JP2010001670A - Computer program for supporting allowable stress calculation of house constructed by wooden framework method - Google Patents

Computer program for supporting allowable stress calculation of house constructed by wooden framework method Download PDF

Info

Publication number
JP2010001670A
JP2010001670A JP2008162145A JP2008162145A JP2010001670A JP 2010001670 A JP2010001670 A JP 2010001670A JP 2008162145 A JP2008162145 A JP 2008162145A JP 2008162145 A JP2008162145 A JP 2008162145A JP 2010001670 A JP2010001670 A JP 2010001670A
Authority
JP
Japan
Prior art keywords
load
rigidity
structural member
allowable
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008162145A
Other languages
Japanese (ja)
Other versions
JP5130129B2 (en
Inventor
Mina Kiyokawa
美奈 清川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu FIP Corp
Original Assignee
Fujitsu FIP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu FIP Corp filed Critical Fujitsu FIP Corp
Priority to JP2008162145A priority Critical patent/JP5130129B2/en
Publication of JP2010001670A publication Critical patent/JP2010001670A/en
Application granted granted Critical
Publication of JP5130129B2 publication Critical patent/JP5130129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structural design method for a house constructed by a wooden framework method without depending on the skill and intuition of an engineer. <P>SOLUTION: This computer program has processes for: (a) primarily determining excess/shortage of rigidity of a story from the ratio of the sum of horizontal rigidity of the story to horizontal seismic load or wind load; (b) adding rigidity by the rigidity shortage portion to a predetermined position; (c) computing seismic load and wind load imposed on structural members of each reference plane, from the rigidity including the added rigidity of the structural members of each reference plane by a calculation expression considering a torsion correction factor; (d) comparing the load imposed on the structural members of each reference plane with the allowable horizontal load of the structural members of the reference plane; (e) increasing the rigidity of the structural members in proportion to the ratio of the imposed load to the allowable horizontal load when the load imposed on the structural members in one or more reference planes exceeds the allowable horizontal load of the structural members; (f) repeating the processes until the load imposed on the structural members is not more than the allowable horizontal load of the structural members; and (g) outputting the seismic load and wind load imposed on the structural members, the allowable horizontal load and the increased rigidity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

木造軸組み住宅建築に関して、建築基準法および住宅の品質確保の促進等に関する法律の下では構造の安定に関する性能評価を行うことが求められている。財団法人日本住宅・木材技術センター企画編集による「木造軸組工法住宅の許容応力度設計」によれば、構造の安定に関する性能評価は、地震荷重を柱および壁に配分し、偏心率に基づく捩れ補正係数を考慮して、柱および壁の発生応力と許容応力を比較するという流れに沿って行われる。   Regarding wooden framed housing construction, it is required to perform performance evaluation on the stability of the structure under the Building Standard Law and the law on promotion of ensuring the quality of houses. According to “Design of allowable stress of wooden frame construction method house” edited by the Japan Housing and Wood Technology Center Foundation, the structural performance evaluation is based on torsion based on eccentricity by distributing seismic load to columns and walls. Considering the correction factor, this is performed along the flow of comparing the generated stress of the column and wall with the allowable stress.

いわゆる建築物の構造計算をコンピュータによって行うためのプログラムは種々開発されているが、木造軸組み構造の許容応力度計算を支援するものはない。また、木造軸組み建物の構造が決定された場合に、地震時に当該構造に発生する応力または荷重を計算するプログラムを開発すること自体は一般に容易であるとしても、地震時に発生する応力または荷重が、柱または壁の許容応力または許容水平荷重を超えている場合に、構造をどのように修正すべきかは、技術者の熟練と勘によるところが大きく、設計を修正しては地震時の応力または荷重をチェックすることを繰り返すために非常に大きな時間と労力が費やされる作業であった。   Various programs have been developed to perform so-called structural calculations of buildings using computers, but none of them support the calculation of allowable stress levels for wooden frame structures. In addition, when the structure of a wooden frame building is determined, it is generally easy to develop a program for calculating the stress or load generated in the structure during an earthquake. How to modify the structure when the allowable stress or horizontal load of the column or wall is exceeded depends largely on the skill and intuition of the engineer. It was a work that took a great deal of time and effort to repeat checking.

本発明は、技術の現状が有する上記のような困難に鑑み、木造軸組み工法住宅の許容応力度設計をする際に、対象構造物の地震時発生応力または荷重を計算するだけでなく、発生応力または荷重が当該部材の許容応力または許容水平荷重を超えている場合に、発生応力または荷重が許容応力または荷重未満になるよう自動的に構造を修正するとともに、修正された構造が許容応力度設計基準を満たす(つまり、発生する応力または荷重が許容応力または荷重未満である)ことを計算によって確認するものである。   In view of the above-mentioned difficulties in the current state of the art, the present invention not only calculates the earthquake-induced stress or load of the target structure when designing the allowable stress level of the wooden frame construction method house, but also generates it. When the stress or load exceeds the allowable stress or allowable horizontal load of the member, the structure is automatically corrected so that the generated stress or load is less than the allowable stress or load. It is confirmed by calculation that the design standard is satisfied (that is, the generated stress or load is less than the allowable stress or load).

したがって、木造軸組工法住宅の構造の決定のための労力が大幅に削減され、作業の迅速化が図られると共に、技術者の熟練と勘に依存しない構造設計手法が提供される。本発明はこのような許容応力度計算を支援するコンピュータプログラムおよびこれらのコンピュータプログラムを格納した記憶媒体を提供することを目的とする。   Therefore, the labor for determining the structure of the wooden frame construction method house is greatly reduced, the work can be speeded up, and a structural design method independent of the skill and intuition of the engineer is provided. It is an object of the present invention to provide a computer program that supports the calculation of the allowable stress level and a storage medium that stores these computer programs.

