JP6994485B2 - Metal seal - Google Patents

Metal seal Download PDF

Info

Publication number
JP6994485B2
JP6994485B2 JP2019161879A JP2019161879A JP6994485B2 JP 6994485 B2 JP6994485 B2 JP 6994485B2 JP 2019161879 A JP2019161879 A JP 2019161879A JP 2019161879 A JP2019161879 A JP 2019161879A JP 6994485 B2 JP6994485 B2 JP 6994485B2
Authority
JP
Japan
Prior art keywords
convex portion
sub
plane
contact
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019161879A
Other languages
Japanese (ja)
Other versions
JP2021038835A (en
Inventor
一之 柏原
聡 藤堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2019161879A priority Critical patent/JP6994485B2/en
Publication of JP2021038835A publication Critical patent/JP2021038835A/en
Application granted granted Critical
Publication of JP6994485B2 publication Critical patent/JP6994485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasket Seals (AREA)

Description

本発明は、金属シールに係り、特に、2平面間を密封するための金属シールに関する。 The present invention relates to a metal seal, and more particularly to a metal seal for sealing between two planes.

従来、図10に示した金属シール60を、本出願人が提案した(特許文献1参照)。即ち、この金属シール60は、相互に平行な第1平面P1 と第2平面P2 の間に介装され、全体が環状であり、横断面矩形状の中間基部63と、第1平面P1 に当接する内径寄りの断面半円形の第1凸部66と、第2平面P2 に当接する外径寄りの断面半円形の第2凸部67とを、有している。
そして、装着圧縮状態(使用状態)では、図10(B)に示すように、相互に接近する第1平面P1 と第2平面P2 から押圧力F61,F62によって、中間基部63の重心点G63を中心に「回転弾性変形」を生じ、その「回転弾性変形」に伴う弾発的反発力により、第1凸部66は第1平面P1 に圧接し、かつ、第2凸部67は第2平面P2 に圧接して、流体の密封作用を行うものであった。
Conventionally, the present applicant has proposed the metal seal 60 shown in FIG. 10 (see Patent Document 1). That is, the metal seal 60 is interposed between the first plane P 1 and the second plane P 2 which are parallel to each other, and has an annular shape as a whole, and the intermediate base 63 having a rectangular cross section and the first plane P. It has a first convex portion 66 having a semicircular cross section closer to the inner diameter that abuts on 1 , and a second convex portion 67 having a semicircular cross section closer to the outer diameter that abuts on the second plane P 2 .
Then, in the mounted compressed state (used state), as shown in FIG. 10 (B), the intermediate base 63 is formed by the pressing forces F 61 and F 62 from the first plane P 1 and the second plane P 2 approaching each other. A "rotational elastic deformation" occurs around the center of gravity point G 63 , and the first convex portion 66 is in pressure contact with the first plane P 1 and the second convex due to the elastic repulsive force accompanying the "rotational elastic deformation". The portion 67 was pressed against the second plane P 2 to perform a fluid sealing action.

このように、図10に示した従来の金属シール60は、第1・第2平面P1 ,P2 からの押圧力F61,F62が小さく、弾発付勢復元性に優れた金属シールであったが、被密封用流体の圧力が高い場合や、圧力の脈動が発生した場合、図10(B)の矢印Z方向に、第2凸部67が第2平面P2 から浮上り(2点鎖線参照)、矢印B67方向に流体洩れ(ブロ―バイ)を生ずる虞れがあることが、その後の試験の結果、判明した。 As described above, in the conventional metal seal 60 shown in FIG. 10, the pressing forces F 61 and F 62 from the first and second planes P 1 and P 2 are small, and the metal seal has excellent resilience restoration property. However, when the pressure of the fluid to be sealed is high or when pressure pulsation occurs, the second convex portion 67 rises from the second plane P 2 in the direction of arrow Z in FIG. 10 (B) ( (Refer to the two-point chain line), it was found as a result of the subsequent test that there is a risk of fluid leakage (blowing) in the direction of arrow B 67 .

そこで、本出願人は、図12(A)(B)に示すような断面形状の金属シール62を提案した(特許文献2参照)。即ち、図12(A)に示すように、矩形状中間基部63の角部68,69に、横断面小三角形状の補助小突起64,65を、付設した。
言い換えると、図10(A)に示した断面形状をそのまま基本形状として、中間基部63における、第1平面P1 に対応する第1長辺部71の外方端71Aに、補助小突起64を付設し、さらに、中間基部63における、第2平面P2 に対応する第2長辺部72の内方端72Aに、補助小突起65を付設した。
Therefore, the applicant has proposed a metal seal 62 having a cross-sectional shape as shown in FIGS. 12A and 12B (see Patent Document 2). That is, as shown in FIG. 12 (A), auxiliary small protrusions 64 and 65 having a small triangular cross section were attached to the corners 68 and 69 of the rectangular intermediate base 63.
In other words, using the cross-sectional shape shown in FIG. 10A as the basic shape as it is, the auxiliary small protrusion 64 is provided on the outer end 71A of the first long side portion 71 corresponding to the first plane P1 in the intermediate base portion 63. Further, an auxiliary small protrusion 65 was attached to the inner end 72A of the second long side portion 72 corresponding to the second plane P2 in the intermediate base portion 63.

特開2004- 52900号公報Japanese Unexamined Patent Publication No. 2004-52900 特開2004-340315号公報Japanese Unexamined Patent Publication No. 2004-340315

特許文献1記載の金属シールは、(上述のように)高圧の流体圧が作用するとブローバイによる流体洩れの虞れがあった。その改良発明としての特許文献2記載の金属シールは、そのようなブローバイ等による流体洩れを防止できるが、あくまでも、回転弾性変形領域内での使用であった。現実には、種々の使用状況・条件下で、密封(シール)性能を十分高く、しかも、常に安定して発揮させることが難しい場合があることも、最近、判明した。 The metal seal described in Patent Document 1 has a risk of fluid leakage due to blow-by when a high-pressure fluid pressure acts (as described above). The metal seal described in Patent Document 2 as the improved invention can prevent fluid leakage due to such blow-by or the like, but it has been used only in the rotational elastic deformation region. In reality, it has recently been found that it may be difficult to achieve stable sealing performance with sufficiently high sealing performance under various usage conditions and conditions.

そこで、本発明は、従来の特許文献1,特許文献2に記載の金属シールのような回転弾性変形領域内に限定せずに、塑性変形領域までも許容して、最近の厳しい使用状況・条件に十分対応できる金属シールの提供を一つの目的とする。
第1平面と第2平面の間に介装した金属シールを、この2平面の相互締付けによって、塑性変形領域内における十分な変形を起こすには、締付けボルトへの負荷が急増し、かつ、シール圧縮量に対する締付力(反力)が急激増加することも予想される。
このようなボルトの負荷の急増や、シール圧縮量に対する反力の急激増加を、抑制して、実用性のある金属シールを提供することを、本発明の他の目的とする。
Therefore, the present invention allows not only the rotational elastic deformation region as in the conventional metal seals described in Patent Document 1 and Patent Document 2, but also the plastic deformation region, and the recent severe usage conditions and conditions. One of the purposes is to provide a metal seal that can sufficiently cope with the above.
In order for the metal seal interposed between the first plane and the second plane to be sufficiently deformed in the plastic deformation region by mutual tightening of the two planes, the load on the tightening bolt is rapidly increased and the seal is sealed. It is also expected that the tightening force (reaction force) with respect to the amount of compression will increase sharply.
Another object of the present invention is to provide a practical metal seal by suppressing such a rapid increase in bolt load and a rapid increase in reaction force with respect to a seal compression amount.

本発明は、相互に平行な第1平面と第2平面の間に介装される全体が環状であって、横断面形状が略矩形の中間基部と、上記第1平面に当接する内径寄りの第1凸部と、上記第2平面に当接する外径寄りの第2凸部と、を備えた金属シールに於て、上記第1凸部及び第2凸部は、各々、先端に円弧状頂部を有すると共に上記中間基部に連設される基底部に向かって幅寸法がしだいに増加する横断面形状であり、しかも、上記中間基部における、上記第1平面・第2平面に対応する第1長辺部・第2長辺部の各々には、第1副凸部・第2副凸部が、配設されており、自由状態における断面に於て、上記中間基部は、矩形の4角部のうちで上記第1長辺部の外径側に形成される角部と、上記第2長辺部の内径側に形成される角部に、三角形状切欠きを設け、該切欠きが形成される以前の上記矩形の第1長辺部の長さ寸法W 0 、横断面三角形の上記第1副凸部の三角頂点と外径側短辺との幅方向の寸法W 21 とが、下記〔数1〕を満たし、かつ、上記長さ寸法 0 、横断面三角形の第2副凸部の三角頂点と内径側短辺との幅方向の寸法W 22 とが、下記〔数2〕を満たし、装着未圧縮状態から、上記第1平面と第2平面の相対的接近に伴って、回転モーメントを受けて、上記第1凸部と第1副凸部が上記第1平面に当接した横断面2点接触状態と、上記第2凸部と第2副凸部が上記第2平面に当接した横断面2点接触状態と、から成る4点接触状態に至るまでは、上記中間基部を中心に回転弾性変形を生ずるように構成され、上記4点接触状態から、さらに上記第1平面と第2平面からの押圧力を受けて、上記第1凸部と第1副凸部と第2凸部と第2副凸部、及び、その近傍部位の塑性変形を生ずるように構成した。
〔数1〕0.15・W0 ≦W21≦0.40・W0
〔数2〕0.15・W0 ≦W22≦0.40・W0
In the present invention, an intermediate base having a substantially triangular cross-sectional shape and an intermediate base interposed between the first plane and the second plane parallel to each other and having an inner diameter that abuts on the first plane are provided. In a metal seal provided with a first convex portion and a second convex portion closer to the outer diameter that abuts on the second plane, the first convex portion and the second convex portion each have an arc shape at the tip. It is a cross-sectional shape that has a top and whose width dimension gradually increases toward the base portion that is connected to the intermediate base portion, and that is, the first plane corresponding to the first plane and the second plane in the intermediate base portion. A first sub-convex portion and a second sub-convex portion are arranged on each of the long side portion and the second long side portion, and the intermediate base portion is a rectangular four-sided portion in a cross section in a free state. A triangular notch is provided in the corner portion formed on the outer diameter side of the first long side portion and the corner portion formed on the inner diameter side of the second long side portion, and the notch is formed. The length dimension W 0 of the first long side portion of the rectangle before being formed, and the dimension W 21 in the width direction between the triangular apex of the first sub-convex portion of the cross-sectional triangle and the short side on the outer diameter side. However , the following [Equation 1] is satisfied, and the above-mentioned length dimension W 0 and the dimension W 22 in the width direction between the triangular apex of the second sub-convex portion of the cross-sectional triangle and the short side on the inner diameter side are as follows. [Equation 2] is satisfied, and the first convex portion and the first sub-convex portion receive the rotational moment as the first plane and the second plane approach each other from the uncompressed state, and the first convex portion and the first sub-convex portion are the first. Up to a four-point contact state consisting of a two-point cross-sectional contact state in contact with a plane and a two-point cross-section contact state in which the second convex portion and the second sub-convex portion abut on the second plane. Is configured to cause rotational elastic deformation around the intermediate base portion, and further receives pressing force from the first plane and the second plane from the four-point contact state, and the first convex portion and the first It is configured to cause plastic deformation of the sub-convex portion, the second convex portion, the second sub-convex portion, and the vicinity thereof.
[Number 1] 0.15 ・ W 0 ≦ W 21 ≦ 0.40 ・ W 0
[Number 2] 0.15 ・ W 0 ≦ W 22 ≦ 0.40 ・ W 0

