JP6990817B2 - Adhesive horizontal structure, method of constructing adhesive horizontal structure, and specification determination program - Google Patents

Adhesive horizontal structure, method of constructing adhesive horizontal structure, and specification determination program Download PDF

Info

Publication number
JP6990817B2
JP6990817B2 JP2017150569A JP2017150569A JP6990817B2 JP 6990817 B2 JP6990817 B2 JP 6990817B2 JP 2017150569 A JP2017150569 A JP 2017150569A JP 2017150569 A JP2017150569 A JP 2017150569A JP 6990817 B2 JP6990817 B2 JP 6990817B2
Authority
JP
Japan
Prior art keywords
adhesive
horizontal structure
load
horizontal
nail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017150569A
Other languages
Japanese (ja)
Other versions
JP2019027234A (en
Inventor
敦 池田
秀治 橋向
慎太郎 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cemedine Co Ltd
Original Assignee
Cemedine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cemedine Co Ltd filed Critical Cemedine Co Ltd
Priority to JP2017150569A priority Critical patent/JP6990817B2/en
Publication of JP2019027234A publication Critical patent/JP2019027234A/en
Application granted granted Critical
Publication of JP6990817B2 publication Critical patent/JP6990817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Description

本願発明は、木造住宅等に用いられる水平構面(床水平構面と屋根水平構面を含む)に関するものであり、より具体的には、接着剤と釘材の両方を使用して水平面材を梁材に固定した接着式水平構面とその構築方法に関するものである。 The present invention relates to a horizontal structure (including a floor horizontal structure and a roof horizontal structure) used for a wooden house or the like, and more specifically, a horizontal flat material using both an adhesive and a nail material. It is related to the adhesive horizontal structure surface fixed to the beam material and its construction method.

建築基準法では、3階建以上の木造建築物、あるいは所定面積(500m)や所定高さ(高さ13m、軒高9m)を超える木造住宅に関しては建築確認が必要であるとしており、そのためこのような木造建築物を設計する場合は構造計算が行われる。一方、2階建以下であって所定面積等を下回る住宅等の用途の木造建築物(以下、「一般木造建築物」という。)については、原則として壁量等の簡易計算と仕様規定を満足すれば構造計算を行う必要がなく、これを省略することも少なくない。建築基準法施行令には構法仕様に関する規定(構造耐力上必要な軸組)があり、一般木造建築物の設計にあたってはこの規定に従って各仕様を決定するのが一般的である。 The Building Standards Law stipulates that building confirmation is required for wooden buildings with three or more floors, or for wooden houses that exceed the specified area (500 m 2 ) or specified height (height 13 m, eave height 9 m). When designing such a wooden building, structural calculation is performed. On the other hand, for wooden buildings (hereinafter referred to as "general wooden buildings") that are two stories or less and are used for houses, etc. that are less than the specified area, in principle, simple calculations such as wall volume and specifications are satisfied. If this is done, there is no need to perform structural calculation, and it is not uncommon to omit this. The Building Standards Law Enforcement Ordinance has provisions regarding construction method specifications (framework necessary for structural strength), and it is common to determine each specification in accordance with these provisions when designing general wooden buildings.

建築基準法施行令で規定する構法仕様には、種々の耐力壁構造(壁を設けた軸組)が提示されており、さらにその構造形式(軸組の種類)に応じた強度指標(いわゆる壁倍率)も示している。すなわち、ここで示された壁倍率を参考に、各階の各部分に必要な形式の耐力壁を選定しながら建築物全体の設計を行うわけである。 Various bearing wall structures (frames with walls) are presented in the construction specifications stipulated by the Building Standards Law Enforcement Ordinance, and strength indicators (so-called walls) according to the structural type (type of frame) are presented. Magnification) is also shown. That is, the entire building is designed while selecting the bearing wall of the required type for each part of each floor with reference to the wall magnification shown here.

ところで、上記したとおり建築基準法施行令では耐力壁に関しては規定しているものの、床の構造(以下、「床水平構面」という。)や屋根の構造(以下、「屋根水平構面」という。)といった「水平構面」については特段の定めがない。もちろん、一般木造建築物であれば、水平構面に対して特に構造計算を行う必要はない。つまり、木造建築物の耐力構造という点においては、水平構面よりも耐力壁の方が比較的重視されているといえる。 By the way, as mentioned above, although the Building Standards Law Enforcement Ordinance stipulates bearing walls, the floor structure (hereinafter referred to as "floor horizontal structure") and roof structure (hereinafter referred to as "roof horizontal structure"). There is no particular provision for "horizontal structure" such as.). Of course, if it is a general wooden building, it is not necessary to perform structural calculation on the horizontal structure. In other words, it can be said that the bearing wall is relatively more important than the horizontal structure in terms of the bearing structure of the wooden building.

しかしながら、水平構面も耐力構造として機能するものであり、木造建築物全体の強度を考えたとき当然ながら水平構面の強度も看過することはできない。水平構面の主な役割としては、地震時荷重をはじめとする水平力を耐力壁に伝達することである。水平構面の剛性が低いと、大きく変形したり、あるいは撓んだり、耐力壁よりも先行して損傷や破壊が生じることがあり、このような場合には耐力壁の性能を十分発揮することはできない。水平構面が水平力を適切に(いわばバランスよく)周囲の耐力壁に伝達することによって、耐力壁が効果的に機能し、その結果、木造建築物が外力に対して抵抗することができるわけである。換言すると水平構面の剛性、強度、靱性(以下、総称して「耐力」という。)が少なからず木造建築物全体の耐力に寄与しており、そのためには水平構面にも相当の耐力が求められる。 However, the horizontal structure also functions as a load-bearing structure, and when considering the strength of the entire wooden building, the strength of the horizontal structure cannot be overlooked. The main role of the horizontal structure is to transmit the horizontal force such as the load during an earthquake to the bearing wall. If the rigidity of the horizontal structure is low, it may be greatly deformed or bent, and damage or breakage may occur before the bearing wall. In such a case, the performance of the bearing wall should be fully exhibited. Can't. When the horizontal structure properly transfers the horizontal force to the surrounding bearing wall (so to speak, in a well-balanced manner), the bearing wall functions effectively, and as a result, the wooden building can resist the external force. Is. In other words, the rigidity, strength, and toughness of the horizontal structure (hereinafter collectively referred to as "proof stress") contribute to the strength of the entire wooden building, and for that purpose, the horizontal structure also has considerable strength. Desired.

このように水平構面が木造建築物の耐力に影響することから、たとえ一般木造建築物であっても水平構面の耐力を積極的に評価する場面もある。例えば、住宅生産者は、他社よりも堅固な木造建築物であることを示すため、耐力壁に加え水平構面も高耐力であることを強調することがある。このとき、例えば床水平構面の耐力を示す標準的な指標が「床倍率(ここでは、屋根水平構面も含めて「床倍率」という。)」である。住宅の品質確保の促進等に関する法律(以下、「品確法」という。)では住宅性能表示として耐震等級(1~3級)を規定しており、この耐震等級を決定するための要素の一つが床倍率である。なお床倍率は、品確法で規定される日本住宅性能表示基準に従って定められる。 Since the horizontal structure affects the yield strength of a wooden building in this way, there are occasions when the strength of a horizontal structure is positively evaluated even for a general wooden building. For example, a home producer may emphasize that the horizontal structure has high bearing capacity in addition to the bearing wall, in order to show that the wooden building is stronger than other companies. At this time, for example, the standard index indicating the yield strength of the floor horizontal structure is "floor magnification (here, it is referred to as" floor magnification "including the roof horizontal structure)". The Act on Promotion of Quality Assurance of Houses (hereinafter referred to as the "Quality Assurance Act") stipulates seismic grades (1st to 3rd grades) as housing performance indications, and one of the factors for determining this seismic grade is. Floor magnification. The floor magnification is determined in accordance with the Japanese Housing Performance Labeling Standards stipulated by the Quality Assurance Act.

また、特別な税制措置が得られる長期優良住宅に関しても、水平構面の耐力(つまり、床倍率)は重要である。具体的には、長期優良住宅として認定されるためには所定の耐震等級(2級以上)が要求され、すなわち相当の床倍率が必要となる。その他、戸建て住宅以外の木造建築物、例えば学校、幼稚園、事務所、公共施設等を木造建築とする場合も、規模や用途等に応じて水平構面の構造計算が必要となり、その結果、相当の床倍率を有する水平構面が計画されることもある。特に、耐力壁の相互間の距離が大きいほど(つまり空間を大きくしたいほど)、高倍率の水平構面が必要とされる。 In addition, the bearing capacity of the horizontal structure (that is, the floor magnification) is also important for long-term excellent housing that can obtain special tax measures. Specifically, in order to be certified as a long-term excellent house, a predetermined earthquake resistance grade (2nd grade or higher) is required, that is, a considerable floor magnification is required. In addition, when wooden buildings other than detached houses, such as schools, kindergartens, offices, public facilities, etc., are also made into wooden buildings, it is necessary to calculate the structure of the horizontal structure according to the scale and use, and as a result, it is considerable. Horizontal structures with floor magnifications may be planned. In particular, the larger the distance between the bearing walls (that is, the larger the space is desired), the higher the magnification of the horizontal structure is required.

このような背景のもと、その耐力に着目した水平構面に関する技術がこれまでも種々提案されている。例えば、特許文献1では、胴差や床梁に直交配置される受け材を省略することで高い弾力性を確保するとともに、隣接する床パネル間を連結板材で連結することによって高耐力が得られる木造住宅上層階用床構造を提案している。 Against this background, various techniques related to horizontal structures focusing on the yield strength have been proposed. For example, in Patent Document 1, high elasticity is ensured by omitting a trunk difference and a receiving material arranged orthogonally to a floor beam, and high yield strength is obtained by connecting adjacent floor panels with a connecting plate material. We are proposing a floor structure for the upper floors of a wooden house.

特開2012-062715号公報Japanese Unexamined Patent Publication No. 2012-02715

既述したとおり床倍率は、日本住宅性能表示基準に従って定められる。具体的には、水平構面の構造形式が複数例示されており、それぞれの構造形式に対して床倍率(存在床倍率)を設定している。また、「木造軸組工法住宅の許容応力度設計(2017年版)」でも、床倍率という用語は使用していないものの、水平構面の仕様とその耐力(単位長さ当たりの許容せん断耐力)の関係を示している。なお、ここで示される単位長さ当たりの許容せん断耐力は、換算値1.96(kN/m)で除すことによって床倍率に変換することができる。 As mentioned above, the floor magnification is determined according to the Japanese housing performance display standard. Specifically, a plurality of structural types of horizontal structures are exemplified, and a floor magnification (existing floor magnification) is set for each structural type. In addition, although the term floor magnification is not used in the "Allowable Stress Design for Wooden Framed Houses (2017 Edition)", the specifications of the horizontal structure and its yield strength (allowable shear strength per unit length) Shows the relationship. The allowable shear strength per unit length shown here can be converted into a floor magnification by dividing by a conversion value of 1.96 (kN / m).

