996911000004
Figure 0006996911000004

Figure 0006996911000005
Figure 0006996911000005

Figure 0006996911000006
Figure 0006996911000006

Figure 0006996911000007
Figure 0006996911000007

Figure 0006996911000008
Figure 0006996911000008

Figure 0006996911000009
Figure 0006996911000009

Figure 0006996911000010
Figure 0006996911000010

Figure 0006996911000011
Figure 0006996911000011

Figure 0006996911000012
Figure 0006996911000012

Figure 0006996911000013
Figure 0006996911000013

Figure 0006996911000014
Figure 0006996911000014

また、上記式(2)中のXとしては、下記式(15)~(18)で示される構造を挙げることができる。なお、下記式(15)はエーテル結合、下記式(16)はエステル結合、下記式(17)はアミド結合、下記式(18)はウレタン結合を含む例を示している。 Further, as X in the above formula (2), the structures represented by the following formulas (15) to (18) can be mentioned. The following formula (15) shows an ether bond, the following formula (16) shows an ester bond, the following formula (17) shows an amide bond, and the following formula (18) shows an example including a urethane bond.

Figure 0006996911000015
Figure 0006996911000015

Figure 0006996911000016
Figure 0006996911000016

Figure 0006996911000017
Figure 0006996911000017

Figure 0006996911000018
Figure 0006996911000018

ここで、上記式(15)~(18)中、R2及びR3は炭素数が0から10の炭化水素基、R4は水素原子または炭素数1から6の炭化水素基である。R3の炭化水素基の例とは、メチル基、エチル基等のアルキル基挙げられ、R4の炭化水素基の例とは、メチル基、エチル基等のアルキル基の他、フェニル基、ビニル基等も挙げられる。 Here, in the above formulas (15) to (18), R 2 and R 3 are hydrocarbon groups having 0 to 10 carbon atoms, and R 4 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. Examples of the hydrocarbon group of R 3 include an alkyl group such as a methyl group and an ethyl group, and examples of the hydrocarbon group of R 4 include an alkyl group such as a methyl group and an ethyl group, as well as a phenyl group and vinyl. Group etc. are also mentioned.

また、上記式(2)中、R1は、加水分解基のメトキシ基、エトキシ基等が挙げられる。 Further, in the above formula (2), R 1 may be a methoxy group or an ethoxy group as a hydrolyzing group.

また、上記式(2)中、Zは、加水分解されてSi-O-Si結合を形成可能な加水分解性基であれば特に限定されるものではない。このような加水分解性基としては、具体的には、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基、フェノキシ基、ナフトキシ基などのアリールオキシ基、ベンジルオキシ基、フェネチルオキシ基などのアラルキルオキシ基、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基などのアシルオキシ基等が挙げられる。これらの中でも、メトキシ基、エトキシ基を適用することが好ましい。 Further, in the above formula (2), Z is not particularly limited as long as it is a hydrolyzable group capable of forming a Si—O—Si bond by hydrolysis. Specific examples of such a hydrolyzable group include an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group and a butoxy group, an aryloxy group such as a phenoxy group and a naphthoxy group, a benzyloxy group and a phenethyloxy. Examples thereof include an aralkyloxy group such as a group, an acetoxy group, a propionyloxy group, a butyryloxy group, a valeryloxy group, a pivaloyloxy group, an acyloxy group such as a benzoyloxy group and the like. Among these, it is preferable to apply a methoxy group or an ethoxy group.

ここで、上記式(2)で表されるペルフルオロアミン構造を有するフッ素含有シランの具体例としては、例えば、下記式(19)~(29)で表される構造が挙げられる。なお、下記式(19)~(29)中、Rはメチル基又はエチル基である。 Here, specific examples of the fluorine-containing silane having a perfluoroamine structure represented by the above formula (2) include structures represented by the following formulas (19) to (29). In the following formulas (19) to (29), R is a methyl group or an ethyl group.

