JP6989909B2 - Bearing structure of wooden building - Google Patents

Bearing structure of wooden building Download PDF

Info

Publication number
JP6989909B2
JP6989909B2 JP2017109522A JP2017109522A JP6989909B2 JP 6989909 B2 JP6989909 B2 JP 6989909B2 JP 2017109522 A JP2017109522 A JP 2017109522A JP 2017109522 A JP2017109522 A JP 2017109522A JP 6989909 B2 JP6989909 B2 JP 6989909B2
Authority
JP
Japan
Prior art keywords
resin plate
foamed resin
pair
horizontal
wooden building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017109522A
Other languages
Japanese (ja)
Other versions
JP2018204262A (en
Inventor
芳英 春城
俊彦 松
Original Assignee
芳英 春城
俊彦 松
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芳英 春城, 俊彦 松 filed Critical 芳英 春城
Priority to JP2017109522A priority Critical patent/JP6989909B2/en
Publication of JP2018204262A publication Critical patent/JP2018204262A/en
Application granted granted Critical
Publication of JP6989909B2 publication Critical patent/JP6989909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は木造建築物の耐力構造に関し、特に例えば壁耐力構造と断熱性能を兼ね備えた木造建築物の耐力構造に関するものである。 The present invention relates to a load-bearing structure of a wooden building, and more particularly to, for example, a load-bearing structure of a wooden building having both a wall-bearing structure and a heat insulating performance.

12は従来の木造建築物の一部の立面図であり、平常時の場合(左図)と、地震による水平力が加わって変形した場合(右図)を示す。
木造建築物は、一対の柱1a,1bと一対の横架材2a,2bからなる矩形の構造部材3を、建物のけた行方向(建物の平面から見て横方向)および張り間方向(建物の平面から見て奥行方向又は縦方向)に、それぞれの方向に複数組み合わせて構造材としている。
そして、木造建築物は、柱1a,1bと横架材2a,2bからなる矩形の構造部材3の空間部4に必要十分な壁又は筋かい等の耐力壁がないと、平常時では水平力(又は水平荷重)が加わらないので問題ないが、地震や台風の発生により一定値以上の水平力が加わると、建物が倒壊してしまう危険性がある。
FIG. 12 is an elevation view of a part of a conventional wooden building, and shows a case of normal times (left figure) and a case of deformation due to a horizontal force due to an earthquake (right figure).
In a wooden building, a rectangular structural member 3 composed of a pair of pillars 1a and 1b and a pair of horizontal members 2a and 2b is provided in the row direction (horizontal direction when viewed from the plane of the building) and the tension direction (building) of the building. (Depth direction or vertical direction when viewed from the plane of), a plurality of combinations are used in each direction to form a structural material.
In a wooden building, if the space 4 of the rectangular structural member 3 composed of columns 1a, 1b and horizontal members 2a, 2b does not have a necessary and sufficient wall or a bearing wall such as a brace, the horizontal force is normal. There is no problem because (or horizontal load) is not applied, but if a horizontal force exceeding a certain value is applied due to the occurrence of an earthquake or typhoon, there is a risk that the building will collapse.

地震や台風などの大きな力(水平力)を受けたときに建物の倒壊を防止するために、木造建築物では耐力壁とした耐力構造が必要である。
わが国の木造建築物の耐震設計は、関東大地震を契機にして、震度5程度の中規模の地震に対しては建物が損傷しないものとし、震度6~7の稀に起こる大地震の場合においても、ある程度の損傷があっても倒壊又は崩壊せず、人命を守るという考え方に基づく。
また、台風や積雪においても、この考え方に基づいて材料や壁量が定められている。
従来の木造建築物の耐力構造は、剛性だけで評価するものであったが、1995年の阪神大地震を契機として、粘りである靭性も考慮されるようになった。
In order to prevent the building from collapsing when it receives a large force (horizontal force) such as an earthquake or typhoon, a wooden building needs a bearing structure with a bearing wall.
The seismic design of wooden buildings in Japan is based on the assumption that the building will not be damaged by a medium-scale earthquake with a seismic intensity of about 5 triggered by the Great Kanto Earthquake, and in the case of a rare large earthquake with a seismic intensity of 6 to 7. However, it is based on the idea of protecting human life without collapsing or collapsing even if there is some damage.
In addition, even in the case of typhoons and snow cover, the materials and wall amount are determined based on this idea.
The load-bearing structure of conventional wooden buildings was evaluated only by rigidity, but with the 1995 Great Hanshin Earthquake, toughness, which is tenacity, has also been taken into consideration.

建築基準法では、構造耐力上主要な部分である壁、柱及び横架材を木造とした建築物においては、全ての方向の水平力(又は水平荷重)に対して安全であるように、各階の張り間方向およびけた行方向に、それぞれ壁を設け又は筋かい等を入れた軸組を釣り合い良く配置しなければならないと定めている。 According to the Building Standards Law, in buildings where walls, pillars and horizontal members, which are the main parts of structural strength, are made of wood, each floor is safe against horizontal force (or horizontal load) in all directions. It is stipulated that a wall should be provided or a frame with braces should be arranged in a well-balanced manner in the direction of the tension and the direction of the girder.

従来、木造建築物の壁耐力構造としては、筋かい,合板,土壁および貫(ぬき)等が知れている。合板や土壁は面で耐力を有するものである。
これらの耐力構造は、柱と梁又は土台(以下、梁・土台を総称して「横架材」という)に対して次の何れかの構造が採用される。すなわち、筋かいは両端を釘付け等で固定(又は緊結)され、合板は1対の柱と1対の横架材の四辺に所定間隔で釘付け等により固定され、貫は1対の柱に固定される。
Conventionally, as the wall bearing structure of a wooden building, braces, plywood, earthen walls and nuki are known. Plywood and earthen walls are surface resistant.
As these load-bearing structures, any of the following structures is adopted for columns and beams or bases (hereinafter, beams and bases are collectively referred to as "horizontal materials"). That is, the brace is fixed (or tied) at both ends by nailing, etc., the plywood is fixed to the four sides of the pair of pillars and the pair of horizontal lumbers by nailing, etc. at predetermined intervals, and the kan is fixed to the pair of pillars. Will be done.

これらの既存の耐力構造は、地震等による一定荷重を超えると、破断して耐力を無くし、木造建築物が崩れることになる。具体的には、一対の横架材の間隔をHとし、水平力を受けたときの一対の柱の傾きによる水平変位をδとすれば、一対の柱の傾きによる角度を表す層間変形角はδ/H(単位;ラジアン、略記号「rad」)で表される。この層間変形角(δ/H)が1/15radを著しく超える(例えば1/8radを超える)と、上部の荷重等も加わるため、木造建築物が倒壊し始めることになる。
そこで、木造建築物が変形後も倒壊することなく、粘りのある耐力を有することが求められる。換言すると、粘り強い耐力構造を有する木造建築物は、建物が一気に倒壊を起こし難いものであって、災害時における居住者の生存率を高めることに貢献できる。そのため、木造建築物は、粘り強い耐力構造であることが求められる。
If these existing load-bearing structures exceed a certain load due to an earthquake or the like, they will break and lose their yield strength, and the wooden building will collapse. Specifically, if the distance between the pair of horizontal members is H and the horizontal displacement due to the inclination of the pair of columns when receiving a horizontal force is δ, the interlayer deformation representing the angle due to the inclination of the pair of columns is assumed. The angle is represented by δ / H (unit; radian, abbreviation "rad"). When this interlayer deformation angle (δ / H) remarkably exceeds 1/15 rad (for example, more than 1/8 rad), a load or the like on the upper part is also applied, so that the wooden building starts to collapse.
Therefore, it is required that the wooden building does not collapse even after being deformed and has a tenacious proof stress. In other words, a wooden building with a tenacious load-bearing structure is unlikely to collapse at once, and can contribute to increasing the survival rate of residents in the event of a disaster. Therefore, wooden buildings are required to have a tenacious load-bearing structure.

一方、木造建築物では、省エネルギーのため、全ての外壁面に断熱材が施されている。断熱材としては、発泡樹脂製断熱材(具体的には押出法ポリスチレン保温材;一般に「XPS」と略称される)や、グラスファイバー保温材(グラスウール)等が用いられる。
従来、押出法ポリスチレンフォーム保温材(XPS)は、保温材又は断熱材としてのみ用いられ、木造建築物の構造材として用いられることが殆んど無かった。
On the other hand, in wooden buildings, heat insulating materials are applied to all outer walls to save energy. As the heat insulating material, a foamed resin heat insulating material (specifically, an extruded polystyrene heat insulating material; generally abbreviated as “XPS”), a glass fiber heat insulating material (glass wool), or the like is used.
Conventionally, extruded polystyrene foam heat insulating material (XPS) has been used only as a heat insulating material or a heat insulating material, and has hardly been used as a structural material of a wooden building.

押出法ポリスチレンフォーム保温材を構造材として用いた従来技術として、特許文献1がある。
特許文献1は、筋かいの代わりに、帯部4と固定金物5と長さ調整手段6とからなる補強構造1を2つの構造材(柱及び梁)8,9に固定するとともに、補強部材3を取付けた木造建築物の補強構造を開示している。補強部材3は、柱及び梁等の構造材8,9の角に固定的に取り付けられるもので、小さな三角形の合成樹脂発泡体14を含む。この合成樹脂発泡体14の素材として、押出法ポリスチレンフォーム保温材を用いている。
すなわち、特許文献1は、主たる耐力構造材として補強構造1を設けるとともに、圧縮力の減衰のために従たる構造材として補強部材3を設けた技術である。
Patent Document 1 is a conventional technique using an extruded polystyrene foam heat insulating material as a structural material.
In Patent Document 1, instead of bracing, a reinforcing structure 1 composed of a band portion 4, a fixing hardware 5, and a length adjusting means 6 is fixed to two structural materials (columns and beams) 8 and 9, and a reinforcing member is provided. The reinforcing structure of the wooden building to which 3 is attached is disclosed. The reinforcing member 3 is fixedly attached to the corners of structural materials 8 and 9 such as columns and beams, and includes a small triangular synthetic resin foam 14. As the material of the synthetic resin foam 14, an extruded polystyrene foam heat insulating material is used.
That is, Patent Document 1 is a technique in which a reinforcing structure 1 is provided as a main load-bearing structural material and a reinforcing member 3 is provided as a followable structural material for damping a compressive force.

特開2007-40045号公報(図1~図5)JP-A-2007-40045 (FIGS. 1 to 5)

従来の耐震構造である筋かい,合板または土壁は、何れも大地震のような一定強度を超える水平力(または水平荷重)を受けると破断もしくは耐力をなくし、建物を倒壊させる問題があった。
例えば、合板を用いた耐力壁構造は、柱に対して合板を所定間隔で釘打ちしたものであり、釘によって止められているだけなので、釘耐力が壁耐力となる。そのため、大地震のような一定強度を超える水平力を受けると、4隅付近の釘が抜けて破損し、その周辺部分の釘抜けが徐々に拡大し、やがて合板の耐力が大きく低下してしまう。
また、筋かいも、大地震のような一定強度を超える水平力を受けた場合に、柱と梁の留め金具にネジ止めしている部分のネジが柱や梁から抜けて、筋かいの耐力が大きく低下してしまう。
合板や筋かいの耐力が大きく低下すると、木造建築物が一気に倒壊し、居住者の生命に重大な危害を及ぼすこともある。
そのため、木造建築物は粘り強い耐力構造であることが求められる。
The conventional seismic structures such as braces, plywood, and earthen walls all have the problem of breaking or losing their strength when subjected to horizontal force (or horizontal load) exceeding a certain strength such as a large earthquake, causing the building to collapse. ..
For example, in a load-bearing wall structure using plywood, plywood is nailed to a pillar at predetermined intervals and is only fixed by nails, so that the load-bearing wall is the load-bearing wall. Therefore, if a horizontal force exceeding a certain strength such as a large earthquake is applied, the nails near the four corners will come off and be damaged, and the nails in the surrounding area will gradually expand, and eventually the yield strength of the plywood will drop significantly. ..
In addition, when the brace receives a horizontal force exceeding a certain strength such as a large earthquake, the screw of the part screwed to the fastener of the column and the beam comes off from the column or the beam, and the bearing capacity of the brace. Will drop significantly.
If the bearing capacity of plywood or braces is significantly reduced, wooden buildings can collapse at once, which can be seriously harmful to the lives of residents.
Therefore, wooden buildings are required to have a tenacious load-bearing structure.