日本住宅性能表示基準や木造軸組工法住宅の許容応力度設計(以下、これらをまとめて「従来基準等」という。)で列挙される水平構面の構造形式(仕様)は、いずれも面材の種類、釘材の仕様(種類や設置間隔)、根太の仕様(寸法や設置間隔)、根太と梁組の接合仕様の組み合わせによって定められるものである。したがって水平構面を設計する場合、従来はこれらの組み合わせによる構造形式から選択するのが主流であり、他の要素(例えば、釘材以外の固定材の使用など)を含んだ構造形式を計画することは極めて稀であった。 The structural types (specifications) of horizontal structures listed in the Japanese Housing Performance Display Standards and the allowable stress design of wooden framed houses (hereinafter collectively referred to as "conventional standards, etc.") are all face materials. It is determined by the combination of the type of nail material, the specifications of the nail material (type and installation interval), the specifications of the joist (dimensions and installation interval), and the joint specifications of the joist and the beam assembly. Therefore, when designing a horizontal structure, it has been the mainstream to select from the structural types based on these combinations, and the structural type including other elements (for example, the use of fixing materials other than nail materials) is planned. That was extremely rare.

また、従来基準等によれば釘材の配置によっても床倍率が定められており、床面材の1辺方向にのみ3列以上で釘材を設置する形式(いわゆる、川の字形式)は、床面材の全周に釘材を設置する形式(いわゆる、ロの字形式)に比べて小さい床倍率が設定されている。例えば日本住宅性能表示基準では、厚さ24mm以上の構造用合板に150mm以下の間隔で鉄丸釘N75を打付けた場合、ロの字形式ではその床倍率(存在床倍率)を3.0としているのに対し、川の字形式では床倍率を1.2と設定している。このように川の字形式による水平構面は、それほど高い床倍率を得ることができないのが現状である。一方で川の字形式は、梁材の配置設計も容易であるうえ、梁材の材積も抑えることができてコスト面でも優位であることから、川の字形式による高床倍率の水平構面が求められている。 In addition, according to conventional standards, the floor magnification is also determined by the arrangement of nail materials, and the type in which nail materials are installed in three or more rows only in the direction of one side of the floor surface material (so-called river-shaped type) is , A smaller floor magnification is set compared to the type in which nail materials are installed all around the floor surface material (so-called square-shaped type). For example, according to the Japanese Housing Performance Display Standard, when iron round nails N75 are struck on structural plywood with a thickness of 24 mm or more at intervals of 150 mm or less, the floor magnification (existing floor magnification) is set to 3.0 in the square shape. On the other hand, in the river character format, the floor magnification is set to 1.2. In this way, the horizontal structure in the shape of a river cannot obtain such a high floor magnification. On the other hand, the river-shaped form is easy to design the layout of the beam material, and the volume of the beam material can be suppressed, which is advantageous in terms of cost. It has been demanded.

ところで、床倍率や許容せん断耐力など床の耐力を求めるに当たっては、包絡線を用いるのが一般的である。この包絡線は、「木造軸組工法住宅の許容応力度設計」にも示されているように広く知られたグラフであり、水平構面を面内せん断試験した結果得られる荷重と変形角の関係を表す曲線である。具体的には図13の試験体詳細図に示すように、鉛直姿勢とした水平構面の上端片側を、あらかじめ段階的に設定した変形角となるまで加力していき(ただし、正負交番繰り返し加力)、それぞれの加力段階で得られた結果をつなげた曲線が包絡線である。 By the way, when determining the floor strength such as the floor magnification and the allowable shear strength, it is common to use an envelope. This envelope is a well-known graph as shown in "Designing the allowable stress of a wooden framed house", and the load and deformation angle obtained as a result of an in-plane shear test on a horizontal structure surface. It is a curve showing the relationship. Specifically, as shown in the detailed view of the test piece in FIG. 13, one side of the upper end of the horizontal structure in the vertical posture is applied until the deformation angle is set in a stepwise manner (however, the positive and negative alternating numbers are repeated). Envelope), the curve connecting the results obtained at each of the applied steps is the envelope.

図14は、釘材によって床面材を梁材に固定した水平構面における包絡線を示す図であり、横軸は変形角(rad)を、縦軸は荷重を示している。この包絡線が示すように、釘材で固定した水平構面は、一定の変形角(この図では概ね60×10-3rad)が生ずるまで荷重が増加している。すなわち、この一定の変位角が生ずるまでは、釘材が荷重に対して抵抗しているといえる。一般的に木造建築物は、中規模地震想定で1/120rad程度の変形角が生じ、大規模地震想定で1/30rad程度の変形角が生じるものと仮定されている。したがって、この図の包絡線を示す水平構面は、大規模地震を超える比較的大きな変位角が生ずるまで釘材が抵抗していることが分かる。 FIG. 14 is a diagram showing an envelope in a horizontal structure in which a floor material is fixed to a beam material with a nail material, and the horizontal axis shows a deformation angle (rad) and the vertical axis shows a load. As this envelope shows, the horizontal structure surface fixed with nails is loaded until a certain deformation angle (approximately 60 × 10 -3 rad in this figure) occurs. That is, it can be said that the nail material resists the load until this constant displacement angle occurs. Generally, it is assumed that a wooden building has a deformation angle of about 1/120 rad in the assumption of a medium-scale earthquake and a deformation angle of about 1/30 rad in the assumption of a large-scale earthquake. Therefore, it can be seen that the horizontal structure showing the envelope in this figure is resisted by the nail material until a relatively large displacement angle exceeding a large-scale earthquake occurs.

しかしながらこの図の包絡線を見ると、初期の変形角におけるグラフの立ち上がりが緩やかで、すなわち比較的小さな荷重が作用しただけで中規模地震想定の変形角(1/120rad)が生じていることが分かる。つまり、比較的大きな荷重範囲に対して釘材が抵抗する一方で、比較的小さな荷重範囲では容易に変形してしまうといういわば弱点を有しているわけである。水平構面の剛性が高いほど壁への力の伝達がスムーズに行われ、また、床倍率も高い評価になる傾向があることから、この弱点の解決は大きな課題と捉えることができる。 However, looking at the envelope in this figure, it can be seen that the rise of the graph at the initial deformation angle is gradual, that is, the deformation angle (1/120 rad) assumed for a medium-scale earthquake is generated even when a relatively small load is applied. I understand. That is, while the nail material resists a relatively large load range, it has a weak point that it is easily deformed in a relatively small load range. The higher the rigidity of the horizontal structure, the smoother the force is transmitted to the wall, and the floor magnification tends to be highly evaluated. Therefore, solving this weakness can be regarded as a big problem.

そこで本願発明者らは、釘材に加え接着剤でも梁材に床面材を固定することに着目した。接着剤で固定した水平構面の包絡線は、弾性域(初期の変形角)におけるせん断剛性率(荷重を変形角で除した値)が大きく、比較的小さな荷重範囲では容易に変形しないという特性があり、釘材で固定したものは、一般的に大きな変形角になっても荷重が低下しないという靱性をもつ特性があり、接着剤と釘材を組み合わせることによって、小さな荷重範囲では接着剤で抵抗し、大きな荷重範囲では釘材で抵抗するという、双方の特性を生かしたいわばハイブリッドの水平構面とするわけである。 Therefore, the inventors of the present application have focused on fixing the floor surface material to the beam material with an adhesive in addition to the nail material. The wrapping wire of the horizontal structure fixed with adhesive has a large shear rigidity (value obtained by dividing the load by the deformation angle) in the elastic region (initial deformation angle), and is not easily deformed in a relatively small load range. In general, those fixed with a nail material have the property of having the toughness that the load does not decrease even if the deformation angle is large. By combining the adhesive and the nail material, the adhesive can be used in a small load range. It resists and resists with a nail material in a large load range, so to speak, it is a hybrid horizontal structure that makes the best use of both characteristics.

ところが実験を重ねていくと、接着剤と釘材の組み合わせによっては、双方の特性が生かせないケースがあることが判明した。例えば、極度に高い接着力のある接着剤を使用すると、相当な荷重が作用するまで接着剤が抵抗するため、釘材が抵抗する前に梁材が破材し、あるいはアンカー効果(釘材の引き抜き抵抗効果)が滅失するほど釘材が緩んでしまうことから、結果的には接着剤のみで固定した場合と同様の結果となる。このようなケースの包絡線を描くと、小さい変形角を与える範囲では図14に示す包絡線よりもかなり上方にプロットされるが、大きな変形角を与える範囲では図14に示す包絡線よりも下方にプロットされる。つまり、大きな変形角を与える範囲では、釘材のみで固定した場合よりも、接着剤と釘材を組み合わせた方がむしろ容易に変形するという結果になる。またこのようなケースでは、釘材のみで固定した場合の床倍率よりも接着剤と釘材を組み合わせたときの床倍率の方が小さな値を示すこともある。 However, as a result of repeated experiments, it became clear that there are cases where the characteristics of both cannot be utilized depending on the combination of the adhesive and the nail material. For example, if you use an extremely strong adhesive, the adhesive will resist until a considerable load is applied, causing the beam to break or the anchor effect (of the nail) before the nail resists. Since the nail material becomes loose enough to lose the pull-out resistance effect), the result is the same as when fixing with only the adhesive. When the envelope of such a case is drawn, it is plotted well above the envelope shown in FIG. 14 in the range giving a small deformation angle, but below the envelope shown in FIG. 14 in the range giving a large deformation angle. It is plotted in. That is, in the range where a large deformation angle is given, the result is that the combination of the adhesive and the nail material is more easily deformed than the case where the nail material is fixed alone. Further, in such a case, the floor magnification when the adhesive and the nail material are combined may show a smaller value than the floor magnification when the nail material is fixed alone.

本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち従来基準等で示される例にはない新規な形式であって、川の字形式であっても高い床倍率を得ることができ、しかも小さな荷重範囲では接着剤で抵抗するとともに大きな荷重範囲では釘材で抵抗するという双方の特性を生かした接着式水平構面とその構築方法を提供することである。 The object of the present invention is to solve the problem of the prior art, that is, to obtain a high floor magnification even in the river-shaped form, which is a novel form not shown in the conventional standard and the like. It is to provide an adhesive horizontal structure and its construction method that makes the best use of both characteristics of resistance with an adhesive in a small load range and resistance with a nail material in a large load range.

本願発明は、釘材に加え接着剤によって水平面材を梁材に固定し、接着剤と釘材の双方の特性を生かすという点に着目してなされたものであり、さらには基準となる水平構面と比較することでその特性を確認するという点に着目してなされたものであって、これまでにない発想に基づいて行われたものである。 The present invention has been made focusing on the point that the horizontal surface material is fixed to the beam material by an adhesive in addition to the nail material to utilize the characteristics of both the adhesive and the nail material, and further, a horizontal structure as a reference. It was made by paying attention to the point of confirming the characteristics by comparing with the surface, and it was done based on an unprecedented idea.

本願発明の接着式水平構面は、釘やビスといった釘材及び接着剤によって水平面材(床水平構面と屋根水平構面を含む)を梁材に固定した水平構面であり、基準水平構面(同仕様の釘材のみによって水平面材を梁材に固定した水平構面)に変形角を与える荷重よりも、同等又はそれよりも大きな荷重が作用することによって基準水平構面と同等の変形角が生ずるものである。 The adhesive horizontal structure of the present invention is a horizontal structure in which a horizontal surface material (including a floor horizontal structure and a roof horizontal structure) is fixed to a beam material by a nail material such as a nail or a screw and an adhesive, and is a reference horizontal structure. Deformation equivalent to the reference horizontal structure surface by applying a load equal to or larger than the load that gives the deformation angle to the surface (horizontal structure surface in which the horizontal surface material is fixed to the beam material only with the nail material of the same specifications). There are horns.

本願発明の接着式水平構面は、基準水平構面よりも大きな床倍率を有するものとすることもできる。 The adhesive horizontal structure of the present invention may also have a larger floor magnification than the reference horizontal structure.