Figure 0006996911000019
Figure 0006996911000019

Figure 0006996911000020
Figure 0006996911000020

Figure 0006996911000021
Figure 0006996911000021

Figure 0006996911000022
Figure 0006996911000022

Figure 0006996911000023
Figure 0006996911000023

Figure 0006996911000024
Figure 0006996911000024

Figure 0006996911000025
Figure 0006996911000025

Figure 0006996911000026
Figure 0006996911000026

Figure 0006996911000027
Figure 0006996911000027

Figure 0006996911000028
Figure 0006996911000028

Figure 0006996911000029
Figure 0006996911000029

上述したように、本実施の形態の油水分離膜形成用液組成物に含まれるフッ素含有シランは、分子内に含窒素ペルフルオロアルキル基とアルコキシシリル基とをそれぞれ1以上有する構造となっていて、窒素原子に炭素数が6以下の短鎖長のペルフルオロアルキル基が複数結合した含窒素ペルフルオロアルキル基を有しており、分子内のフッ素含有率が高いため、形成した膜に優れた撥水撥油性を付与することができる。 As described above, the fluorine-containing silane contained in the liquid composition for forming an oil-water separation membrane of the present embodiment has a structure having one or more nitrogen-containing perfluoroalkyl groups and one or more alkoxysilyl groups in the molecule. It has a nitrogen-containing perfluoroalkyl group in which a plurality of short-chain long perfluoroalkyl groups having 6 or less carbon atoms are bonded to a nitrogen atom, and has a high fluorine content in the molecule, so that the formed film has excellent water repellency. Oiliness can be imparted.

〔油水分離膜形成用液組成物〕
本実施の形態の油水分離膜形成用液組成物は、上記製造方法で製造され、前述したフッ素含有シラン(C)を含む加水分解物(D)と、溶媒とを含む。このフッ素含有シランは、上記の一般式(1)で示されるペルフルオロアミン構造を有し、加水分解物中、0.01~10質量%含まれる。
[Liquid composition for forming an oil-water separation membrane]
The liquid composition for forming an oil-water separation membrane of the present embodiment is produced by the above-mentioned production method, and contains the above-mentioned hydrolyzate (D) containing fluorine-containing silane (C) and a solvent. This fluorine-containing silane has a perfluoroamine structure represented by the above general formula (1), and is contained in the hydrolyzate in an amount of 0.01 to 10% by mass.

上記溶媒は、水と炭素数1~4のアルコールとの混合溶媒であるか、或いは水と炭素数1~4のアルコールと上記アルコール以外の有機溶媒との混合溶媒である。フルオロアミン構造の具体例としては、上述した式(9)~(29)で示される構造を挙げることができる。 The solvent is a mixed solvent of water and an alcohol having 1 to 4 carbon atoms, or a mixed solvent of water, an alcohol having 1 to 4 carbon atoms and an organic solvent other than the alcohol. Specific examples of the fluoroamine structure include the structures represented by the above-mentioned formulas (9) to (29).

本実施の形態の油水分離膜形成用液組成物が加水分解物を主成分として含むため、膜の不織布の繊維への密着性に優れ、剥離しにくい高い強度の油水分離膜が得られる。また加水分解物が上記一般式(1)で示されるペルフルオロアミン構造のフッ素含有シランを含むため、撥水並びに撥油の効果がある。フッ素含有シラン(C)の含有割合が0.01質量%未満では形成した膜に撥水撥油性を付与できず、10質量%を超えると膜の弾き等が発生し成膜性に劣る。好ましいフッ素含有シラン(C)の含有割合は0.1~5質量%である。 Since the liquid composition for forming an oil-water separation membrane of the present embodiment contains a hydrolyzate as a main component, an oil-water separation membrane having excellent adhesion to fibers of the non-woven fabric of the membrane and having high strength that is difficult to peel off can be obtained. Further, since the hydrolyzate contains a fluorine-containing silane having a perfluoroamine structure represented by the above general formula (1), it has water-repellent and oil-repellent effects. If the content of the fluorine-containing silane (C) is less than 0.01% by mass, water and oil repellency cannot be imparted to the formed film, and if it exceeds 10% by mass, the film is repelled and the film forming property is inferior. The content ratio of the preferable fluorine-containing silane (C) is 0.1 to 5% by mass.