また、上記4点接触状態において、上記第2副凸部が上記第2平面に接することで描かれる第2副凸部接触円が、上記第1凸部・上記第1副凸部が上記第1平面に接することで描かれる第1凸部接触円・第1副凸部接触円によって形成された帯状円形リングの内部に、存在している。
また、上記4点接触状態において、上記第1副凸部が上記第1平面に接することで描かれる第1副凸部接触円が、上記第2凸部・上記第2副凸部が上記第2平面に接することで描かれる第2凸部接触円・第2副凸部接触円によって形成された帯状円形リングの内部に、存在している。
また、上記4点接触状態の横断面において、上記第2副凸部の先端の上記第2平面への接触点から、上記第2平面に対して90°を成すように立てた垂線と、上記第1凸部の外周側稜線の延長線と、上記第1副凸部の内周側稜線の延長線との、交点との距離の最大値を、0.15・W0 以内に設定した。
また、上記4点接触状態の横断面において、上記第1副凸部の先端の上記第1平面への接触点から、上記第1平面に対して90°を成すように立てた垂線と、上記第2凸部の内周側稜線の延長線と、上記第2副凸部の外周側稜線の延長線との、交点との距離の最大値を、0.15・W0 以内に設定した。
Further, in the four-point contact state, the second sub-convex portion contact circle drawn by the second sub-convex portion in contact with the second plane is the first convex portion and the first sub-convex portion is the first sub-convex portion. It exists inside a band-shaped circular ring formed by a first convex contact circle and a first sub-convex contact circle drawn by being in contact with one plane.
Further, in the four-point contact state, the first sub-convex portion contact circle drawn by the first sub-convex portion in contact with the first plane is the second convex portion and the second sub-convex portion is the second sub-convex portion. It exists inside a band-shaped circular ring formed by a second convex contact circle and a second sub-convex contact circle drawn by being in contact with two planes.
Further, in the cross section in the four-point contact state, a vertical line erected so as to form 90 ° with respect to the second plane from the contact point of the tip of the second sub-convex portion with the second plane, and the above. The maximum value of the distance between the extension line of the outer peripheral side ridge line of the first convex portion and the extension line of the inner peripheral side ridge line of the first sub-convex portion with the intersection was set within 0.15 · W 0 .
Further, in the cross section in the four-point contact state, a vertical line erected so as to form 90 ° with respect to the first plane from the contact point of the tip of the first sub-convex portion with the first plane, and the above. The maximum value of the distance between the extension line of the inner peripheral side ridge line of the second convex portion and the extension line of the outer peripheral side ridge line of the second sub-convex portion with the intersection was set within 0.15 · W 0 .

本発明によれば、金属シールを塑性変形させるために、第1・第2平面を締付けるための力が過大とならず、締付ボルトの外径も小さくて済み、これによって、シール装着機器のコンパクト化にも寄与できる。第1平面・第2平面に対して適切な接触面圧分布をもって各々2点で圧接し、優れた密封性を発揮する。 According to the present invention, in order to plastically deform the metal seal, the force for tightening the first and second planes is not excessive, and the outer diameter of the tightening bolt can be small, whereby the seal mounting device can be used. It can also contribute to compactness. It is pressure-welded at two points each with an appropriate contact surface pressure distribution to the first plane and the second plane, and exhibits excellent sealing performance.

本発明の実施形態を示す全体の断面図であって、(A)は第1の実施形態を示す断面図、(B)は第2の実施形態を示す断面図である。It is the whole sectional view which shows the embodiment of this invention, (A) is the sectional view which shows the 1st Embodiment, (B) is the sectional view which shows the 2nd Embodiment. 第1の実施形態の形状を説明するための拡大断面図である。It is an enlarged sectional view for demonstrating the shape of 1st Embodiment. 第1の実施形態の金属シールの4点接触状態を示した図であって、(A)は拡大断面説明図、(B)は(A)の要部を抽出して示した縮小平面図、(C)は(A)の要部を抽出して示した縮小底面図である。It is a figure which showed the four-point contact state of the metal seal of 1st Embodiment, (A) is the enlarged sectional-section explanatory view, (B) is the reduced plan view which showed by extracting the main part of (A). (C) is a reduced bottom view showing the main part of (A) extracted. 第2の実施形態の形状を説明するための拡大断面図である。It is an enlarged sectional view for demonstrating the shape of the 2nd Embodiment. 第2の実施形態の金属シールの4点接触状態を示した拡大断面説明図である。It is an enlarged cross-sectional explanatory view which showed the four-point contact state of the metal seal of 2nd Embodiment. 図7と図8に示す、接触面圧のグラフ図と、塑性変形後の断面図を、FEM解析にて求めるのに用いた金属シールの自由状態の形状と寸法を示す断面図であって、(A)は図に対応する断面図、(B)は図に対応する断面図である。The graph of the contact surface pressure and the cross-sectional view after plastic deformation shown in FIGS. 7 and 8 are cross-sectional views showing the shape and dimensions of the free state of the metal seal used for obtaining by FEM analysis. (A) is a cross-sectional view corresponding to FIG. 7 , and (B) is a cross - sectional view corresponding to FIG. FEM解析にて得られた本発明の実施品についての最終締付圧縮状態の断面形状を示すと共に、第1・第2平面に対する接触面圧を示す図である。It is a figure which shows the cross-sectional shape of the final tightening compression state about the product of this invention obtained by FEM analysis, and also shows the contact surface pressure with respect to the 1st and 2nd planes. FEM解析にて得られた比較例の最終締付圧縮状態の断面形状を示すと共に、第1・第2平面に対する接触面圧を示す図である。It is a figure which shows the cross-sectional shape of the final tightening compression state of the comparative example obtained by FEM analysis, and also shows the contact surface pressure with respect to the 1st and 2nd planes. 本発明と比較例を比べて、セット高さに対する反力の大きさを示したグラフ図である。It is a graph which showed the magnitude of the reaction force with respect to the set height in comparison with the present invention and a comparative example. 従来例を示し、(A)は自由状態の全体断面図、(B)は最終圧縮状態(使用状態)を示す断面図である。A conventional example is shown, (A) is an overall sectional view in a free state, and (B) is a sectional view showing a final compressed state (used state). 比較例を示す図であって、(A)は大きな締付力を与えて第1平面と第2平面に対して各2点接触させて全体を4点接触状態とした拡大断面説明図であり、(B)は(A)の要部を抽出して示した縮小平面図、(C)は(A)の要部を抽出して示した縮小底面図である。It is a figure which shows the comparative example, (A) is the enlarged cross-sectional explanatory view which applied a large tightening force and brought into contact with each of 2 points with respect to the 1st plane and 2nd plane, and made the whole 4 points contact state. , (B) is a reduced plan view showing the main part of (A) extracted, and (C) is a reduced bottom view showing the main part of (A) extracted. 他の従来例(比較例)を示す図であって、(A)は自由状態の全体断面図、(B)は圧縮使用状態を示す要部断面図である。It is a figure which shows the other conventional example (comparative example), (A) is the whole sectional view in the free state, (B) is the main part sectional view which shows the compressed use state.

以下、図示の実施の形態に基づき本発明を詳説する。
図1(A)と図2及び図3(A)に示すように、本発明に係る金属シールSは、相互に平行な第1平面P1 と第2平面P2 の間に介装して使用され、全体が、円形や長円形や多角形等の環状である。そして、平行な上記2平面P1 ,P2 間を密封するものである。
例えば、(図示省略したが)シール凹溝内に装着されて、シール凹溝の底面と、蓋部材の下面とに、圧接して密封作用をなす。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
As shown in FIGS. 1 (A), 2 and 3 (A), the metal seal S according to the present invention is interposed between the first plane P 1 and the second plane P 2 which are parallel to each other. It is used and the whole is a ring such as a circle, an oval, or a polygon. Then, the parallel planes P 1 and P 2 are sealed.
For example, it is mounted in the concave groove of the seal (although not shown), and press-contacts the bottom surface of the concave groove of the seal and the lower surface of the lid member to perform a sealing action.

そして、この金属シールSの横断面形状について説明すれば、略矩形の中間基部3と、第1平面P1 に当接する内径寄りの第1凸部11と、第2平面P2 に当接する外径寄りの第2凸部12と、を備えている。上記略矩形の中間基部3は、第1・第2平面P1 ,P2 に対して平行な長辺3A,3A───これを区別して、第1長辺部31・第2長辺部32と呼ぶ場合もある───と、それに直交する短辺3B,3Bから形成されるが、図例では、4角部の内で点対称位置の2角部に、小さな三角形状切欠き15,15が設けられている。 Then, to explain the cross-sectional shape of the metal seal S, a substantially rectangular intermediate base portion 3, a first convex portion 11 closer to the inner diameter that abuts on the first plane P 1 , and an outer surface that abuts on the second plane P 2 . It is provided with a second convex portion 12 that is closer to the diameter. The intermediate base 3 of the above-mentioned substantially rectangular shape has long sides 3A and 3A parallel to the first and second planes P1 and P2. It is sometimes called 32 ─── and is formed from short sides 3B and 3B orthogonal to it, but in the figure example, a small triangular notch 15 is made at the two corners at the point-symmetrical position in the four corners. , 15 are provided.

第1凸部11は、先端に所定半径Rの円弧状頂部11Aを有すると共に、上記中間基部3に連設される基底部13に向かって幅寸法W11がしだいに増加する横断面形状とされている。
また、第1凸部11は、切欠き15の存在しない(矩形状中間基部3の)直角状角部3Cにおける第1長辺部31側に連設されている。このようにして、第1凸部11は矩形状中間基部3の第1長辺部31の内径側の端部に配設されている。
また、(図2に示すように)第1凸部11の内周側稜線11Bは、中間基部3の内周側短辺3Bの延長線上に存在する。
The first convex portion 11 has an arcuate top portion 11A having a predetermined radius R at the tip thereof, and has a cross-sectional shape in which the width dimension W 11 gradually increases toward the base portion 13 connected to the intermediate base portion 3. ing.
Further, the first convex portion 11 is continuously provided on the first long side portion 31 side of the right-angled square portion 3C (of the rectangular intermediate base portion 3) in which the notch 15 does not exist. In this way, the first convex portion 11 is arranged at the end portion on the inner diameter side of the first long side portion 31 of the rectangular intermediate base portion 3.
Further, the inner peripheral side ridge line 11B of the first convex portion 11 (as shown in FIG. 2) exists on an extension line of the inner peripheral side short side 3B of the intermediate base portion 3.

第2凸部12は、先端に所定半径Rの円弧状頂部12Aを有すると共に、上記中間基部3に連設される基底部14に向かって幅寸法W12がしだいに増加する横断面形状とされている(図2では上下反転した山型に図示される)。 The second convex portion 12 has an arcuate top portion 12A having a predetermined radius R at the tip thereof, and has a cross-sectional shape in which the width dimension W 12 gradually increases toward the base portion 14 connected to the intermediate base portion 3. (In FIG. 2, it is illustrated as an inverted mountain shape).

また、第2凸部12は、切欠き15の存在しない(矩形状中間基部3の)直角状角部3Dにおける第2長辺部32側に連設されている。このようにして、第2凸部12は矩形状中間基部3の第2長辺部32の外径側の端部に配設されている。
また、(図2に示すように)第2凸部12の外周側稜線12Cは、中間基部3の外周側短辺3Bの延長線上に存在する。
Further, the second convex portion 12 is continuously provided on the second long side portion 32 side of the right-angled square portion 3D (of the rectangular intermediate base portion 3) in which the notch 15 does not exist. In this way, the second convex portion 12 is arranged at the end portion on the outer diameter side of the second long side portion 32 of the rectangular intermediate base portion 3.
Further, the outer peripheral side ridge line 12C of the second convex portion 12 (as shown in FIG. 2) exists on the extension line of the outer peripheral side short side 3B of the intermediate base portion 3.

そして、図1(A)と図2と図3(A)に示した実施の形態に於ては、上記中間基部3における、第1平面P1 ・第2平面P2 に対応する第1長辺部31・第2長辺部32の各中間位置に、横断面三角形の第1副凸部21・第2副凸部22が、配設されている。
また、図1(B)と図4と図5に示した本発明の他の実施形態に於ては、横断面が台形の第1副凸部21・第2副凸部22が、第1長辺部31・第2長辺部32に、各々配設されている。
Then, in the embodiment shown in FIGS. 1 (A), 2 and 3 (A), the first length corresponding to the first plane P 1 and the second plane P 2 in the intermediate base portion 3 is obtained. The first sub-convex portion 21 and the second sub-convex portion 22 of the cross-sectional triangle are arranged at the intermediate positions of the side portion 31 and the second long side portion 32.
Further, in the other embodiments of the present invention shown in FIGS. 1 (B), 4 and 5, the first sub-convex portion 21 and the second sub-convex portion 22 having a trapezoidal cross section are the first. It is arranged on the long side portion 31 and the second long side portion 32, respectively.