本願発明の接着式水平構面は、釘材荷重範囲(包絡線において、基準水平構面に変形角を与える荷重と同等の荷重によって基準水平構面と同等の変形角が生じる荷重範囲)方が、接着剤荷重範囲(包絡線において、基準水平構面に変形角を与える荷重よりも大きな荷重によって基準水平構面と同等の変形角が生じる荷重範囲)よりも大きな変形角を与え、しかも接着剤荷重範囲と釘材荷重範囲の境界付近の変形角が、最大荷重の80%荷重よりも大きな荷重によって与えられるものとすることもできる。 The adhesive horizontal structure surface of the present invention has a nail material load range (a load range in which a load equivalent to a load giving a deformation angle to the reference horizontal structure surface causes a deformation angle equivalent to the reference horizontal structure surface in the envelope). , Gives a deformation angle larger than the adhesive load range (a load range in which a load larger than the load that gives the deformation angle to the reference horizontal structure surface produces a deformation angle equivalent to the reference horizontal structure surface in the envelope), and the adhesive It is also possible that the deformation angle near the boundary between the load range and the nail material load range is given by a load larger than 80% of the maximum load.

本願発明の接着式水平構面は、1の水平面材に対して設定される「端部固定領域」及び「中間固定領域」を梁材に固定したものとすることもできる。端部固定領域と中間固定領域は、略同方向に配置される帯状の領域であり、端部固定領域は水平面材の両端部に設定され、中間固定領域は水平面材の中間部に1又は2以上の箇所で設定される。そして、端部固定領域と梁材の間、中間固定領域と梁材の間に接着剤を塗布し、さらに端部固定領域と中間固定領域で釘材を打込む。 In the adhesive horizontal structure surface of the present invention, the "end fixing region" and the "intermediate fixing region" set for one horizontal plane material may be fixed to the beam material. The end fixing region and the intermediate fixing region are strip-shaped regions arranged in substantially the same direction, the end fixing region is set at both ends of the horizontal plane material, and the intermediate fixing region is 1 or 2 in the middle portion of the horizontal plane material. It is set in the above places. Then, an adhesive is applied between the end fixing region and the beam material, and between the intermediate fixing region and the beam material, and further, the nail material is driven in the end fixing region and the intermediate fixing region.

本願発明の接着式水平構面の構築方法は、上記した接着式水平構面を構築する方法であり、設計工程と水平面材固定工程を備えた方法である。この設計工程では、接着剤、釘材、及び水平面材の仕様を決定し、水平面材固定工程では、設計工程で決定された仕様の接着剤及び釘材によって水平面材を梁材に固定する。なお設計工程では、接着式水平構面が、基準水平構面に変形角を与える荷重よりも、同等又はそれよりも大きな荷重が作用することによって基準水平構面と同等の変形角が生ずるように仕様を決定する。 The method for constructing the adhesive horizontal structure of the present invention is the method for constructing the adhesive horizontal structure described above, and is a method including a design process and a horizontal plane material fixing process. In this design process, the specifications of the adhesive, the nail material, and the horizontal flat material are determined, and in the horizontal flat material fixing step, the horizontal surface material is fixed to the beam material by the adhesive and the nail material having the specifications determined in the design process. In the design process, the adhesive horizontal structure surface has a deformation angle equivalent to that of the reference horizontal structure surface when a load equal to or larger than the load that gives the deformation angle to the reference horizontal structure surface is applied. Determine the specifications.

本願発明の接着式水平構面の構築方法は、いわゆる川の字形式によって水平面材を梁材に固定する方法とすることもできる。具体的には、水平面材固定工程において、水平面材に設定される端部固定領域・中間固定領域と梁材との間に接着剤を塗布し、端部固定領域と中間固定領域に釘材を打込んで、水平面材を梁材に固定する。 The method for constructing the adhesive horizontal structure of the present invention can also be a method of fixing the horizontal plane material to the beam material by a so-called river-shaped form. Specifically, in the horizontal plane material fixing step, an adhesive is applied between the end fixing region / intermediate fixing region and the beam material set in the horizontal plane material, and a nail material is applied to the end fixing region and the intermediate fixing region. Drive in to fix the horizontal surface material to the beam material.

本願発明の仕様決定プログラムは、上記した接着式水平構面の仕様を決定する機能をコンピュータに実行させるプログラムである。なお、接着式水平構面の仕様とは、接着剤と釘材、水平面材の仕様を含むものである。そして、接着式水平構面における包絡線と基準水平構面における包絡線を照らし合わせ、基準水平構面に変形角を与える荷重よりも、同等又はそれよりも大きな荷重が作用することによって基準水平構面と同等の変形角が生ずる仕様を抽出する機能をコンピュータに実行させる。 The specification determination program of the present invention is a program that causes a computer to execute the above-mentioned function of determining the specifications of the adhesive horizontal structure. The specifications of the adhesive horizontal structure include the specifications of the adhesive, the nail material, and the horizontal flat material. Then, the envelope on the adhesive horizontal structure is compared with the envelope on the reference horizontal structure, and a load equal to or larger than the load that gives the deformation angle to the reference horizontal structure acts on the reference horizontal structure. Have the computer execute the function of extracting the specifications that generate the deformation angle equivalent to the surface.

本願発明の接着式水平構面、接着式水平構面の構築方法、及び仕様決定プログラムには、次のような効果がある。
(1)接着剤と釘材が、それぞれ異なる範囲の荷重を分担し、つまり大小幅広い範囲の荷重に効果的に対抗することができる。換言すると、接着剤の抵抗特性と釘材の抵抗特性が、それぞれ荷重の大きさに応じて発揮され、双方が有機的に機能することで強靭な木造建築物を実現することができる。
(2)包絡線において早い段階で最大荷重が生じることから、通常の荷重(極端に大きくない荷重)に対して従来技術より変形を抑制することができる。
(3)釘材に加え接着剤を使用することから設計の自由度に幅ができ、例えば接着剤の耐力を上げて釘材の本数を減らすなど、施工性に配慮した仕様とすることもできる。
The adhesive horizontal structure, the method for constructing the adhesive horizontal structure, and the specification determination program of the present invention have the following effects.
(1) The adhesive and the nail material share different loads, that is, they can effectively counter a wide range of large and small loads. In other words, the resistance characteristics of the adhesive and the resistance characteristics of the nail material are exhibited according to the magnitude of the load, and both of them function organically to realize a tough wooden building.
(2) Since the maximum load is generated at an early stage in the envelope, deformation can be suppressed with respect to a normal load (a load that is not extremely large) as compared with the conventional technique.
(3) Since an adhesive is used in addition to the nail material, the degree of freedom in design can be increased. For example, the specifications can be made in consideration of workability, such as increasing the yield strength of the adhesive and reducing the number of nail materials. ..

床の場合の水平構面の一部を模式的に示す分解斜視図。An exploded perspective view schematically showing a part of a horizontal structure in the case of a floor. (a)は母屋材と垂木の上に屋根面材を固定した屋根水平構面の一部を模式的に示す分解斜視図、(b)は登梁材の上に屋根面材を固定した屋根水平構面の一部を模式的に示す分解斜視図。(A) is an exploded perspective view schematically showing a part of the roof horizontal structure in which the roof surface material is fixed on the main building material and the rafters, and (b) is the roof in which the roof surface material is fixed on the beam climbing material. An exploded perspective view schematically showing a part of a horizontal structure surface. (a)は固定領域が設定された水平面材の裏面側を示す平面図、(b)は川の字形式で固定された水平構面を示す断面図。(A) is a plan view showing the back surface side of the horizontal plane material in which the fixed area is set, and (b) is a cross-sectional view showing the horizontal structure surface fixed in the shape of a river. 中間部の2箇所に中間固定領域が設定された水平面材の裏面側を示す平面図。The plan view which shows the back surface side of the horizontal plane material which the intermediate fixed area was set in two places of the intermediate part. 包絡線の一例を示すグラフ図。The graph which shows an example of an envelope. 本願発明の接着式水平構面の包絡線と、この接着式水平構面に対応する基準水平構面の包絡線を示すグラフ図。The graph which shows the envelope of the adhesive horizontal structure of the present invention, and the envelope of the reference horizontal structure corresponding to this adhesive horizontal structure. (a)は接着式水平構面の荷重繰り返し履歴曲線を示すグラフ図、(b)は接着式水平構面の包絡線を示すグラフ図。(A) is a graph showing a load repetition history curve of an adhesive horizontal structure, and (b) is a graph showing an envelope of an adhesive horizontal structure. (a)は基準水平構面の荷重繰り返し履歴曲線を示すグラフ図、(b)は基準水平構面の包絡線を示すグラフ図。(A) is a graph showing the load repetition history curve of the reference horizontal structure, and (b) is a graph showing the envelope of the reference horizontal structure. 第2例の接着式水平構面の包絡線と基準水平構面の包絡線を示すグラフ図。The graph which shows the envelope of the adhesive type horizontal structure of 2nd example, and the envelope of a reference horizontal structure. 第3例の接着式水平構面の包絡線と基準水平構面の包絡線を示すグラフ図。The graph which shows the envelope of the adhesive type horizontal structure of 3rd example, and the envelope of a reference horizontal structure. 3種類の接着式水平構面の包絡線に基づいて算出された床倍率を示す結果図。The result figure which shows the floor magnification calculated based on the envelope of 3 kinds of adhesive type horizontal structure. 本願発明の接着式水平構面の構築方法の主な工程の流れを示すフロー図。The flow chart which shows the flow of the main process of the method of constructing the adhesive type horizontal structure of this invention. (a)は面内せん断試験の試験体のうち主に梁材の仕様を示す説明図、(b)は面内せん断試験の試験体のうち主に水平面材の仕様を示す説明図。(A) is an explanatory diagram showing the specifications of the beam material mainly among the test specimens of the in-plane shear test, and (b) is an explanatory diagram showing the specifications of the horizontal plane material mainly among the test specimens of the in-plane shear test. 釘材によって梁材に水平面材を固定した水平構面における包絡線を示すグラフ図。The graph which shows the envelope line in the horizontal structure surface which fixed the horizontal plane material to the beam material by the nail material.

本願発明の接着式水平構面、接着式水平構面の構築方法、及び仕様決定プログラムの実施形態の一例を、図に基づいて説明する。 An example of the adhesive horizontal structure, the method for constructing the adhesive horizontal structure, and the embodiment of the specification determination program of the present invention will be described with reference to the drawings.

1.定義
本願発明の実施形態の例を説明するにあたって、はじめにここで用いる用語の定義を示しておく。
1. 1. Definitions In explaining an example of an embodiment of the present invention, first, definitions of terms used here will be shown.