次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
ケイ素アルコキシド(A)としてテトラメトキシシラン(TMOS)の3~5量体(三菱化学社製、商品名:MKCシリケートMS51)8.52gと、エポキシ基含有シラン(B)として3-グリシドキシプロピルトリメトキシシラン(GPTMS:信越化学工業社製、商品名:KBM-403)0.48gと、フッ素系化合物として式(22)で表わされるフッ素含有シラン(C)(R:エチル基)0.24gと、有機溶媒としてエタノール(EtOH)(沸点78.3℃)17.58gとを混合し、更にイオン交換水3.37gを添加して、セパラブルフラスコ内で25℃の温度で5分間撹拌することにより混合液を調製した。またこの混合液に、触媒として濃度35質量%の塩酸0.05gを添加し、40℃で2時間撹拌した。これにより、加水分解物(D)からなる油水分離膜形成用液組成物を調製した。この調製内容を表1に示す。
<Example 1>
8.52 g of tetramethoxysilane (TMS) as a silicon alkoxide (A) (trade name: MKC silicate MS51 manufactured by Mitsubishi Chemical Corporation) and 3-glycidoxypropyl as an epoxy group-containing silane (B). 0.48 g of trimethoxysilane (GPTMS: manufactured by Shin-Etsu Chemical Industry Co., Ltd., trade name: KBM-403) and 0.24 g of fluorine-containing silane (C) (R: ethyl group) represented by the formula (22) as a fluorine-based compound. And 17.58 g of ethanol (EtOH) (boiling point 78.3 ° C.) as an organic solvent are mixed, and 3.37 g of ion-exchanged water is further added, and the mixture is stirred in a separable flask at a temperature of 25 ° C. for 5 minutes. This prepared a mixed solution. Further, 0.05 g of hydrochloric acid having a concentration of 35% by mass was added to this mixed solution as a catalyst, and the mixture was stirred at 40 ° C. for 2 hours. As a result, a liquid composition for forming an oil-water separation membrane composed of the hydrolyzate (D) was prepared. The contents of this preparation are shown in Table 1.

Figure 0006996911000030
Figure 0006996911000030

得られた油水分離膜形成用液組成物の加水分解物には、フッ素含有シランが4.3質量%と、炭素数7のアルキル基成分が6.1質量%含まれていた。次に油水分離膜形成用液組成物1.0gに、工業アルコール(日本アルコール産業社製、AP-7)29.0gを添加混合して、液組成物の希釈液を調製した。この希釈液に、油水分離フィルターの基材として、2.5ml/cm2/秒の通気度を有する二層の不織布を30秒間ディッピングした。二層の不織布は、上層がガラス繊維からなる不織布と下層がPET繊維からなる不織布の積層体であった。希釈液から二層の不織布を引上げ、水平の金網の上に拡げ、室温で30分間放置して、脱液した。その後120℃に維持された乾燥機に二層の不織布を30分間入れて乾燥し、油水分離フィルターを得た。この油水分離フィルターの通気度は2.0ml/cm2/秒であった。二層の不織布のディッピング前の質量と乾燥後の質量の差から、不織布の繊維表面に形成された油水分離膜の質量として換算した。この結果、油水分離膜は不織布1m2当り4.0gと算出された。以上の結果を表2に示す。 The hydrolyzate of the obtained liquid composition for forming an oil-water separation membrane contained 4.3% by mass of fluorine-containing silane and 6.1% by mass of an alkyl group component having 7 carbon atoms. Next, 29.0 g of an industrial alcohol (AP-7, manufactured by Japan Alcohol Corporation) was added and mixed with 1.0 g of the liquid composition for forming an oil-water separation membrane to prepare a diluted liquid composition. This diluted solution was dipped with a two-layer non-woven fabric having an air permeability of 2.5 ml / cm 2 / sec as a base material for an oil-water separation filter for 30 seconds. The two-layered nonwoven fabric was a laminate of a nonwoven fabric in which the upper layer was made of glass fiber and a nonwoven fabric in which the lower layer was made of PET fiber. The two layers of non-woven fabric were pulled up from the diluted solution, spread on a horizontal wire mesh, and left at room temperature for 30 minutes to drain the liquid. Then, the two-layer non-woven fabric was put in a dryer maintained at 120 ° C. for 30 minutes and dried to obtain an oil-water separation filter. The air permeability of this oil-water separation filter was 2.0 ml / cm 2 / sec. From the difference between the mass before dipping and the mass after drying of the two-layer nonwoven fabric, it was converted into the mass of the oil-water separation membrane formed on the fiber surface of the nonwoven fabric. As a result, the oil-water separation membrane was calculated to be 4.0 g per 1 m 2 of the non-woven fabric. The above results are shown in Table 2.