上記の課題を解決するために、本発明は、木造軸組工法住宅の許容応力度計算を支援するコンピュータプログラムであって、与えられた構造に対して、
a)水平方向の地震荷重または風荷重と当該階の水平剛性の総和の比から、当該階の剛性の過不足について1次判断をする過程と、
b)剛性が不足すると1次判断された場合には、当該不足分の剛性を所定の位置に追加する過程と、
c)ねじれ補正係数を考慮した所定の計算式に基づいて、各通りの構造部材の追加剛性を含む剛性から、各通りの構造部材が負担する地震荷重及び風荷重を算出する過程と、
d)各通りの構造部材が負担する荷重と当該通りの構造部材の許容水平荷重を比較する過程と、
e)1または2以上の通りにおいて構造部材が負担する荷重が当該構造部材の許容水平荷重を超えた場合、当該構造部材の剛性を負担荷重と許容水平荷重の比に応じて増大させる過程と、
f)増大された構造部材の剛性に基づいて前記過程c)ないしe)を、構造部材の剛性の増分としては過程e)を最初に実行した際に決定した増分を変更せずに、構造部材が負担する荷重が当該構造部材の許容水平荷重以下になるまで繰り返す過程と、
g)構造部材が負担する荷重が当該構造部材の許容水平荷重以下になった場合は、その際の各通りの構造部材が負担する地震荷重及び風荷重、許容水平荷重、および、過程b)およびe)において増大させた剛性を出力するコンピュータプログラムを提案する。
In order to solve the above problems, the present invention is a computer program for supporting the allowable stress calculation of a wooden frame construction method house, and for a given structure,
a) The process of making a primary judgment on the excess or deficiency of the rigidity of the floor from the ratio of the horizontal seismic or wind load and the horizontal rigidity of the floor,
b) If it is first determined that the rigidity is insufficient, a process of adding the insufficient rigidity to a predetermined position;
c) calculating a seismic load and a wind load borne by each structural member from a rigidity including an additional rigidity of each structural member based on a predetermined calculation formula taking into account a torsion correction coefficient;
d) comparing the load borne by each structural member with the allowable horizontal load of the structural member;
e) when the load borne by the structural member in one or more streets exceeds the allowable horizontal load of the structural member, the process of increasing the rigidity of the structural member in accordance with the ratio of the burden load and the allowable horizontal load;
f) Steps c) to e) based on the increased structural member stiffness, and the structural member stiffness increment without changing the increment determined when step e) was first performed. The process of repeating until the load borne by the structural member falls below the allowable horizontal load of the structural member,
g) When the load borne by the structural member is less than or equal to the allowable horizontal load of the structural member, the seismic load and wind load borne by each structural member at that time, the allowable horizontal load, and the process b) and A computer program that outputs the increased stiffness in e) is proposed.

上記a)の過程における当該階の剛性の過不足について行う1次判断とは、たとえば、当該階の桁行方向(あるいは梁間方向)に加わる地震荷重を、当該方向の荷重を支持する柱と壁(ここでは筋交いも壁の一種として扱う、以下同じ)の剛性で除した商が所定の値未満である場合には、捩れ補正係数を考慮するまでも無く、柱と壁の剛性が不足していると判断する過程である。これは、柱と壁の剛性が、柱と壁の許容加重と一定の比例関係を有していることを前提としている。   The primary judgment to be made regarding the excess or deficiency of the rigidity of the floor in the process of a) is, for example, a seismic load applied in the direction of the floor of the floor (or the direction between the beams), a column and a wall ( Here, when the quotient divided by the rigidity of the bracing is also treated as a kind of wall (the same applies hereinafter) is less than a predetermined value, the rigidity of the column and the wall is insufficient without considering the torsion correction coefficient. It is a process of judging. This presupposes that the rigidity of the column and the wall has a certain proportional relationship with the allowable load of the column and the wall.

上記のように柱と壁の剛性が不足している判断された場合、上記b)の過程では、前記与えられた構造の柱または壁の断面を増大させてもよいし、与えられた構造の下では柱または壁が存在しない位置、例えば、間仕切壁の位置に、新たに柱または壁を設ける(あるいは間仕切壁を耐力壁に変更する)ものであっても良い。構造を与える際に、必要であれば柱または壁を設ける位置を、予め設定しておき、プログラムは柱と壁の剛性が不足していると判断された場合にこれらの位置を柱または壁とするものであってもよい。   When it is determined that the rigidity of the column and the wall is insufficient as described above, the cross section of the column or wall of the given structure may be increased in the process of b). Below, a column or wall may be newly provided at a position where no column or wall exists, for example, at a position of the partition wall (or the partition wall is changed to a bearing wall). When providing the structure, the positions where columns or walls are provided are set in advance if necessary, and when the program determines that the rigidity of the columns and walls is insufficient, these positions are defined as columns or walls. You may do.