(水平面材)
床下地を形成する板材を「床面材」、屋根の水平構面を形成する板材を「屋根面材」、そして床面材と屋根面材を総称して「水平面材」ということとする。水平面材は、無垢材や、合板(構造用合板を含む)、CLT材(Cross Laminated Timber)、単板積層材(LVL:Laminated Veneer Lumber)、成型繊維板(MDF:Medium Density Fiberboard)など種々の材料を使用して製作される。なお、本願発明者らが試験を重ねた結果、構造用合板は配置方向における強度差が小さいため、水平面材として構造用合板を用いると本願発明の接着式水平構面はより高い床倍率となることを確認しており、したがって水平面材としては構造用合板を利用するとより好適となる。さらに、せん断変形時にできるだけ面材のせん断変形を抑制するという観点から、水平面材としては厚物仕様(構造用合板では24mm以上)の採用が好適となる。
(Horizontal plane material)
The plate material that forms the floor base is referred to as "floor surface material", the plate material that forms the horizontal structure surface of the roof is referred to as "roof surface material", and the floor surface material and roof surface material are collectively referred to as "horizontal flat material". Various horizontal plane materials include solid wood, plywood (including structural plywood), CLT material (Cross Laminated Timber), single plate laminated material (LVL: Laminated Veneer Lumber), and molded fiberboard (MDF: Medium Density Fiberboard). Manufactured using materials. As a result of repeated tests by the inventors of the present application, the difference in strength in the arrangement direction of the structural plywood is small. Therefore, when the structural plywood is used as the horizontal plane material, the adhesive horizontal structure surface of the present invention has a higher floor magnification. Therefore, it is more preferable to use structural plywood as the horizontal plane material. Further, from the viewpoint of suppressing the shear deformation of the face material as much as possible at the time of shear deformation, it is preferable to adopt a thick material specification (24 mm or more for structural plywood) as the horizontal flat material.

(梁材)
水平面材を支持する線材(断面寸法に比して軸方向寸法が極端に大きい材料)のことを、ここでは「梁材」ということとする。つまり、床の外周に設置される胴差や床梁、床の中間に配置される床小梁、屋根に用いる母屋材、登梁材、あるいはこれら床小梁等に直交配置される根太や受け梁といった部材の総称が梁材である。種類としては、一般製材、集成材、LVL等が挙げられるが、接着剤が抵抗し終えた後に、木材を大きく破断させない、表面に入った亀裂を厚さ方向に貫通させないという観点から、集成材が好適となる。
(Beam material)
The wire rod (material whose axial dimension is extremely large compared to the cross-sectional dimension) that supports the horizontal plane material is referred to as "beam material" here. In other words, the girders and beams installed on the outer circumference of the floor, the floor beams placed in the middle of the floor, the main building materials and beam climbing materials used for the roof, or the roots and receivers placed orthogonally to these floor beams, etc. Beams are a general term for members such as beams. Types include general lumber, laminated lumber, LVL, etc., but laminated lumber does not break the wood significantly after the adhesive has finished resisting, and does not allow cracks that have entered the surface to penetrate in the thickness direction. Is suitable.

(水平構面)
図1や図2に示すようには、床面材100を梁材200上に固定した軸組構造のことをここでは「水平構面」ということとする。既述したとおり水平面材100は、床面材100Fと屋根面材100Lの総称である。そこで、図1に示すように床面材100Fを梁材200上に固定した構造のことを特に「床水平構面」と、図2に示すように屋根面材100Lを梁材200上に固定した構造のことを特に「屋根水平構面」ということとする。すなわち水平構面は、床水平構面と屋根水平構面の総称である。床水平構面は、例えば図1に示すように梁材200である胴差210と床小梁220、根太230の上に床面材100Fを固定した構造とすることができる。一方の屋根水平構面は、例えば図2(a)に示すように梁材200である母屋材240と垂木250の上に屋根面材100Lを固定した構造とすることもできるし、図2(b)に示すように梁材200である登梁材260の上に屋根面材100Lを固定した構造とすることもできる。
(Horizontal structure)
As shown in FIGS. 1 and 2, the framework structure in which the floor material 100 is fixed on the beam material 200 is referred to as a “horizontal structure surface” here. As described above, the horizontal flat material 100 is a general term for the floor surface material 100F and the roof surface material 100L. Therefore, the structure in which the floor surface material 100F is fixed on the beam material 200 as shown in FIG. 1 is particularly referred to as a “floor horizontal structure surface”, and the roof surface material 100L is fixed on the beam material 200 as shown in FIG. The structure that has been constructed is referred to as the "horizontal roof structure". That is, the horizontal structure is a general term for the floor horizontal structure and the roof horizontal structure. As shown in FIG. 1, the floor horizontal structure surface can have a structure in which the floor surface material 100F is fixed on the beam material 200, the trunk difference 210, the floor beam 220, and the joist 230, for example. On the other hand, the roof horizontal structure surface may have a structure in which the roof surface material 100L is fixed on the main building material 240 and the rafters 250, which are the beam materials 200, as shown in FIG. As shown in b), the roof surface material 100L may be fixed on the beam climbing material 260 which is the beam material 200.

(接着式水平構面と基準水平構面)
本願発明の「接着式水平構面」は、接着剤と釘材によって水平面材100を梁材200に固定することで得られる水平構面である。なおここでいう釘材とは、一般的に用いられる鉄丸釘(N釘、CN釘)をはじめ、スクリュー釘や、ビスといった留め具の総称である。また、接着式水平構面と同一の仕様(同じ種類かつ同じ配置)の釘材のみで水平面材100を梁材200に固定することで得られる水平構面を、ここでは「基準水平構面」ということとする。つまり、接着式水平構面の構築過程で接着剤を使用しなかった場合に得られるものが「基準水平構面」であり、したがって基準水平構面は接着式水平構面の仕様(釘材の仕様)に対応して設定される。
(Adhesive horizontal structure and reference horizontal structure)
The "adhesive horizontal structure surface" of the present invention is a horizontal structure surface obtained by fixing the horizontal plane material 100 to the beam material 200 with an adhesive and a nail material. The nail material referred to here is a general term for fasteners such as iron round nails (N nails, CN nails), screw nails, and screws that are generally used. Further, the horizontal structure obtained by fixing the horizontal plane material 100 to the beam material 200 with only nail materials having the same specifications (same type and arrangement) as the adhesive horizontal structure is referred to as "reference horizontal structure" here. I will say that. In other words, what is obtained when no adhesive is used in the process of constructing the adhesive horizontal structure is the "reference horizontal structure", and therefore the reference horizontal structure is the specification of the adhesive horizontal structure (of the nail material). It is set according to the specifications).

(接着式水平構面の仕様)
接着式水平構面の仕様は、接着剤と釘材、水平面材の仕様を含むものである。ここで接着剤の仕様とは、接着剤の種類、塗布面積、塗布厚を含む要素をそれぞれ選択した結果であり、釘材の仕様とは釘材の種類と寸法、打込み間隔(ピッチ)、打込み形式(川の字形式やロの字形式)を含む要素をそれぞれ選択した結果であり、水平面材の仕様とはその材質や寸法・形状を含む要素をそれぞれ選択した結果である。
(Specifications of adhesive horizontal structure)
The specifications of the adhesive horizontal structure include the specifications of the adhesive, the nail material, and the horizontal flat material. Here, the adhesive specifications are the result of selecting each element including the adhesive type, coating area, and coating thickness, and the nail material specifications are the nail material type and dimensions, driving interval (pitch), and driving. It is the result of selecting each element including the format (river-shaped format and square-shaped format), and the specification of the horizontal plane material is the result of selecting each element including its material, dimensions, and shape.

(川の字形式)
「川の字形式」とは、水平面材100を梁材200に固定する形式の一つである。図3は、この川の字形式を説明する図であり、(a)は水平面材100の裏面側(下面側)を示す平面図、(b)は川の字形式で固定された水平構面を示す断面図である。川の字形式で固定する場合、図3(a)に示すように端部固定領域110と中間固定領域120が水平面材100に設定される。この端部固定領域110と中間固定領域120は、図3(b)から分かるように、水平面材100のうち梁材200上に接地する範囲に設定される帯状の領域であり、したがって1の水平面材100に設定される端部固定領域110と中間固定領域120は略同方向(同方向含む)に配置される。なお、図3では1の水平面材100に対して1箇所のみに中間固定領域120が設定されているが、中間部に2以上の梁材200が置かれるときは図4に示すように2箇所以上(この図では2箇所)の中間固定領域120が設定される。
(River character format)
The "river-shaped form" is one of the forms in which the horizontal surface member 100 is fixed to the beam member 200. 3A and 3B are views for explaining the river-shaped shape, FIG. 3A is a plan view showing the back surface side (lower surface side) of the horizontal plane material 100, and FIG. 3B is a horizontal structure fixed in the river-shaped shape. It is a cross-sectional view which shows. When fixing in the shape of a river, the end fixing region 110 and the intermediate fixing region 120 are set in the horizontal plane material 100 as shown in FIG. 3A. As can be seen from FIG. 3B, the end fixing region 110 and the intermediate fixing region 120 are strip-shaped regions set in a range of the horizontal plane material 100 that is in contact with the beam material 200, and therefore the horizontal plane of 1. The end fixing area 110 and the intermediate fixing area 120 set on the material 100 are arranged in substantially the same direction (including the same direction). In FIG. 3, the intermediate fixed region 120 is set only in one place with respect to the horizontal plane material 100 of 1, but when two or more beam materials 200 are placed in the intermediate part, two places are set as shown in FIG. The above (two locations in this figure) intermediate fixed regions 120 are set.

(包絡線)
包絡線は、既述したとおり「木造軸組工法住宅の許容応力度設計」にも示されているように広く知られたグラフであり、水平構面を面内せん断試験した結果得られる荷重と変形角の関係を表す曲線である。具体的には、鉛直姿勢とした水平構面の上端片側を、あらかじめ段階的に設定した変形角となるまで加力していき(ただし、正負交番繰り返し加力)、それぞれの加力段階で得られた結果をつなげた曲線が包絡線である。
(envelope)
As mentioned above, the envelope is a widely known graph as shown in "Design of allowable stress of wooden frame construction method house", and it is the load obtained as a result of the in-plane shear test on the horizontal structure surface. It is a curve showing the relationship of the deformation angle. Specifically, one side of the upper end of the horizontal structure in a vertical posture is applied until the deformation angle is set in stages in advance (however, positive and negative alternating alternating forces are applied repeatedly), and the force is obtained at each of the applied steps. The curve connecting the resulting results is the envelope.

図5は、包絡線の一例を示すグラフ図である。一般的に包絡線は、変形角を横軸、荷重を縦軸として描かれ、図中に示すPmaxは最大荷重、Pは降伏耐力、Pは終局耐力、δは終局変形角と呼ばれる。このうち終局変形角δは、最大荷重Pmaxを迎えた後に荷重が0.8Pmaxとなる包絡線上の変形角、又は1/15radのいずれか小さい方の値とされる。なおここでは便宜上、最大荷重Pmaxを加力したときの変形角を特に「ピーク変形角δ」ということとする。 FIG. 5 is a graph showing an example of the envelope. Generally, the envelope is drawn with the deformation angle on the horizontal axis and the load on the vertical axis. In the figure, P max is the maximum load, P y is the yield strength, Pu is the ultimate strength, and δ u is the ultimate deformation angle. Called. Of these, the ultimate deformation angle δ u is the deformation angle on the envelope where the load becomes 0.8 P max after reaching the maximum load P max , or 1/15 rad, whichever is smaller. Here, for convenience, the deformation angle when the maximum load P max is applied is particularly referred to as “peak deformation angle δ p ”.