Figure 0006996911000031
Figure 0006996911000031

<実施例2~6、比較例2~4>
実施例2~6及び比較例2~4について、表1に示すように、油水分離フィルターの不織布の種類及びフッ素系化合物(フッ素含有シラン)の種類を選定し、実施例1に示されるTMOSの添加量、GPTMSの添加量及びフッ素含有シランの添加量をそれぞれ変更した。それ以外は実施例1と同様にして、実施例2~6、比較例2~4の油水分離膜形成用液組成物を得た。これらの液組成物に実施例1と同一の工業アルコールを添加し、実施例1と同様にして、不織布ディッピング用の希釈液を調製した。これらの希釈液に表2に示す不織布を実施例1と同様にディッピングし、乾燥して、表2に示す特性を有する油水分離フィルターを得た。
<Examples 2 to 6, Comparative Examples 2 to 4>
For Examples 2 to 6 and Comparative Examples 2 to 4, as shown in Table 1, the type of the non-woven fabric of the oil-water separation filter and the type of the fluorine-based compound (fluorine-containing silane) were selected, and the TMOS shown in Example 1 was selected. The amount of addition, the amount of GPTMS added, and the amount of fluorine-containing silane added were changed. The liquid compositions for forming an oil-water separation membrane of Examples 2 to 6 and Comparative Examples 2 to 4 were obtained in the same manner as in Example 1 except for the above. The same industrial alcohol as in Example 1 was added to these liquid compositions to prepare a diluted solution for nonwoven fabric dipping in the same manner as in Example 1. The non-woven fabric shown in Table 2 was dipped in these diluted solutions in the same manner as in Example 1 and dried to obtain an oil-water separation filter having the characteristics shown in Table 2.

なお、実施例5,6及び比較例4に用いた不織布は、実施例1の不織布と異なり、PET繊維とガラス繊維の混合繊維(質量比でPET:ガラス=80:20)からなり、それらの通気度(希釈液ディッピング前)は、それぞれ12.0ml/cm2/秒であった。また比較例3に用いた不織布は、実施例1と同一に構成されたガラス繊維の不織布とPET繊維の不織布の二層からなり、その通気度(希釈液ディッピング前)は、1.1ml/cm2/秒であった。 The non-woven fabric used in Examples 5 and 6 and Comparative Example 4 is different from the non-woven fabric of Example 1 and is composed of a mixed fiber of PET fiber and glass fiber (PET: glass = 80:20 in mass ratio). The air permeability (before dipping the diluted solution) was 12.0 ml / cm 2 / sec, respectively. The non-woven fabric used in Comparative Example 3 is composed of two layers, a glass fiber non-woven fabric and a PET fiber non-woven fabric, which are configured in the same manner as in Example 1, and its air permeability (before diluting liquid dipping) is 1.1 ml / cm. It was 2 / sec.

<比較例1>
比較例1では、実施例1と同一の不織布を用いたが、加水分解物中にフッ素含有シランを含まなかった。
<Comparative Example 1>
In Comparative Example 1, the same non-woven fabric as in Example 1 was used, but the hydrolyzate did not contain fluorine-containing silane.

<比較例5>
比較例5では、油水分離フィルターの基材として、市販されている目開き1μmのポリテトラフルオロエチレン(PTFE)製のメンブランフィルターを未処理のまま用いて、これを油水分離フィルターとした。実施例1のような油水分離膜形成用液組成物の希釈液にはディッピングしなかった。
<Comparative Example 5>
In Comparative Example 5, a commercially available membrane filter made of polytetrafluoroethylene (PTFE) having an opening of 1 μm was used as the base material of the oil-water separation filter without treatment, and this was used as an oil-water separation filter. No dipping was performed on the diluted solution of the liquid composition for forming an oil-water separation membrane as in Example 1.

<比較例6>
フッ素系化合物として、特許文献1の撥油性付与基及び親水性付与基(撥油親水性)を有する合成例1で示される下記式(30)で示されるフッ素系化合物を準備した。このフッ素系化合物0.5gを実施例1と同一の工業アルコール99.5gに溶解し、希釈液(濃度0.5質量%)を調製した。
<Comparative Example 6>
As the fluorine-based compound, a fluorine-based compound represented by the following formula (30) represented by Synthesis Example 1 having an oil-repellent imparting group and a hydrophilicity-imparting group (oil-repellent hydrophilicity) of Patent Document 1 was prepared. 0.5 g of this fluorinated compound was dissolved in 99.5 g of the same industrial alcohol as in Example 1 to prepare a diluted solution (concentration: 0.5% by mass).