地震力の算定は、例えば、財団法人日本住宅・木材技術センター企画編集「木造軸組工法住宅の許容応力度設計」1章、4.7に記載の方法によることができ、ねじれ補正係数の算定は、例えば、同書1章、4.8に記載の算定方法に基づくことができる。これらを考慮して、各通りの構造部材、つまり柱と壁、が負担する地震荷重及び風荷重を算出する。地震荷重及び風荷重の算出は、当該階に加わる地震力を、通り毎の剛性に応じて比例配分した後に、捩れ補正係数によって割り増しを行う方法が一例である。   The calculation of the seismic force can be done, for example, by the method described in Chapter 1 and 4.7 of “Residential Stress Design of Wooden Frame Construction House”, edited by Japan Housing and Wood Technology Center. Can be based on, for example, the calculation method described in Chapter 1, 4.8 of the same book. Taking these into account, the seismic load and wind load borne by each structural member, that is, the column and the wall, are calculated. An example of the calculation of the seismic load and wind load is a method in which the seismic force applied to the floor is proportionally distributed according to the rigidity of each street and then increased by a torsion correction coefficient.

各通りとは柱と鉛直構面を含む鉛直方向の水平面の通りを意味しており、柱および建物に加わる水平力に抵抗できる要素を有する鉛直面の意味である。ここで、水平力に抵抗できる要素とは、上下が横架材(梁または基礎)に接続された左右の柱に接する面材または筋交いである。   Each street means a vertical horizontal street including a column and a vertical plane, and means a vertical plane having an element capable of resisting a horizontal force applied to the column and the building. Here, the element that can resist the horizontal force is a surface material or a brace that is in contact with the left and right pillars whose upper and lower sides are connected to the horizontal member (beam or foundation).

前記e)の過程において、構造部材が負担する荷重が当該構造部材の許容水平荷重を超えた場合、当該構造部材の剛性を負担荷重と許容水平荷重の比に応じて増大させるとは、当該構造部材の剛性に負担荷重と許容水平荷重の比を乗じることであっても良いが、さらにこれに所定の倍率をかけても良い。所定の倍率は、剛性を増大させる柱または壁の捩れ補正係数が1以上の値である場合には、1未満であってもよく、捩れ補正係数が1未満であれば1より大きくても良い。従来は、構造部材の剛性を増大させる必要があると判断された場合にも、剛性をどの程度増大させれば負担荷重が許容水平荷重以下に収まるかについて具体的な目安が無かったので、適切な剛性を発見するまでに過大なくり返し計算が必要になったり、あるいは、過剰な余裕のある構造で満足せざるを得なくなったりすることが多く、作業が非効率であった。これに対して、本発明の方法によれば、適切な解への収束が機械的に行われ且つ確実に収束するので、作業が効率的であり、構造設計をするものの負担は大幅に軽減されることになる。   In the process of e), when the load borne by the structural member exceeds the allowable horizontal load of the structural member, the rigidity of the structural member is increased in accordance with the ratio of the borne load and the allowable horizontal load. The rigidity of the member may be multiplied by the ratio of the burden load and the allowable horizontal load, but may be multiplied by a predetermined magnification. The predetermined magnification may be less than 1 when the torsion correction coefficient of the column or wall that increases the rigidity is 1 or more, and may be greater than 1 if the torsion correction coefficient is less than 1. . Previously, even if it was determined that the rigidity of the structural member needed to be increased, there was no specific guideline for how much the rigidity would be increased so that the burden load could fall below the allowable horizontal load. In many cases, it is necessary to perform excessive calculation until discovering a sufficient rigidity, or it is often necessary to satisfy a structure having an excessive margin, and the work is inefficient. On the other hand, according to the method of the present invention, the convergence to an appropriate solution is performed mechanically and reliably, so that the work is efficient and the burden of structural design is greatly reduced. Will be.

本発明の方法はさらに、特定の通りに関して、構造部材が負担する荷重が当該通りの構造部材の許容水平荷重を下回っている場合、当該構造部材の剛性を減少させるものであっても良い。この場合の剛性の減少の程度は、許容水平荷重と負担荷重の比に基づいてもよく、あるいはこれに所定の倍率を掛けた値でも良い。プログラムは、さらに、構造部材の負担荷重が許容水平荷重を超えた場合にどの位置に柱または壁を増設するか、あるいはどの位置の柱または壁の断面を増大させるかを指定しておくことができるのが好ましい。構造部材の負担荷重が許容過重未満である場合に、当該通りの剛性を減少させるか否か、構造部材の負担荷重が許容過重をどの程度下回った場合に剛性を減少させるか、どの程度減少させるかについて予め設定しておくことができるようにしておくことが好ましい。   The method of the present invention may further reduce the rigidity of the structural member when the load borne by the structural member is lower than the allowable horizontal load of the structural member for the specific street. In this case, the degree of reduction in rigidity may be based on the ratio between the allowable horizontal load and the burden load, or may be a value obtained by multiplying this by a predetermined magnification. The program may also specify where the column or wall is to be added or the cross-section of the column or wall is to be increased if the burden on the structural member exceeds the allowable horizontal load. Preferably it is possible. If the load on the structural member is less than the allowable overload, whether to reduce the rigidity as it is, how much the load on the structural member is below the allowable overload, reduce the rigidity, and how much to decrease It is preferable that these can be set in advance.