横断面三角形の第1副凸部21が第1長辺部31の「中間位置」に配設されているとは、次のように定義する。
即ち、図2に示す金属シールSの自由状態における断面に於て、切欠き15が形成される以前の第1長辺部31の長さ寸法───つまり、図2の金属シールSの横断面の幅寸法───を 0 とすると共に、第1副凸部21の三角頂点21Pと、外径側短辺3Bとの(幅方向の)寸法をW21とすれば、次の数式〔数1〕を満たす場合を言う。
〔数1〕0.15・W0 ≦W21≦0.40・W0
It is defined as follows that the first sub-convex portion 21 of the cross-sectional triangle is arranged at the "intermediate position" of the first long side portion 31.
That is, in the cross section of the metal seal S in the free state shown in FIG. 2, the length dimension of the first long side portion 31 before the notch 15 is formed ─── that is, the cross section of the metal seal S in FIG. If the width dimension of the surface is W 0 and the dimension (in the width direction) of the triangular apex 21P of the first subconvex portion 21 and the short side 3B on the outer diameter side is W 21 , the following formula is used. This refers to the case where [Equation 1] is satisfied.
[Number 1] 0.15 ・ W 0 ≦ W 21 ≦ 0.40 ・ W 0

また、横断面三角形の第2副凸部22が第2長辺部32の「中間位置」に配設されているとは、図2の自由状態断面に於て、切欠き15が形成される以前の第2長辺部32の長さ寸法───つまり、図2の金属シールSの横断面の前記幅寸法 0 ───に対して、(横断面三角形の)第2副凸部22の三角頂点22Pと、内径側短辺3Bとの(幅方向の)寸法をW22とすれば、次の数式〔数2〕を満たす場合を言うものと定義する。
〔数2〕0.15・W0 ≦W22≦0.40・W0
Further, the fact that the second sub-convex portion 22 of the cross-sectional triangle is arranged at the “intermediate position” of the second long side portion 32 means that the notch 15 is formed in the free-state cross section of FIG. The length dimension of the previous second long side portion 32 ─── That is, the width dimension of the cross section of the metal seal S in FIG.W 0 For ───, the dimension (in the width direction) of the triangular apex 22P of the second sub-convex portion 22 (of the cross-sectional triangle) and the short side 3B on the inner diameter side is W.twenty twoIf so, it is defined as the case where the following formula [Equation 2] is satisfied.
[Number 2] 0.15 · W0 ≦ Wtwenty two≤0.40 ・ W0

また、第1副凸部21と第2副凸部22が、図4に示すような横断面台形である実施形態に於て、前記「中間位置」に配設されているとは、次のように定義する。
図4に示した金属シールSを、装着未圧縮状態から、第1平面P1 と第2平面P2 の相対的接近に伴って、押圧力を受けて、第1副凸部21及び第2副凸部22が、各々、第1平面P1 ・第2平面P2 に当接して、図5に示す4点接触状態に至るが、その状態下で、図5で明らかな如く、横断面台形の第1副凸部21・第2副凸部22の台形上辺は微小傾斜角度βをもって(第1・第2)平面P1 ,P2 に接触する。
Further, in the embodiment in which the first sub-convex portion 21 and the second sub-convex portion 22 are trapezoidal in cross section as shown in FIG. 4, it is said that the first sub-convex portion 21 and the second sub-convex portion 22 are arranged at the "intermediate position" as follows. Is defined as.
The metal seal S shown in FIG. 4 receives a pressing force from the uncompressed state as the first plane P 1 and the second plane P 2 approach each other, and the first sub-convex portion 21 and the second sub-convex portion 21 and the second. The sub-convex portion 22 abuts on the first plane P1 and the second plane P2, respectively, to reach the four-point contact state shown in FIG. The upper side of the trapezoid of the first sub-convex portion 21 and the second sub-convex portion 22 of the trapezoid comes into contact with the (first and second) planes P 1 and P 2 with a minute inclination angle β.

従って、第1副凸部21にあっては、横断面台形(の上辺)の外径側の一点21Kを、図2に示した頂点21Pに該当するものとして、前記W21を規定する。さらに、第2副凸部22にあっては、横断面台形の内径側の一点22Kを、図2に示した頂点22Pに該当するものとして、前記W22を規定する。このように、各寸法W21,W22を規定すれば、前記数式〔数1〕〔数2〕が、図5に示した実施形態にもそのまま適用できる。即ち、第1副凸部21・第2副凸部22が横断面台形である場合に、前記数式〔数1〕〔数2〕を充足すれば、第1副凸部21・第2副凸部22が、第1長辺部31・第2長辺部32の「中間位置に配設」されていると言える。 Therefore, in the first sub-convex portion 21, the W 21 is defined as one point 21K on the outer diameter side of the cross-sectional trapezoid (upper side) corresponding to the apex 21P shown in FIG. Further, in the second sub-convex portion 22, the W 22 is defined as the one point 22K on the inner diameter side of the trapezoid in the cross section corresponds to the apex 22P shown in FIG. As described above, if the dimensions W 21 and W 22 are specified, the mathematical formulas [Equation 1] and [Equation 2] can be applied to the embodiment shown in FIG. 5 as they are. That is, when the first sub-convex portion 21 and the second sub-convex portion 22 are trapezoidal in cross section, if the above mathematical formulas [Equation 1] and [Equation 2] are satisfied, the first sub-convex portion 21 and the second sub-convex portion 21 are satisfied. It can be said that the portion 22 is "arranged at an intermediate position" between the first long side portion 31 and the second long side portion 32.

ところで、図10及び図12にて既に説明したように、従来の金属シール60,62は、基本的に金属の弾性変形領域内で使用されている。
これに対し、本願発明は、図2,図4にて説明した横断面形状であって、装着未圧縮状態から、第1平面P1 と第2平面P2 の相対的接近に伴って、押圧力を受けて、まず、図2から図3のように、あるいは、図4から図5に示すように、回転弾性変形を生ずるが、さらに、引続いて、図7に示す如く、第1凸部11と第1副凸部21と第2凸部12と第2副凸部22、及び、(断面における)その近傍部位が、塑性変形を生ずるように、構成されている。
By the way, as already described with reference to FIGS. 10 and 12, the conventional metal seals 60 and 62 are basically used in the elastic deformation region of the metal.
On the other hand, the present invention has the cross-sectional shape described in FIGS. 2 and 4, and is pushed from the uncompressed state as the first plane P 1 and the second plane P 2 approach each other. Under pressure, first, as shown in FIGS. 2 to 3, or as shown in FIGS. 4 to 5, rotational elastic deformation occurs, and subsequently, as shown in FIG. 7, the first convex. The portion 11, the first sub-convex portion 21, the second convex portion 12, the second sub-convex portion 22, and the vicinity thereof (in the cross section) are configured to cause plastic deformation.

具体的に説明すると、図2又は図4に示した自由状態の断面形状のままで、シール装着装置の内部の第1平面P1 と第2平面P2 の間に介装した装着未圧縮状態から、第1平面P1 と第2平面P2 を、(図外の)ボルト締付けによって、相対的に接近させてゆくと、まず、第1凸部11と第2凸部12のみが当接しつつ締付力(押圧力)を受けて、回転弾性変形を開始する。 Specifically, the uncompressed state in which the seal mounting device is interposed between the first plane P1 and the second plane P2 while maintaining the cross-sectional shape in the free state shown in FIG. 2 or FIG. Therefore, when the first plane P 1 and the second plane P 2 are relatively close to each other by bolt tightening (not shown in the figure), first, only the first convex portion 11 and the second convex portion 12 come into contact with each other. While receiving the tightening force (pushing pressure), rotational elastic deformation is started.

引続き、ボルト締付けによって、第1・第2平面P1 ,P2 を相対的に接近させると、第1凸部11と第1副凸部21が第1平面P1 に当接した横断面2点接触状態となると同時に、第2凸部12と第2副凸部22が第2平面P2 に当接した横断面2点接触状態とから成る4点接触状態(図3,図5参照)となる。このように4点接触状態に至るまでは、上記中間基部3(の重心点O3 )を中心に回転弾性変形を生ずるように構成されている。
このような作動(構成)は、従来の図12(A)(B)と同様であると言える。
Subsequently, when the first and second planes P 1 and P 2 are relatively close to each other by bolt tightening, the first convex portion 11 and the first sub-convex portion 21 are in contact with the first plane P 1 in the cross section 2. At the same time as the point contact state is reached, the second convex portion 12 and the second sub-convex portion 22 are in contact with the second plane P 2 in a cross-sectional two-point contact state (see FIGS. 3 and 5). It becomes. As described above, until the four-point contact state is reached, the rotational elastic deformation is configured around the intermediate base portion 3 (center of gravity point O 3 ).
It can be said that such an operation (configuration) is the same as that of the conventional FIGS. 12 (A) and 12 (B).

しかしながら、本発明に係る金属シールSでは、図3,図5に示したような4点接触状態から、さらに、第1平面P1 と第2平面P2 を相対的に接近させていって、押圧力を受け続け、図7に示す如く、塑性変形を生ずるように構成されている。
図3(B)は、4点接触状態における同図(A)の要部のみを、抽出して示した縮小平面図である。
図3(B)に於て、R11は、図3(A)に示した第1凸部11が第1平面P1 に接する点を、上面から見て描いた第1凸部接触円である。
21は、第1副凸部21が第1平面P1 に接する点を、上面から見て描いた第1副凸部接触円である。
さらに、R22は、図3(A)に示した第2副凸部22が第2平面P2 に接する点を、上面から見て描いた第2副凸部接触円である。
However, in the metal seal S according to the present invention, the first plane P 1 and the second plane P 2 are further brought closer to each other from the four-point contact state as shown in FIGS. 3 and 5. As shown in FIG. 7, it is configured to continue to receive a pressing force and cause plastic deformation.
FIG. 3B is a reduced plan view showing only the main part of FIG. 3A in the four-point contact state by extracting it.
In FIG. 3B, R 11 is a first convex contact circle drawn from the upper surface at a point where the first convex portion 11 shown in FIG. 3A is in contact with the first plane P1. be.
R 21 is a first sub-convex contact circle drawn from the upper surface at a point where the first sub-convex 21 touches the first plane P 1 .
Further, R 22 is a second sub-convex contact circle drawn from the upper surface at a point where the second sub-convex 22 shown in FIG. 3A is in contact with the second plane P 2 .

この図3(B)から、以下のことが判る。つまり、図3(A)の4点接触状態に於て、第2副凸部接触円R22は、第1凸部接触円R11及び第1副凸部接触円R21によって形成された帯状円形リングR100 の内部に、存在する。
図3(B)に示したこのような特徴点は、後述する(従来例の場合を示す)図11(B)及び図11(C)と、対比することで、独自の作用・効果を発揮することが、明らかになるであろう。なお、図5に示した他の実施形態の4点接触状態にあっても、図3(B)(C)で説明したと同様の技術的構成となり、かつ、同じ作用効果が得られる。
From this FIG. 3 (B), the following can be seen. That is, in the four-point contact state of FIG. 3A, the second sub-convex contact circle R 22 has a band shape formed by the first convex contact circle R 11 and the first sub-convex contact circle R 21 . It exists inside the circular ring R 100 .
Such feature points shown in FIG. 3 (B) exhibit unique actions and effects by comparing them with FIGS. 11 (B) and 11 (C), which will be described later (showing the case of the conventional example). It will be clear to do. Even in the four-point contact state of the other embodiment shown in FIG. 5, the technical configuration is the same as that described in FIGS. 3 (B) and 3 (C), and the same effect can be obtained.

次に、図3(C)は、4点接触状態における同図(A)の要部のみを、抽出して示した縮小底面図である。
図3(C)に於て、R12は、図3(A)に示した第2凸部12が第2平面P2 に接する点を、底面から見て描いた第2凸部接触円である。
21は、第1副凸部21が第1平面P1 に接する点を、底面から見て描いた第1副凸部接触円である。
さらに、R22は、図3(A)に示した第2副凸部22が第2平面P2 に接する点を、底面から見て描いた第2副凸部接触円である。
Next, FIG. 3C is a reduced bottom view showing only the main part of FIG. 3A in the four-point contact state.
In FIG. 3 (C), R 12 is a second convex contact circle drawn from the bottom surface at a point where the second convex portion 12 shown in FIG. 3 (A) is in contact with the second plane P 2 . be.
R 21 is a first sub-convex contact circle drawn from the bottom surface at a point where the first sub-convex 21 touches the first plane P 1 .
Further, R 22 is a second sub-convex contact circle drawn from the bottom surface at a point where the second sub-convex 22 shown in FIG. 3A is in contact with the second plane P 2 .