特許文献1は、補強構造1と補強部材3を取付けているので、取付け作業に多大な時間と労力を要し、高価となる。また、補強部材3が圧縮力を減衰するとしても、大地震の際には、留め金具が貫通している合成樹脂発泡体14の孔を広げるように破壊するか、留め金具を取り付けているネジ・ボルトが構造材から抜けるので、合成樹脂発泡体14の主たる使用目的としている圧縮力を発揮できない場合もある。 In Patent Document 1, since the reinforcing structure 1 and the reinforcing member 3 are attached, a great deal of time and labor is required for the attachment work, which is expensive. Further, even if the reinforcing member 3 attenuates the compressive force, in the event of a large earthquake, the screw may be destroyed so as to widen the hole of the synthetic resin foam 14 through which the fastener is penetrated, or the screw to which the fastener is attached. -Since the bolt comes off from the structural material, it may not be possible to exert the compressive force that is the main purpose of the synthetic resin foam 14.

建築基準法に基づく木造耐力壁の性能評価試験では、一対の柱と一対の横架材で囲まれる開口部(例えば、高さ2730mm×幅910mm又は1820mm)に、上側の横架材(梁)の水平方向から水平力を加えて、筋かいや合板等の構造材が構造材としての機能を発揮できなくなるか、試験体の層間変形角が1/15rad以上に達するまで加力して、建築基準法の安全率を満たす耐力のあることを試験している。 In the performance evaluation test of a wooden bearing wall based on the Building Standards Act, an opening (for example, height 2730 mm × width 910 mm or 1820 mm) surrounded by a pair of columns and a pair of horizontal members has an upper horizontal member (beam). Apply a horizontal force from the horizontal direction until the structural material such as a streak or plywood cannot function as a structural material , or the interlayer deformation angle of the test piece reaches 1/15 rad or more. It is tested to have a bearing capacity that meets the safety rate of the Building Standard Law.

(背景技術)
本願発明者は、XPS等の発泡樹脂板状部材が幅方向(すなわち平面)に平行な方向に対して大きな耐力を有することに着目し、発泡樹脂板状部材を耐力構造材として用いることを着想し、発泡樹脂板状部材を構造材として実用化するための研究を重ね、種々の実験をしたところ、次のような問題点が分かった。
図13はこの発明の背景技術を説明するための立面図であり、特に木造建築物の構造部材で囲まれる空間部に発泡樹脂板状部材を嵌め込んだ状態を示す。なお、図13に示す木造建築物は、発泡樹脂板状部材5を断熱材として用いた内断熱(充填断熱)の構造でもある。
12において、一対の柱1a,1bと一対の横架材2a,2bからなる構造材3は、空間部4を有する。この空間部4には、断熱材としても用いられる材質と同じ発泡樹脂板状部材5が嵌め込まれる。空間部4に嵌め込まれる発泡樹脂板状部材5は、当該空間部4の平面形状(又は立面形状)と略同等か若干(例えば数mm)小さな平面形状を有するものであって、断熱材としても用いられる材質と同じ材質であり、最適な圧縮強度に選定される。
ここで、発泡樹脂板状部材5を断熱材としてのみ用いる場合は、断熱性能をできる限り高めるため、発泡樹脂板状部材5の平面形状を空間部4の平面形状と全く同一寸法とするのが好ましい。しかし、実際には、同一寸法だと、嵌め込み作業が容易でないので、嵌め込み作業を効率よく行うことができず、若干(例えば数mm)小さな平面形状に選ばれることもある。発泡樹脂板状部材5の平面形状を空間部4の平面形状より若干小さくすれば、高さ方向と幅方向のそれぞれに僅かの隙間が生じる。この隙間は、高い断熱性能を確保する上ではない方が好ましいが、発泡樹脂板状部材5の嵌め込み作業を容易にするために施工上やむを得ず設けることになる。
(Background technology)
The inventor of the present application has focused on the fact that a foamed resin plate-shaped member such as XPS has a large yield strength in a direction parallel to the width direction (that is, a plane), and has conceived of using the foamed resin plate-shaped member as a load-bearing structural material. However, after repeated research to put the foamed resin plate-shaped member into practical use as a structural material and conducting various experiments, the following problems were found.
FIG. 13 is an elevational view for explaining the background technique of the present invention, and shows a state in which a foamed resin plate-shaped member is fitted in a space surrounded by structural members of a wooden building. The wooden building shown in FIG. 13 also has an internal heat insulating (filled heat insulating) structure using the foamed resin plate-shaped member 5 as a heat insulating material.
In FIG. 12, the structural material 3 composed of a pair of columns 1a and 1b and a pair of horizontal members 2a and 2b has a space portion 4. The same foamed resin plate-like member 5 as the material used as the heat insulating material is fitted in the space portion 4. The foamed resin plate-like member 5 fitted into the space portion 4 has a plane shape substantially equal to or slightly smaller (for example, several mm) than the plane shape (or elevation shape) of the space portion 4, and serves as a heat insulating material. Is the same material as that used, and is selected for the optimum compressive strength.
Here, when the foamed resin plate-shaped member 5 is used only as a heat insulating material, the planar shape of the foamed resin plate-shaped member 5 should be exactly the same as the planar shape of the space portion 4 in order to improve the heat insulating performance as much as possible. preferable. However, in reality, if the dimensions are the same, the fitting work is not easy, so the fitting work cannot be performed efficiently, and the flat shape may be selected to be slightly smaller (for example, several mm). If the planar shape of the foamed resin plate-shaped member 5 is made slightly smaller than the planar shape of the space portion 4, a slight gap is generated in each of the height direction and the width direction. It is preferable that this gap is not for ensuring high heat insulating performance, but it is unavoidable in construction to facilitate the fitting work of the foamed resin plate-shaped member 5.

この状態において、図13の右図に示すように、上側の横架材2bに右向きの水平力を徐々に加えると、一対の柱1a,1bが徐々に傾き、空間部4が変形する。一対の柱1a,1bの傾きに伴って、上側の横架材(梁)2bが徐々に下り、空間部4が菱形に変形する。
このとき、一対の柱1a,1bが長さδだけ水平変位するので、上側の横架材2bは水平力を加える前の状態に比べて長さt1だけ下へ移動し、発泡樹脂板状部材5の上辺の一方側(左から右に水平力を加えたときは図示の左上角)が長さt2だけ見かけ上押し上げられた(実質的には圧縮された)状態となる。同時に、発泡樹脂板状部材5の下辺の他方側(左から右に水平力を加えたときは、図示の右下角)は、長さt2だけ見かけ上押し下げられた(実質的には圧縮された)状態となる。そのため、高さ方向の上下から強い力が発泡樹脂板状部材5に加わるが、その高さHが幅Wに比べて何倍も大きいので、発泡樹脂板状部材5を湾曲させる強い力が上下方向(または発泡樹脂板状部材5の対角線の方向)に加わる。
なお、左向きの水平力を加えた場合は、発泡樹脂板状部材5の角に加わる力が上辺と下辺で左右逆となる。
また、一対の柱1a,1bの間の幅は、水平力を加えたとき、水平力を加えない状態に比べて、狭まってw1(狭まる長さをxとすれば、w1=W-x)になることも分かった。
すなわち、強い水平力が加えられたとき、発泡樹脂板状部材5は、両側面が一対の柱1a,1bの内側に接した状態で斜めに傾く(回動する)ため、水平力の加わる上辺の一方側(図示の左上角)の斜線部分が横架材2bによって強い力で押し下げられる(圧縮される)とともに、下辺の他方側(図示の右下角)が横架材2aによって強い力で押し上げられる。その結果として、発泡樹脂板状部材5は、上下に強い圧縮力を受けて、高さ方向の中央部分で座屈を起こし湾曲してしまう。座屈が生じると、発泡樹脂板状部材5は、一対の柱1a,1bに接している両側面が柱1a,1bに対して十分な接触面積を確保できず、必要とする耐力を発揮する前に空間部4から外れてしまう。
このような現象のため、発泡樹脂板状部材を木造建築物の構造材として用いる場合は座屈による耐力の減少を防止する必要性が判明した。発泡樹脂板状部材の座屈による耐力の減少(換言すれば、発泡樹脂板状部材の離脱)を防止又は回避できれば、発泡樹脂板状部材が耐力構造材として十分に使用できることが分かった。
In this state, as shown in the right figure of FIG. 13, when a horizontal force pointing to the right is gradually applied to the upper horizontal member 2b, the pair of columns 1a and 1b are gradually tilted, and the space portion 4 is deformed. With the inclination of the pair of columns 1a and 1b, the upper horizontal member (beam) 2b gradually descends, and the space portion 4 is deformed into a rhombus shape.
At this time, since the pair of columns 1a and 1b are horizontally displaced by the length δ, the upper horizontal member 2b moves downward by the length t1 as compared with the state before applying the horizontal force, and the foamed resin plate-like member. One side of the upper side of 5 (the upper left corner in the figure when a horizontal force is applied from left to right) is apparently pushed up (substantially compressed) by the length t2. At the same time, the other side of the lower side of the foamed resin plate-shaped member 5 (when a horizontal force is applied from left to right, the lower right corner in the figure) is apparently pushed down by the length t2 (substantially compressed). ) State. Therefore, a strong force is applied to the foamed resin plate-shaped member 5 from above and below in the height direction, but since the height H is many times larger than the width W, a strong force for bending the foamed resin plate-shaped member 5 moves up and down. It participates in the direction (or the direction of the diagonal line of the foamed resin plate-shaped member 5).
When a horizontal force pointing to the left is applied, the force applied to the corners of the foamed resin plate-shaped member 5 is reversed left and right on the upper side and the lower side.
Further, the width between the pair of columns 1a and 1b is narrowed to w1 when the horizontal force is applied, as compared with the state where the horizontal force is not applied (w1 = W-x if the narrowing length is x). I also found that it would be.
That is, when a strong horizontal force is applied, the foamed resin plate-shaped member 5 tilts (rotates) diagonally with both side surfaces in contact with the inside of the pair of columns 1a and 1b, so that the upper side to which the horizontal force is applied. The shaded area on one side (upper left corner in the figure) is pushed down (compressed) by the horizontal member 2b with a strong force, and the other side on the lower side (lower right corner in the figure) is pushed up by the horizontal member 2a with a strong force. Be done. As a result, the foamed resin plate-shaped member 5 receives a strong compressive force in the vertical direction, causing buckling at the central portion in the height direction and bending. When buckling occurs, the foamed resin plate-shaped member 5 cannot secure a sufficient contact area with respect to the columns 1a and 1b on both side surfaces in contact with the pair of columns 1a and 1b, and exhibits the required proof stress. It comes off from the space part 4 before.
Due to such a phenomenon, it has become clear that when a foamed resin plate-shaped member is used as a structural material for a wooden building, it is necessary to prevent a decrease in yield strength due to buckling. It was found that the foamed resin plate-shaped member can be sufficiently used as a load-bearing structural material if the decrease in yield strength due to buckling of the foamed resin plate-shaped member (in other words, detachment of the foamed resin plate-shaped member) can be prevented or avoided.