柱および壁の剛性を変更した場合、変更後の建物について再度負担荷重の計算を行う。再度の計算によって、負担荷重が許容水平荷重未満となるか、あるいは、さらにその偏差が所定の範囲内であれば当該建物の構造を最終状態として、負担荷重、柱および壁の剛性、断面積等を出力する。再度の負担荷重の計算によっても、負担荷重が許容水平荷重未満とならないか、あるいは、その偏差が所定の範囲内に収まらない場合、再度剛性の修正を行った負担荷重の計算を行うが、この時、剛性の修正の程度は、第1回目の修正と同じ方法によって決定することもできるし、第1回目の修正幅を維持して2回目以降の計算を行うこともできる。第1回目の修正幅を維持した場合には、負担荷重が許容水平荷重未満となる構造に到達するまでのくり返し演算の数が大きくなりすぎることがない。   If the rigidity of the columns and walls is changed, the burden load is calculated again for the changed building. If the burden load is less than the allowable horizontal load or the deviation is within the specified range by recalculation, the structure of the building is regarded as the final state, the burden load, column and wall rigidity, cross-sectional area, etc. Is output. If the burden load does not fall below the allowable horizontal load or the deviation does not fall within the specified range even after the calculation of the burden load again, the burden load with the corrected stiffness is calculated again. The degree of stiffness correction can be determined by the same method as the first correction, or the second and subsequent calculations can be performed while maintaining the first correction width. When the first correction width is maintained, the number of repetitive calculations until reaching a structure in which the burden load is less than the allowable horizontal load does not become too large.

本発明においては、前記過程a)において、水平方向の地震荷重または風荷重が、1ラジアンあたりの力で表した当該階の水平剛性の総和の150分の1よりも大きいときに当該階の剛性が不足していると判断するよう構成しても良い。   In the present invention, in the step a), when the horizontal seismic load or wind load is larger than 1/150 of the total horizontal rigidity of the floor expressed in force per radian, the rigidity of the floor You may comprise so that it may be judged that is insufficient.

前記過程b)における所定の位置は、ねじれ補正係数が最大となる位置であるのが好ましい。つまり、上記a)の過程において当該階の剛性の過不足について1次判断を行った結果、柱と壁の剛性が不足していると判断された場合、捩れ補正係数が最大である位置、一般には最も外側の通りであって重心に近い方の通りの剛性を増大させるのが好ましい。   The predetermined position in step b) is preferably a position where the torsion correction coefficient is maximized. That is, in the process a), when the primary determination is made regarding the excess or deficiency of the rigidity of the floor, if it is determined that the rigidity of the column and the wall is insufficient, the position where the torsion correction coefficient is maximum, generally Preferably increases the stiffness of the outermost street and closer to the center of gravity.

前記ねじれ補正係数は、以下の式によって計算することができる。

Figure 2010001670
The twist correction coefficient can be calculated by the following equation.

Figure 2010001670

さらに、過程h)およびd)において、各通りの構造部材が負担する荷重と当該通りの構造部材の許容水平荷重を比較した結果、所定の通りの構造部材が負担する荷重と当該構造部材の許容水平荷重の比が所定の値を下回っている場合は、当該通りの剛性を低減してもよい。   Further, in the processes h) and d), as a result of comparing the load borne by each structural member with the allowable horizontal load of the structural member, the load borne by the predetermined structural member and the allowable load of the structural member When the horizontal load ratio is below a predetermined value, the rigidity as described above may be reduced.

本発明はまた、上記のような方法を実行するコンピュータプログラムを格納した、コンピュータによって読み取り可能な記憶媒体にも関するものである。   The present invention also relates to a computer-readable storage medium storing a computer program for executing the above method.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下に、実施例に基づき本発明を実施するための形態について記載する。添付の図面および実施例に関する記載は、本発明の理解を助けるために例示するものであって、本発明はこれらの図面および実施例の記載によって限定されるものではない。   Below, the form for implementing this invention based on an Example is described. The description relating to the accompanying drawings and examples is given to help understanding of the present invention, and the present invention is not limited to the description of these drawings and examples.

本発明のプログラムに基づいて、与えられた構造に対して、地震または風荷重を設定し、柱および壁あるいは床の負担荷重を算出するまでの手順は、財団法人日本住宅・木材技術センター企画編集「木造軸組工法住宅の許容応力度設計」による。当該手順について以下に簡単に述べ、次に、当該手順によって算出された応力または負担荷重が許容応力または許容水平荷重を超えている場合の本発明による処理手順について説明する。   Based on the program of the present invention, the procedure for setting an earthquake or wind load for a given structure and calculating the burden load on a column, wall, or floor is as follows. According to "Allowable stress design of wooden frame construction house". The procedure will be briefly described below, and then the processing procedure according to the present invention when the stress or burden load calculated by the procedure exceeds the allowable stress or the allowable horizontal load will be described.

1.鉛直構面の検討
図1に示す建物の、鉛直構面の検討においては、通り(柱および壁からなる耐力壁面)毎の負担荷重(地震荷重または風荷重)を、図2に示す手順に従って算出する。当該算出手順の基本的な考え方は、当該階が負担する全荷重(水平力)を、通りの剛性に比例して各通りに配分し、さらに通り毎のねじり補正係数を掛けて割り増し(または低減)するというものである。
1. Examination of the vertical construction In the examination of the vertical construction of the building shown in Fig. 1, the burden load (earthquake load or wind load) for each street (bearing wall composed of columns and walls) is calculated according to the procedure shown in Fig. 2. To do. The basic idea of the calculation procedure is to distribute the total load (horizontal force) borne by the floor to each street in proportion to the street stiffness, and then multiply (or reduce) by multiplying each street's torsion correction factor. ).

このようにして計算された結果の一例を、表1に示す。

Figure 2010001670
An example of the result thus calculated is shown in Table 1.