Figure 0006996911000032
Figure 0006996911000032

この希釈液に、1.1ml/cm2/秒の通気度を有する実施例1と同一に構成された二層の不織布を30秒間ディッピングした。それ以外は実施例1と同様にして、油水分離フィルターを得た。この油水分離フィルターの通気度は1.0ml/cm2/秒であり、油水分離膜は不織布1m2当り1.0gと算出された。 The diluted solution was dipped with a two-layer non-woven fabric having the same composition as that of Example 1 having an air permeability of 1.1 ml / cm 2 / sec for 30 seconds. An oil-water separation filter was obtained in the same manner as in Example 1 except for the above. The air permeability of this oil-water separation filter was 1.0 ml / cm 2 / sec, and the oil-water separation membrane was calculated to be 1.0 g per 1 m 2 of the non-woven fabric.

<比較試験及び評価>
実施例1~6及び比較例1~6で得られた12種類の油水分離フィルターを、それぞれ別々に、図1に示す油水分離装置10に取り付けた。乳化油としては、日立産機製スクリュー圧縮機用油HISCREW OIL NEXT0.25gとイオン交換水5リットルとを9000rpmで3分間混合し、白濁した油濃度が50ppmである乳化油(水と油とを含む混合液体)を用いた。この乳化油を混合液体流入部12に供給し、油水分離フィルター13でろ過した。油水分離フィルター13を通過して貯水部17に貯えられたろ過液を採取し、そのろ過液の濁度と、ろ過液の油濃度を次の方法により評価した。その結果を表3に示す。
<Comparative test and evaluation>
The 12 types of oil-water separation filters obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were separately attached to the oil-water separation device 10 shown in FIG. As the emulsifying oil, 0.25 g of Hitachi Industrial Machinery screw compressor oil HISCREW OIL NEXT and 5 liters of ion-exchanged water were mixed at 9000 rpm for 3 minutes, and the cloudy oil concentration was 50 ppm. Mixed liquid) was used. This emulsified oil was supplied to the mixed liquid inflow section 12 and filtered by the oil-water separation filter 13. The filtrate that passed through the oil-water separation filter 13 and was stored in the water storage unit 17 was collected, and the turbidity of the filtrate and the oil concentration of the filtrate were evaluated by the following method. The results are shown in Table 3.

(a) ろ過液の濁度
ろ過液の濁度は、ラコムテスター濁度計TN-100(アズワン社製)を用いて測定した。濁度は小さい方が油水分離性が良好であり、1.5以下が合格水準である。
(a) Turbidity of the filtrate The turbidity of the filtrate was measured using a Lacom tester turbidity meter TN-100 (manufactured by AS ONE). The smaller the turbidity, the better the oil-water separability, and 1.5 or less is the acceptable level.

(b) ろ過液の油濃度
ろ過液の油濃度は、油分測定計(堀場製作所社製、OCMA-555)を用いてろ過液の残留油分を測定し、ろ過液の油濃度とした。この油分測定計の検出限界は油種により異なるが、用いた乳化油では1ppmである。
(b) Oil concentration of the filter solution The oil concentration of the filter solution was determined by measuring the residual oil content of the filter solution using an oil content meter (OCMA-555 manufactured by Horiba Seisakusho Co., Ltd.). The detection limit of this oil content meter varies depending on the oil type, but it is 1 ppm for the emulsified oil used.

Figure 0006996911000033
Figure 0006996911000033

表3から明らかなように、比較例1では、加水分解物中にフッ素含有シランを含まなかったため、油水分離フィルターを通過したろ過液の濁度は3.0であり、またろ過液には油が15.0ppm混入していた。 As is clear from Table 3, in Comparative Example 1, since the hydrolyzate did not contain fluorine-containing silane, the turbidity of the filtrate that passed through the oil-water separation filter was 3.0, and the filtrate was 15.0 ppm of oil was mixed.

比較例2では、加水分解物中のフッ素含有シランの含有量が12.0質量%と多過ぎたため、油水分離フィルターを混合液体が通過せず、ろ過できなかった。 In Comparative Example 2, since the content of fluorine-containing silane in the hydrolyzate was too high at 12.0% by mass, the mixed liquid did not pass through the oil-water separation filter and could not be filtered.