それゆえに、この発明の主たる目的は、大地震のような強い水平荷重を受けても一気に破損することなく、粘り強い耐力構造を有し、座屈による耐力の減少を回避し得る、木造建築物の耐力構造を提供することである。 Therefore, the main object of the present invention is to have a tenacious bearing structure without being damaged at once even under a strong horizontal load such as a large earthquake, and to avoid a decrease in bearing capacity due to buckling. It is to provide a load-bearing structure.

この発明の他の目的は、水平力が所定範囲内の間は既存の耐力壁によって、既存耐力壁ではカバーできないさらに大きな水平力が加わったときには発泡樹脂板状部材の耐力によって、木造建築物が一気に倒壊することを回避し得る、木造建築物の耐力構造を提供することである。 Another object of the present invention is a wooden building by the existing bearing wall while the horizontal force is within a predetermined range, and by the bearing capacity of the foamed resin plate-like member when a larger horizontal force that cannot be covered by the existing bearing wall is applied. It is to provide a bearing structure for a wooden building that can prevent objects from collapsing at once.

第1の発明は、一対の柱と一対の横架材によって囲まれた空間部を有する構造部材を組み合わせて構成される木造建築物において、複数の発泡樹脂板状部材を備える。
複数の発泡樹脂板状部材は、各構造部材に固定されることなく、当該構造部材に対応する空間部にそれぞれ嵌め込まれる。
この発泡樹脂板状部材は、幅方向の側面による圧縮力が5ニュートン/平方センチメートル以上の発泡プラスチック系フォームであって、その立面形状の幅が空間部の幅よりも第1の長さである0.5mm~3.5mmだけ小さく選ばれることにより、空間部に嵌め込まれて水平力を加えられない状態のときに、当該第1の長さの部分が側面クリアランスとなる。
また、発泡樹脂板状部材は、水平力を加えられたときに、層間変形角が既存の耐力壁では対応しない1/15ラジアンから木造建築物が倒壊し始めるとされる1/8ラジアンの範囲において耐力を発揮し、それによって、一対の柱が傾いてその幅が狭まった際に、その両側面が構造部材に含まれる一対の柱に密接することによって、その両側面で水平力を受けて、耐力壁として作用する。
また、発泡樹脂板状部材は、層間変形角が1/15ラジアンから1/8ラジアンの範囲において耐力を発揮する際に、その上辺と下辺が一対の横架材によって圧縮されて生じる座屈を回避するために、その立面形状の高さが空間部の高さよりも第2の長さである25mm~50mmだけ小さくなるような切欠部を形成することにより、当該切欠部が水平力を加えられない状態において上部クリアランスとなる。
The first invention comprises a plurality of foamed resin plate-shaped members in a wooden building configured by combining a pair of pillars and a structural member having a space surrounded by a pair of horizontal members.
The plurality of foamed resin plate-shaped members are not fixed to each structural member, but are fitted into the space corresponding to the structural member.
This foamed resin plate-like member is a foamed plastic foam having a compressive force of 5 Newtons / square centimeter or more due to the side surface in the width direction, and the width of the elevation shape is the first length of the width of the space portion. By being selected as small as 0.5 mm to 3.5 mm, the portion of the first length becomes the side clearance when it is fitted in the space and the horizontal force cannot be applied.
In addition, the foamed resin plate-like member has a 1/8 radian that the wooden building starts to collapse from 1/15 radian whose interlayer deformation angle does not correspond to the existing bearing wall when a horizontal force is applied. It exerts bearing capacity in the range, so that when a pair of columns tilts and their width narrows, both sides of the column are in close contact with the pair of columns contained in the structural member, thereby receiving horizontal force on both sides. It acts as a bearing wall.
Further, the foamed resin plate-shaped member exhibits buckling caused by compression of the upper side and the lower side by a pair of horizontal members when the proof stress is exhibited in the range of 1/15 radian to 1/8 radian of the interlayer deformation angle . In order to avoid this, the notch is formed so that the height of the elevation is smaller than the height of the space by 25 mm to 50 mm, which is the second length, so that the notch applies a horizontal force. It becomes the upper clearance in the state where it is not possible.

第1の発明によれば、大地震のような強い水平荷重を受けても、発泡樹脂板状部材が空間部の詰め物(又はクッション)となっているので、木造建築物が一気に倒壊又は破損することなく、粘り強い耐力構造を有し、座屈による耐力の減少を回避できる、木造建築物の耐力構造が得られる。 According to the first invention, even if a strong horizontal load such as a large earthquake is applied, the foamed resin plate-like member is a filling (or cushion) in the space, so that the wooden building collapses or breaks at once. It is possible to obtain a load-bearing structure of a wooden building which has a tenacious load-bearing structure and can avoid a decrease in load-bearing due to buckling.

第2の発明は、一対の柱と一対の横架材によって囲まれた空間部を有する構造部材を組み合わせて構成される木造建築物において、複数の発泡樹脂板状部材を備える。
複数の発泡樹脂板状部材は、各構造部材に固定されることなく、当該構造部材に対応する空間部にそれぞれ嵌め込まれる。
この発泡樹脂板状部材は、幅方向の側面による圧縮力が5ニュートン/平方センチメートル以上の発泡プラスチック系フォームであって、その立面形状の幅が空間部の幅よりも側面クリアランスだけ小さく選ばれ、かつその立面形状の高さが空間部の高さよりも上部クリアランスだけ小さく選ばれることによって、空間部に嵌め込まれたときに一対の柱に対して幅方向に側面クリアランスを有するとともに、一対の柱が水平力を受けて傾いたときに、その上辺および下辺が横架材に接触しないようにするための切欠部を形成している。
また、発泡樹脂板状部材は、層間変形角が既存の耐力壁では対応しない1/15ラジアンから木造建築物が倒壊し始めるとされる1/8ラジアンの範囲において耐力を発揮するように、側面クリアランスが0.5mm~3.5mmに選ばれ、かつ前記切欠部が25mm~50mmに選ばれる。
それによって、発泡樹脂板状部材は、水平力が加わることにより、一対の柱が傾いてその幅が狭まったときに、その両側面が構造部材に含まれる一対の柱に密接することによって、その両側面で水平力を受けて、耐力壁として作用することを特徴とする。
The second invention includes a plurality of foamed resin plate-shaped members in a wooden building configured by combining a pair of pillars and a structural member having a space surrounded by a pair of horizontal members.
The plurality of foamed resin plate-shaped members are not fixed to each structural member, but are fitted into the space corresponding to the structural member.
This foamed resin plate-like member is a foamed plastic foam having a compressive force of 5 Newtons / square centimeter or more due to the side surface in the width direction, and the width of the elevation shape is selected to be smaller than the width of the space by the side clearance. Moreover, by selecting the height of the elevation shape to be smaller than the height of the space portion by the upper clearance, it has side clearance in the width direction with respect to the pair of pillars when fitted in the space portion, and also has a pair of pillars. It forms a notch to prevent the upper and lower sides from coming into contact with the cross member when it is tilted by receiving a horizontal force.
In addition, the foamed resin plate-like member exhibits bearing capacity in the range of 1/15 radians where the interlayer deformation angle does not correspond to the existing bearing wall to 1/8 radians where the wooden building starts to collapse. The side clearance is selected from 0.5 mm to 3.5 mm, and the notch is selected from 25 mm to 50 mm.
As a result, the foamed resin plate-shaped member is brought into close contact with the pair of columns included in the structural member on both side surfaces when the pair of columns is tilted and the width is narrowed due to the application of a horizontal force. It is characterized in that it receives horizontal force on both sides and acts as a bearing wall.

第2の発明によれば、大地震のような強い水平荷重を受けても、木造建築物が一気に倒壊又は破損することなく、粘り強い耐力構造を有し、座屈による耐力の減少を回避できる。 According to the second invention, even if a strong horizontal load such as a large earthquake is applied, the wooden building does not collapse or break at once, has a tenacious proof stress structure, and can avoid a decrease in proof stress due to buckling.

第3の発明は、第1の発明または第2の発明において、切欠部の形状が矩形(又は平行四辺形)であって、その上辺が横架材に対して平行に形成されることによって、水平力が加えられない状態において、幅方向に均等な上部クリアランスを確保することを特徴とする。 The third invention is based on the first invention or the second invention, in which the shape of the notch is rectangular (or parallelogram) and the upper side thereof is formed parallel to the horizontal member. It is characterized by ensuring an even upper clearance in the width direction in a state where no horizontal force is applied.

第4の発明は、第1の発明または第2の発明において、発泡樹脂板状部材の上辺が幅方向の中央部から両側面に向かって傾斜を有する山形に形成されることによって、左右両端部で最大値となる上部クリアランスを確保することを特徴とする。 The fourth invention is the left and right end portions by forming the upper side of the foamed resin plate-shaped member in a chevron shape having an inclination from the central portion in the width direction toward both side surfaces in the first invention or the second invention. It is characterized by securing the upper clearance which is the maximum value in.

第5の発明は、第1の発明または第2の発明において、発泡樹脂板状部材の上辺より上の上部クリアランスには、発泡樹脂板状部材とは異なる耐力を有しない断熱材を充填することを特徴とする。
第5の発明によれば、上部クリアランスの部分による断熱性能の低下を防止できる。
In the fifth aspect of the invention, in the first invention or the second invention, the upper clearance above the upper side of the foamed resin plate-shaped member is filled with a heat insulating material which does not have a proof stress different from that of the foamed resin plate-shaped member. It is characterized by.
According to the fifth invention, it is possible to prevent deterioration of the heat insulating performance due to the portion of the upper clearance.

第6の発明は、第1の発明または第2の発明において、空間部を有する複数の構造部材に筋交いや合板等の耐力壁要素が形成されて、発泡樹脂板状部材と併用される。
筋交いや合板等の耐力壁要素は1/15ラジアンまでの範囲で耐力を発揮し、発泡樹脂板状部材は1/15ラジアン~1/8ラジアンの範囲で耐力を発揮することにより、広範囲で耐力を発揮することを特徴とする。
第6の発明によれば、筋交いや合板等の耐力壁要素と発泡樹脂板状部材を併用しているので、耐力壁要素が耐力を発揮できない範囲又は耐力を減少して木造建築物の倒壊に近づきつつある範囲を発泡樹脂板状部材の側面の圧縮力で補うことにより、木造建築物の倒壊をさらに遅らせることができる。
In the first invention or the second invention, the sixth invention is used in combination with a foamed resin plate-like member in which bearing wall elements such as braces and plywood are formed in a plurality of structural members having a space portion.
Bearing wall elements such as braces and plywood exhibit bearing capacity in the range of 1/15 radians, and foamed resin plate-like members exhibit bearing capacity in the range of 1/15 radians to 1/8 radians. It is characterized by demonstrating.
According to the sixth invention, since the bearing wall element such as the brace or plywood is used in combination with the foamed resin plate-like member, the range where the bearing wall element cannot exert the bearing capacity or the bearing capacity is reduced and the wooden building collapses. By supplementing the approaching range with the compressive force on the side surface of the foamed resin plate-like member, the collapse of the wooden building can be further delayed.