Figure 2010001670

ここで、例としてY3通りに着目することにする。
Y3通りは発生した風圧力Qwijが14.67kNで、通りの許容水平荷重Qaijが12.70kNなので、風圧力に起因する負担荷重が許容水平荷重(耐力)を超えており、表1の右端に記載した判定はNGとなっている(検定値1.15、検定値が1を超えるとNG)。
単純計算では、14.67kN−12.70kN=1.97kNだけ許容水平荷重(耐力)が足りないことになる。第1近似としては、許容水平荷重を1.97kNだけ増大することによって検定値が1.0になることが期待される。しかし、通りの許容水平荷重が増すと、風荷重に関しては通りが負担する風圧力も増大し、地震荷重に関しては当該通りの荷重負担比率とねじれ補正係数が変化するために、Y3通りの許容水平荷重を1.97kN増加させても検討結果がOKにならない場合もある。
Here, as an example, let us focus on Y3.
Y3 street generated wind pressure Qwij is 14.67kN, street allowable horizontal load Qaij is 12.70kN, so the burden load caused by wind pressure exceeds the allowable horizontal load (proof stress), and listed on the right end of Table 1 The judgment is NG (test value 1.15, NG when the test value exceeds 1).
In simple calculation, 14.67kN-12.70kN = 1.97kN, the allowable horizontal load (proof strength) is insufficient. As a first approximation, the test value is expected to be 1.0 by increasing the allowable horizontal load by 1.97 kN. However, as the allowable horizontal load of the street increases, the wind pressure borne by the street increases with respect to the wind load, and the load sharing ratio and the torsional correction factor change with respect to the earthquake load. Even if the load is increased by 1.97kN, the examination result may not be OK.

したがって、本発明によるプログラムでは、まず、上述の計算方法によって求められた増分1.97kNだけ許容水平荷重を増加させて再度負担荷重を算出し、負担荷重と許容過重の比較を行なう。その結果、検定値が1.0以下になっていれば、当該構造が許容応力度設計の基準を満足するものと判断して各通りの剛性、負担荷重、プログラムが剛性を増加させた通りの名称(番号)とその値等を出力して終了する。しかし、上記のように許容水平荷重を増加させて1回目の修正を行ってもなお、検定値が依然として1.0を超えている場合、再度許容水平荷重(剛性)を見直して負担荷重と許容水平荷重の比較を行い、検定値が1.0以下になるまで当該作業を繰り返す。この場合、本実施例においては、第1回目の算出時の許容水平荷重の増加幅1.97kNを維持して同じ値だけ許容水平荷重(剛性)を増加させる。ただし、2回目以降については、再度その度ごとに許容水平荷重の不足分を算出して、当該不足分だけ許容水平荷重を増加させるようにしても良い。ここで、壁の剛性は、せん断変形角が1/150radの時の耐力を含めて導かれていることから、壁の許容水平荷重(耐力)と剛性との間には以下の関係があることに留意する必要がある。

Figure 2010001670
Accordingly, in the program according to the present invention, first, the allowable horizontal load is increased by the increment of 1.97 kN obtained by the above-described calculation method, the burden load is calculated again, and the burden load and the allowable overload are compared. As a result, if the verification value is 1.0 or less, it is judged that the structure satisfies the allowable stress level design standard, and the rigidity, burden load, and program increase the rigidity. The name (number) and its value are output and the process ends. However, even if the allowable horizontal load is increased as described above and the first correction is made, if the test value still exceeds 1.0, the allowable horizontal load (rigidity) is reviewed again and the burden load and allowable The horizontal load is compared and the operation is repeated until the test value is 1.0 or less. In this case, in this embodiment, the allowable horizontal load (rigidity) is increased by the same value while maintaining the increase width 1.97 kN of the allowable horizontal load at the time of the first calculation. However, from the second time onward, the shortage of the allowable horizontal load may be calculated again each time, and the allowable horizontal load may be increased by the shortage. Here, since the rigidity of the wall is derived including the yield strength when the shear deformation angle is 1/150 rad, the following relationship exists between the allowable horizontal load (proof stress) and the stiffness of the wall. It is necessary to pay attention to.

Figure 2010001670

あるいは、剛性または許容水平荷重の変化による捩れ補正係数の変化を無視して、剛性または許容水平荷重を以下の式1によって求めても良い。

Figure 2010001670
Alternatively, the rigidity or the allowable horizontal load may be obtained by the following formula 1, ignoring the change in the torsion correction coefficient due to the change in the rigidity or the allowable horizontal load.

Figure 2010001670

j通りについて必要な許容水平荷重が求められた場合、当該必要な許容水平荷重と与えられた構造におけるj通りの許容水平荷重との差から、追加すべき許容水平荷重を求めることができ、さらに、壁倍率Aを用いて追加すべき許容水平荷重を追加すべき壁の長さ(Laij)に換算することができる。この場合、プログラムは、以下のようなメッセージを自動出力しても良い。
「j通りに壁倍率Aの耐力壁をLaij(m)追加してください」、あるいは、「j通りに壁倍率Aの耐力壁をLaij(m)追加しました」。ここで、壁倍率とは、以下のように定義される値である。

Figure 2010001670
When the required allowable horizontal load is obtained for j ways, the allowable horizontal load to be added can be obtained from the difference between the required allowable horizontal load and the j allowable horizontal loads in a given structure, The allowable horizontal load to be added can be converted into the wall length (L aij ) to be added using the wall magnification A. In this case, the program may automatically output the following message.
“Please add La aij (m) bearing wall with wall magnification A to j ways” or “L aij (m) bearing wall with wall magnification A was added to j ways”. Here, the wall magnification is a value defined as follows.