この図3(C)から、以下のことが判る。つまり、図3(A)の4点接触状態に於て、第1副凸部接触円R21が、第2凸部接触円R12と第2副凸部接触円R22によって形成された帯状円形リングR200 の内部に、存在する。
図3(C)に示したこのような特徴点は、後述する(従来例の場合を示す)図11(C)及び図12(D)と、対比することで、独自の作用・効果を発揮することが、明らかとなるであろう。
From this FIG. 3 (C), the following can be seen. That is, in the four-point contact state of FIG. 3A, the first sub-convex contact circle R 21 has a band shape formed by the second convex contact circle R 12 and the second sub-convex contact circle R 22 . It exists inside the circular ring R 200 .
Such feature points shown in FIG. 3 (C) exhibit unique actions and effects by comparing them with FIGS. 11 (C) and 12 (D), which will be described later (showing the case of the conventional example). It will be clear to do.

そして、図3(A)に於て、本発明のさらなる特徴点につき説明する。
即ち、図3(A)に示した4点接触状態の横断面において、第2副凸部22の先端(頂点22P)の第2平面P2 への接触点から、第2平面P2 に対して90°を成すように立てた垂線T1 を、(仮に)想定する。
そして、図3(A)に於て、第1凸部11の外周側稜線11Cの延長線Y11と、第1副凸部21の内周側稜線21Eの延長線Y21との交点をOとすると、この交点Oは、前記垂線T1 に一致して、垂線T1 上に存在する。
図3(A)に於ては、両延長線Y11,Y21の交点Oから第2平面P2 に下した垂線と、前記垂線T1 とが、一致し、同図中のεは、零であることを記載している。
Then, in FIG. 3A, further feature points of the present invention will be described.
That is, in the cross section of the four-point contact state shown in FIG. 3A, from the contact point of the tip (vertex 22P) of the second sub-convex portion 22 to the second plane P2 with respect to the second plane P2. It is assumed (temporarily) that the perpendicular line T 1 is set up so as to form 90 °.
Then, in FIG. 3A, the intersection of the extension line Y 11 of the outer peripheral side ridge line 11C of the first convex portion 11 and the extension line Y 21 of the inner peripheral side ridge line 21E of the first sub-convex portion 21 is O. If Y , this intersection OY coincides with the perpendicular line T 1 and exists on the perpendicular line T 1 .
In FIG. 3A, the perpendicular line drawn from the intersection OY of both extension lines Y 11 and Y 21 to the second plane P 2 and the perpendicular line T 1 coincide with each other, and ε in the figure is , It is stated that it is zero.

なお、図2中の金属シールSの幅寸法W0 に対して、最大ε値は、0.15・W0 以内であれば良い。
言い換えると、第2平面P2 に対して90°を成すように立てた上記垂線T1 の近傍に、交点Oが存在しておれば十分である。
The maximum ε value may be within 0.15 · W 0 with respect to the width dimension W 0 of the metal seal S in FIG. 2.
In other words, it is sufficient if the intersection OY exists in the vicinity of the perpendicular line T 1 set up so as to form 90 ° with respect to the second plane P 2 .

また、図3(A)に示すように、4点接触状態に於て、第1副凸部21の先端の第1平面P1 への接触点───頂点21Pが該当している───から、上記第1平面P1 に対して90°を成すように立てた垂線T2 を想定する。 Further, as shown in FIG. 3A, in the four-point contact state, the contact point of the tip of the first sub-convex portion 21 with the first plane P1 ─── the apex 21P corresponds to ──. From the above, it is assumed that the perpendicular line T 2 is set up so as to form 90 ° with respect to the first plane P 1 .

そして、第2凸部12の内周側稜線12Bの延長線Y12と、第2副凸部22の外周側稜線22Eの延長線Y22との交点をOxとすると、この交点Oxは、前記垂線T2 に一致して、垂線T2 上に存在する。
図3(A)に於ては、交点Oxから第1平面P1 に直交する垂線と、前記垂線T2 とが、一致し、同図中のεは、零であることを記載している。
Then, assuming that the intersection of the extension line Y 12 of the inner peripheral side ridge line 12B of the second convex portion 12 and the extension line Y 22 of the outer peripheral side ridge line 22E of the second sub-convex portion 22 is Ox, this intersection point Ox is described above. It coincides with the perpendicular line T 2 and exists on the perpendicular line T 2 .
In FIG . 3A, it is described that the perpendicular line orthogonal to the first plane P1 from the intersection Ox coincides with the perpendicular line T2, and ε in the figure is zero. ..

なお、金属シールSの幅寸法W0 に対して、最大ε値は、0.15・W0 以内であれば良い点は、図3(A)の交点Oについての場合と同じである。言い換えれば、第1平面P1 に対して90°を成す垂線T2 の近傍に、交点Oxが存在すれば、十分である。 It should be noted that the maximum ε value with respect to the width dimension W 0 of the metal seal S may be 0.15 · W 0 or less, which is the same as the case of the intersection OY in FIG. 3 (A). In other words, it is sufficient if the intersection Ox is present in the vicinity of the perpendicular line T 2 forming 90 ° with respect to the first plane P 1 .

次に、図5に於て、図3(A)の垂線T1 ,T2 は、台形状副凸部21,22の先端の一角部21K,22Kから第1・第2平面P1 ,P2 に対して垂直に立てる点、及び、交点Ox,Oが、夫々、垂線T1 の近傍にある───つまり、同図中の小さな寸法εをもって外れている───点以外は、図3(A)と同様の構成であるので、詳細説明を省略する。 Next, in FIG. 5, the perpendicular lines T 1 and T 2 in FIG. 3 (A) are the first and second planes P 1 and P from the corner portions 21K and 22K at the tips of the trapezoidal sub-convex portions 21 and 22. Except for the points that stand perpendicular to 2 and the intersections Ox and OY , respectively, near the perpendicular line T 1 ── that is, they are off with a small dimension ε in the figure ──. Since the configuration is the same as that of FIG. 3A, detailed description thereof will be omitted.

ここで、図2,図4にもどって望ましい各部の寸法(寸法関係)について追加説明する。
第1凸部11・第2凸部12の外周・内周の稜線の成す角度をθとすれば、25°≦θ≦35°のように設定する。また、第1副凸部21・第2副凸部22の外周・内周の稜線の成す角度をθ’とすれば、50°≦θ’≦110°のように設定する。
矩形状の中間基部3の幅寸法と高さ寸法を、各々、W0 ,H0 とすれば、第1凸部11・第2凸部12の高さ寸法H11,H12は、次のように設定する。
〔数3〕0.25・H0 ≦H11≦0.5・H0
〔数4〕0.25・H0 ≦H12≦0.5・H0
また、第1凸部11・第2凸部12の基底部13,14の各々寸法を、W110 ,W120 とすれば、次のように設定する。
〔数5〕0.20・W0 ≦W110 ≦0.35・W0
〔数6〕0.20・W0 ≦W120 ≦0.35・W0
また、第1・第2副凸部21,22の高さ寸法を、各々、H21,H22とすれば、次のように設定する。
〔数7〕0.10・H0 ≦H21≦0.25・H0
〔数8〕0.10・H0 ≦H22≦0.25・H0
Here, the desirable dimensions (dimensional relations) of each part will be additionally described by returning to FIGS. 2 and 4.
If the angle formed by the ridges of the outer and inner circumferences of the first convex portion 11 and the second convex portion 12 is θ, it is set as 25 ° ≦ θ ≦ 35 °. Further, if the angle formed by the ridges of the outer circumference and the inner circumference of the first sub-convex portion 21 and the second sub-convex portion 22 is θ', it is set as 50 ° ≤ θ'≤ 110 °.
Assuming that the width dimension and the height dimension of the rectangular intermediate base 3 are W 0 and H 0 , respectively, the height dimensions H 11 and H 12 of the first convex portion 11 and the second convex portion 12 are as follows. To set.
[Number 3] 0.25 ・ H 0 ≦ H 11 ≦ 0.5 ・ H 0
[Number 4] 0.25 ・ H 0 ≦ H 12 ≦ 0.5 ・ H 0
Further, assuming that the dimensions of the base portions 13 and 14 of the first convex portion 11 and the second convex portion 12 are W 110 and W 120 , the settings are as follows.
[Number 5] 0.20 ・ W 0 ≦ W 110 ≦ 0.35 ・ W 0
[Number 6] 0.20 ・ W 0 ≦ W 120 ≦ 0.35 ・ W 0
Further, if the height dimensions of the first and second sub-convex portions 21 and 22 are H 21 and H 22 , respectively, they are set as follows.
[Number 7] 0.10 ・ H 0 ≦ H 21 ≦ 0.25 ・ H 0
[Number 8] 0.10 ・ H 0 ≦ H 22 ≦ 0.25 ・ H 0

次に、図6(A)は本発明の一実施品の横断面の具体的寸法・形状を示すと共に、図6(B)は比較例(従来例)の横断面の具体的寸法・形状を例示している。図6(B)は、既に図10で説明した従来の金属シール60そのものであるが、これを回転弾性変形領域(図10(B)参照)を越えて、第1平面P1 と第2平面P2 の間隔寸法Hpを減少させてゆくと、図11に示した4点接触状態を経て、図8に示したような塑性変形領域に至り、大きな変形を起こす。 Next, FIG. 6A shows the specific dimensions and shape of the cross section of one embodiment of the present invention, and FIG. 6B shows the specific dimensions and shape of the cross section of the comparative example (conventional example). Illustrate. FIG. 6B is the conventional metal seal 60 itself already described in FIG. 10, but beyond the rotational elastic deformation region (see FIG. 10B), the first plane P1 and the second plane When the interval dimension Hp of P 2 is decreased, the plastic deformation region as shown in FIG. 8 is reached through the four-point contact state shown in FIG. 11, and large deformation occurs.

また、図8では、第1平面P1 と第2平面P2 の間隔寸法Hpを0.7mmまで減少した───即ち、金属シール60のセット高さGを0.7mmとした───最終締付圧縮状態(いわゆるセット状態)の金属シールの変形状態、及び、第1・第2平面P1 ,P2 に対する接触面圧を示す。 Further, in FIG. 8, the distance dimension Hp between the first plane P 1 and the second plane P 2 is reduced to 0.7 mm-that is, the set height G of the metal seal 60 is set to 0.7 mm-. The deformed state of the metal seal in the final tightening compressed state (so-called set state) and the contact surface pressure with respect to the first and second planes P 1 and P 2 are shown.

本発明に係る金属シールSの実施品(図6(A))では、図7に示すような、セット高さGを0.7mmとした最終締付圧縮状態(いわゆるセット状態)の金属シールSの断面形状、及び、接触面圧についてのFEM解析した結果を示す。 In the product of the metal seal S according to the present invention (FIG. 6 (A)), the metal seal S in the final tightening compressed state (so-called set state) with the set height G set to 0.7 mm as shown in FIG. The result of FEM analysis about the cross-sectional shape and the contact surface pressure of the above is shown.