比較例3では、不織布1m2当りの油水分離膜の質量が33.0質量%と多過ぎたため、油水分離フィルターの通気度が0.03ml/cm2/秒と低過ぎたため、油水分離フィルターを混合液体が通過せず、ろ過できなかった。 In Comparative Example 3, since the mass of the oil-water separation membrane per 1 m 2 of the non-woven fabric was too large at 33.0% by mass, the air permeability of the oil-water separation filter was too low at 0.03 ml / cm 2 / sec, so that the oil-water separation filter was used. The mixed liquid did not pass and could not be filtered.

比較例4では、通気度が12.0ml/cm2/秒である油水分離フィルターを用いたが、不織布1m2当りの油水分離膜の質量が0.05gと少な過ぎたため、油水分離フィルターの撥油効果が不足し、ろ過液の濁度は2.0であり、またろ過液に油が8.0ppm混入し、油の除去が十分でなかった。 In Comparative Example 4, an oil-water separation filter having an air permeability of 12.0 ml / cm 2 / sec was used, but the weight of the oil-water separation membrane per 1 m 2 of the non-woven fabric was too small, 0.05 g, so that the oil-water separation filter repelled. The oil effect was insufficient, the turbidity of the filtrate was 2.0, and 8.0 ppm of oil was mixed in the filtrate, and the oil was not sufficiently removed.

比較例5では、油水分離フィルターとして、PTFE製のメンブレンフィルターを用いたが、フィルターを混合液体が通過せず、ろ過できなかった。 In Comparative Example 5, a membrane filter made of PTFE was used as the oil-water separation filter, but the mixed liquid did not pass through the filter and could not be filtered.

比較例6では、油水分離フィルターの油水分離膜に親水撥油性が付与されており、混合液体が乳化油であったため、ろ過液の濁度は3.0であり、またろ過液には油が13.0ppm混入し、油の除去が十分でなかった。 In Comparative Example 6, the oil-water separation membrane of the oil-water separation filter was imparted with hydrophilic oil repellency, and since the mixed liquid was emulsified oil, the turbidity of the filtrate was 3.0, and the filtrate contained oil. 13.0 ppm was mixed and the oil was not sufficiently removed.

それに対して、実施例1~6の油水分離フィルターは、油水分離膜が不織布1m当り0.15~28gの割合で形成され、撥水性及び撥油性の双方の機能を有するフッ素含有シランが加水分解物中、0.01~9.9質量%の割合で含まれ、油水分離フィルターの通気度が0.08~9.6ml/cm2/秒であって、第1の観点の発明の範囲を満たしていることから、評価試験を行ったところ、ろ過液の濁度は1.5以下で合格であり、ろ過液の油濃度は、ノルマルヘキサン抽出物質含有許容量(鉱油類含有量)の5ppmを満たしており、実施例1~6の油水分離フィルターは油水分離性能があることを確認できた。
On the other hand, in the oil-water separation filters of Examples 1 to 6, the oil-water separation film was formed at a ratio of 0.15 to 28 g per 1 m 2 of the non-woven fabric, and a fluorine-containing silane having both water-repellent and oil-repellent functions was added. It is contained in the water decomposition product at a ratio of 0.01 to 9.9% by mass, and the air permeability of the oil-water separation filter is 0.08 to 9.6 ml / cm 2 / sec. Since the range was satisfied, an evaluation test was conducted, and the turbidity of the filtrate was 1.5 or less, which was acceptable, and the oil concentration of the filtrate was the allowable amount of normal hexane extract (mineral oil content). It was confirmed that the oil-water separation filters of Examples 1 to 6 had oil-water separation performance.

本発明の油水分離フィルターは、油がエマルジョン化した乳化油又は水溶性油から、油を分離して水を回収する必要のある分野に用いられる。 The oil-water separation filter of the present invention is used in a field where it is necessary to separate oil from emulsified oil or water-soluble oil in which oil is emulsified and recover water.