Figure 2010001670

2.水平構面の検討
次に、水平構面の検討においてNGとなった水平構面に対し、計算結果OKとなるために追加が必要な許容水平荷重および床量を算出する手順について説明する。水平構面の検討では鉛直構面の検討と異なり、自身の水平構面の許容水平荷重が発生するせん断耐力に影響しないため、不足している水平構面許容水平荷重は下式で計算できる。

Figure 2010001670
2. Next, a procedure for calculating an allowable horizontal load and a floor amount that need to be added to obtain a calculation result OK with respect to a horizontal structural surface that has become NG in the horizontal structural study will be described. Unlike the study of the vertical construction, the examination of the horizontal construction does not affect the shear strength that generates the allowable horizontal load of the own horizontal construction, so the insufficient horizontal construction allowable horizontal load can be calculated by the following equation.

Figure 2010001670

水平構面の負担荷重が許容水平荷重を上回った場合、水平構面の許容水平荷重を増大する方法は以下の2つである。
A) 床の仕様(厚さ、根太ピッチ)を変更する
B) 火打ちの追加、または火打ち水平構面内の梁せいを増大する
When the load on the horizontal surface exceeds the allowable horizontal load, the following two methods are available to increase the allowable horizontal load on the horizontal surface.
A) Change floor specifications (thickness, joist pitch)
B) Add fire or increase the beams in the horizontal horizontal plane

したがって、例えば床の使用を変更することによって負担荷重を許容荷重以下に抑えようとする場合、以下の式によって必要平均床倍率を算出することができる。

Figure 2010001670
Therefore, for example, when the burden load is to be suppressed to an allowable load or less by changing the use of the floor, the required average floor magnification can be calculated by the following equation.

Figure 2010001670

床の仕様の変更によって水平構面の許容水平荷重を増大させた場合、プログラムは、上記の方法によって必要な床量を算出した後、以下のようなメッセージを出力することができる。
a)「i通り〜j通り区間に○○倍率以上の床倍率をもつ水平構面仕様を採用してください」
b)登録されている床構面、屋根構面仕様から、該当の倍率をもつ仕様に自動修正いたしました。
When the allowable horizontal load of the horizontal surface is increased by changing the floor specification, the program can output the following message after calculating the necessary floor amount by the above method.
a) “Adopt horizontal construction with floor magnification greater than or equal to XX magnification between streets i and j”
b) The registered floor construction and roof construction specifications were automatically revised to the specifications with the corresponding magnification.

火打ちの追加、または火打ち水平構面内の梁せいを増大することに関しては、以下の式で必要な火打ち本数を算出することができる。

Figure 2010001670

Figure 2010001670
Regarding the addition of fire or increasing the number of beams in the horizontal structure, the number of fires required can be calculated by the following formula.

Figure 2010001670

Figure 2010001670

表2の該当する床倍率の行の最低梁せいを、火打ち水平構面内にある梁に採用することもできる。この場合、プログラムは、例えば以下のメッセージを出力する。
a)「i通り〜j通り区間に火打ちを○本追加してください」
b)「i通り〜j通り区間の梁せいを○○以上にしてください。」
c)位置○○に火打ちを○本追加しました。
d)梁せいを○○以上に拡大しました。
It is also possible to adopt the lowest beam fault in the row of the corresponding floor magnification in Table 2 for the beam in the horizontal structure. In this case, the program outputs the following message, for example.
a) “Please add a flame to the street between i and j”
b) “Please set the beam length between the i-th and j-th streets to XX or higher.”
c) Added bonfires at position XX.
d) The beam was expanded to more than ○○.

3.柱頭柱脚金物の検討
柱頭柱脚金物の検討においてNGとなった柱に対しては、以下に記載する手順に従って、計算結果OKとなるために必要な許容引張耐力、または低減が必要な耐力壁の許容せん断耐力を算出することができる。柱頭柱脚金物の検討でも鉛直構面の検討と異なり、自身の許容水平荷重が発生する必要引張耐力に影響しないため、不足している許容引張耐力は下式で計算できる。

Figure 2010001670

ただし、柱頭柱脚金物は、あらかじめ設計者が使用する金物を登録している金物一覧から自動配置されるようにすることができるが、その場合は、登録されている金物の最大耐力を超える必要引張耐力Vτが発生した場合には、変更できる金物は存在しない。その場合は、プログラムは必要な金物強度を出力する。あるいは、金物を変更するのではなく、構造を変更することにより、必要引張耐力を低減する下記方法を検討することもできる。 3. Examination of stigma and column pierced hardware For columns that are NG in the study of stigma and column pierced hardware, following the procedure described below, the allowable tensile strength required to achieve the calculation result OK, or the bearing wall that needs to be reduced The allowable shear strength of can be calculated. In the study of stigma and column base metal, unlike the study of the vertical construction, it does not affect the required tensile strength at which its own allowable horizontal load is generated, so the insufficient allowable tensile strength can be calculated by the following formula.

Figure 2010001670

However, the stigma hardware can be automatically arranged from the list of hardware registered in advance by the designer, but in that case, it is necessary to exceed the maximum strength of the registered hardware. When the tensile strength Vτ is generated, there is no hardware that can be changed. In that case, the program outputs the required hardware strength. Alternatively, the following method for reducing the required tensile strength can be considered by changing the structure instead of changing the hardware.

金物の必要引張耐力の算定方法は以下の通りである。

Figure 2010001670

ここで、耐力壁の倍率を変更することにより、Vsおよび上階のVsを低減することが可能である。(βとVLは変更なし)

Figure 2010001670
The calculation method of the required tensile strength of hardware is as follows.