図7と図8を比較すれば、以下のことが判る。即ち、(i)第1平面P1 に対する接触面圧波形は、本発明実施品(図6(A),図2参照)では、第1副凸部21(図2参照)の波形が大きく、第1凸部11(図2参照)の波形が小さく出現している。(ii)第2平面P2 に対する接触面圧波形は、本発明実施品(図6(A),図2参照)では、第2副凸部22の波形が大きく、第2凸部12の波形が小さく出現している。(iii) 比較例(図6(B)参照)では、第1凸部66の波形が、角部68の波形に比較すると、幅が広く、最大高さ(面圧)がやや低く、面積は僅かに大きい。(iv)比較例(図6(B)参照)では、第2凸部67の波形が、角部69の波形に比較すると、幅が広く、最大高さ(面圧)がやや低く、面積が僅かに大きい。(v)図7と図8のいずれにあっても、接触面圧は、4点接触状態の4点のいずれもが1000MPaを越えた十分高い値を示し、密封性能に関しては、十分である。 Comparing FIGS. 7 and 8, the following can be seen. That is, (i) the contact surface pressure waveform with respect to the first plane P 1 has a large waveform of the first sub-convex portion 21 (see FIG. 2) in the product of the present invention (see FIGS. 6 (A) and 2). The waveform of the first convex portion 11 (see FIG. 2) appears small. (Ii) As for the contact surface pressure waveform with respect to the second plane P 2 , in the product of the present invention (see FIGS. 6A and 2), the waveform of the second sub-convex portion 22 is large, and the waveform of the second convex portion 12 is large. Appears small. (iii) In the comparative example (see FIG. 6B), the waveform of the first convex portion 66 is wider than the waveform of the corner portion 68, the maximum height (surface pressure) is slightly lower, and the area is larger. Slightly large. (Iv) In the comparative example (see FIG. 6B), the waveform of the second convex portion 67 is wider, the maximum height (surface pressure) is slightly lower, and the area is larger than that of the waveform of the corner portion 69. Slightly large. (V) In any of FIGS. 7 and 8, the contact surface pressure is sufficiently high in all four points in the four-point contact state exceeding 1000 MPa, and the sealing performance is sufficient.

ところが、図9に示すように、横軸にセット高さG(mm)をとり、縦軸に第1平面P1 (第2平面P2 )が受ける反力F(kN)をとったグラフ図に於て、本発明と比較例とでは、著しい特性上の差異を示している。
図9について説明すれば、点線のグラフ線は、図6(B)に示した比較例に関する特性を示す。点P31は、第1平面P1 と第2平面P2 に対して第1凸部66 と第2凸部67が軽く接触した圧縮開始点を示す。(断面姿勢は、図10(A)が該当している。)
However, as shown in FIG. 9, a graph showing the set height G (mm) on the horizontal axis and the reaction force F (kN) received by the first plane P 1 (second plane P 2 ) on the vertical axis. In the present invention and the comparative example, a remarkable difference in characteristics is shown.
If FIG. 9 is described, the dotted graph line shows the characteristics of the comparative example shown in FIG. 6 (B). Point P 31 indicates a compression start point where the first convex portion 66 and the second convex portion 67 lightly contact the first plane P 1 and the second plane P 2 . (Fig. 10 (A) corresponds to the cross-sectional posture.)

点P32は、4点接触開始点を示す。即ち、図10(B)に示す回転弾性変形を経て、図11(A)に示すように4点a,b,c,dにて、2平面P1 ,P2 に対して軽く接触した状態である。
ΔGbは、上記点P31から点P32に至るまでに、2平面P1 ,P2 の間隔寸法Hpを減少させるための移動量であり、かなり大きいことが判る。さらに、その移動量ΔGb中に、回転弾性変形のために反力ΔFを必要としている。
Point P 32 indicates a four-point contact start point. That is, after undergoing the rotational elastic deformation shown in FIG. 10 (B), as shown in FIG. 11 (A), the two planes P 1 and P 2 are in light contact with each other at the four points a, b, c and d. Is.
It can be seen that ΔGb is a movement amount for reducing the interval dimension Hp of the two planes P 1 and P 2 from the point P 31 to the point P 32 , and is considerably large. Further, a reaction force ΔF is required for the rotational elastic deformation in the movement amount ΔGb.

セット高さG(間隔寸法Hp)が点P32の4点接触状態から、図8に示した最終締付圧縮状態(最終セット状態)の点P33までは、急激な反力Fの増加がみられる。即ち、破線で示した比較例のグラフ線は、点P32から点P33までは急な勾配をもって、反力Fが増加する。しかも、点P32を越えても、グラフ線は急な勾配のままで、反力Fが増加し続けていることが判る。 A sharp increase in reaction force F increases from the 4-point contact state where the set height G (interval dimension Hp) is point P 32 to the point P 33 in the final tightening compression state (final set state) shown in FIG. Be looked at. That is, in the graph line of the comparative example shown by the broken line, the reaction force F increases with a steep slope from the point P 32 to the point P 33 . Moreover, it can be seen that even after the point P 32 is exceeded, the graph line remains steep and the reaction force F continues to increase.

これに対して、図9中に実線にて示した本発明の実施品(図6(A)参照)では、以下の通りである。つまり、点P36は、第1平面P1 と第2平面P2 に対して、第1凸部11と第2凸部12が軽く接触した圧縮開始点を示す。(断面姿勢は、図2と同じである。) On the other hand, the product of the present invention (see FIG. 6A) shown by the solid line in FIG. 9 is as follows. That is, the point P 36 indicates the compression start point where the first convex portion 11 and the second convex portion 12 are in light contact with the first plane P 1 and the second plane P 2 . (The cross-sectional posture is the same as in FIG. 2.)

点P37は、4点接触開始点を示す。即ち、図3(A)に示すように、4点e,f,g,hにて、2平面P1 ,P2 に対して、軽く接触した状態である。
ΔGaは、上記点P36から点P37に至るまでに、2平面P1 ,P2 の間隔寸法Hpを減少させるための移動量であり、比較例の対応する前記移動量ΔGbよりも十分小さいことが判る。さらに、本発明実施品の移動量ΔGa中に、回転弾性変形のために、ほとんど反力を必要としない。
Point P 37 indicates a four-point contact start point. That is, as shown in FIG. 3A, the two planes P1 and P2 are in light contact with each other at the four points e, f, g, and h.
ΔGa is a movement amount for reducing the interval dimension Hp of the two planes P1 and P2 from the point P36 to the point P37, and is sufficiently smaller than the corresponding movement amount ΔGb in the comparative example. It turns out. Further, almost no reaction force is required due to the rotational elastic deformation during the movement amount ΔGa of the product according to the present invention.

即ち、本発明の金属シールSにおいては、点P36から点P37に至るまでのセット高さ移動量ΔGa、及び、そのために要する(反力Fに対する)外力が、比較例の移動量ΔGb、及び、そのために要する外力ΔFに比べて、各々、十分小さいが故に、第1凸部11・第2凸部12が第1平面P1 ・第2平面P2 に対して擦れ傷を発生する虞れが、比較例よりも、著しく低減できる利点がある。 That is, in the metal seal S of the present invention, the set height movement amount ΔGa from the point P36 to the point P37 and the external force required for that (with respect to the reaction force F) are the movement amount ΔGb of the comparative example. Further, since the external force ΔF required for that purpose is sufficiently small, the first convex portion 11 and the second convex portion 12 may be scratched against the first plane P1 and the second plane P2. However, there is an advantage that it can be significantly reduced as compared with the comparative example.

図9について、さらに説明すれば、実線グラフ線に於て、セット高さG(間隔寸法Hp)が点P37の4点接触状態から、図7に示した最終締付圧縮状態(最終セット状態)の点P38までは、比較例の実線グラフ線に比べて、極めて緩やかに反力Fが増加する。
即ち、実線で示した本発明の実施品のグラフ線は、点P37から点P38までは、緩やかな勾配をもって、反力Fが少しずつ増加する。
しかも、点P38を越えても、グラフ線は緩やかな勾配のままで、(あるいはさらに緩やかな勾配となりつつ)、反力Fがゆるりと増加し続けている。
To further explain FIG. 9, in the solid line graph line, from the four-point contact state where the set height G (interval dimension Hp) is the point P 37 , the final tightening compression state (final set state) shown in FIG. Up to point P 38 of), the reaction force F increases extremely slowly as compared with the solid graph line of the comparative example.
That is, in the graph line of the product of the present invention shown by the solid line, the reaction force F gradually increases from the point P37 to the point P38 with a gentle gradient.
Moreover, even after the point P 38 is exceeded, the graph line remains a gentle gradient (or becomes a gentler gradient), and the reaction force F continues to increase slowly.

従って、本発明によれば、シール性を発現した4点接触開始点P37から以降の圧縮に対し、反力(締付力)Fの増加が緩やかであるため(増加の割合が少ないため)、第1・第2平面P1 ,P2 ───つまり、フランジ面等───に傷が付くことを防止できる。さらには、締付けに要するボルトへの負担も低減でき、これに伴って、ボルトの径を小さくしたり、ボルトの本数を削減できて、装着の小型化とコストダウンを図り得る。さらに、2平面P1 ,P2 間の間隔寸法Hpが加工寸法誤差や温度・圧力等の使用条件等によってばらつきを生じることも実際の装置(機器)ではよくあり得る。しかしながら、図9に示した実線のグラフ線では、セット高さGが所定値よりも大小変化したとしても、反力Fがほとんど増減しないことを示し、密封性能等は安定して良好に維持できる。 Therefore, according to the present invention, the reaction force (tightening force) F increases slowly with respect to the compression after the 4-point contact start point P 37 that exhibits the sealing property (because the rate of increase is small). , 1st and 2nd planes P 1 , P 2 ─── That is, the flange surface, etc. ─── can be prevented from being scratched. Furthermore, the burden on the bolts required for tightening can be reduced, and along with this, the diameter of the bolts can be reduced and the number of bolts can be reduced, so that the mounting size can be reduced and the cost can be reduced. Further, it is often the case in an actual device (equipment) that the interval dimension Hp between the two planes P 1 and P 2 varies depending on the processing dimension error, the usage conditions such as temperature and pressure, and the like. However, the solid graph line shown in FIG. 9 shows that the reaction force F hardly increases or decreases even if the set height G changes more than a predetermined value, and the sealing performance and the like can be stably and satisfactorily maintained. ..

なお、図12に示した、補助小突起64,65を有する従来の金属シール62については、図9に示すようなグラフ図を省略したが、同様の結果が得られている。
図9のグラフ図は、以上述べたように、本発明(の実施品)を比較例(従来例)と比べて多くの利点のあることを示しているが、その実線と破線で示した差異が生じた理由につき、以下、追加説明と分析を行う。
Regarding the conventional metal seal 62 having the auxiliary small protrusions 64 and 65 shown in FIG. 12, the graph as shown in FIG. 9 is omitted, but the same result is obtained.
As described above, the graph of FIG. 9 shows that the present invention (implemented product) has many advantages over the comparative example (conventional example), but the difference shown by the solid line and the broken line. The reason why this happened will be explained and analyzed below.

図11は比較例(従来例)を示し、本発明の実施例を示した図3と対比すべき図である。
図3(A)に示した4点e,f,g,hの平面接触状態において、図3(B)の平面図に示したように、第2副凸部22が第2平面P2 に接することで描かれた第2副凸部接触円R22が、上記4点接触状態において、上記第2副凸部22が上記第2平面P2 に接することで描かれる第2副凸部接触円R22が、上記第1凸部11・上記第1副凸部21が上記第1平面P1 に接することで描かれる第1凸部接触円R11・第1副凸部接触円R21によって形成された帯状円形リングR100 の内部に、存在している。
FIG. 11 shows a comparative example (conventional example) and is a diagram to be compared with FIG. 3 showing an embodiment of the present invention.
In the plane contact state of the four points e, f, g, and h shown in FIG. 3 (A), the second sub-convex portion 22 is on the second plane P 2 as shown in the plan view of FIG. 3 (B). The second sub-convex contact circle R 22 drawn by contacting the second sub-convex contact circle R 22 is drawn by contacting the second sub-convex 22 with the second plane P 2 in the four-point contact state. The circle R 22 is drawn by contacting the first convex portion 11 and the first sub-convex portion 21 with the first plane P 1 , and the first convex portion contact circle R 11 and the first sub-convex contact circle R 21 . It exists inside the band-shaped circular ring R 100 formed by.