この発明によれば、大地震のような強い水平力を受けても、発泡樹脂板状部材が空間部の詰め物(又はクッション)となっているので、一気に破断することのない、粘り強い耐力構造を有し、座屈による耐力の減少を回避することができる、木造建築物の耐力構造が得られる。
また、取付け作業に多大な時間と労力を要することなく、安価にして必要な耐力と断熱性を発揮できる、木造建築物の耐力構造が得られる。
According to the present invention, even if a strong horizontal force such as a large earthquake is received, the foamed resin plate-like member is a filling (or cushion) in the space, so that a tenacious load-bearing structure that does not break at once can be obtained. It is possible to obtain a proof stress structure of a wooden building which has and can avoid a decrease in proof stress due to buckling.
In addition, it is possible to obtain a proof stress structure of a wooden building that can exhibit the required proof stress and heat insulating property at a low cost without requiring a great deal of time and labor for the installation work.

この発明の木造建築物の耐力構造の原理を説明するための立面図である。It is an elevation view for demonstrating the principle of the bearing structure of the wooden building of this invention. この発明の一実施例の木造建築物の耐力構造として、一対の柱の間に間柱を入れた場合における層間変形角(δ/H)が1/15radのときの側面クリアランスと上部クリアランスの関係を説明するための立面図である。As a load-bearing structure of a wooden building according to an embodiment of the present invention, the relationship between the side clearance and the upper clearance when the interlayer deformation angle (δ / H) is 1/15 rad when studs are inserted between a pair of columns. It is an elevation view for explanation. この発明の一実施例の木造建築物の耐力構造として、一対の柱の間に間柱を入れた場合における層間変形角(δ/H)が1/10radのときの側面クリアランスと上部クリアランスの関係を説明するための立面図である。As a load-bearing structure of a wooden building according to an embodiment of the present invention, the relationship between the side clearance and the upper clearance when the interlayer deformation angle (δ / H) is 1/10 rad when studs are inserted between a pair of columns. It is an elevation view for explanation. この発明の一実施例の木造建築物の耐力構造として、一対の柱の間に間柱を入れた場合における層間変形角(δ/H)が1/8radの場合の側面クリアランスと上部クリアランスの関係を説明するための立面図である。As a load-bearing structure of a wooden building according to an embodiment of the present invention, the relationship between the side clearance and the upper clearance when the interlayer deformation angle (δ / H) is 1/8 rad when studs are inserted between a pair of columns. It is an elevation view for explanation. この発明の他の実施例の木造建築物の耐力構造を説明するための立面斜視図である。It is an elevation perspective view for demonstrating the load-bearing structure of the wooden building of another Example of this invention. 図5に示す例の木造建築物の一部平面図である。It is a partial plan view of the wooden building of the example shown in FIG. この発明の他の実施例の木造建築物の耐力構造を採用した木造建築物の一例を示す平面図である。It is a top view which shows an example of the wooden building which adopted the bearing structure of the wooden building of another Example of this invention. 図7の例における木造建築物の外観斜視図である。It is an external perspective view of the wooden building in the example of FIG. 7. この発明の他の実施例の木造建築物の耐力構造を説明するための図である。It is a figure for demonstrating the load-bearing structure of the wooden building of another Example of this invention. この発明のその他の実施例の木造建築物の耐力構造の立面図である。It is an elevation view of the load-bearing structure of the wooden building of the other embodiment of this invention. この発明のさらに他の実施例の木造建築物の耐力構造の立面図である。It is an elevation view of the load-bearing structure of the wooden building of still another embodiment of this invention. 従来の木造建築物の一部の立面図である。It is an elevation view of a part of a conventional wooden building. この発明の背景となる木造建築物の構造部材で囲まれる空間部に発泡樹脂板状部材を嵌め込んだ状態を示す立面図である。It is an elevation view which shows the state which the foamed resin plate-like member is fitted in the space part surrounded by the structural member of the wooden building which is the background of this invention.

(本願発明の原理説明)
図1はこの発明の木造建築物の耐力構造の原理を説明するための立面図であり、特に図1(a)は水平力を加えない状態の耐力構造を示し、図1(b)は強い水平力を加えた状態を示す。
この発明の木造建築物10(詳細は後述の図7,図8参照)は、1対の柱11a,11bと1対の横架材12a,12bからなる矩形又は枠状の構造部材13を、建物のけた行方向(建物の平面から見て横方向又は「X方向」)および張り間方向(平面から見て奥行方向又は「Y方向」)に、それぞれ複数組み合わせて構成される。
構造部材13で囲まれる空間部14には、発泡樹脂板状部材21が嵌め込まれる。この発泡樹脂板状部材21は、材質的には、幅方向に大きな圧縮強度を有し、幅方向(又は水平方向)から大きな力が加わっても一気に破断又は破損しない弾性力を有する材料、例えば押出法ポリスチレンフォーム等が用いられる。
(Explanation of the principle of the present invention)
FIG. 1 is an elevation view for explaining the principle of the load-bearing structure of the wooden building of the present invention. In particular, FIG. 1 (a) shows the load-bearing structure in a state where no horizontal force is applied, and FIG. 1 (b) shows the load-bearing structure. Indicates a state in which a strong horizontal force is applied.
The wooden building 10 of the present invention (see FIGS. 7 and 8 described later for details) comprises a rectangular or frame-shaped structural member 13 composed of a pair of columns 11a and 11b and a pair of horizontal members 12a and 12b. It is composed of a plurality of combinations in the row direction of the building (horizontal direction or "X direction" when viewed from the plane of the building) and the tension direction (depth direction or "Y direction" when viewed from the plane).
The foamed resin plate-shaped member 21 is fitted into the space portion 14 surrounded by the structural member 13. The foamed resin plate-shaped member 21 is a material having a large compressive strength in the width direction and having an elastic force that does not break or break at once even when a large force is applied from the width direction (or the horizontal direction), for example. Extruded polystyrene foam or the like is used.

発泡樹脂板状部材21は、サイズ的に短辺方向の幅Dが1対の柱11a,11bの間隔Wよりも第1の長さ(又は隙間;側面クリアランスともいう)t3だけ短く選ばれ、長辺方向の長さL(高さ)が1対の横架材12a,12bの間隔Hよりも第2の長さ(又は上部クリアランス)t4だけ短く選ばれる。すなわち、発泡樹脂板状部材21は、幅がD(D=W-t3)、縦方向長さがL(L=H-t4-t1)に選ばれることにより、その上辺が横架材12a,12bに平行に形成され、上部クリアランスがその上辺の全域に渡って均一に確保される。
ここで、発泡樹脂板状部材21の幅Dは、発泡樹脂板状部材21を空間部14へ嵌め込む際に嵌め込み作業が容易となるように、空間部14の幅Wよりも若干小さく、水平力が構造部材13に加えられたときに一対の柱11a,11bの間隔がw1に縮小しても、直ちに圧縮力として加わらない程度の隙間t3を有するように選ばれる(D=W-t3)。この隙間t3は、一対の柱11a,11bの傾きが1/15ラジアン(以下、略記号「rad」で示す)を超えたときから1/8radまでの範囲において、幅方向に圧縮力を発揮できるような第1の長さ、例えば0.5mm~3.5mm程度に選ばれる。この隙間t3が側面クリアランスとなる。
The foamed resin plate-shaped member 21 is selected so that the width D in the short side direction is shorter than the distance W of the pair of columns 11a and 11b by the first length (or gap; also referred to as side clearance) t3 in terms of size. The length L (height) in the long side direction is selected to be shorter than the distance H between the pair of horizontal members 12a and 12b by the second length (or upper clearance) t4. That is, the foamed resin plate-shaped member 21 has a width of D (D = Wt3) and a vertical length of L (L = Ht4-t1), so that the upper side thereof is the horizontal member 12a. It is formed parallel to 12b and the upper clearance is evenly secured over the entire upper side thereof.
Here, the width D of the foamed resin plate-shaped member 21 is slightly smaller than the width W of the space portion 14 and is horizontal so that the fitting work can be facilitated when the foamed resin plate-shaped member 21 is fitted into the space portion 14. Even if the space between the pair of columns 11a and 11b is reduced to w1 when a force is applied to the structural member 13, it is selected to have a gap t3 that is not immediately applied as a compressive force (D = W-t3). .. The gap t3 can exert a compressive force in the width direction in the range from when the inclination of the pair of columns 11a and 11b exceeds 1/15 radians (hereinafter referred to by the abbreviation "rad") to 1/8 rad. The first length is selected, for example, about 0.5 mm to 3.5 mm. This gap t3 serves as a side clearance.

また、高さ方向の隙間(又は第2の長さ)t4は、従来例の図13と比較すれば、図13の右図に示すt2の2倍(すなわち、(t2)×2の長さ)となる。
ここで、隙間t4は、一対の柱11a,11bの傾きが1/15radを超えたときから1/8radの範囲において、発泡樹脂板状部材21の上辺が見かけ上押し上げられる(実際には圧縮される)長さであり、上部クリアランスとなる。
言い換えると、発泡樹脂板状部材21は、幅D×高さLの平面形状を有するが、その幅Dが一対の柱11a,11bの幅Wよりも第1の長さt3(側面クリアランス)だけ小さくなり、その高さLが一対の横架材12a,12bの高さHから第2の長さt4だけ差し引いた長さ(L=H-t4)となる。そのため、一対の横架材12a,12b(高さH)と一対の柱11a,11b(幅W)で囲まれる空間部14の面積(W×H)に対して、長さt4×幅Dからなる形状の切欠部21aを形成したことと略同等の面積(平面形状)の上部クリアランスを確保することになる。
この切欠部21aは、地震等による大きな水平力を受けたとき、上側の横架材12bが発泡樹脂板状部材21を押し下げて座屈を生じさせるのを回避する際に重要な、上部クリアランスとなる。
側面クリアランスの第1の長さt3と、上部クリアランスの第2の長さt4は、大きな水平力を受けて一対の柱11a,11bが傾いたときの層間変形角(δ/H)の1/15radから1/8radにおける変形寸法(狭まる寸法)となるように選定される。その第1の長さ(側面クリアランス)t3及び第2の長さ(上部クリアランス)t4の最適値の選定の仕方は、本願発明者による実験結果および計算結果に基づいて、次の図2~図4を参照して詳細に説明する方法で決められる。
Further, the gap (or the second length) t4 in the height direction is twice the length of t2 shown in the right figure of FIG. 13 (that is, the length of (t2) × 2) as compared with FIG. 13 of the conventional example. ).
Here, in the gap t4, the upper side of the foamed resin plate-like member 21 is apparently pushed up (actually compressed) in the range of 1/8 rad from the time when the inclination of the pair of columns 11a and 11b exceeds 1/15 rad. It is the length and the upper clearance.
In other words, the foamed resin plate-shaped member 21 has a planar shape of width D × height L, but the width D is only the first length t3 (side clearance) than the width W of the pair of columns 11a and 11b. The height L becomes smaller, and the height L becomes the length (L = H−t4) obtained by subtracting the second length t4 from the height H of the pair of horizontal members 12a and 12b. Therefore, from the length t4 × width D with respect to the area (W × H) of the space portion 14 surrounded by the pair of horizontal members 12a and 12b (height H) and the pair of columns 11a and 11b (width W). It is possible to secure an upper clearance having an area (planar shape) substantially equal to that of forming the notch portion 21a having the same shape.
This notch 21a has an upper clearance that is important for preventing the upper horizontal member 12b from pushing down the foamed resin plate-shaped member 21 and causing buckling when a large horizontal force is applied due to an earthquake or the like. Become.
The first length t3 of the side clearance and the second length t4 of the upper clearance are 1 / of the interlayer deformation angle (δ / H) when the pair of columns 11a and 11b are tilted by a large horizontal force. It is selected so that it has a deformation dimension (narrowing dimension) from 15 rad to 1/8 rad. The method of selecting the optimum values of the first length (side clearance) t3 and the second length (upper clearance) t4 is shown in FIGS. 2 to 2 below based on the experimental results and calculation results by the inventor of the present application. It is determined by the method described in detail with reference to 4.