13 油水分離フィルター
20 不織布
20a 不織布の一面
20b 不織布の他面
20c 不織布の繊維
20d 不織布の気孔
21 油水分離膜
22 油粒子
13 Oil-water separation filter 20 Non-woven fabric 20a One side of non-woven fabric 20b Other side of non-woven fabric 20c Non-woven fabric fibers 20d Non-woven fabric pores 21 Oil-water separation membrane 22 Oil particles

Claims (5)

水と油とを含む混合液体が流入する一面と、この一面に対向する他面との間を貫通する多数の気孔が繊維間に形成された不織布を含む油水分離フィルターであって、
前記繊維表面に油水分離膜が前記不織布1m2当り0.1~30gの割合で形成され、
前記油水分離膜は、ケイ素アルコキシドと、エポキシ基含有シランと、撥水性及び撥油性の双方の機能を有するフッ素含有シランとの加水分解物により形成され、
前記フッ素含有シランは、前記加水分解物中、0.01~10質量%の割合で含まれ、
前記油水分離フィルターの通気度が0.05~10ml/cm2/秒であって、 前記フッ素含有シランは、下記の一般式(1)で示されるペルフルオロアミン構造を含むことを特徴とする油水分離フィルター。
Figure 0006996911000034
上記式(1)中、m及びnは、それぞれ同一又は互いに異なる1~6の整数である。また、Rfは、炭素数1~6のペルフルオロアルキレン基であって、直鎖状又は分枝状であってもよい。また上記式(1)中、Xは、炭素数2~10の炭化水素基であって、エーテル結合、CO-NH結合及びO-CO-NH結合から選択される1種以上の結合を含んでいてもよい。
An oil-water separation filter containing a non-woven fabric in which a large number of pores penetrating between one surface into which a mixed liquid containing water and oil flows and the other surface facing the other surface are formed between fibers.
An oil-water separation film was formed on the fiber surface at a ratio of 0.1 to 30 g per 1 m 2 of the nonwoven fabric.
The oil-water separation membrane is formed of a hydrolyzate of silicon alkoxide, an epoxy group-containing silane, and a fluorine-containing silane having both water-repellent and oil-repellent functions.
The fluorine-containing silane is contained in the hydrolyzate in a proportion of 0.01 to 10% by mass.
The oil-water separation filter has an air permeability of 0.05 to 10 ml / cm 2 / sec, and the fluorine-containing silane contains a perfluoroamine structure represented by the following general formula (1). filter.
Figure 0006996911000034
In the above formula (1), m and n are integers of 1 to 6 that are the same or different from each other. Further, Rf 1 is a perfluoroalkylene group having 1 to 6 carbon atoms, and may be linear or branched. Further, in the above formula (1), X is a hydrocarbon group having 2 to 10 carbon atoms and contains one or more bonds selected from an ether bond, a CO-NH bond and an O-CO-NH bond. You may.
記加水分解物は、更に炭素数2~7のアルキル基成分を0.5~20質量%含む請求項1記載の油水分離フィルター。 The oil-water separation filter according to claim 1, wherein the hydrolyzate further contains 0.5 to 20% by mass of an alkyl group component having 2 to 7 carbon atoms. 前記不織布が単一層により構成されるか、又は複数層の積層体により構成される請求項1又は2記載の油水分離フィルター。 The oil-water separation filter according to claim 1 or 2, wherein the nonwoven fabric is composed of a single layer or a laminate of a plurality of layers. 前記不織布を構成する繊維がポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属からなる群より選ばれた1種又は2種以上の繊維である請求項1ないし3いずれか1項に記載の油水分離フィルター。 Claimed that the fiber constituting the non-woven fabric is one or more kinds of fibers selected from the group consisting of polyethylene terephthalate (PET), polypropylene (PP), glass, alumina, carbon, cellulose, pulp, nylon and metal. The oil-water separation filter according to any one of 1 to 3. 前記水と油とを含む混合液体が流入する一面に相当する不織布を構成する繊維がガラス繊維である請求項4記載の油水分離フィルター。 The oil-water separation filter according to claim 4, wherein the fiber constituting the non-woven fabric corresponding to one surface into which the mixed liquid containing water and oil flows is glass fiber.
JP2017170852A 2017-09-06 2017-09-06 Oil-water separation filter Active JP6996911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017170852A JP6996911B2 (en) 2017-09-06 2017-09-06 Oil-water separation filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017170852A JP6996911B2 (en) 2017-09-06 2017-09-06 Oil-water separation filter

Publications (2)

Publication Number Publication Date
JP2019042707A JP2019042707A (en) 2019-03-22
JP6996911B2 true JP6996911B2 (en) 2022-02-03