それに対して、図11(A)に於ては、4点a,b,c,dは、図3(A)の4点e,f,g,hが、各々、対応すると見ることができると共に、図11(B)は図3(B)に対応する(要部を抽出して示した)平面図である。
この図11(B)から、以下のことが判る。つまり、第1凸部66・第1角部68が第1平面P1 に接することで描かれる第1凸部接触円Ra・第1角部接触円Rbによって形成された帯状円形リングR'100の内部に、第2角部69が第2平面P2 に接することで描かれる第2角部接触円Rcが、存在しておらず、この第2角部接触円Rcは、上記帯状円形リングR'100の内周縁よりも、ラジアル内方向に、外れている。
On the other hand, in FIG. 11A, it can be seen that the four points a, b, c, and d correspond to the four points e, f, g, and h in FIG. 3A, respectively. In addition, FIG. 11 (B) is a plan view (shown by extracting the main part) corresponding to FIG. 3 (B).
From this FIG. 11 (B), the following can be seen. That is, a strip-shaped circular ring R'100 formed by the first convex portion contact circle Ra and the first corner contact circle Rb drawn by the first convex portion 66 and the first corner portion 68 in contact with the first plane P1. There is no second corner contact circle Rc drawn by the second corner 69 in contact with the second plane P 2 , and the second corner contact circle Rc is the above-mentioned band-shaped circular ring. It deviates in the radial inward direction from the inner peripheral edge of R'100 .

図11(A)(B)に示したように、第2角部接触円Rcがラジアル内方向に外れていることによって、第1・第2平面P1 ,P2 から締付力F1 ,F2 を受けた際、金属シール60のc点に作用する力は、a点とb点に分散せず、(図11(A)に示す)真上のa点に伝達されて、直ちにc点とa点間の圧縮変形を生じて(図9に破線をもって示した)急勾配の反力Fの特性を示すと考えられる。
次に、図11(C)は図3(C)と対比すべき底面図である。
As shown in FIGS. 11 (A) and 11 (B), the tightening force F 1 , from the first and second planes P 1 and P 2 due to the second corner contact circle Rc being displaced in the radial inward direction. When receiving F 2 , the force acting on the c point of the metal seal 60 is not dispersed at the a point and the b point, but is transmitted to the a point directly above (shown in FIG. 11 (A)) and immediately c. It is considered that a compression deformation occurs between the points a and a, and the characteristic of the steep reaction force F (shown by the broken line in FIG. 9) is exhibited.
Next, FIG. 11 (C) is a bottom view to be compared with FIG. 3 (C).

本発明の実施例では、図3(A)に示した4点e,f,g,hの平面接触状態において、図3(C)の平面図に示したように、上記第1副凸部21が上記第1平面P1 に接することで描かれる第1副凸部接触円R21が、上記第2凸部12・上記第2副凸部22が上記第2平面P2 に接することで描かれる第2凸部接触円R12・第2副凸部接触円R22によって形成された帯状円形リングR200 の内部に、存在している。 In the embodiment of the present invention, in the plane contact state of the four points e, f, g, and h shown in FIG. 3 (A), as shown in the plan view of FIG. 3 (C), the first sub-convex portion is described. The first sub-convex contact circle R 21 drawn by 21 contacting the first plane P 1 is formed by the second convex portion 12 and the second sub-convex 22 being in contact with the second plane P 2 . It exists inside the band-shaped circular ring R 200 formed by the second convex contact circle R 12 and the second sub-convex contact circle R 22 drawn.

それに対して、比較例(従来例)では、図11(C)に示すように、第2凸部67・第2角部69が第2平面P2 に接することで描かれる第2凸部接触円Rd・第2角部接触円Rcによって形成された帯状円形リングR'200の内部に、第1角部68が第1平面P1 に接することで描かれる第1角部接触円Rbが、存在せず、この第1角部接触円Rbは、上記帯状円形リングR'200の外周縁よりも、ラジアル外方向に、外れている。 On the other hand, in the comparative example (conventional example), as shown in FIG. 11C, the second convex portion contact is drawn by the second convex portion 67 and the second corner portion 69 in contact with the second plane P 2 . Inside the band-shaped circular ring R'200 formed by the circle Rd and the second corner contact circle Rc, the first corner contact circle Rb drawn by the first corner 68 in contact with the first plane P 1 is formed. It does not exist, and the first corner osculating circle Rb is radially outwardly separated from the outer peripheral edge of the band-shaped circular ring R'200 .

図11(A)(C)に示したように、第1角部接触円Rbがラジアル外方向に外れていることによって、第1・第2平面P1 ,P2 から締付力F1 ,F2 を受けた際、金属シール60のb点に作用する力は、d点とc点に分散せず、(図11(A)に示す)真下のd点に伝達されて、直ちにb点とd点間の圧縮変形を生じて(図9に破線をもって示した)急勾配の反力Fの特性を示すと考えられる。 As shown in FIGS. 11A and 11C, the tightening force F1 and P2 from the first and second planes P1 and P2 are due to the first corner contact circle Rb being displaced in the radial outward direction. When receiving F 2 , the force acting on the b point of the metal seal 60 is not dispersed at the d point and the c point, but is transmitted to the d point directly below (shown in FIG. 11 (A)), and is immediately transmitted to the b point. It is considered that compression deformation occurs between the point d and the point d (shown by a broken line in FIG. 9), and the characteristic of the reaction force F having a steep slope is exhibited.

次に、図12に示した他の比較例(従来例)にあっても、図11(B)(C)と同様の接触円Ra,Rb,Rc,Rdが描かれていることとなって、その結果、図9に於て、同様に破線グラフ線が描かれることとなる。
但し、図12に於けるb点,c点は、小さな三角形の補助小突起64,65の頂点とする。それ以外は、図11(A)と同様であるので、重複説明を省略する。
Next, even in the other comparative example (conventional example) shown in FIG. 12, the contact circles Ra, Rb, Rc, and Rd similar to those in FIGS. 11 (B) and 11 (C) are drawn. As a result, a broken line graph line is similarly drawn in FIG.
However, points b and c in FIG. 12 are the vertices of the auxiliary small protrusions 64 and 65 of a small triangle. Other than that, it is the same as in FIG. 11A, so duplicate description will be omitted.

次に、図9に示したグラフ図に於て、本発明と比較例の差異が生じた他の根拠について以下考察する。
図3又は図5に於て、本発明では、上記4点接触状態の横断面において、上記第2副凸部22の先端の上記第2平面P2 への接触点から、上記第2平面P2 に対して90°を成すように立てた垂線T1 に完全一致して乃至その近傍に、上記第1凸部11の外周側稜線11Cの延長線Y11と、上記第1副凸部21の内周側稜線21Eの延長線Y21との、交点Oが、存在するように、構成されている。しかも、上記4点接触状態の横断面において、上記第1副凸部21の先端の上記第1平面P1 への接触点から、上記第1平面P1 に対して90°を成すように立てた垂線T2 に完全一致して乃至その近傍に、上記第2凸部12の内周側稜線12Bの延長線Y12と、上記第2副凸部22の外周側稜線22Eの延長線Y22との、交点Oxが、存在するように、構成されている。
Next, in the graph shown in FIG. 9, other grounds for the difference between the present invention and the comparative example will be considered below.
In FIG. 3 or FIG. 5, in the present invention, in the cross section in the four-point contact state, the second plane P is formed from the contact point of the tip of the second sub-convex portion 22 with the second plane P 2 . The extension line Y 11 of the outer peripheral side ridge line 11C of the first convex portion 11 and the first sub-convex portion 21 completely coincide with or in the vicinity of the perpendicular line T 1 erected so as to form 90 ° with respect to 2 . The intersection OY with the extension line Y 21 of the inner peripheral side ridge line 21E is configured to exist. Moreover, in the cross section in the four-point contact state, the tip of the first sub-convex portion 21 stands at 90 ° with respect to the first plane P 1 from the contact point with the first plane P 1 . An extension line Y 12 of the inner peripheral side ridge line 12B of the second convex portion 12 and an extension line Y 22 of the outer peripheral side ridge line 22E of the second sub-convex portion 22 completely coincide with or in the vicinity of the vertical line T 2 . The intersection Ox with and is configured to exist.

このような構成によって、図7に示したような最終締付圧縮状態に於て、上下各々2個ずつの接触面圧波形による反力の位置が、図7の左右方向───全体のラジアル方向───にずれていることとなり、図9に実線のグラフ線で示されるような緩やかな勾配の反力特性が達成されている。 With such a configuration, in the final tightening compression state as shown in FIG. 7, the position of the reaction force due to the contact surface pressure waveforms of two each on the upper and lower sides is in the left-right direction of FIG. It is deviated in the direction ───, and the reaction force characteristic with a gentle gradient as shown by the solid graph line in FIG. 9 is achieved.

図3(A)と図7とを対比して、具体的に説明すれば、第2副凸部22に作用した(第2平面P2 からの)締付力は、交点Oに向かって伝達されつつ左右稜線11C,21E(の内部)に沿うように分岐して、第1凸部11の頂部11A、及び、第1副凸部21へ、伝達される。
これを、比較例を示した図8と比べれば、判るように、図8の左下の波形による締付力は、左上の波形による締付力と、真向対立する。従って、図8では、図9の破線グラフ線の如く、急な勾配線が描かれたものと、考えられる。
本発明の実施例では、前述の如く、巧妙に左右稜線11C,21E(の内部)に沿うように、第2副凸部22の大きな締付力が2つに分岐してゆくため、(柔軟性を残して)図9に実線で示した緩やかな勾配となり、反力Fの急激な増加が生じない。
More specifically, by comparing FIG. 3A and FIG. 7, the tightening force acting on the second sub-convex portion 22 (from the second plane P2) is toward the intersection OY . While being transmitted, it branches along (inside) the left and right ridge lines 11C and 21E, and is transmitted to the top portion 11A of the first convex portion 11 and the first sub-convex portion 21.
Comparing this with FIG. 8 showing a comparative example, as can be seen, the tightening force due to the waveform at the lower left of FIG. 8 is in direct opposition to the tightening force due to the waveform at the upper left. Therefore, in FIG. 8, it is considered that a steep gradient line is drawn as shown by the broken line graph line in FIG.
In the embodiment of the present invention, as described above, the large tightening force of the second sub-convex portion 22 is subtly branched into two along the left and right ridge lines 11C and 21E (inside), so that (flexibility). The slope is gentle as shown by the solid line in FIG. 9 (leaving the property), and the reaction force F does not increase sharply.

他方、第1副凸部21に作用した(第1平面P1 からの)締付力は、交点Oxに向かって伝達されつつ左右稜線12B,22E(の内部)に沿うように分岐して、第2凸部12の頂部12A、及び、第2副凸部22へ、伝達される。
これを、比較例を示した図8と比べれば、判るように、図8の右下の波形による締付力は、右上の波形による締付力と、真向対立する。従って、図8では、図9の破線グラフ線の如く、急な勾配線が描かれたものと、考えられる。
On the other hand, the tightening force acting on the first sub-convex portion 21 (from the first plane P 1 ) is transmitted toward the intersection Ox and branches along the left and right ridge lines 12B and 22E (inside). It is transmitted to the top portion 12A of the second convex portion 12 and the second sub-convex portion 22.
Comparing this with FIG. 8 showing a comparative example, as can be seen, the tightening force due to the waveform in the lower right of FIG. 8 is in direct opposition to the tightening force due to the waveform in the upper right. Therefore, in FIG. 8, it is considered that a steep gradient line is drawn as shown by the broken line graph line in FIG.

本発明の実施例では、前述の如く、巧妙に左右稜線12B,22E(の内部)に沿うように、第1副凸部21の大きな締付力が2つに分岐してゆくため、(柔軟性を残して)図9に実線で示した緩やかな勾配となり、反力Fの急激な増加が生じない。 In the embodiment of the present invention, as described above, the large tightening force of the first sub-convex portion 21 is subtly branched into two along the left and right ridge lines 12B and 22E (inside), so that (flexibility). The slope is gentle as shown by the solid line in FIG. 9 (leaving the property), and the reaction force F does not increase sharply.

ところで、図7に於て、大きな接触面圧を示している左下の波形4と右上の波形5は、各々、図3(A)の第2副凸部22と第1副凸部21の圧縮に伴って発生した面圧を示すと共に、(図8の比較例の如く、上下に衝突せずに)横断面に於て、斜め方向の下と上に配設される。これによって、横断面における回転変形を伴いつつ、面圧の上昇も緩やかとなって、図9に示した良好な結果が得られたと推察される。 By the way, in FIG. 7, the lower left waveform 4 and the upper right waveform 5 showing a large contact surface pressure are the compressions of the second sub-convex portion 22 and the first sub-convex portion 21 of FIG. 3 (A), respectively. In addition to showing the surface pressure generated in connection with the above, the pressure is arranged below and above in the diagonal direction in the cross section (without colliding up and down as in the comparative example of FIG. 8). As a result, it is presumed that the good results shown in FIG. 9 were obtained because the surface pressure increased slowly while being accompanied by rotational deformation in the cross section.