また図6は、本願発明の接着式水平構面の包絡線(以下、単に「本願包絡線」という。)と、この接着式水平構面に対応する基準水平構面の包絡線(以下、単に「基準包絡線」という。)を示すグラフ図である。なお、図7(a)に接着式水平構面の荷重繰り返し履歴曲線、図7(b)に本願包絡線、図8(a)に基準水平構面の荷重繰り返し履歴曲線、図8(b)に基準包絡線をそれぞれ示しており、図7(b)の本願包絡線と図8(b)の基準包絡線を重ねて示したものが図6のグラフ図である。 Further, FIG. 6 shows the envelope of the adhesive horizontal structure of the present invention (hereinafter, simply referred to as “the envelope of the present application”) and the envelope of the reference horizontal structure corresponding to the adhesive horizontal structure (hereinafter, simply referred to as “the envelope of the present application”). It is a graph which shows "reference envelope"). 7 (a) shows the load repetition history curve of the adhesive horizontal structure, FIG. 7 (b) shows the envelope of the present application, FIG. 8 (a) shows the load repeat history curve of the reference horizontal structure, and FIG. 8 (b). The reference envelope is shown in FIG. 7 (b), and the graph of FIG. 6 shows the envelope of the present application in FIG. 7 (b) and the reference envelope in FIG. 8 (b) superimposed.

(床倍率)
床倍率とは、包絡線に基づいて算出される短期許容せん断耐力を、既述した換算値1.96(kN/m)で除した値である。なお短期許容せん断耐力Pは、「木造軸組工法住宅の許容応力度設計」にも示されているように短期基準せん断耐力Pに基づいて算出され、さらに短期基準せん断耐力Pは下記で求められる値のうち最も小さな値で決定される。
(a)降伏耐力P
(b)終局耐力P×0.2/D(Dは構造特性係数)
(c)最大荷重Pmax×2/3
(d)特定変形時の耐力
(Floor magnification)
The floor magnification is a value obtained by dividing the short-term allowable shear strength calculated based on the envelope by the above-mentioned conversion value 1.96 (kN / m). The short-term allowable shear strength Pa is calculated based on the short-term standard shear strength P 0 as shown in "Design of allowable stress of wooden frame construction method housing", and the short-term standard shear strength P 0 is as follows. It is determined by the smallest value among the values obtained in.
(A) Yield bearing capacity Py
(B) Ultimate yield strength Pu × 0.2 / D s (D s is a structural characteristic coefficient)
(C) Maximum load P max x 2/3
(D) Proof stress during specific deformation

2.接着式水平構面
次に、本願発明の接着式水平構面について説明する。
2. 2. Adhesive horizontal structure surface Next, the adhesive horizontal structure surface of the present invention will be described.

既述したとおり、接着剤で水平面材100を梁材200に固定した水平構面は、比較的小さな変形角を与える荷重の範囲(以下、「小規模荷重範囲」という。)で抵抗効果を発揮する特性があり、一方、釘材で固定した水平構面は、比較的大きな変形角を与える荷重の範囲(以下、「大規模荷重範囲」という。)で抵抗効果を発揮するする特性がある。そして本願発明の接着式水平構面は、接着剤と釘材を組み合わせることによって、小規模荷重範囲では接着剤で抵抗し、大規模荷重範囲では釘材で抵抗するという、双方の特性を生かしたいわばハイブリッドの水平構面となる。ただし、接着剤と釘材の組み合わせ(仕様)によっては、釘材が抵抗する前に水平面材が破材し、あるいはアンカー効果が滅失するほど釘材が緩んでしまうことから、接着剤のみで固定した場合と同様の結果となるケースもある。 As described above, the horizontal structure surface in which the horizontal surface material 100 is fixed to the beam material 200 with an adhesive exhibits a resistance effect in a load range that gives a relatively small deformation angle (hereinafter referred to as “small-scale load range”). On the other hand, the horizontal structure surface fixed with a nail material has a characteristic of exhibiting a resistance effect in a load range that gives a relatively large deformation angle (hereinafter referred to as "large-scale load range"). The adhesive horizontal structure of the present invention makes use of both characteristics of combining an adhesive and a nail material to resist with an adhesive in a small load range and with a nail material in a large load range. So to speak, it is a hybrid horizontal structure. However, depending on the combination (specification) of the adhesive and the nail material, the horizontal surface material may break before the nail material resists, or the nail material may loosen to the extent that the anchor effect is lost, so it is fixed only with the adhesive. In some cases, the result will be the same as if you did.

図6に示すように本願包絡線を見ると、接着剤の影響を受けたと考えられる包絡線が、釘材の影響を受けたと考えられる包絡線にスムーズに連続しており、接着剤と釘材の双方の特性が生かされていることが分かる。より詳しくは、小規模荷重範囲では本願包絡線の方が基準包絡線よりも上方にプロットされていることから荷重に対して接着剤が抵抗していると考えられ、大規模荷重範囲では本願包絡線と基準包絡線が同程度の位置にプロットされていることから荷重に対して釘材が抵抗していると考えることができる。すなわち、接着剤による抵抗から釘材による抵抗へと円滑に受け渡されているわけである。 Looking at the envelopes of the present application as shown in FIG. 6, the envelopes considered to have been affected by the adhesive are smoothly continuous with the envelopes considered to have been affected by the nail material, and the adhesive and the nail material are formed. It can be seen that the characteristics of both of these are utilized. More specifically, since the envelope of the present application is plotted above the reference envelope in the small load range, it is considered that the adhesive is resisting the load, and the envelope of the present application is considered in the large load range. Since the line and the reference envelope are plotted at the same position, it can be considered that the nail material is resisting the load. That is, the resistance due to the adhesive is smoothly passed to the resistance due to the nail material.

このように、全体的に基準包絡線よりも上方(特に小規模荷重範囲)又は同程度(特に大規模荷重範囲)の位置にプロットされる包絡線のことを、ここでは「複合包絡線」ということとする。換言すれば複合包絡線は、同じ変形角(横軸値)で見ると、基準包絡線の荷重(縦軸値)と同等かそれより大きな荷重を示す包絡線のことである。つまり、同じ変形角を与えるとしたときに、基準水平構面に加える荷重と、複合包絡線となる水平構面に加える荷重を比べると、両者は同等の荷重となるか、あるいは複合包絡線となる水平構面に加える荷重の方が大きな荷重となるわけである。ここで同等の荷重とは、両者(複合包絡線と基準包絡線)の荷重の差が所定の閾値(例えば10%)以内となる荷重のことである。そして複合包絡線となる水平構面が、本願発明の接着式水平構面である。なお、接着剤と釘材で固定したものの接着剤と釘材の双方の特性が生かされない水平構面(つまり、本願発明の接着式水平構面ではない水平構面)の包絡線は、小規模荷重範囲では基準包絡線よりも上方にプロットされるが、水平面材の破材や釘材のアンカー効果滅失により、大規模荷重範囲では基準包絡線よりも下方に潜り込むようにプロットされ、複合包絡線とはならない。 In this way, the envelope plotted at a position above (especially the small-scale load range) or at the same level (especially the large-scale load range) as a whole above the reference envelope is referred to as a "composite envelope" here. I will do it. In other words, a compound envelope is an envelope that shows a load equal to or greater than the load of the reference envelope (vertical axis value) when viewed at the same deformation angle (horizontal axis value). In other words, when the load applied to the reference horizontal structure and the load applied to the horizontal structure that is the compound envelope are compared when the same deformation angle is given, both have the same load, or the compound envelope and the compound envelope. The load applied to the horizontal structure is larger. Here, the equivalent load is a load in which the difference between the loads of both (composite envelope and reference envelope) is within a predetermined threshold value (for example, 10%). The horizontal structure surface that becomes the composite envelope is the adhesive horizontal structure surface of the present invention. The envelope of a horizontal structure (that is, a horizontal structure that is not the adhesive horizontal structure of the present invention) that is fixed with an adhesive and a nail material but does not utilize the characteristics of both the adhesive and the nail material is small. In the load range, it is plotted above the reference envelope, but due to the loss of the anchor effect of the horizontal flat material and the nail material, it is plotted so as to sneak below the reference envelope in the large-scale load range, and the composite envelope is plotted. It does not become.

図9と図10は、図6とは異なる接着式水平構面の包絡線(本願包絡線)と、その基準包絡線を示すグラフ図である。図9や図10に示す包絡線は、いずれもここまで説明した複合包絡線となっており、したがって図9や図10の包絡線となる水平構面は本願発明の接着式水平構面である。なお図6を含む3種類の接着式水平構面は、いずれも川の字形式とするなど釘材の仕様は同じとしており、接着剤の仕様のみを変えている。したがって、これら3種類の接着式水平構面に対応する基準水平構面は1種類であり、図9や図10に示す基準包絡線は図6の基準包絡線と同一である。 9 and 10 are graphs showing an envelope of an adhesive horizontal structure (envelope of the present application) different from that of FIG. 6 and a reference envelope thereof. The envelopes shown in FIGS. 9 and 10 are all the composite envelopes described so far, and therefore the horizontal structure that is the envelope of FIGS. 9 and 10 is the adhesive horizontal structure of the present invention. .. The three types of adhesive horizontal structures, including FIG. 6, all have the same nail material specifications, such as the shape of a river, and only the adhesive specifications are changed. Therefore, there is only one type of reference horizontal structure corresponding to these three types of adhesive horizontal structures, and the reference envelope shown in FIGS. 9 and 10 is the same as the reference envelope of FIG.

ここで図6に示す例を「第1例の接着式水平構面」、図9に示す例を「第2例の接着式水平構面」、図10に示す例を「第3例の接着式水平構面」とすると、それぞれ使用している接着剤の特性は次のとおりである。
(第1例) 接着強度が最も小さく、変形性能が最も大きい
(第2例) 接着強度が最も大きく、変形性能が最も小さい
(第3例) 接着強度が2番目に大きく、変形性能が2番目に小さい
Here, the example shown in FIG. 6 is "the first example of the adhesive horizontal structure", the example shown in FIG. 9 is the "second example of the adhesive horizontal structure", and the example shown in FIG. 10 is "the third example of adhesion". Assuming "formal horizontal structure", the characteristics of the adhesives used are as follows.
(1st example) Adhesive strength is the lowest and deformation performance is the highest (2nd example) Adhesive strength is the highest and deformation performance is the lowest (3rd example) Adhesive strength is the second highest and deformation performance is the second Small to

これら3種類の本願包絡線に基づく床倍率(ただし、低減前)を算出すると、図11に示すように、第1例の接着式水平構面では4.71の床倍率、第2例の接着式水平構面では4.53の床倍率、第3例の接着式水平構面では4.05の床倍率が得られる。またこの図では基準水平構面の床倍率3.52も示しており、第1例~第3例の接着式水平構面はいずれも基準水平構面より高い床倍率が得られていることが分かる。既述したとおり、接着剤と釘材で固定するが複合包絡線とはならない水平構面(本願発明の接着式水平構面ではない水平構面)では、接着剤と釘材の双方の特性が生かされないため基準水平構面より床倍率が低くなることもある。すなわち高い床倍率を得るという点においても、接着式水平構面が有効であることが理解できる。 When the floor magnification (however, before reduction) based on these three types of the envelope of the present application is calculated, as shown in FIG. 11, the adhesive horizontal structure of the first example has a floor magnification of 4.71 and the adhesion of the second example. A floor magnification of 4.53 can be obtained for the type horizontal structure, and a floor magnification of 4.05 can be obtained for the adhesive horizontal structure of the third example. In addition, this figure also shows a floor magnification of 3.52 for the reference horizontal structure, and it can be seen that the adhesive horizontal structures of the first to third examples all have a higher floor magnification than the reference horizontal structure. I understand. As described above, in a horizontal structure that is fixed with an adhesive and a nail material but does not form a composite envelope (horizontal structure surface that is not the adhesive horizontal structure surface of the present invention), the characteristics of both the adhesive and the nail material are Since it is not used, the floor magnification may be lower than the standard horizontal structure. That is, it can be understood that the adhesive horizontal structure surface is also effective in obtaining a high floor magnification.