Family

ID=65815121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170852A Active JP6996911B2 (en) 2017-09-06 2017-09-06 Oil-water separation filter

Country Status (1)

Country Link
JP (1) JP6996911B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175310A1 (en) * 2019-02-27 2020-09-03 三菱マテリアル電子化成株式会社 Oil-water separation filter
CN110354535A (en) * 2019-08-02 2019-10-22 瑞安市滤王汽车配件有限公司 A kind of tank hopper that water can be filtered out
CN115212608A (en) * 2021-06-29 2022-10-21 江苏中洲检测技术有限公司 Oil-water separation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187220A (en) 2014-03-26 2015-10-29 国立大学法人弘前大学 Fluorine-containing nanocomposite particle and method of producing the same, and coating agent, oil water separation film, and resin composition comprising the same
JP2016064388A (en) 2014-07-30 2016-04-28 三菱マテリアル株式会社 Oil-water separation filtration device
JP2016172249A (en) 2015-03-06 2016-09-29 日本化学工業株式会社 Oil water separation material and oil water separation method
JP2018087304A (en) 2016-11-30 2018-06-07 三菱マテリアル電子化成株式会社 Liquid composition for film formation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187220A (en) 2014-03-26 2015-10-29 国立大学法人弘前大学 Fluorine-containing nanocomposite particle and method of producing the same, and coating agent, oil water separation film, and resin composition comprising the same
JP2016064388A (en) 2014-07-30 2016-04-28 三菱マテリアル株式会社 Oil-water separation filtration device
JP2016064405A (en) 2014-07-30 2016-04-28 三菱マテリアル株式会社 Oil-water separation porous body, oil-water separation filter
JP2016172249A (en) 2015-03-06 2016-09-29 日本化学工業株式会社 Oil water separation material and oil water separation method
JP2018087304A (en) 2016-11-30 2018-06-07 三菱マテリアル電子化成株式会社 Liquid composition for film formation

Also Published As

Publication number Publication date
JP2019042707A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6996911B2 (en) Oil-water separation filter
Usman et al. An overview of superhydrophobic ceramic membrane surface modification for oil-water separation
Han et al. In situ, one-pot method to prepare robust superamphiphobic cotton fabrics for high buoyancy and good antifouling
JP7391670B2 (en) oil water separation filter
Ke et al. Oil/water separation performances of superhydrophobic and superoleophilic sponges
Liu et al. Waste cigarette filter as nanofibrous membranes for on-demand immiscible oil/water mixtures and emulsions separation
Shen et al. Superelastic polyimide nanofiber-based aerogels modified with silicone nanofilaments for ultrafast oil/water separation
JP6541431B2 (en) Oil-water separation porous body, oil-water separation filter
WO2020175310A1 (en) Oil-water separation filter
Liu et al. Preparation and vacuum membrane distillation performance of a silane coupling agent-modified polypropylene hollow fiber membrane
CN107158959A (en) A kind of superoleophobic porous composite film preparation method of super-hydrophilic and underwater
Pi et al. One-pot mussel-inspiration and silication: A platform for constructing oil-repellent surfaces toward crude oil/water separation
WO2015180872A1 (en) Mesh comprising a surface of hydrated aluminum oxides and their use for oil-water separation
CN107312197A (en) Super-hydrophobic cavernosa material and preparation method thereof
WO2021125257A1 (en) Air filter and method for producing same
Xu et al. 2D nanoneedle-like ZnO/SiO2 Janus membrane with asymmetric wettability for highly efficient separation of various oil/water mixtures
Saeed et al. A facile approach for making superhydrophobic cotton fabric membrane for oil water separation
Peng et al. Strong flexible ceramic nanofiber membranes for ultrafast separation of oil pollutants
Song et al. Simple yet powerful nanofilters with tunable pore sizes and superhydrophilicity-underwater superoleophobicity for oil spill treatment
JP6923630B2 (en) Air filter
CN111644079A (en) Nanofiltration membrane material with high surface roughness and preparation method thereof
JP2021121415A (en) Oil/water separation filter
JP2022037268A (en) Oil-water separation filter and method for manufacture thereof
JP2021181076A (en) Oil/water separation filter and method for manufacture thereof
JP2021166956A (en) Oil-water separation filter and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211216

R150 Certificate of patent or registration of utility model

Ref document number: 6996911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150