さらに、図7に於て、左上の波形6と右下の波形7は、各々、図3(A)の第1凸部11と第2凸部12の圧縮に伴って発生した面圧を示し、(図8の比較例の如く、上下に衝突せずに)横断面に於て、ラジアル方向の内方・外方に、孤立して存在する。これによって、反力の上昇も十分緩やかとなり、図9に示した良好な結果が得られたものと推察される。
なお、本発明は、図示の実施例に限定されず設計変更自由であって、例えば、第1・第2副凸部21,22は、半円形や半楕円形等とすることもできる。
Further, in FIG. 7, the upper left waveform 6 and the lower right waveform 7 show the surface pressures generated by the compression of the first convex portion 11 and the second convex portion 12 in FIG. 3A, respectively. , (Without colliding up and down as in the comparative example of FIG. 8), exist isolated inward and outward in the radial direction in the cross section. As a result, the increase in reaction force became sufficiently gradual, and it is presumed that the good results shown in FIG. 9 were obtained.
The present invention is not limited to the illustrated embodiment, and the design can be freely changed. For example, the first and second sub-convex portions 21 and 22 may be semi-circular or semi-elliptical.

本発明は、以上詳述したように、相互に平行な第1平面P1 と第2平面P2 の間に介装される全体が環状であって、横断面形状が略矩形の中間基部3と、上記第1平面P1 に当接する内径寄りの第1凸部11と、上記第2平面P2 に当接する外径寄りの第2凸部12と、を備えた金属シールに於て、上記第1凸部11及び第2凸部12は、各々、先端に円弧状頂部11A,12Aを有すると共に上記中間基部3に連設される基底部13,14に向かって幅寸法W11,W12がしだいに増加する横断面形状であり、しかも、上記中間基部3における、上記第1平面P1 ・第2平面P2 に対応する第1長辺部31・第2長辺部32の各中間位置には、第1副凸部21・第2副凸部22が、配設されている構成であるので、図9のグラフ図に実線をもって示す如く、セット高さGに対して反力Fの増加が、緩やかであり、これによって、第1・第2平面P1 ,P2 によって形成されるセット間隔に差が生じても、反力Fは略同じ値に維持され、優れた密封性を維持できる。また、第1・第2平面P1 ,P2 に対して過大な面圧力を与えずに済み、フランジ等の傷付きを防止できる。 As described in detail above, the present invention has an intermediate base 3 having an annular shape as a whole interposed between the first plane P 1 and the second plane P 2 parallel to each other and having a substantially rectangular cross-sectional shape. In a metal seal provided with a first convex portion 11 closer to the inner diameter that abuts on the first plane P 1 and a second convex portion 12 closer to the outer diameter that abuts on the second plane P 2 . The first convex portion 11 and the second convex portion 12 have arcuate top portions 11A and 12A at their tips, respectively, and have width dimensions W 11 and W toward the base portions 13 and 14 connected to the intermediate base portion 3, respectively. 12 has a cross-sectional shape that gradually increases, and each of the first long side portion 31 and the second long side portion 32 corresponding to the first plane P 1 and the second plane P 2 in the intermediate base portion 3. Since the first sub-convex portion 21 and the second sub-convex portion 22 are arranged at the intermediate position, the reaction force with respect to the set height G is shown by the solid line in the graph of FIG. The increase in F is gradual, so that the reaction force F is maintained at approximately the same value and excellent sealing even if there is a difference in the set spacing formed by the first and second planes P 1 and P 2 . Can maintain sex. Further, it is not necessary to apply an excessive surface pressure to the first and second planes P1 and P2, and it is possible to prevent the flange and the like from being scratched.

また、装着未圧縮状態から、上記第1平面P1 と第2平面P2 の相対的接近に伴って、回転モーメントを受けて、上記第1凸部11と第1副凸部21が上記第1平面P1 に当接した横断面2点接触状態と、上記第2凸部12と第2副凸部22が上記第2平面P2 に当接した横断面2点接触状態と、から成る4点接触状態に至るまでは、上記中間基部3を中心に回転弾性変形を生ずるように構成され、上記4点接触状態から、さらに上記第1平面P1 と第2平面P2 からの押圧力を受けて、上記第1凸部11と第1副凸部21と第2凸部12と第2副凸部22、及び、その近傍部位の塑性変形を生ずるように構成したので、第1平面P1 と第2平面P2 をボルト締付けによって極めてスムーズに、塑性変形に至るまで作業を行い得る。しかも、セット高さGのばらつきがあっても、安定した高い密封性能を発揮できる。 Further, from the uncompressed state of mounting, the first convex portion 11 and the first sub-convex portion 21 receive a rotational moment due to the relative approach between the first plane P 1 and the second plane P 2 , and the first sub-convex portion 21 is the first. It consists of a two-point cross-sectional contact state in contact with one plane P 1 and a two-point cross-sectional contact state in which the second convex portion 12 and the second sub-convex portion 22 abut on the second flat surface P 2 . Until the four-point contact state is reached, it is configured to cause rotational elastic deformation around the intermediate base 3, and from the four-point contact state, the pressing force from the first plane P1 and the second plane P2 is further generated. In response to this, the first plane is configured to cause plastic deformation of the first convex portion 11, the first sub-convex portion 21, the second convex portion 12, the second sub-convex portion 22, and the vicinity thereof. By tightening the bolts on P 1 and the second plane P 2 , the work can be performed extremely smoothly up to plastic deformation. Moreover, even if the set height G varies, stable and high sealing performance can be exhibited.

また、上記4点接触状態において、上記第2副凸部22が上記第2平面P2 に接することで描かれる第2副凸部接触円R22が、上記第1凸部11・上記第1副凸部21が上記第1平面P1 に接することで描かれる第1凸部接触円R11・第1副凸部接触円R21によって形成された帯状円形リングR100 の内部に、存在している構成としたので、(図3(A)(B)に示すように、)第2副凸部22の接触面圧による反力は、第1凸部11と第1副凸部21に分散しつつ伝達され、図9に示すように、セット高さGに対して反力Fの増加が緩やかな優れた反力特性が得られる。 Further, in the four-point contact state, the second sub-convex contact circle R 22 drawn by the second sub-convex 22 coming into contact with the second plane P 2 is the first convex portion 11 and the first first. The sub-convex portion 21 exists inside the band-shaped circular ring R 100 formed by the first convex portion contact circle R 11 and the first sub-convex portion contact circle R 21 drawn by contacting the first plane P 1 . (As shown in FIGS. 3A and 3B), the reaction force due to the contact surface pressure of the second sub-convex portion 22 is applied to the first convex portion 11 and the first sub-convex portion 21. It is transmitted while being dispersed, and as shown in FIG. 9, an excellent reaction force characteristic in which the reaction force F gradually increases with respect to the set height G can be obtained.

また、上記4点接触状態において、上記第1副凸部21が上記第1平面P1 に接することで描かれる第1副凸部接触円R21が、上記第2凸部12・上記第2副凸部22が上記第2平面P2 に接することで描かれる第2凸部接触円R12・第2副凸部接触円R22によって形成された帯状円形リングR200 の内部に、存在している構成であるので、(図3(A)(C)に示すように、)第1副凸部21の接触面圧による反力は、第2凸部12と第2副凸部22に分散しつつ伝達され、図9に示すように、セット高さGに対して反力Fの増加が緩やかな優れた反力特性が得られる。 Further, in the four-point contact state, the first sub-convex contact circle R 21 drawn by the first sub-convex 21 coming into contact with the first plane P 1 is the second convex portion 12 and the second. The sub-convex portion 22 exists inside the band-shaped circular ring R 200 formed by the second convex portion contact circle R 12 and the second sub-convex portion contact circle R 22 drawn by contacting the second plane P 2 . Therefore, the reaction force due to the contact surface pressure of the first sub-convex portion 21 (as shown in FIGS. 3A and 3C) is applied to the second sub-convex portion 12 and the second sub-convex portion 22. It is transmitted while being dispersed, and as shown in FIG. 9, an excellent reaction force characteristic in which the reaction force F gradually increases with respect to the set height G can be obtained.

また、上記4点接触状態の横断面において、上記第2副凸部22の先端の上記第2平面P2 への接触点から、上記第2平面P2 に対して90°を成すように立てた垂線T1 に完全一致して乃至その近傍に、上記第1凸部11の外周側稜線11Cの延長線Y11と、上記第1副凸部21の内周側稜線21Eの延長線Y21との、交点Oが、存在するように、構成されているので、第2副凸部22に作用する大き目の反力は、稜線11Cと稜線21Eに沿うように分岐され、図7に示したような横断面における締付面圧が得られ、その結果、図9に於て、実線で示すように緩やかな勾配の優秀な反力特性の金属シールが得られる。 Further, in the cross section in the four-point contact state, the tip of the second sub-convex portion 22 stands at 90 ° with respect to the second plane P 2 from the contact point with the second plane P 2 . An extension line Y 11 of the outer peripheral side ridge line 11C of the first convex portion 11 and an extension line Y 21 of the inner peripheral side ridge line 21E of the first sub-convex portion 21 completely coincide with or in the vicinity of the vertical line T 1 . Since the intersection OY with and is configured to exist, the large reaction force acting on the second sub-convex portion 22 is branched along the ridge line 11C and the ridge line 21E, and is shown in FIG. A tightening surface pressure in such a cross section is obtained, and as a result, a metal seal having excellent reaction force characteristics with a gentle gradient is obtained as shown by a solid line in FIG.

また、上記4点接触状態の横断面において、上記第1副凸部21の先端の上記第1平面P1 への接触点から、上記第1平面P1 に対して90°を成すように立てた垂線T2 に完全一致して乃至その近傍に、上記第2凸部12の内周側稜線12Bの延長線Y12と、上記第2副凸部22の外周側稜線22Eの延長線Y22との、交点Oxが、存在するように、構成されているので、第1副凸部21に作用する大き目の反力は、稜線12Bと稜線22Eに沿うように分岐され、図7に示したような締付面圧が得られ、その結果、図9に於て、実線で示すように緩やかな勾配の優秀な反力特性の金属シールが得られる。 Further, in the cross section in the four-point contact state, the tip of the first sub-convex portion 21 stands at 90 ° with respect to the first plane P 1 from the contact point with the first plane P 1 . An extension line Y 12 of the inner peripheral side ridge line 12B of the second convex portion 12 and an extension line Y 22 of the outer peripheral side ridge line 22E of the second sub-convex portion 22 completely coincide with or in the vicinity of the vertical line T 2 . Since the intersection point Ox with and is configured to exist, the large reaction force acting on the first sub-convex portion 21 is branched along the ridge line 12B and the ridge line 22E, and is shown in FIG. Such a tightening surface pressure is obtained, and as a result, as shown by the solid line in FIG. 9, a metal seal having excellent reaction force characteristics with a gentle gradient is obtained.