また、第1例~第3例の床倍率を比較すると、第1例の接着式水平構面が最も高い床倍率となっている。この第1例の接着式水平構面である図6の本願包絡線は、既述したとおり、荷重に対して接着剤が抵抗していると考えられる荷重範囲(以下、「接着剤荷重範囲」という。)では本願包絡線の方が基準包絡線よりも上方にプロットされ、荷重に対して釘材が抵抗していると考えられる荷重範囲(以下、「釘材荷重範囲」という。)では本願包絡線と基準包絡線が同程度の位置にプロットされている。そして釘材荷重範囲の方が接着剤荷重範囲よりも大きな変形角を与えており、しかも接着剤荷重範囲と釘材荷重範囲の境界付近の変形角(以下、「境界変形角」という。)に着目すると、この境界変形角は最大荷重Pmaxの80%荷重よりも大きな荷重によって与えられている。これにより、第1例の終局変形角δu1は、最大荷重Pmaxの80%荷重ではなく、1/15radで決定され、この結果高い床倍率が得られるわけである。 Further, when the floor magnifications of the first example to the third example are compared, the adhesive horizontal structure surface of the first example has the highest floor magnification. As described above, the envelope of the present application in FIG. 6, which is the adhesive horizontal structure of the first example, is a load range in which the adhesive is considered to be resisting the load (hereinafter, “adhesive load range””. In), the envelope of the present application is plotted above the reference envelope, and in the load range in which the nail material is considered to be resisting the load (hereinafter referred to as "nail material load range"), the present application. The envelope and the reference envelope are plotted at similar positions. The nail material load range gives a larger deformation angle than the adhesive load range, and the deformation angle near the boundary between the adhesive load range and the nail material load range (hereinafter referred to as "boundary deformation angle"). Focusing on this, this boundary deformation angle is given by a load larger than 80% of the maximum load P max . As a result, the ultimate deformation angle δ u1 of the first example is determined not by 80% of the maximum load P max but by 1/15 rad, and as a result, a high floor magnification is obtained.

一方、第2例の接着式水平構面である図9や第3例の接着式水平構面である図10を見ると、それぞれ接着剤荷重範囲とを示しており、釘材荷重範囲の方が接着剤荷重範囲よりも大きな変形角を与えているが、それぞれの境界変形角は最大荷重Pmaxの80%荷重よりも著しく小さな荷重によって与えられている。これにより、第2例の終局変形角δu2や第3例の終局変形角δu3は、1/15radではなく、最大荷重Pmaxの80%荷重で決定されており、この結果第1例の接着式水平構面よりも低い床倍率が求められるわけである。すなわち、第1例の本願包絡線のように釘材荷重範囲の方が接着剤荷重範囲よりも大きな変形角を与え、かつ境界変形角が最大荷重Pmaxの80%荷重よりも大きな荷重によって与えられる接着式水平構面は、高い床倍率が得られることから好適となる。 On the other hand, looking at FIG. 9 which is the adhesive horizontal structure surface of the second example and FIG. 10 which is the adhesive type horizontal structure surface of the third example, the adhesive load range is shown, respectively, and the nail material load range is used. Gives a deformation angle larger than the adhesive load range, but each boundary deformation angle is given by a load significantly smaller than the 80% load of the maximum load P max . As a result, the final deformation angle δ u2 in the second example and the final deformation angle δ u3 in the third example are determined not by 1/15 rad but by 80% of the maximum load P max . A floor magnification lower than that of the adhesive horizontal structure is required. That is, as in the case of the envelope of the present application in the first example, the nail material load range gives a larger deformation angle than the adhesive load range, and the boundary deformation angle is given by a load larger than 80% of the maximum load P max . The adhesive horizontal structure surface to be used is suitable because a high floor magnification can be obtained.

(固定形式)
本願発明の接着式水平構面は、水平面材100の全周を接着剤及び釘材で固定する形式(いわゆるロの字形式)とすることもできるし、図3や図4に示すように川の字形式で固定することもできる。川の字形式とする場合は、水平面材100に設定される端部固定領域110と中間固定領域120に、接着剤を塗布し、かつ釘材を打付ける。なお接着剤は、水平面材100の裏面(下面)のうち端部固定領域110と中間固定領域120に塗布することもできるし、梁材200の表面(上面)に塗布することもできる。
(Fixed format)
The adhesive horizontal structure surface of the present invention can be in a form in which the entire circumference of the horizontal flat material 100 is fixed with an adhesive and a nail material (so-called square-shaped form), and as shown in FIGS. 3 and 4, the river can be used. It can also be fixed in the character format of. In the case of a river shape, an adhesive is applied to the end fixing region 110 and the intermediate fixing region 120 set in the horizontal flat material 100, and a nail material is struck. The adhesive can be applied to the end fixing region 110 and the intermediate fixing region 120 of the back surface (lower surface) of the horizontal flat material 100, or can be applied to the front surface (upper surface) of the beam material 200.

(試験例)
既述したとおり、第1例の接着式水平構面と第2例の接着式水平構面、第3例の接着式水平構面、そしてこれら接着式水平構面に対応する基準水平構面は、それぞれ包絡線が得られ、床倍率(ただし、低減前)が得られている。ここでは、これら包絡線や床倍率を得るために実施した面内せん断試験について説明する。
(Test example)
As described above, the first example of the adhesive horizontal structure and the second example of the adhesive horizontal structure, the third example of the adhesive horizontal structure, and the reference horizontal structure corresponding to these adhesive horizontal structures are , Each wrapping line is obtained, and the floor magnification (however, before reduction) is obtained. Here, the in-plane shear test performed to obtain these envelopes and floor magnification will be described.

図13は、面内せん断試験の試験体仕様を説明する説明図であり、(a)は主に梁材200の仕様を示し、(b)は主に水平面材100の仕様を示している。面内せん断試験に使用した試験体の梁材200は、図13(a)に示すように下記の仕様とした。
材種: 欧州アカマツ集成材
断面寸法: 105×105mm
強度等級: E105-F300
上下梁間隔: 2730mm
中間梁間隔: 910mmピッチ
なお左右の中間梁は、1個のホールダウン金物で上梁と固定し、2個のホールダウン金物で下梁と固定した。また中央の中間梁は、上下梁ともに羽子板ボルトで固定している。
13A and 13B are explanatory views for explaining the test piece specifications of the in-plane shear test, in which FIG. 13A mainly shows the specifications of the beam material 200 and FIG. 13B mainly shows the specifications of the horizontal plane material 100. The beam material 200 of the test piece used for the in-plane shear test had the following specifications as shown in FIG. 13 (a).
Grade: European red pine laminated lumber Cross-sectional dimensions: 105 x 105 mm
Strength grade: E105-F300
Vertical beam spacing: 2730 mm
Intermediate beam spacing: 910 mm pitch The left and right intermediate beams were fixed to the upper beam with one hole-down hardware and fixed to the lower beam with two hole-down hardware. The middle beam in the center is fixed with wing plate bolts on both the upper and lower beams.

一方、面内せん断試験に使用した試験体の水平面材100は、図13(b)に示すように下記の仕様とした。
材種: 針葉樹構造用合板
板厚寸法: 28mm(特類2級を3枚使用)
平面寸法: 910×1820mm (柱干渉部は切欠きあり)
On the other hand, the horizontal plane material 100 of the test piece used for the in-plane shear test has the following specifications as shown in FIG. 13 (b).
Lumber: Plywood for coniferous structure Board thickness: 28 mm (3 special grade 2 sheets are used)
Plane dimensions: 910 x 1820 mm (pillar interference part has a notch)

また、水平面材100を梁材200に固定した釘材は下記の仕様とした。
材種: ビス
寸法(長さ): 全長L=70mm,ネジ部長さS=30-35mm
寸法(径): ネジ外径D1=5.2-6.0mm,軸部径D4=3.2-4.2mm,頭部径=10.0-12.5mm
ネジ部形状: 縦ノッチ(螺旋状2列),角度=45±3度
なおここで使用したビスは、一定の硬度を有することを条件として選定している。
Further, the nail material in which the horizontal surface material 100 is fixed to the beam material 200 has the following specifications.
Grade: Screw dimension (length): Overall length L = 70 mm, screw part length S = 30-35 mm
Dimensions (diameter): Screw outer diameter D1 = 5.2-6.0 mm, shaft diameter D4 = 3.2-4.2 mm, head diameter = 10.0-12.5 mm
Thread shape: Vertical notch (two spiral rows), angle = 45 ± 3 degrees The screws used here are selected on the condition that they have a certain hardness.

水平面材100を梁材200に固定した接着剤は、それぞれ下記の仕様とした。
第1例の接着式水平構面:当該3例のうち接着強度が最も小さく、変形性能が最も大きいHKC36を使用した。JIS K6852に準拠して測定(被着材:カバ材同士、養生期間:23℃50%RH環境下で1週間、荷重速度:3mm/分)した圧縮せん断接着強さが1.5N/mmであり、最大荷重時の変位が1.0mmの接着剤である。
第2例の接着式水平構面:当該3例のうち接着強度が最も大きく、変形性能が最も小さいHKC34を使用した。JIS K6852に準拠して測定(被着材:カバ材同士、養生期間:23℃50%RH環境下で1週間、荷重速度:3mm/分)した圧縮せん断接着強さが3.0N/mmであり、最大荷重時の変位が0.7mmの接着剤である。
第3例の接着式水平構面:当該3例のうち接着強度が2番目に大きく、変形性能が2番目に小さいHKC35を使用した。JIS K6852に準拠して測定(被着材:カバ材同士、養生期間:23℃50%RH環境下で1週間、荷重速度:3mm/分)した圧縮せん断接着強さが2.5N/mmであり、最大荷重時の変位が0.8mmの接着剤である。
The adhesives for fixing the horizontal plane material 100 to the beam material 200 have the following specifications.
Adhesive horizontal structure surface of the first example: Of the three examples, HKC36 having the lowest adhesive strength and the highest deformation performance was used. Compressive shear adhesive strength measured according to JIS K6852 (adhesive material: cover materials, curing period: 1 week under RH environment at 23 ° C, load rate: 3 mm / min) is 1.5 N / mm 2 This is an adhesive having a displacement of 1.0 mm at the maximum load.
Adhesive horizontal structure surface of the second example: Of the three examples, HKC34 having the highest adhesive strength and the lowest deformation performance was used. Compressive shear adhesive strength measured according to JIS K6852 (adhesive material: cover materials, curing period: 1 week under RH environment at 23 ° C, load rate: 3 mm / min) is 3.0 N / mm 2 It is an adhesive having a displacement of 0.7 mm at the maximum load.
Adhesive horizontal structure surface of the third example: HKC35 having the second highest adhesive strength and the second lowest deformation performance among the three examples was used. Compressive shear adhesive strength measured according to JIS K6852 (adhesive material: cover materials, curing period: 1 week under RH environment at 23 ° C, load rate: 3 mm / min) is 2.5 N / mm 2 It is an adhesive having a displacement of 0.8 mm at the maximum load.

そして、下記の施工仕様によって水平面材100を梁材200に固定した。
釘材の打込み: 100mmピッチ(川の字)
接着剤の塗布: 幅5mmの連続塗布(川の字)
Then, the horizontal plane material 100 was fixed to the beam material 200 according to the following construction specifications.
Nail material driving: 100 mm pitch (river character)
Adhesive application: Continuous application with a width of 5 mm (river character)

以上説明した仕様の試験体で面内せん断試験を行った結果、図6と図9、図10の包絡線が得られ、図11に示す床倍率が得られた。 As a result of performing an in-plane shear test with the test piece having the specifications described above, the envelopes of FIGS. 6, 9 and 10 were obtained, and the floor magnification shown in FIG. 11 was obtained.