(実施例1)
図2ないし図4は、この発明の一実施例の木造建築物の耐力構造として、一対の柱の間に間柱17を入れた場合における層間変形角別の側面クリアランスと上部クリアランスの関係を説明するための立面図である。特に、図2は層間変形角(δ/H)が1/15radの場合、図3は層間変形角が1/10radの場合、図4は層間変形角(δ/H)が1/8radの場合を示し、図2~図4のそれぞれの左図が水平力を加えられる前の状態、右図が水平力を加えられた後の状態を示す。
図2~図4の実施例では、一般的な木造建築物に準じて、外装材および/または内装材(図示せず)を取り付けるために、一対の柱11a,11bの間に間柱17が追加されて、柱11aと柱11bの間(W)が805mm、間柱17が30mm幅の例を説明する。この場合、柱11aと間柱17の間隔、および柱11bと間柱17の間隔は387.5mmとなる。発泡樹脂板状部材21の幅は、387.5mm-t3となる。このような条件に選ばれた発泡樹脂板状部材21が2枚準備されて、柱11aと間柱17の間、および柱11bと間柱17の間にそれぞれ嵌め込まれる。
(Example 1)
2 to 4 show the relationship between the side clearance and the upper clearance for each interlayer deformation angle when a stud 17 is inserted between a pair of columns as a load-bearing structure of a wooden building according to an embodiment of the present invention. It is an elevation view for. In particular, FIG. 2 shows a case where the interlayer deformation angle (δ / H) is 1/15 rad, FIG. 3 shows a case where the interlayer deformation angle is 1/10 rad, and FIG. 4 shows a case where the interlayer deformation angle (δ / H) is 1/8 rad. The left figure of FIGS. 2 to 4 shows the state before the horizontal force is applied, and the right figure shows the state after the horizontal force is applied.
In the embodiments of FIGS. 2 to 4, studs 17 are added between the pair of columns 11a and 11b in order to attach exterior materials and / or interior materials (not shown) according to a general wooden building. An example will be described in which the width between the pillars 11a and 11b (W) is 805 mm and the width of the studs 17 is 30 mm. In this case, the distance between the pillars 11a and the studs 17 and the distance between the pillars 11b and the studs 17 are 387.5 mm. The width of the foamed resin plate-shaped member 21 is 387.5 mm-t3. Two foam resin plate-shaped members 21 selected under such conditions are prepared and fitted between the columns 11a and the studs 17 and between the columns 11b and the studs 17, respectively.

次に、図2を参照して、層間変形角(δ/H)が1/15radに変化した場合を説明する。柱11a(又は柱11b)と間柱17との間隔は、水平力の加わらない状態の387.5mmから386.5mmに変化し、1.0mm狭くなる。このときの水平変位δは182mmであり、上部クリアランスは26mmであり、側面クリアランス(t3)は1.0mmに選ぶことになる。この場合、上部クリアランスを26mm以上に選定していれば、座屈を生じる可能性が全くない。 Next, a case where the interlayer deformation angle (δ / H) changes to 1/15 rad will be described with reference to FIG. The distance between the columns 11a (or columns 11b) and the studs 17 changes from 387.5 mm without horizontal force to 386.5 mm, narrowing by 1.0 mm. At this time, the horizontal displacement δ is 182 mm, the upper clearance is 26 mm, and the side clearance (t3) is selected to be 1.0 mm. In this case, if the upper clearance is selected to be 26 mm or more, there is no possibility of buckling.

図3を参照して、層間変形角(δ/H)が1/10radの場合は、柱11a(又は柱11b)と間柱17との間隔が水平力の加わらない状態の387.5mmから385.2mmに変化し、2.3mm狭くなる。このときの水平変位δは273mmであり、上部クリアランスは40mmであり、側面クリアランスは2.3mmである。この場合、上部クリアランスを40mm以上に選定していれば、座屈を生じないことが確認された。 With reference to FIG. 3, when the interlayer deformation angle (δ / H) is 1/10 rad, the distance between the column 11a (or column 11b) and the stud 17 is 387.5 mm to 385. It changes to 2 mm and narrows by 2.3 mm. The horizontal displacement δ at this time is 273 mm, the upper clearance is 40 mm, and the side clearance is 2.3 mm. In this case, it was confirmed that buckling did not occur if the upper clearance was selected to be 40 mm or more.

図4を参照して、層間変形角(δ/H)が1/8radの場合は、柱11a(又は柱11b)と間柱17との間隔が387.5mmから384mmに変化し、3.5mm狭くなる。このときの水平変位δは341.3mmであり、上部クリアランスは48mmであり、側面クリアランスは3.5mmである。この場合、上部クリアランスを48mm以上に選定していれば、座屈を生じないことが確認された。 With reference to FIG. 4, when the interlayer deformation angle (δ / H) is 1/8 rad, the distance between the column 11a (or column 11b) and the stud 17 changes from 387.5 mm to 384 mm, which is 3.5 mm narrower. Become. The horizontal displacement δ at this time is 341.3 mm, the upper clearance is 48 mm, and the side clearance is 3.5 mm. In this case, it was confirmed that buckling did not occur if the upper clearance was selected to be 48 mm or more.

以上の計算結果に基づいて、側面クリアランスを0.5mm~3.5mmに選定し、上部クリアランスを25mm~50mmに選定すれば、1/15rad~1/8radの傾きが生じる程度に強い水平力を受けたとしても、発泡樹脂板状部材21が座屈を起さず、柱11a(又は柱11b)と間柱17による幅方向の圧縮力をその両側面で受け止めて、圧縮力を分散することにより、木造建築物が一気に倒壊するのを回避できる。
ところで、実際の木造建築物では、設計段階で上部クリアランスを選定しておく必要があるので、上部クリアランスについては柱の傾きの一番大きな1/8radの場合の値(48mm)以上に選定しておけば、柱の傾きがそれよりも小さな1/10radや1/15radの場合でも座屈を起こさない範囲としてカバーされることになる。
但し、上部クリアランスを必要以上に大きな値に選定すると、後述の第式(1)~第式(4)を参照して説明する理由により、発泡樹脂板状部材21の側面の面積が小さくなり、柱の変形に抵抗できる力Pが小さくなるので、適度の値を選定することが望ましい。
Based on the above calculation results, if the side clearance is selected from 0.5 mm to 3.5 mm and the upper clearance is selected from 25 mm to 50 mm, the horizontal force is strong enough to cause a tilt of 1/15 rad to 1/8 rad. Even if the foam resin plate-like member 21 does not buckle, it receives the compressive force in the width direction of the columns 11a (or columns 11b) and the studs 17 on both sides thereof and disperses the compressive force. As a result, it is possible to prevent the wooden building from collapsing at once.
By the way, in an actual wooden building, it is necessary to select the upper clearance at the design stage, so select the upper clearance to the value (48 mm) or more in the case of 1/8 rad where the inclination of the column is the largest. If this is done, even if the inclination of the column is smaller than that, 1/10 rad or 1/15 rad, it will be covered as a range that does not cause buckling.
However, if the upper clearance is selected to a value larger than necessary, the area of the side surface of the foamed resin plate-shaped member 21 becomes smaller for the reason described with reference to the equations (1) to (4) described later. Since the force P that can resist the deformation of the column becomes small, it is desirable to select an appropriate value.

なお、側面クリアランスは、座屈による弊害の問題と関係なく、図2の層間変形角(δ/H)を1/15radに変化させた場合にt3=1.0mmであるが、これを0.5mm~1.7mmの範囲に選んでも、発泡樹脂板状部材21の幅方向の圧縮強度を発揮する傾き角の小さな段階(又は早い段階)から壁耐力を発揮することになるので、1.0mmよりも小さな範囲に選んでも何ら問題ない。
また、実際には、座屈が生じたとしても、発泡樹脂板状部材21が空間部(柱11a又は柱11bと間柱17のそれぞれの面)からはみ出すまでに十分な余裕があるので、上部クリアランスの最小値を25mmに選んでも問題ない。
The lateral clearance is t3 = 1.0 mm when the interlayer deformation angle (δ / H) in FIG. 2 is changed to 1/15 rad, regardless of the problem of harmful effects due to buckling. Even if it is selected in the range of 5 mm to 1.7 mm, the wall strength will be exhibited from the stage where the tilt angle is small (or the early stage) where the compressive strength in the width direction of the foamed resin plate-like member 21 is exhibited, so that it is 1.0 mm. There is no problem even if you select it in a smaller range.
Further, in reality, even if buckling occurs, there is sufficient margin for the foamed resin plate-like member 21 to protrude from the space portion (the respective surfaces of the pillar 11a or the pillar 11b and the stud 17), so that the upper clearance is sufficient. There is no problem even if the minimum value of is selected to 25 mm.

図2~図4を参照して、上部クリアランスとなる切欠部21aおよび側面クリアランスを形成した発泡樹脂板状部材21は、水平力が徐々に加わり増大しても、側部クリアランスによる遊びがあるため右に回動し、さらに水平力が増大して、t3が側面クリアランスよりも大きくなると、両側面が柱11a(又は柱11b)と間柱17に密接することによって、両側面で圧縮力を受けて、耐力壁として作用する。
そして、柱11a(又は柱11b)と間柱17がさらに傾き、水平変位がδ=182mmになる程の水平力(1/15rad)が加わったとき、柱11a(又は柱11b)と間柱17の間の幅が1.0mm縮まり、柱11a(又は柱11b)と間柱17による圧縮力を発泡樹脂板状部材21のそれぞれの側面の全面で受け止めて、壁耐力を発揮する。
しかし、発泡樹脂板状部材21は、弾性力を有するとともに、側面で受ける幅方向の圧縮強度が一対の柱11a(又は柱11b)と間柱17から受ける圧縮力に比べて大きいので、破損することもなく、壁耐力を維持する。このとき、上部クリアランスを有しているので、発泡樹脂板状部材21の高さ方向の圧縮力が座屈を起こす程度にまで増大せず、座屈を起こさない。
With reference to FIGS. 2 to 4, the notched portion 21a serving as the upper clearance and the foamed resin plate-shaped member 21 forming the side clearance have play due to the side clearance even if the horizontal force is gradually applied and increased. When it rotates to the right and the horizontal force increases further and t3 becomes larger than the side clearance, both sides receive compressive force by being in close contact with the column 11a (or column 11b) and the stud 17. , Acts as a bearing wall.
Then, when the pillar 11a (or the pillar 11b) and the stud 17 are further tilted and a horizontal force (1/15 rad) is applied so that the horizontal displacement becomes δ = 182 mm, the space between the pillar 11a (or the pillar 11b) and the stud 17 is applied. The width of the pillar 11a (or the pillar 11b) is reduced by 1.0 mm, and the compressive force of the pillar 11a (or the pillar 11b) and the stud 17 is received by the entire side surface of each side surface of the foamed resin plate-shaped member 21 to exert the wall strength.
However, the foamed resin plate-shaped member 21 has an elastic force and is damaged because the compressive strength in the width direction received on the side surface is larger than the compressive force received from the pair of columns 11a (or columns 11b) and the studs 17. No, maintain wall bearing capacity. At this time, since the foamed resin plate-shaped member 21 has an upper clearance, the compressive force in the height direction of the foamed resin plate-like member 21 does not increase to the extent that buckling occurs, and buckling does not occur.