3 中間基部
3B 外径側短辺
11 第1凸部
11A 円弧状頂部
11C 外周側稜線
12 第2凸部
12A 円弧状頂部
12B 内周側稜線
13 基底部
14 基底部
15 切欠き
21 第1副凸部
21E 内周側稜線
21P 三角頂点
22 第2副凸部
22E 外周側稜線
22P 三角頂点
31 第1長辺部
32 第2長辺部
Ox 交点
交点
1 第1平面
2 第2平面
11 第1凸部接触円
12 第2凸部接触円
21 第1副凸部接触円
22 第2副凸部接触円
100 帯状円形リング
200 帯状円形リング
1 垂線
2 垂線
0 長さ寸法
11 幅寸法
12 幅寸法
21 幅方向の寸法
22 幅方向の寸法
11 延長線
12 延長線
21 延長線
22 延長線
ε 距離
3 Intermediate base 3B Outer diameter side short side
11 First convex part
11A Arc-shaped top
11C Outer peripheral ridgeline
12 Second convex part
12A Arc-shaped top
12B Inner circumference ridgeline
13 Base
14 Base
15 notch
21 First sub-convex part
21E Inner circumference ridgeline
21P triangular apex
22 Second sub-convex part
22E Outer peripheral ridgeline
22P triangular apex
31 First long side
32 2nd long side Ox intersection OY intersection P 1 1st plane P 2 2nd plane R 11 1st convex contact circle R 12 2nd convex contact circle R 21 1st sub-convex contact circle R 22 2nd Sub-convex contact circle R 100 band-shaped circular ring R 200 band-shaped circular ring T 1 vertical line T 2 vertical line W 0 length dimension W 11 width dimension W 12 width dimension W 21 width direction dimension W 22 width direction dimension Y 11 extension line Y 12 extension line Y 21 extension line Y 22 extension line ε distance

Claims (5)

相互に平行な第1平面(P1 )と第2平面(P2 )の間に介装される全体が環状であって、横断面形状が略矩形の中間基部(3)と、上記第1平面(P1 )に当接する内径寄りの第1凸部(11)と、上記第2平面(P2 )に当接する外径寄りの第2凸部(12)と、を備えた金属シールに於て、
上記第1凸部(11)及び第2凸部(12)は、各々、先端に円弧状頂部(11A)(12A)を有すると共に上記中間基部(3)に連設される基底部(13)(14)に向かって幅寸法 11 ,W 12 がしだいに増加する横断面形状であり、
しかも、上記中間基部(3)における、上記第1平面(P1 )・第2平面(P2 )に対応する第1長辺部(31)・第2長辺部(32)の各々には、第1副凸部(21)・第2副凸部(22)が、配設されており、
自由状態における断面に於て、上記中間基部(3)は、矩形の4角部のうちで上記第1長辺部(31)の外径側に形成される角部と、上記第2長辺部 (32) の内径側に形成される角部に、三角形状切欠き(15)(15)を設け、該切欠き(15)が形成される以前の上記矩形の第1長辺部(31)の長さ寸法 0 と、横断面三角形の上記第1副凸部(21)の三角頂点(21P)と外径側短辺(3B)との幅方向の寸法 21 とが、下記〔数1〕を満たし、かつ、上記長さ寸法 0 と、横断面三角形の第2副凸部(22)の三角頂点(22P)と内径側短辺(3B)との幅方向の寸法 22 とが、下記〔数2〕を満たし、
装着未圧縮状態から、上記第1平面(P1 )と第2平面(P2 )の相対的接近に伴って、回転モーメントを受けて、上記第1凸部(11)と第1副凸部(21)が上記第1平面(P1 )に当接した横断面2点接触状態と、上記第2凸部(12)と第2副凸部(22)が上記第2平面(P2 )に当接した横断面2点接触状態と、から成る4点接触状態に至るまでは、上記中間基部(3)を中心に回転弾性変形を生ずるように構成され、
上記4点接触状態から、さらに上記第1平面(P1 )と第2平面(P2 )からの押圧力を受けて、上記第1凸部(11)と第1副凸部(21)と第2凸部(12)と第2副凸部(22)、及び、その近傍部位の塑性変形を生ずるように構成したことを特徴とする金属シール。
〔数1〕0.15・W0 ≦W21≦0.40・W0
〔数2〕0.15・W0 ≦W22≦0.40・W0
An intermediate base (3) having an annular shape and a substantially rectangular cross-sectional shape intervening between the first plane (P 1 ) and the second plane (P 2 ) parallel to each other, and the first plane described above. A metal seal provided with a first convex portion (11) closer to the inner diameter that abuts on a flat surface (P 1 ) and a second convex portion (12) closer to the outer diameter that abuts on the second flat surface (P 2 ). At,
The first convex portion (11) and the second convex portion (12) each have an arcuate top portion (11A) (12A) at the tip and are connected to the intermediate base portion (3) at the base portion (13). It is a cross-sectional shape in which the width dimensions W 11 and W 12 gradually increase toward (14).
Moreover, in each of the first long side portion (31) and the second long side portion (32) corresponding to the first plane (P 1 ) and the second plane (P 2 ) in the intermediate base portion (3). , The first sub-convex portion (21) and the second sub-convex portion (22) are arranged.
In the cross section in the free state, the intermediate base portion (3) includes a corner portion formed on the outer diameter side of the first long side portion (31) among the four triangular portions and the second long side portion. Triangular notches (15) and (15) are provided at the corners formed on the inner diameter side of the portion (32), and the first long side portion (31) of the above-mentioned rectangle before the notch (15) is formed is provided. ), And the width direction dimension W 21 of the triangular apex ( 21P ) and the outer diameter side short side (3B) of the first sub-convex portion (21) of the cross-sectional triangle are as follows . Equation 1] is satisfied, and the above-mentioned length dimension W 0 and the widthwise dimension W 22 between the triangular apex (22P) and the inner side short side (3B) of the second sub-convex portion (22) of the cross-sectional triangle. And satisfy the following [Equation 2]
From the uncompressed state, the first convex portion (11) and the first sub-convex portion receive a rotational moment as the first plane (P 1 ) and the second plane (P 2 ) approach each other. The two-point cross-sectional contact state in which (21) is in contact with the first plane (P 1 ), and the second convex portion (12) and the second sub-convex portion (22) are in the second plane (P 2 ). It is configured to cause rotational elastic deformation around the intermediate base portion (3) until the contact state of two points in the cross section in contact with the above and the contact state of four points consisting of the above intermediate base portion (3).
From the four-point contact state, the first convex portion (11) and the first sub-convex portion (21) are further subjected to the pressing force from the first plane (P 1 ) and the second plane (P 2 ). A metal seal characterized in that it is configured to cause plastic deformation of a second convex portion (12), a second sub-convex portion (22), and a portion in the vicinity thereof.
[Number 1] 0.15 ・ W 0 ≦ W 21 ≦ 0.40 ・ W 0
[Number 2] 0.15 ・ W 0 ≦ W 22 ≦ 0.40 ・ W 0
上記4点接触状態において、
上記第2副凸部(22)が上記第2平面(P2 )に接することで描かれる第2副凸部接触円(R22)が、
上記第1凸部(11)・上記第1副凸部(21)が上記第1平面(P1 )に接することで描かれる第1凸部接触円(R11)・第1副凸部接触円(R21)によって形成された帯状円形リング(R100 )の内部に、
存在している請求項1記載の金属シール。
In the above four-point contact state
The second sub-convex contact circle (R 22 ) drawn by the second sub-convex (22) in contact with the second plane (P 2 ) is
The first convex portion contact circle (R 11 ) and the first sub-convex contact drawn by contacting the first convex portion (11) and the first sub-convex portion (21) with the first plane (P 1 ). Inside the band-shaped circular ring (R 100 ) formed by a circle (R 21 ),
The existing metal seal according to claim 1.
上記4点接触状態において、
上記第1副凸部(21)が上記第1平面(P1 )に接することで描かれる第1副凸部接触円(R21)が、
上記第2凸部(12)・上記第2副凸部(22)が上記第2平面(P2 )に接することで描かれる第2凸部接触円(R12)・第2副凸部接触円(R22)によって形成された帯状円形リング(R200 )の内部に、
存在している請求項1記載の金属シール。
In the above four-point contact state
The first sub-convex contact circle (R 21 ) drawn by the first sub-convex (21) in contact with the first plane (P 1 ) is
The second convex portion contact circle (R 12 ) and the second sub-convex contact drawn by contacting the second convex portion (12) and the second sub-convex portion (22) with the second plane (P 2 ). Inside the band-shaped circular ring (R 200 ) formed by a circle (R 22 ),
The existing metal seal according to claim 1.
上記4点接触状態の横断面において、
上記第2副凸部(22)の先端の上記第2平面(P2 )への接触点から、上記第2平面(P2 )に対して90°を成すように立てた垂線(T1 )と、
上記第1凸部(11)の外周側稜線(11C)の延長線(Y11)と、上記第1副凸部(21)の内周側稜線(21E)の延長線(Y21)との、交点(O)との距離εの最大ε値を、0.15・W0 以内に設定した請求項1,2又は3記載の金属シール。
In the cross section of the above four-point contact state,
A perpendicular line (T 1 ) erected so as to form 90 ° with respect to the second plane (P 2 ) from the contact point of the tip of the second sub-convex portion (22) with the second plane (P 2 ). When,
An extension line (Y 11 ) of the outer peripheral side ridge line (11C) of the first convex portion (11) and an extension line (Y 21 ) of the inner peripheral side ridge line (21E) of the first sub-convex portion (21). , The metal seal according to claim 1, 2 or 3, wherein the maximum ε value of the distance ε from the intersection ( OY ) is set within 0.15 · W 0 .
上記4点接触状態の横断面において、
上記第1副凸部(21)の先端の上記第1平面(P1 )への接触点から、上記第1平面(P1 )に対して90°を成すように立てた垂線(T2 )と、
上記第2凸部(12)の内周側稜線(12B)の延長線(Y12)と、上記第2副凸部(22)の外周側稜線(22E)の延長線(Y22)との、交点(Ox)との距離εの最大ε値を、0.15・W0 以内に設定した請求項1,2又は3記載の金属シール。
In the cross section of the above four-point contact state,
A perpendicular line (T 2 ) erected so as to form 90 ° with respect to the first plane (P 1 ) from the contact point of the tip of the first sub-convex portion (21) with the first plane (P 1 ). When,
An extension line (Y 12 ) of the inner peripheral side ridge line (12B) of the second convex portion (12) and an extension line (Y 22 ) of the outer peripheral side ridge line (22E) of the second sub-convex portion (22). , The metal seal according to claim 1, 2 or 3, wherein the maximum ε value of the distance ε from the intersection (Ox) is set within 0.15 · W 0 .
JP2019161879A 2019-09-05 2019-09-05 Metal seal Active JP6994485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019161879A JP6994485B2 (en) 2019-09-05 2019-09-05 Metal seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019161879A JP6994485B2 (en) 2019-09-05 2019-09-05 Metal seal

Publications (2)

Publication Number Publication Date
JP2021038835A JP2021038835A (en) 2021-03-11
JP6994485B2 true JP6994485B2 (en) 2022-02-04

Family

ID=74849180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019161879A Active JP6994485B2 (en) 2019-09-05 2019-09-05 Metal seal

Country Status (1)

Country Link
JP (1) JP6994485B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117642549A (en) * 2022-02-25 2024-03-01 三菱重工业株式会社 Method for estimating flange surface pressure distribution in rotary machine, method for evaluating leakage of fluid from flange surfaces, program for executing the methods, and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340315A (en) 2003-05-19 2004-12-02 Mitsubishi Cable Ind Ltd Metal seal
WO2007049339A1 (en) 2005-10-25 2007-05-03 Daiki Industries, Co., Ltd. Gasket
JP2019100361A (en) 2017-11-28 2019-06-24 熊本県 Metal seal and fluid control device
JP2019167973A (en) 2018-03-22 2019-10-03 三菱電線工業株式会社 Metal seal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340315A (en) 2003-05-19 2004-12-02 Mitsubishi Cable Ind Ltd Metal seal
WO2007049339A1 (en) 2005-10-25 2007-05-03 Daiki Industries, Co., Ltd. Gasket
JP2019100361A (en) 2017-11-28 2019-06-24 熊本県 Metal seal and fluid control device
JP2019167973A (en) 2018-03-22 2019-10-03 三菱電線工業株式会社 Metal seal

Also Published As

Publication number Publication date
JP2021038835A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US7938406B2 (en) Gasket
JP6994485B2 (en) Metal seal
TWI518271B (en) Metal seal
CN105909792B (en) Metal gasket
KR102188474B1 (en) Labyrinth seal
TWI651482B (en) Sealing ring and related method for sealing fluid flow path
JP2017526878A (en) Tolerance ring
JP2010138957A (en) Gasket
US9453549B2 (en) Gap-type, single turn, tooled wave spring
JP5638401B2 (en) Metal gasket
US9546733B2 (en) Piston
JP5551947B2 (en) Sealing material for grooves
JP2017172756A (en) Seal structure and gasket
JP6424124B2 (en) Metal seal
JP2022080088A (en) Metal seal
US10378649B2 (en) Metal bellows
JP2019167973A (en) Metal seal
JP5817875B2 (en) Multistage compressor
JP2018173089A (en) Arrangement structure for sealant
JP6257277B2 (en) Metal seal
JP5062680B2 (en) Valve device
US9759361B2 (en) Pipe seal
JP7428557B2 (en) sealing device
JP2017160978A (en) Metal seal
JP2018048720A (en) Seal washer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 6994485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150