3.接着式水平構面の構築方法
続いて、本願発明の接着式水平構面の構築方法について、図11を参照しながら説明する。なお、本願発明の接着式水平構面の構築方法は、ここまで説明した接着式水平構面を構築する方法であって、したがって「2.接着式水平構面」で説明した内容と重複する説明は避け、接着式水平構面の構築方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、既に説明したものと同様である。また、本願発明の接着式水平構面の構築方法は、ロの字形式で固定するケースでも実施することができるが、ここでは便宜上川の字形式で固定するケースで説明する。
3. 3. Method for constructing an adhesive horizontal structure Next, a method for constructing an adhesive horizontal structure according to the present invention will be described with reference to FIG. 11. The method for constructing the adhesive horizontal structure of the present invention is the method for constructing the adhesive horizontal structure described so far, and therefore, the description overlaps with the contents described in "2. Adhesive horizontal structure". I will explain only the contents peculiar to the method of constructing the adhesive horizontal structure. That is, the contents not described here are the same as those already described. Further, the method for constructing the adhesive horizontal structure of the present invention can be carried out in the case of fixing in the square shape, but here, for convenience, the case of fixing in the river shape will be described.

図12は、本願発明の接着式水平構面の構築方法の主な工程の流れを示すフロー図であり、この図に示すように大きくは設計工程(Step100)と水平面材固定工程(Step200)の2工程が行われる。 FIG. 12 is a flow chart showing the flow of the main steps of the method for constructing the adhesive horizontal structure of the present invention. Two steps are performed.

(設計工程)
設計工程では、まず接着式水平構面の仕様、つまり接着剤の仕様と釘材の仕様、水平面材の仕様が計画される(Step110)。そして、計画された仕様の水平構面に対して既述した面内せん断試験を行い、その結果得られる包絡線を確認する(Step120)。その包絡線が、これまで説明した複合包絡線であることが確認できるとその仕様を決定する。一方、複合包絡線とならない場合は、改めて接着剤と釘材の仕様を計画する(Step110)。なお、既に効果が確認された過去の使用実績と同様の仕様を採用する場合は、試験・確認工程(Step120)を省略することができる。
(Design process)
In the design process, first, the specifications of the adhesive horizontal structure, that is, the specifications of the adhesive, the specifications of the nail material, and the specifications of the horizontal flat material are planned (Step 110). Then, the above-mentioned in-plane shear test is performed on the horizontal structure of the planned specifications, and the envelope obtained as a result is confirmed (Step 120). The specification is determined when it can be confirmed that the envelope is the composite envelope described so far. On the other hand, if the composite envelope is not formed, the specifications of the adhesive and the nail material are planned again (Step 110). In addition, when the same specifications as the past usage record whose effect has already been confirmed are adopted, the test / confirmation step (Step 120) can be omitted.

(水平面材固定工程)
水平面材固定工程では、まず水平面材100の裏面(下面)に対して端部固定領域110と中間固定領域120の位置出しを行い(Step210)、この端部固定領域110と中間固定領域120に接着剤を塗布する(Step220)。水平面材100への塗布に代えて梁材200の表面(上面)に接着剤を塗布してもよく(Step220)、その場合は端部固定領域110と中間固定領域120の位置出し工程(Step210)を省略することができる。
(Horizontal plane material fixing process)
In the horizontal plane material fixing step, first, the end fixing region 110 and the intermediate fixing region 120 are positioned with respect to the back surface (lower surface) of the horizontal flat material 100 (Step 210), and the end fixing region 110 and the intermediate fixing region 120 are adhered to each other. Apply the agent (Step 220). An adhesive may be applied to the surface (upper surface) of the beam material 200 instead of being applied to the horizontal surface material 100 (Step 220), in which case the positioning step of the end fixing region 110 and the intermediate fixing region 120 (Step 210). Can be omitted.

水平面材100裏面の端部固定領域110と中間固定領域120(あるいは梁材200の表面)に接着剤が塗布できると、端部固定領域110と中間固定領域120がそれぞれ梁材200上に載置されるように水平面材100を設置する(Step230)。そして、水平面材100表面の端部固定領域110と中間固定領域120で、所定のピッチで釘材を打付け(Step240)、接着式水平構面を完成させる。 When the adhesive can be applied to the end fixing area 110 and the intermediate fixing area 120 (or the surface of the beam material 200) on the back surface of the horizontal flat material 100, the end fixing area 110 and the intermediate fixing area 120 are placed on the beam material 200, respectively. The horizontal plane material 100 is installed so as to be performed (Step 230). Then, nailing materials are struck at a predetermined pitch in the end fixing region 110 and the intermediate fixing region 120 on the surface of the horizontal flat material 100 (Step 240) to complete the adhesive horizontal structure surface.

4.仕様決定プログラム
本願発明の仕様決定プログラムについて説明する。なお、本願発明の仕様決定プログラムは、ここまで説明した接着式水平構面の仕様を決定するプログラムであり、したがって「2.接着式水平構面」で説明した内容と重複する説明は避け、仕様決定プログラムに特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、既に説明したものと同様である。
4. Specification determination program The specification determination program of the present invention will be described. The specification determination program of the present invention is a program for determining the specifications of the adhesive horizontal structure described so far. Therefore, avoiding explanations overlapping with the contents described in "2. Adhesive horizontal structure", the specifications Only the contents specific to the decision program will be explained. That is, the contents not described here are the same as those already described.

本願発明の仕様決定プログラムは、接着式水平構面の仕様を決定する機能をコンピュータに実行させるプログラムであり、接着式水平構面の構築方法の設計工程で効果的に使用することができる。より具体的には、本願発明の仕様決定プログラムは、ユーザが計画した仕様による面内せん断試験結果を入力すると、その試験結果に基づいて包絡線(以下、「計画包絡線」という。)を求め、計画包絡線と基準包絡線をディスプレイなどの表示手段に表示するとともに、計画包絡線と基準包絡線を照らし合わせる処理をコンピュータに実行させるものである。さらに、計画包絡線が基準包絡線との関係で複合包絡線であることが確認されると、この仕様を本願発明の接着式水平構面の仕様として採用し得るとして当該仕様を抽出する処理をコンピュータに実行させるものである。 The specification determination program of the present invention is a program that causes a computer to execute a function of determining the specifications of the adhesive horizontal structure, and can be effectively used in the design process of the method for constructing the adhesive horizontal structure. More specifically, the specification determination program of the present invention obtains an envelope (hereinafter referred to as "planned envelope") based on the test result when the in-plane shear test result according to the specification planned by the user is input. The planned envelope and the reference envelope are displayed on a display means such as a display, and the computer is made to execute a process of comparing the planned envelope with the reference envelope. Further, when it is confirmed that the planned envelope is a composite envelope in relation to the reference envelope, a process of extracting the specification is performed assuming that this specification can be adopted as the specification of the adhesive horizontal structure of the present invention. It is what you let the computer do.

本願発明の接着式水平構面、接着式水平構面の構築方法、及び仕様決定プログラムは、戸建て木造住宅のほか、学校、幼稚園、事務所、公共施設など様々な木造建築物で利用することができる。特に、吹き抜けなど広い空間が設けられた木造建築物に有効である。 The adhesive horizontal structure, the method for constructing the adhesive horizontal structure, and the specification determination program of the present invention can be used in various wooden buildings such as schools, kindergartens, offices, public facilities, as well as detached wooden houses. can. It is especially effective for wooden buildings with large spaces such as atrium.

100 水平面材
100F 床面材(水平面材)
100L 屋根面材(水平面材)
110 (水平面材の)端部固定領域
120 (水平面材の)中間固定領域
200 梁材
210 胴差(梁材)
220 床小梁(梁材)
230 根太(梁材)
240 母屋材(梁材)
250 垂木(梁材)
260 登梁材(梁材)
max 最大荷重
降伏耐力
終局耐力
短期基準せん断耐力
短期許容せん断耐力
δ 終局変形角
δu1 第1例の終局変形角
δu2 第2例の終局変形角
δu3 第3例の終局変形角
δ ピーク変形角
100 horizontal flat material 100F floor surface material (horizontal flat material)
100L roof surface material (horizontal plane material)
110 End fixing area (for horizontal lumber) 120 Intermediate fixing area (for horizontal lumber) 200 Beam material 210 Girth difference (beam material)
220 Floor beam (beam material)
230 Joist (beam material)
240 Purlin material (beam material)
250 rafters (beam material)
260 Climbing material (beam material)
P max maximum load P y yield strength P u ultimate strength P 0 short-term standard shear strength P a short-term allowable shear strength δ u ultimate deformation angle δ u1 final deformation angle of the first example δ u2 final deformation angle of the second example δ u3 Ultimate deformation angle of 3 cases δ p Peak deformation angle

Claims (7)