水平力が増大して、柱11a(柱11b)と間柱17の傾きが1/15radを超えて、水平変位がδ=273mmに達する1/10radになり、上部クリアランスがt4=40mmとなっても、発泡樹脂板状部材21の両側面が柱11a(又は柱11b)と間柱17に密接した状態で、柱11a(又は柱11b)と間柱17から強い圧縮力を受けている。そのため、一対の横架材12a,12bから上下に圧縮力を受けても、上部クリアランスがあるため、座屈を生じることなく、壁耐力を発揮し続ける。
水平力がさらに増大して、柱11a(又は柱11b)と間柱17の傾きが1/10radを超えて、水平変位がδ=341.3mmに達する1/8radになり、上部クリアランスがt4=48mmとなっても、発泡樹脂板状部材21の両側面が柱11a(又は柱11b)と間柱17に密接した状態で、柱11a(又は柱11b)と間柱17から強い圧縮力を受けている。そのため、一対の横架材12a,12bから上下に圧縮力を受けても、上部クリアランスがあるため、座屈を起こすことなく、壁耐力を発揮し続ける。
Even if the horizontal force increases, the inclination of the column 11a (column 11b) and the stud 17 exceeds 1/15 rad, the horizontal displacement becomes 1/10 rad reaching δ = 273 mm, and the upper clearance becomes t4 = 40 mm. In a state where both side surfaces of the foamed resin plate-shaped member 21 are in close contact with the pillar 11a (or the pillar 11b) and the stud 17, a strong compressive force is received from the pillar 11a (or the pillar 11b) and the stud 17. Therefore, even if a pair of horizontal members 12a and 12b receive a compressive force up and down, the wall bearing capacity continues to be exhibited without buckling due to the upper clearance .
The horizontal force is further increased, the tilt of the column 11a (or column 11b) and the stud 17 exceeds 1/10 rad, the horizontal displacement becomes 1/8 rad reaching δ = 341.3 mm, and the upper clearance is t4 = 48 mm. Even so, both sides of the foamed resin plate-shaped member 21 are in close contact with the pillar 11a (or the pillar 11b) and the stud 17, and a strong compressive force is received from the pillar 11a (or the pillar 11b) and the stud 17. Therefore, even if a pair of horizontal members 12a and 12b receive a compressive force up and down, the wall bearing capacity continues to be exhibited without buckling due to the upper clearance .

柱11a(又は柱11b)と間柱17の傾きが1/8radまでの範囲内では、発泡樹脂板状部材21が土壁,筋かいや合板等の既存の耐力壁要素以上の壁耐力を発揮するので、木造建築物の倒壊を防止できる。
なお、柱11a(又は柱11b)と間柱17の傾きが1/8radを超える強い水平力が加わると、一対の横架材12a,12bによる上下方向の圧縮力に加えて、横架材12bの上部の荷重が下向きの大きな力として加わることになる。そのため、構造部材13が耐えきれなくなり、木造建築物が倒壊し始める。
Within the range where the inclination of the column 11a (or column 11b) and the stud 17 is up to 1/8 rad, the foamed resin plate-like member 21 exhibits a wall bearing capacity higher than that of existing bearing wall elements such as earthen walls, streaks and plywood. Therefore, it is possible to prevent the collapse of wooden buildings.
When a strong horizontal force is applied in which the inclination of the column 11a (or column 11b) and the stud 17 exceeds 1/8 rad, the horizontal member 12b is subjected to the vertical compressive force of the pair of horizontal members 12a and 12b. The load on the upper part will be applied as a large downward force. Therefore, the structural member 13 cannot withstand it, and the wooden building begins to collapse.

上述のような理由により、本願発明では、柱11a(又は柱11b)と間柱17の傾きを1/15radから1/8radの範囲に対応して耐力を発揮するように、上部クリアランスの範囲を選定したものである。 For the reasons described above, in the present invention, the range of the upper clearance is selected so that the inclination of the column 11a (or column 11b) and the stud 17 exhibits the yield strength corresponding to the range of 1/15 rad to 1/8 rad. It was done.

なお、上述の実施例1では、木造建築物の階高の一例として、横架材12a,12b間の寸法を2730mmとしたが、階高の異なる木造建築物では上部クリアランスと側面クリアランスの値が階高に関連して変化することは言うまでもない。 In the above-mentioned Example 1, as an example of the floor height of the wooden building, the dimension between the horizontal members 12a and 12b is set to 2730 mm, but the values of the upper clearance and the side clearance are set in the wooden buildings having different floor heights. It goes without saying that it changes in relation to the floor height.

次に、実施例1の図3の例において、柱11a(又は11b)と間柱17の傾きが1/10radの場合の耐力を検討する。
架材12aと横架材12bの間(高さH)を273cmとし、柱11aと間柱17(又は柱11bと間柱17)との間隔Wを38.75cmとする。
そして、発泡樹脂板状部材21は、その厚さを6.5cm、側面の圧縮強度を11N/cmとし、短期許容応力度を2/3、低減係数を0.75と仮定すると、その短期許容せん断耐力Paは第(1)式で表すことができる。
Pa=11N/cm×2/3×0.75=5.49N/cm ・・・(1)
ここで、圧縮強度が11N/cm以上の発泡樹脂板状部材21の発泡プラスチック系フォームとしては、押出法ポリスチレンフォームがある。この押出法ポリスチレンフォームでは、その製造方法から、側面の圧縮強度が平面圧縮強度よりも低減されるので、上記(1)式では11N/cmとしている。
発泡樹脂板状部材21が柱の変形に抵抗できる力Pは、第(2)式で表される。
P=269cm×6.5cm×5.49N/cm
=9599N≒9.59kN ・・・(2)
9.59kN/1.96kN=4.89
これは、壁倍率の基準となる水平力が1.96kNの約5倍の強さとなる。
そして、発泡樹脂板状部材21は、具体的には圧縮強度が11N/cm(約1kgf/cm)以上の発泡プラスチック系フォームとして、押出法ポリスチレンフォームが知られている。
なお、同等の圧縮強度を有する押出法ポリスチレンフォーム(A種押出法ポリスチレンフォーム3種)を用いてもよいことは勿論である。
Next, in the example of FIG. 3 of Example 1, the proof stress when the inclination of the pillar 11a (or 11b) and the stud 17 is 1/10 rad is examined.
The distance between the horizontal member 12a and the horizontal member 12b (height H) is 273 cm, and the distance W between the pillar 11a and the stud 17 (or the pillar 11b and the stud 17) is 38.75 cm.
Assuming that the thickness of the foamed resin plate-shaped member 21 is 6.5 cm, the compressive strength of the side surface is 11 N / cm 2 , the short-term allowable stress is 2/3, and the reduction coefficient is 0.75, the short-term is short-term. The allowable shear strength Pa can be expressed by the equation (1).
Pa = 11N / cm 2 x 2/3 x 0.75 = 5.49N / cm 2 ... (1)
Here, as the foamed plastic foam of the foamed resin plate-shaped member 21 having a compressive strength of 11 N / cm 2 or more, there is an extruded polystyrene foam. In this extruded polystyrene foam, the compressive strength of the side surface is lower than the planar compressive strength due to the manufacturing method, so that it is set to 11 N / cm 2 in the above formula (1).
The force P that the foamed resin plate-shaped member 21 can resist the deformation of the pillar is expressed by the equation (2).
P = 269 cm x 6.5 cm x 5.49 N / cm 2
= 9599N ≒ 9.59kN ・ ・ ・ (2)
9.59kN / 1.96kN = 4.89
This means that the horizontal force, which is the reference for the wall magnification, is about 5 times stronger than 1.96 kN .
As the foamed resin plate-shaped member 21, an extruded polystyrene foam is specifically known as a foamed plastic foam having a compressive strength of 11 N / cm 2 (about 1 kgf / cm 2 ) or more.
Of course, extruded polystyrene foam having the same compressive strength (type A extruded polystyrene foam 3 types) may be used.

そして、発泡樹脂板状部材21が空間部14の詰め物(又はクッション)となっているので、既存の木造建築物が倒壊すると言われている程度(1/8radを超える程度)の水平力を受けたとしても、木造建築物が倒壊するまでに時間的余裕を確保でき、居住者が逃げ出すことのできる可能性を高めることができる。
また、発泡樹脂板状部材21は、断熱材として使用される押出法ポリスチレンフォームを用いているので、充填断熱(又は内断熱)を兼ねることができ、断熱性能が高く、省エネルギー化を図れる。
Since the foamed resin plate-shaped member 21 is a padding (or cushion) of the space portion 14, it receives a horizontal force to the extent that the existing wooden building is said to collapse (more than 1/8 rad). Even so, it is possible to secure time before the wooden building collapses and increase the possibility that the resident can escape.
Further, since the foamed resin plate-shaped member 21 uses the extruded polystyrene foam used as a heat insulating material, it can also serve as filling heat insulating (or internal heat insulating), has high heat insulating performance, and can save energy.

(実施例1の変形例)
ところで、上述の段落番号[0041]の例では、発泡樹脂板状部材21の具体的な材料の一例として、押出法ポリスチレンフォームの場合を説明したが、この発明の技術思想は側面の圧縮強度が5N/cm以上のその他の材質からなる発泡プラスチック系フォームを用いることもできる。
例えば、その他の発泡プラスチック系フォームとしては、ビーズ法ポリスチレンフォーム,硬質ウレタンフォーム,フェノールフォーム等を使用することができる。
以下に、発泡樹脂板状部材21の他の材料例として、ビーズ法ポリスチレンフォームを用いた場合に、どの程度の耐力を有するかを考察する。
(Variation example of Example 1)
By the way, in the example of the above-mentioned paragraph number [0041], the case of the extruded polystyrene foam has been described as an example of the specific material of the foamed resin plate-shaped member 21, but the technical idea of the present invention is that the compression strength of the side surface is sufficient. Foamed plastic foam made of other materials of 5 N / cm 2 or more can also be used.
For example, as other foamed plastic foam, bead method polystyrene foam, rigid urethane foam, phenol foam and the like can be used.
Below, as another material example of the foamed resin plate-shaped member 21, the degree of proof stress when the bead method polystyrene foam is used will be considered.

ビーズ法ポリスチレンフォームを用いた発泡樹脂板状部材21は、その厚さを6.5cm、側面の圧縮強度を5N/cmとし、短期許容応力度を2/3、低減係数を0.75と仮定すると、その短期許容せん断耐力Paは第(3)式で表すことができる。
Pa=5N/cm×2/3×0.75=2.49N/cm ・・・(3)
発泡樹脂板状部材21が柱の変形に抵抗できる力Pは、第(4)式で表される。
P=269cm×6.5cm×2.49N/cm
=4353N≒4.35kN ・・・(4)
4.35kN/1.96kN=2.21
これは、壁倍率の基準となる水平力が1.96kNの約2倍の強さとなる。
The foamed resin plate-shaped member 21 using the bead method polystyrene foam has a thickness of 6.5 cm, a compressive strength of the side surface of 5 N / cm 2 , a short-term allowable stress of 2/3, and a reduction coefficient of 0.75. Assuming, the short-term allowable shear strength Pa can be expressed by the equation (3).
Pa = 5N / cm 2 x 2/3 x 0.75 = 2.49N / cm 2 ... (3)
The force P that the foamed resin plate-shaped member 21 can resist the deformation of the pillar is expressed by the equation (4).
P = 269 cm x 6.5 cm x 2.49 N / cm 2
= 4353N ≒ 4.35kN ... (4)
4.35kN / 1.96kN = 2.21
This means that the horizontal force, which is the reference for the wall magnification, is about twice as strong as 1.96 kN .

従って、ビーズ法ポリスチレンフォームを素材とする発泡樹脂板状部材21であっても、空間部14の詰め物(又はクッション)となっているので、木造建築物が倒壊する程度の水平力を受けたとしても、耐力となり得ることが分かる。 Therefore, even if the foamed resin plate-shaped member 21 made of the bead method polystyrene foam is used as a padding (or cushion) for the space portion 14, it is assumed that the wooden building receives a horizontal force to the extent that it collapses. However, it can be seen that it can be a bearing capacity.