Figure 2010001670

Here, it is possible to reduce Vs and Vs of the upper floor by changing the magnification of the bearing wall. (Β and VL remain unchanged)

Figure 2010001670

よって、Vτ=Va(金物の許容水平荷重)を満足する、該当階のαiまたは上階のαiを算出することができる。この場合、プログラムは以下のような出力を行うものであるのが好ましい。
a)「柱に取り付く耐力壁の倍率を○以下に変更してください。」
Therefore, αi of the corresponding floor or αi of the upper floor that satisfies Vτ = Va (allowable horizontal load of hardware) can be calculated. In this case, the program preferably outputs the following output.
a) “Please change the magnification of the load-bearing wall attached to the column to ○ or less.”

本発明の上記以外の実施例は、特許請求の範囲に記載した発明および明細書の記載にもとづいて当業者であれば容易に想到することができる。   Other embodiments of the present invention can be easily conceived by those skilled in the art based on the invention described in the claims and the description of the specification.

本発明に基づく鉛直構面の検討を示す模式図Schematic diagram showing the study of vertical construction based on the present invention 本発明において採用する鉛直構面の負担荷重を算出するための演算を説明した式Formula explaining the calculation for calculating the burden load of the vertical composition adopted in the present invention 本発明に基づく水平構面の検討を示す模式図であるIt is a schematic diagram which shows examination of the horizontal composition based on this invention

Claims (6)

木造軸組工法住宅の許容応力度計算を支援するコンピュータプログラムであって、与えられた構造に対して、
a)水平方向の地震荷重または風荷重と当該階の水平剛性の総和の比から、当該階の剛性の過不足について1次判断をする過程と、
b)剛性が不足すると1次判断された場合には、当該不足分の剛性を所定の位置に追加する過程と、
c)ねじれ補正係数を考慮した所定の計算式に基づいて、各通りの構造部材の追加剛性を含む剛性から、各通りの構造部材が負担する地震荷重及び風荷重を算出する過程と、
d)各通りの構造部材が負担する荷重と当該通りの構造部材の許容水平荷重を比較する過程と、
e)1または2以上の通りにおいて構造部材が負担する荷重が当該構造部材の許容水平荷重を超えた場合、当該構造部材の剛性を負担荷重と許容水平荷重の比に応じて増大させる過程と、
f)増大された構造部材の剛性に基づいて前記過程c)ないしe)を、構造部材の剛性の増分としては過程e)を最初に実行した際に決定した増分を変更せずに、構造部材が負担する荷重が当該構造部材の許容水平荷重以下になるまで繰り返す過程と、
g)構造部材が負担する荷重が当該構造部材の許容水平荷重以下になった場合は、その際の各通りの構造部材が負担する地震荷重及び風荷重、許容水平荷重、および、過程b)およびe)において増大させた剛性を出力するコンピュータプログラム。
A computer program that supports the calculation of the allowable stress level of a wooden framed house, for a given structure,
a) The process of making a primary judgment on the excess or deficiency of the rigidity of the floor from the ratio of the horizontal seismic or wind load and the horizontal rigidity of the floor,
b) If it is first determined that the rigidity is insufficient, a process of adding the insufficient rigidity to a predetermined position;
c) calculating a seismic load and a wind load borne by each structural member from a rigidity including an additional rigidity of each structural member based on a predetermined calculation formula taking into account a torsion correction coefficient;
d) comparing the load borne by each structural member with the allowable horizontal load of the structural member;
e) when the load borne by the structural member in one or more streets exceeds the allowable horizontal load of the structural member, the process of increasing the rigidity of the structural member in accordance with the ratio of the burden load and the allowable horizontal load;
f) Steps c) to e) based on the increased structural member stiffness, and the structural member stiffness increment without changing the increment determined when step e) was first performed. The process of repeating until the load borne by the structural member falls below the allowable horizontal load of the structural member,
g) When the load borne by the structural member is less than or equal to the allowable horizontal load of the structural member, the seismic load and wind load borne by each structural member at that time, the allowable horizontal load, and the process b) and A computer program that outputs the increased stiffness in e).
前記過程a)においては、水平方向の地震荷重または風荷重が、1ラジアンあたりの力で表した当該階の水平剛性の総和の150分の1よりも大きいときに当該階の剛性が不足していると判断する請求項1に記載のコンピュータプログラム。   In the process a), when the horizontal seismic load or wind load is larger than 1/150 of the total horizontal rigidity of the floor expressed in force per radian, the rigidity of the floor is insufficient. The computer program according to claim 1, wherein the computer program is determined to be present. 前記過程b)における所定の位置は、ねじれ補正係数が最大となる位置である請求項1または2に記載のコンピュータプログラム。   The computer program according to claim 1 or 2, wherein the predetermined position in the step b) is a position where the torsion correction coefficient is maximized. 前記ねじれ補正係数は、以下の式によって計算する請求項1ないし3のいずれかに記載のコンピュータプログラム。

Figure 2010001670
The computer program according to claim 1, wherein the twist correction coefficient is calculated by the following formula.

Figure 2010001670
さらに、
h)過程d)において、各通りの構造部材が負担する荷重と当該通りの構造部材の許容水平荷重を比較した結果、所定の通りの構造部材が負担する荷重と当該構造部材の許容水平荷重の比が所定の値を下回っている場合は、当該通りの剛性を低減する過程を含む請求項1ないし4のいずれかに記載のコンピュータプログラム。
further,
h) In step d), as a result of comparing the load borne by each structural member with the allowable horizontal load of the structural member, the load borne by the predetermined structural member and the allowable horizontal load of the structural member The computer program according to any one of claims 1 to 4, including a process of reducing the rigidity as described above when the ratio is below a predetermined value.
請求項1ないし5のいずれかに記載のコンピュータプログラムを格納した、コンピュータによって読み取り可能な記憶媒体。   A computer-readable storage medium storing the computer program according to claim 1.
JP2008162145A 2008-06-20 2008-06-20 A computer program that supports the calculation of allowable stress levels for wooden framed houses. Active JP5130129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162145A JP5130129B2 (en) 2008-06-20 2008-06-20 A computer program that supports the calculation of allowable stress levels for wooden framed houses.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008162145A JP5130129B2 (en) 2008-06-20 2008-06-20 A computer program that supports the calculation of allowable stress levels for wooden framed houses.