釘やビスといった釘材及び接着剤によって水平面材を梁材に固定した水平構面において、
荷重と変形角の関係を示す包絡線が「複合包絡線」となるように決定された仕様の前記接着剤と前記釘材と前記水平面材によって構築され、
前記複合包絡線は、同仕様の前記釘材のみによって前記水平面材を前記梁材に固定した「基準水平構面」に変形角を与える荷重よりも大きな荷重によって該基準水平構面と同等の変形角が生じる荷重範囲を「接着剤荷重範囲」、該基準水平構面に変形角を与える荷重と同等の荷重によって該基準水平構面と同等の変形角が生じる荷重範囲を「釘材荷重範囲」とすると、該釘材荷重範囲の方が該接着剤荷重範囲よりも大きな変形角を与える包絡線であり、
前記接着剤荷重範囲と前記釘材荷重範囲の境界である「境界変形角」において、荷重に対する抵抗が前記接着剤による抵抗から前記釘材による抵抗へ受け渡される、
ことを特徴とする接着式水平構面。
On a horizontal structure in which a horizontal surface material is fixed to a beam material with nail materials such as nails and screws and adhesives.
It is constructed of the adhesive, the nail material and the horizontal flat material of the specifications determined so that the envelope indicating the relationship between the load and the deformation angle is a "composite envelope".
The composite wrapping wire is deformed in the same manner as the reference horizontal structure surface by a load larger than a load that gives a deformation angle to the "reference horizontal structure surface" in which the horizontal plane material is fixed to the beam material only by the nail material having the same specifications. The load range where the corners are generated is the "adhesive load range", and the load range where the deformation angle equivalent to the reference horizontal structure surface is generated by the load equivalent to the load that gives the deformation angle to the reference horizontal structure surface is the "nail material load range". Then, the nail material load range is a wrapping wire that gives a larger deformation angle than the adhesive load range.
At the "boundary deformation angle" which is the boundary between the adhesive load range and the nail material load range, the resistance to the load is transferred from the resistance due to the adhesive to the resistance due to the nail material.
Adhesive horizontal structure that is characterized by that.
前記基準水平構面よりも大きな床倍率を有する、
ことを特徴とする請求項1記載の接着式水平構面。
It has a floor magnification larger than the reference horizontal structure.
The adhesive horizontal structure according to claim 1.
前記境界変形角が、最大荷重の80%荷重よりも大きな荷重によって与えられる、
ことを特徴とする請求項1又は請求項2記載の接着式水平構面。
The boundary deformation angle is given by a load greater than 80% of the maximum load.
The adhesive horizontal structure according to claim 1 or 2, characterized in that.
1の前記水平面材に対して、両端部に端部固定領域が設定されるとともに、中間部に1又は2以上の中間固定領域が設定され、
前記端部固定領域と前記中間固定領域は、略同方向に配置される帯状の領域であり、
前記端部固定領域及び前記中間固定領域で、前記接着剤及び前記釘材によって前記水平面材が前記梁材に固定された、
ことを特徴とする請求項1乃至請求項3のいずれかに記載の接着式水平構面。
With respect to the horizontal flat material of 1, end fixing regions are set at both ends, and one or two or more intermediate fixing regions are set at the intermediate portion.
The end fixing region and the intermediate fixing region are strip-shaped regions arranged in substantially the same direction.
In the end fixing region and the intermediate fixing region, the horizontal plane material was fixed to the beam material by the adhesive and the nail material.
The adhesive horizontal structure according to any one of claims 1 to 3, wherein the adhesive horizontal structure surface is characterized by the above.
釘やビスといった釘材及び接着剤によって水平面材が梁材に固定された接着式水平構面を構築する方法であって、
前記接着剤、前記釘材、及び前記水平面材の仕様を決定する設計工程と、
前記設計工程で決定された仕様の前記接着剤及び前記釘材によって、前記設計工程で決定された前記水平面材を前記梁材に固定する水平面材固定工程と、を備え、
前記設計工程では、荷重と変形角の関係を示す包絡線が「複合包絡線」となるように前記仕様を決定し、
前記複合包絡線は、同仕様の前記釘材のみによって前記水平面材を前記梁材に固定した「基準水平構面」に変形角を与える荷重よりも大きな荷重によって該基準水平構面と同等の変形角が生じる荷重範囲を「接着剤荷重範囲」、該基準水平構面に変形角を与える荷重と同等の荷重によって該基準水平構面と同等の変形角が生じる荷重範囲を「釘材荷重範囲」とすると、該釘材荷重範囲の方が該接着剤荷重範囲よりも大きな変形角を与える包絡線であり、
また前記設計工程では、前記接着剤荷重範囲と前記釘材荷重範囲の境界である「境界変形角」において、荷重に対する抵抗が前記接着剤による抵抗から前記釘材による抵抗へ受け渡されるように前記仕様を決定する、
ことを特徴とする接着式水平構面の構築方法。
It is a method of constructing an adhesive horizontal structure in which a horizontal surface material is fixed to a beam material by a nail material such as a nail or a screw and an adhesive.
A design process for determining the specifications of the adhesive, the nail material, and the horizontal flat material, and
A horizontal plane material fixing step of fixing the horizontal flat material determined in the design step to the beam material by the adhesive and the nail material of the specifications determined in the design step is provided.
In the design process, the specifications are determined so that the envelope showing the relationship between the load and the deformation angle becomes a "composite envelope" .
The composite wrapping wire is deformed in the same manner as the reference horizontal structure surface by a load larger than a load that gives a deformation angle to the "reference horizontal structure surface" in which the horizontal plane material is fixed to the beam material only by the nail material having the same specifications. The load range where the corners are generated is the "adhesive load range", and the load range where the deformation angle equivalent to the reference horizontal structure surface is generated by the load equivalent to the load that gives the deformation angle to the reference horizontal structure surface is the "nail material load range". Then, the nail material load range is a wrapping wire that gives a larger deformation angle than the adhesive load range.
Further, in the design step, the resistance to the load is transferred from the resistance due to the adhesive to the resistance due to the nail material at the "boundary deformation angle" which is the boundary between the adhesive load range and the nail material load range. Determine the specifications,
A method of constructing an adhesive horizontal structure.
前記水平面材固定工程では、前記水平面材に設定される端部固定領域と中間固定領域で、前記接着剤及び前記釘材によって前記水平面材を前記梁材に固定し、
前記端部固定領域は、1の前記水平面材に対して両端部に設定される帯状の領域であり、
前記中間固定領域は、1の前記水平面材に対して中間部に1又は2以上設定されるとともに、前記端部固定領域と略同方向に配置される帯状の領域である、
ことを特徴とする請求項5記載の接着式水平構面の構築方法。
In the horizontal flat material fixing step, the horizontal flat material is fixed to the beam material by the adhesive and the nail material in the end fixing region and the intermediate fixing region set in the horizontal flat material.
The end fixing region is a band-shaped region set at both ends with respect to the horizontal plane member of 1.
The intermediate fixing region is a strip-shaped region that is set in the intermediate portion of 1 with respect to the horizontal flat material and is arranged in substantially the same direction as the end fixing region.
The method for constructing an adhesive horizontal structure according to claim 5.
釘やビスといった釘材及び接着剤によって水平面材が梁材に固定された接着式水平構面の仕様を決定する機能をコンピュータに実行させるプログラムであって、
前記接着式水平構面の仕様は、前記接着剤、前記釘材、及び前記水平面材の仕様を含み、荷重と変形角の関係を示す包絡線が「複合包絡線」となるように決定され、
前記複合包絡線は、同仕様の前記釘材のみによって前記水平面材を前記梁材に固定した「基準水平構面」に変形角を与える荷重よりも大きな荷重によって該基準水平構面と同等の変形角が生じる荷重範囲を「接着剤荷重範囲」、該基準水平構面に変形角を与える荷重と同等の荷重によって該基準水平構面と同等の変形角が生じる荷重範囲を「釘材荷重範囲」とすると、該釘材荷重範囲の方が該接着剤荷重範囲よりも大きな変形角を与える包絡線であり、
前記接着剤荷重範囲と前記釘材荷重範囲の境界である「境界変形角」において、荷重に対する抵抗が前記接着剤による抵抗から前記釘材による抵抗へ受け渡されるように前記接着式水平構面の仕様を抽出する機能を、
備えたことを特徴とする接着式水平構面の仕様決定プログラム。
It is a program that causes a computer to execute the function of determining the specifications of an adhesive horizontal structure in which a horizontal surface material is fixed to a beam material by nail materials such as nails and screws and an adhesive.
The specifications of the adhesive horizontal structure include the specifications of the adhesive, the nail material, and the horizontal plane material, and the envelope showing the relationship between the load and the deformation angle is determined to be a "composite envelope".
The composite wrapping wire is deformed in the same manner as the reference horizontal structure surface by a load larger than a load that gives a deformation angle to the "reference horizontal structure surface" in which the horizontal plane material is fixed to the beam material only by the nail material having the same specifications. The load range where the corners are generated is the "adhesive load range", and the load range where the deformation angle equivalent to the reference horizontal structure surface is generated by the load equivalent to the load that gives the deformation angle to the reference horizontal structure surface is the "nail material load range". Then, the nail material load range is a wrapping wire that gives a larger deformation angle than the adhesive load range.
At the "boundary deformation angle" which is the boundary between the adhesive load range and the nail material load range, the adhesive horizontal structure surface is such that the resistance to the load is transferred from the resistance due to the adhesive to the resistance due to the nail material . The function to extract specifications,
Adhesive horizontal structure specification determination program featuring the provision.
JP2017150569A 2017-08-03 2017-08-03 Adhesive horizontal structure, method of constructing adhesive horizontal structure, and specification determination program Active JP6990817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017150569A JP6990817B2 (en) 2017-08-03 2017-08-03 Adhesive horizontal structure, method of constructing adhesive horizontal structure, and specification determination program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150569A JP6990817B2 (en) 2017-08-03 2017-08-03 Adhesive horizontal structure, method of constructing adhesive horizontal structure, and specification determination program

Publications (2)

Publication Number Publication Date
JP2019027234A JP2019027234A (en) 2019-02-21
JP6990817B2 true JP6990817B2 (en) 2022-01-12

Family

ID=65476089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150569A Active JP6990817B2 (en) 2017-08-03 2017-08-03 Adhesive horizontal structure, method of constructing adhesive horizontal structure, and specification determination program

Country Status (1)

Country Link
JP (1) JP6990817B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249997A (en) 2008-04-10 2009-10-29 Tsuka Kanamono Kk Floor structure and its construction method
JP2010001670A (en) 2008-06-20 2010-01-07 Fujitsu Fip Corp Computer program for supporting allowable stress calculation of house constructed by wooden framework method
JP2012062715A (en) 2010-09-17 2012-03-29 Tsuka Kanamono Kk Floor structure for upper story of wooden house
US20150040504A1 (en) 2013-08-07 2015-02-12 Edmund MEI Structural engineered wood rim board for light frame construction
JP3204340U (en) 2015-07-03 2016-06-02 ジェイ建築システム株式会社 Hybrid wooden building with J-grade ace system of production management process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249997A (en) 2008-04-10 2009-10-29 Tsuka Kanamono Kk Floor structure and its construction method
JP2010001670A (en) 2008-06-20 2010-01-07 Fujitsu Fip Corp Computer program for supporting allowable stress calculation of house constructed by wooden framework method
JP2012062715A (en) 2010-09-17 2012-03-29 Tsuka Kanamono Kk Floor structure for upper story of wooden house
US20150040504A1 (en) 2013-08-07 2015-02-12 Edmund MEI Structural engineered wood rim board for light frame construction
JP3204340U (en) 2015-07-03 2016-06-02 ジェイ建築システム株式会社 Hybrid wooden building with J-grade ace system of production management process

Also Published As

Publication number Publication date
JP2019027234A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US7549263B1 (en) Structural insulated panel with hold down chase
Varoglu et al. Midply wood shear wall system: Concept and performance in static and cyclic testing
Schneider et al. Damage assessment of cross laminated timber connections subjected to simulated earthquake loads
Bedon et al. Assessment of the structural stability of Blockhaus timber log-walls under in-plane compression via full-scale buckling experiments
Demirkir et al. Effect of manufacturing factors on technological properties of plywood from northern turkey and suitability of panels for use in shear walls
JP3187301U (en) Bearing wall and wooden building
JP2006077565A (en) Bearing wall and its construction method
JP6990817B2 (en) Adhesive horizontal structure, method of constructing adhesive horizontal structure, and specification determination program
Carrero et al. Static and dynamic performance of direct hybrid connections of cross-laminated timber with steel, concrete and laminated strand lumber composites
Tlustochowicz Stabilising system for multi-storey beam and post timber buildings
JP3122159U (en) Seismic reinforcement structure for buildings
Rose Preliminary testing of wood structural panel shear walls under cyclic (reversed) loading
Correal et al. Experimental study of glued laminated guadua bamboo panel as an alternative shear wall sheathing material
Goto et al. Legislative background and building culture for the design of timber structures in Europe and Japan
Gao et al. Shear performance of a novel non-metallic cross-laminated timber wall-to-wall connection using double-dovetail mortise-tenon joint
Lokaj et al. Problems of wood-based I-beams carrying capacity
JP2021116682A (en) Adhesion type bearing force structure plane, construction method thereof and adhesion specification decision support system
Pozza Ductility and behaviour factor of wood structural systems-Theoretical and experimental development of a high ductility wood-concrete shearwall system
Lee et al. Lateral resistance of reinforced light-frame wood shear walls
JP2010229801A (en) Construction method
Snow et al. North American practices for connections in wood construction
Vessby Shear walls for multi-storey timber buildings
JP2019214923A (en) Bearing wall and construction method thereof
Moerman et al. Cyclic Testing and Repair of Coupled CLT Walls with Steel Link Beams
Collins Timber-concrete composite: an alternative composite floor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R150 Certificate of patent or registration of utility model

Ref document number: 6990817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150