上記第(1)式および第(3)式の短期許容せん断耐力Paの条件を満たす発泡プラスチック系フォームの具体例(市販されている製品)の一例として、その種類と各種類別の圧縮強度を下記表に示す。

Figure 0006989909000001
As an example of specific examples (commercially available products) of foamed plastic foams satisfying the short-term allowable shear strength Pa of the above equations (1) and (3), the types and compressive strengths of each type are described below. Shown in the table.
Figure 0006989909000001

(実施例2)
図5は第1図に示す発明原理を応用した他の実施例の木造建築物の耐力構造を説明するための立面斜視図であり、図6は図5に示す実施例の木造建築物の平面図である。
図5および図6の例では、一対の柱11a,11bの間に、間柱17を入れない場合を示している。
次に、図5および図6を参照して、実施例2の木造建築物の耐力構造を説明する。
(Example 2)
FIG. 5 is an elevation perspective view for explaining the load-bearing structure of another embodiment of the wooden building to which the principle of invention shown in FIG. 1 is applied, and FIG. 6 is a vertical perspective view of the wooden building of the embodiment shown in FIG. It is a plan view.
The examples of FIGS. 5 and 6 show a case where the studs 17 are not inserted between the pair of columns 11a and 11b.
Next, the load-bearing structure of the wooden building of Example 2 will be described with reference to FIGS. 5 and 6.

木造建築物10は、1対の柱11(11は柱の総称であり、それぞれの配置位置別の柱を区別する場合は11a,11bで示す)と1対の横架材12(12は横架材の総称であり、それぞれの配置位置別の横架材を区別する場合は12a,12bで示す)からなる矩形又は枠状の構造部材13(13は構造部材の総称であり、それぞれの配置位置別の構造部材を区別する場合は13a,13bで示す)を、建物のけた行方向(建物の平面から見て横方向又は「X方向」)および張り間方向(平面から見て奥行方向又は「Y方向」)に、それぞれ複数組み合わせて構成される。 In the wooden building 10, a pair of pillars 11 (11 is a general term for pillars, and 11a and 11b are used to distinguish pillars according to their placement positions) and a pair of horizontal members 12 (12 is horizontal). It is a general term for structural members, and is a rectangular or frame-shaped structural member 13 (13 is a general term for structural members, and each arrangement is indicated) composed of 12a and 12b when distinguishing horizontal members according to their respective arrangement positions. (Indicated by 13a and 13b when distinguishing structural members by position), the row direction of the building (horizontal direction or "X direction" when viewed from the plane of the building) and the tension direction (depth direction when viewed from the plane or It is configured by combining a plurality of each in the "Y direction").

図5,図6では、1つの方向(例えばX方向)における2つの構造部材13a,13bと他の方向(Y方向)における1つの構造部材13nの例を示す。但し、図5では、作図上の簡易化のため、Y方向における構造部材13nを省略している。
より具体的には、1つの構造部材13aは、1対の柱11a,11bと1対の横架材12a,12bによって構成されて、これらの1対の柱11a,11bと1対の横架材12a,12bの4辺によって囲まれる空間部14aを有する。また、構造部材13bは、1対の柱11b,11cと1対の横架材12a,12bによって構成されて、これらの1対の柱11b,11cと1対の横架材12a,12bの4辺によって囲まれる空間部14bを有する。
この場合、隣接する構造部材13aおよび構造部材13bでは、柱11bと横架材12a,12bが共通となる。
また、構造部材13aに直交する方向(Y方向)には、構造部材13nが柱11aに隣接して設けられる。構造部材13nは、1対の柱11a,11nと1対の横架材12n,12mによって構成され、これらの1対の柱11a,11nと1対の横架材12n,12mの4辺によって囲まれる空間部14nを有する。
5 and 6 show examples of two structural members 13a and 13b in one direction (for example, the X direction) and one structural member 13n in the other direction (Y direction). However, in FIG. 5, the structural member 13n in the Y direction is omitted for the sake of simplification in drawing.
More specifically, one structural member 13a is composed of a pair of columns 11a, 11b and a pair of horizontal members 12a, 12b, and a pair of columns 11a, 11b and a pair of horizontal members. It has a space portion 14a surrounded by the four sides of the materials 12a and 12b. Further, the structural member 13b is composed of a pair of columns 11b, 11c and a pair of horizontal members 12a, 12b, and a pair of columns 11b, 11c and a pair of horizontal members 12a, 12b 4 thereof. It has a space portion 14b surrounded by sides.
In this case, in the adjacent structural member 13a and the structural member 13b, the pillar 11b and the horizontal members 12a and 12b are common.
Further, in the direction orthogonal to the structural member 13a (Y direction), the structural member 13n is provided adjacent to the pillar 11a. The structural member 13n is composed of a pair of columns 11a and 11n and a pair of horizontal members 12n and 12m, and is surrounded by four sides of the pair of columns 11a and 11n and a pair of horizontal members 12n and 12m. It has a space portion 14n.

横架材12aは、布基礎(又はコンクリート基礎)15の上に水平に載置され、布基礎15に固定されて、土台となる。換言すると、木造建築物10の1階の場合は、横架材12aが土台で、横架材12bが梁であり、1対の横架材12a,12bが土台と梁から構成されことになる。また、木造建築物10の2階(又は2階以上)の場合は、横架材12aが1階の梁で、横架材12bが2階の梁である。すなわち、水平方向に載置又は設置された土台12aと梁12bを総称して横架材12という。 The horizontal member 12a is horizontally placed on the cloth foundation (or concrete foundation) 15 and fixed to the cloth foundation 15 to serve as a base. In other words, in the case of the first floor of the wooden building 10, the horizontal member 12a is the base, the horizontal member 12b is the beam, and the pair of horizontal members 12a and 12b is composed of the base and the beam. .. Further, in the case of the second floor (or the second floor or higher) of the wooden building 10, the horizontal member 12a is the beam on the first floor and the horizontal member 12b is the beam on the second floor. That is, the base 12a and the beam 12b placed or installed in the horizontal direction are collectively referred to as a horizontal member 12.

図5,図6の実施例では、構造部材13a,13bが耐力を有する壁(耐力壁)を必要とする構造材の例を示す。
そして、この実施例では、所定の圧縮強度を有する発泡樹脂板状部材21が準備される。
なお、1対の柱11a,11bの間に間柱17を入れることもあるが、間柱17を入れた場合の実施例は前述の図2~図4に示す通りである。その場合でも発泡樹脂板状部材21の左右側面の耐力となる部分は1対の柱11aと間柱17、間柱17と柱11bで受けるものである。
In the examples of FIGS. 5 and 6, an example of a structural material in which the structural members 13a and 13b require a bearing wall (bearing wall) is shown.
Then, in this embodiment, the foamed resin plate-shaped member 21 having a predetermined compressive strength is prepared.
The studs 17 may be inserted between the pair of columns 11a and 11b, but the examples in the case where the studs 17 are inserted are as shown in FIGS. 2 to 4 described above. Even in that case, the bearing portions of the left and right side surfaces of the foamed resin plate-shaped member 21 are received by the pair of columns 11a and studs 17, and the studs 17 and columns 11b.

発泡樹脂板状部材21は、材質的に、幅方向に大きな圧縮強度を有し、幅方向(又は水平方向)から大きな力が加わっても一気に破断又は破損しない弾性力を有する材料、例えば押出法ポリスチレンフォーム等が用いられる。
発泡樹脂板状部材21は、サイズ的に、短辺方向の幅dが1対の柱11a,11bの間隔Wよりもt3(0.5~3.5mm)だけ短く、長辺方向の長さ(高さ)Hが1対の横架材12a,12bの間隔よりもt4(25~50mm)だけ短く選ばれる。
発泡樹脂板状部材21の圧縮強度は、短辺方向の側面の圧縮力が5ニュートン/平方センチメートル以上のものに選ばれる。
これによって、発泡樹脂板状部材21を1対の柱11a,11bと1対の横架材12a,12bによって囲まれる構造部材13aに嵌め込むとき、空間部14aの幅よりも若干小さくかつ高さ方向には大きな隙間(上部クリアランス)を確保しているので、発泡樹脂板状部材21の嵌め込み作業が同一寸法の場合よりも容易かつ迅速に行えることに加えて、発泡樹脂板状部材21が座屈を起こすことを回避できる利点がある。
The foamed resin plate-shaped member 21 is a material having a large compressive strength in the width direction and having an elastic force that does not break or break at once even when a large force is applied from the width direction (or the horizontal direction), for example, an extrusion method. Polystyrene foam or the like is used.
In terms of size, the foamed resin plate-shaped member 21 has a width d in the short side direction shorter than the distance W between the pairs of columns 11a and 11b by t3 (0.5 to 3.5 mm) and a length in the long side direction. (Height) H is selected to be shorter by t4 (25 to 50 mm) than the distance between the pair of horizontal members 12a and 12b.
The compressive strength of the foamed resin plate-shaped member 21 is selected so that the compressive force on the side surface in the short side direction is 5 Newton / square centimeter or more.
As a result, when the foamed resin plate-shaped member 21 is fitted into the structural member 13a surrounded by the pair of columns 11a and 11b and the pair of horizontal members 12a and 12b, it is slightly smaller and higher than the width of the space portion 14a. Since a large gap (upper clearance) is secured in the direction, the foamed resin plate-shaped member 21 can be fitted more easily and quickly than when the foamed resin plate-shaped member 21 has the same dimensions, and the foamed resin plate-shaped member 21 sits on the seat. It has the advantage of avoiding buckling.

(実施例3)
図7はこの発明の他の実施例の木造建築物の耐力構造において、耐力となる発泡樹脂板状部材21と耐力にならない開口部(窓又はドア等)を配置した一例を示す平面図であり、図8は図7の例における木造建築物の外観斜視図である。
図7及び図8の例では、横方向(X方向)と奥行方向(Y方向)にそれぞれ複数の構造部材13があり、X方向の両外側(左右外側)に複数の構造部材13が配置されるとともに、Y方向の両外側(上下外側)に複数の構造部材13が配置され、それ以外の部分には窓16又は入口が形成されるか、耐力を必要としない部材(耐力のない断熱材の一例のグラスウール)が配置される。
お、耐力を必要としない部分には、窓16又は出入り口等の開口部とされる。
(Example 3)
FIG. 7 is a plan view showing an example in which a proof stress foam resin plate-like member 21 and an opening (window, door, etc.) that cannot be proof stress are arranged in a proof stress structure of a wooden building according to another embodiment of the present invention. 8 is an external perspective view of a wooden building in the example of FIG. 7.
In the examples of FIGS. 7 and 8, there are a plurality of structural members 13 in the lateral direction (X direction) and the depth direction (Y direction), respectively, and the plurality of structural members 13 are arranged on both outer sides (left and right outer sides) in the X direction. In addition, a plurality of structural members 13 are arranged on both outer sides (upper and lower outer sides) in the Y direction, and a window 16 or an inlet is formed in other portions, or a member that does not require proof stress (insulation material without proof stress). An example of glass wool) is placed .
The portion that does not require proof stress is an opening such as a window 16 or an entrance / exit.