Publications (2)

Publication Number Publication Date
JP2010001670A true JP2010001670A (en) 2010-01-07
JP5130129B2 JP5130129B2 (en) 2013-01-30

Family

ID=41583598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162145A Active JP5130129B2 (en) 2008-06-20 2008-06-20 A computer program that supports the calculation of allowable stress levels for wooden framed houses.

Country Status (1)

Country Link
JP (1) JP5130129B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111809A1 (en) * 2011-10-05 2013-04-06 Sofie Veritas S R L DIMENSIONING AND CONTROL SYSTEM OF WOODEN STRUCTURES
JP2019027234A (en) * 2017-08-03 2019-02-21 セメダイン株式会社 Adhesive type horizontal surface, adhesive type horizontal surface construction method, and specification determination program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297780A (en) * 1996-04-30 1997-11-18 Sekisui House Ltd Structure analysis method for building
JPH09302766A (en) * 1996-05-10 1997-11-25 Sekisui House Ltd Method for supporting structural-design of dwelling house
JPH11303426A (en) * 1998-04-17 1999-11-02 Toshikazu Takami Method for designing prefabricated building
JP2001323554A (en) * 2000-05-16 2001-11-22 Ibiden Co Ltd Structural design method
JP2004036294A (en) * 2002-07-05 2004-02-05 Sekisui House Ltd Design structure synthetic judgement system and method for synthetically judging the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297780A (en) * 1996-04-30 1997-11-18 Sekisui House Ltd Structure analysis method for building
JPH09302766A (en) * 1996-05-10 1997-11-25 Sekisui House Ltd Method for supporting structural-design of dwelling house
JPH11303426A (en) * 1998-04-17 1999-11-02 Toshikazu Takami Method for designing prefabricated building
JP2001323554A (en) * 2000-05-16 2001-11-22 Ibiden Co Ltd Structural design method
JP2004036294A (en) * 2002-07-05 2004-02-05 Sekisui House Ltd Design structure synthetic judgement system and method for synthetically judging the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111809A1 (en) * 2011-10-05 2013-04-06 Sofie Veritas S R L DIMENSIONING AND CONTROL SYSTEM OF WOODEN STRUCTURES
JP2019027234A (en) * 2017-08-03 2019-02-21 セメダイン株式会社 Adhesive type horizontal surface, adhesive type horizontal surface construction method, and specification determination program
JP6990817B2 (en) 2017-08-03 2022-01-12 セメダイン株式会社 Adhesive horizontal structure, method of constructing adhesive horizontal structure, and specification determination program

Also Published As

Publication number Publication date
JP5130129B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
Elkady et al. Modeling of the composite action in fully restrained beam‐to‐column connections: implications in the seismic design and collapse capacity of steel special moment frames
Lawson et al. Modular design for high-rise buildings
Chao et al. Performance-based plastic design of special truss moment frames
Lawson et al. Robustness of light steel frames and modular construction
Godínez-Domínguez et al. Nonlinear behavior of code-designed reinforced concrete concentric braced frames under lateral loading
Casagrande et al. A proposal for the capacity-design at wall-and building-level in light-frame and cross-laminated timber buildings
Kang et al. Tall building with steel plate shear walls subject to load reversal
Moroder Floor diaphragms in multi-storey timber buildings
Valente et al. Dissipative devices for earthquake resistant composite steel structures: bolted versus welded solution
Rahgozar et al. Cantilever beam analogy for modal analysis of rocking core-moment frames
Papargyriou et al. More efficient design of CFS strap-braced frames under vertical and seismic loading
JP5130129B2 (en) A computer program that supports the calculation of allowable stress levels for wooden framed houses.
Malviya et al. Behaviour of flat slab, waffle slab, ribbed & secondary beam in a multistorey building under seismic response: A review
Bradley et al. Dual system design for a low-ductility concentrically braced frame with a reserve moment frame
Marchis et al. Vulnerability to progressive collapse of seismically designed reinforced concrete framed structures in Romania
Navarro et al. Customary light-gauge steel framing construction with flat strap bracing: seismicity limits for low to mid-rise buildings in Europe
Morello Seismic performance of multi-storey structures with cold-formed steel wood sheathed shear walls
Takva et al. Optimum cost design of facade scaffoldings
Hariri et al. Mitigating P-delta Effects on the Seismic Response of Mid-and High-rise Eccentrically and Buckling-restrained Steel Braced Frames in the Vancouver Region
Baciu et al. The retrofitting of reinforced concrete columns
Aramesh et al. Evaluation of Shear Lag Index in High-Rise RC Buildings Having Exo-skeleton Structural System
Khy et al. Quantification of Different Sources of Over-Strength in Seismic Design of a Reinforced Concrete Tall Building
Asselin Seismic design and analysis of hybrid masonry with fuse connectors
Čičak et al. Comparison of Ductility Class Requirements for Seismic Design of Reinforced Concrete Walls in a Tall Building
Bora Comparative study of tubular steel truss profiles for roofing varying span

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350