(実施例4)
図9はこの発明の他の実施例の木造建築物の耐力構造を説明するための図であり、発泡樹脂板状部材21と筋かいを併用した場合を示す。
この実施例では、図9(a)の平面図及び図9(b)の立面図に示すように、1対の柱11a,11bが筋かい18によって緊結され、筋かい18を除く空間部14aに発泡樹脂板状部材21が嵌め込まれる。例えば、1対の柱11a,11bが10.5cm角の角材を用いた場合、厚みが3cmの筋かいであれば、発泡樹脂板状部材21(6.5cm以下)と併用しても、柱11a,11bの厚みの範囲であり、発泡樹脂板状部材21が柱11a,11bの面より突出することもない。
この実施例によれば、筋かい18や合板等の既存の耐力壁要素が1/15radまでの範囲で耐力を発揮し、発泡樹脂板状部材21が1/15rad~1/8radの範囲で耐力を発揮することにより、広範囲で耐力を発揮できる利点がある。
すなわち、筋かいや合板等の既存の耐力壁要素と発泡樹脂板状部材21を併用しているので、耐力壁要素が耐力を発揮できない範囲又は耐力を減少して木造建築物の倒壊に近づきつつある範囲(1/15rad~1/8radまでの範囲)を発泡樹脂板状部材の側面の圧縮力で補うことにより、既存の耐力壁要素である筋かい18単独よりも広範囲で耐力を有し、木造建築物の倒壊を大幅に遅らせることができる。これは、既存の耐力壁要素である筋かい18入りの木造建築物に、従来の充填断熱を組み合わせた場合に比べて、発泡樹脂板状部材が座屈による耐力の減少を招くことなく、1/15rad~1/8radまでの範囲で広範囲に耐力を発揮でき、従来の充填断熱にない効果を発揮することができる。
また、発泡樹脂板状部材21の上部クリアランス(t4)の部分には、断熱性を高めるために、耐力を有しない断熱材、例えばグラスウール19を充填してもよい。
(Example 4)
FIG. 9 is a diagram for explaining a load-bearing structure of a wooden building according to another embodiment of the present invention, and shows a case where a foamed resin plate-shaped member 21 and a brace are used in combination.
In this embodiment, as shown in the plan view of FIG. 9 (a) and the elevation view of FIG. 9 (b), the pair of columns 11a and 11b are tied together by the brace 18, and the space portion excluding the brace 18. The foamed resin plate-shaped member 21 is fitted into the 14a. For example, when a pair of columns 11a and 11b use square lumber of 10.5 cm square, if the thickness is 3 cm, the columns can be used in combination with the foamed resin plate-like member 21 (6.5 cm or less). It is within the thickness range of 11a and 11b, and the foamed resin plate-like member 21 does not protrude from the surfaces of the columns 11a and 11b.
According to this embodiment , the existing load-bearing wall elements such as the brace 18 and plywood exhibit the yield strength in the range of 1/15 rad, and the foamed resin plate-like member 21 exhibits the yield strength in the range of 1/15 rad to 1/8 rad. By demonstrating, there is an advantage that the bearing capacity can be exhibited in a wide range.
That is, since the existing bearing wall elements such as stakes and plywood and the foamed resin plate-like member 21 are used in combination, the range where the bearing wall elements cannot exert the bearing capacity or the bearing capacity is reduced and the wooden building collapses. By supplementing the range approaching (range from 1/15 rad to 1/8 rad) with the compressive force on the side surface of the foamed resin plate-like member, it is wider than the existing bearing wall element, streak 18 alone. It has bearing capacity and can significantly delay the collapse of wooden buildings. This is because the foamed resin plate-like member does not cause a decrease in bearing capacity due to buckling as compared with the case where a wooden building containing a brace 18 which is an existing bearing wall element is combined with conventional filling insulation. It is possible to exert a wide range of bearing capacity in the range of / 15 rad to 1/8 rad, and it is possible to exert an effect not found in conventional filling insulation.
Further, the portion of the upper clearance (t4) of the foamed resin plate-shaped member 21 may be filled with a heat insulating material having no proof stress, for example, glass wool 19 in order to enhance the heat insulating property.

(実施例5)
図10は、この発明のその他の実施例の木造建築物の耐力構造の立面図であり、特に発泡樹脂板状部材の上辺を山形にした例を示す。
この実施例が図1の原理図と異なる点は、発泡樹脂板状部材22の上辺を山形にしたことである。具体的には、この実施例の発泡樹脂板状部材22は、その上辺が幅方向の中央部から両側面に向かって下向きの傾斜部を有する山形に形成される。すなわち、上辺に左傾斜部22aと右傾斜部22bを形成して、第2の左右両端部で最大値となるような上部クリアランス(t4)を確保したものである。幅方向中央部の山形の頂点は、上部クリアランスの値が最も小さな値となるが、少なくとも長さt1だけ確保すれば足りる。
このように、発泡樹脂板状部材22の上辺を山形にすれば、グラスウール19を充填する部分の面積が図1の例よりも少なくなり、図1~図4の発泡樹脂板状部材21よりも断熱欠損部分を少なくできる利点がある。これは、発泡樹脂板状部材21の断熱性能がグラスウール19よりも高い場合、建物全体の断熱性能を一層高めることができる。
(Example 5)
FIG. 10 is an elevational view of a load-bearing structure of a wooden building according to another embodiment of the present invention, and particularly shows an example in which the upper side of a foamed resin plate-like member is formed into a chevron shape.
The difference between this embodiment and the principle diagram of FIG. 1 is that the upper side of the foamed resin plate-shaped member 22 has a chevron shape. Specifically, the foamed resin plate-shaped member 22 of this embodiment is formed in a chevron shape whose upper side has an inclined portion downward from the central portion in the width direction toward both side surfaces. That is, the left inclined portion 22a and the right inclined portion 22b are formed on the upper side, and the upper clearance (t4) is secured so as to be the maximum value at the second left and right both ends. At the apex of the chevron in the central part in the width direction, the value of the upper clearance is the smallest value, but it is sufficient to secure at least the length t1.
In this way, if the upper side of the foamed resin plate-shaped member 22 is formed into a chevron shape, the area of the portion filled with the glass wool 19 becomes smaller than that of the example of FIG. 1, and the area of the portion filled with the glass wool 19 is smaller than that of the foamed resin plate-shaped member 21 of FIGS. There is an advantage that the heat insulation defect part can be reduced. This is because when the heat insulating performance of the foamed resin plate-shaped member 21 is higher than that of glass wool 19, the heat insulating performance of the entire building can be further improved.

(実施例6)
図11はこの発明のさらにその他の実施例の木造建築物の耐力構造の立面図であり、特に発泡樹脂板状部材の上辺を台形状にした例を示す。
この実施例が図1の原理図と異なる点は、発泡樹脂板状部材23の上辺を台形にしたことである。具体的には、この実施例の発泡樹脂板状部材23は、その上辺が幅方向の中央部分23aで横架材12bと平行となり、平行な上辺の中央部分23aの両端部から両側面に向かって下向きの傾斜部23b,23cを有するような台形状に形成される。中央部の平行部分の頂点は、上部クリアランスとして少なくとも長さt1だけ確保すれば足りる。
このように、発泡樹脂板状部材23の上辺を台形にすれば、グラスウール19を充填する部分の面積が図1の例よりも少なくて済み、断熱欠損部分を少なくできる利点がある。
(Example 6)
FIG. 11 is an elevational view of a load-bearing structure of a wooden building according to still another embodiment of the present invention, and particularly shows an example in which the upper side of a foamed resin plate-like member is trapezoidal.
The difference between this embodiment and the principle diagram of FIG. 1 is that the upper side of the foamed resin plate-shaped member 23 is trapezoidal. Specifically, the foamed resin plate-shaped member 23 of this embodiment has its upper side parallel to the horizontal member 12b at the central portion 23a in the width direction, and faces both end surfaces from both ends of the parallel upper side central portion 23a. It is formed in a trapezoidal shape having downward inclined portions 23b and 23c. It is sufficient to secure at least the length t1 as the upper clearance for the apex of the parallel portion in the central portion.
As described above, if the upper side of the foamed resin plate-shaped member 23 is trapezoidal, the area of the portion filled with the glass wool 19 can be smaller than that in the example of FIG. 1, and there is an advantage that the heat insulating defect portion can be reduced.

この発明は、木造建築物の耐力構造として木造建築物に利用でき、産業上の利用可能性が高い。 The present invention can be used for wooden buildings as a load-bearing structure for wooden buildings, and has high industrial applicability.

10:木造建築物の耐力構造
11,11a,11b:柱
12,12a,12b:横架材
13:構造部材
14:空間部
15:布基礎
16:窓
17;間柱
18;筋かい
19;グラスウール
21,22,23:発泡樹脂板状部材
21a;切欠部
10: Load-bearing structure of wooden building 11,11a, 11b: Pillar 12,12a, 12b: Horizontal material 13: Structural member 14: Space 15: Cloth foundation 16: Window 17; Stud 18; Brace 19; Glass wool 21 , 22, 23: Foamed resin plate-shaped member 21a; notch

Claims (6)

一対の柱と一対の横架材によって囲まれた空間部を有する構造部材を組み合わせて構成される木造建築物において、
前記各構造部材に固定されることなく、当該構造部材に対応する空間部にそれぞれ嵌め込まれる、複数の発泡樹脂板状部材を備え、
前記発泡樹脂板状部材は、
幅方向の側面による圧縮力が5ニュートン/平方センチメートル以上の発泡プラスチック系フォームであって、
その立面形状の幅が前記空間部の幅よりも第1の長さである0.5mm~3.5mmだけ小さく選ばれることにより、前記空間部に嵌め込まれて水平力を加えられない状態のときに、当該第1の長さの部分が側面クリアランスとなり、
水平力を加えられたときに、層間変形角が既存の耐力壁では対応しない1/15ラジアンから木造建築物が倒壊し始めるとされる1/8ラジアンの範囲において耐力を発揮し、それによって、一対の柱が傾いてその幅が狭まった際に、その両側面が前記構造部材に含まれる一対の柱に密接することによって、その両側面で水平力を受けて、耐力壁として作用し、
層間変形角が前記1/15ラジアンから1/8ラジアンの範囲において耐力を発揮する際に、発泡樹脂板状部材の上辺と下辺が一対の横架材によって圧縮されて生じる座屈を回避するために、その立面形状の高さが前記空間部の高さよりも第2の長さである25mm~50mmだけ小さくなるような切欠部を形成することにより、当該切欠部が水平力を加えられない状態において上部クリアランスとなることを特徴とする、木造建築物の耐力構造。
In a wooden building composed of a combination of structural members having a space surrounded by a pair of columns and a pair of horizontal members.
A plurality of foamed resin plate-shaped members are provided, which are not fixed to the structural members but are fitted into the spaces corresponding to the structural members.
The foamed resin plate-shaped member is
A foamed plastic foam with a compressive force of 5 Newtons / square centimeter or more due to the lateral side surface.
By selecting the width of the elevation shape to be smaller than the width of the space portion by 0.5 mm to 3.5 mm, which is the first length, the width of the elevation is fitted into the space portion and no horizontal force can be applied. Sometimes the first length part becomes the side clearance,
When a horizontal force is applied , the interlayer deformation angle exerts strength in the range of 1/15 radians, which is not supported by existing bearing walls, to 1/8 radians, where wooden buildings are said to begin to collapse, thereby exerting strength. When a pair of pillars are tilted and their width is narrowed, both side surfaces thereof come into close contact with the pair of pillars included in the structural member, so that the pair of pillars receive horizontal force on both side surfaces and act as a bearing wall.
When the proof stress is exhibited in the range of 1/15 radian to 1/8 radian of the interlayer deformation angle , buckling caused by compression of the upper side and the lower side of the foamed resin plate-like member by the pair of horizontal members is avoided. Therefore, a horizontal force is applied to the notch by forming a notch such that the height of the elevation shape is smaller than the height of the space by 25 mm to 50 mm, which is the second length. A load-bearing structure of a wooden building, characterized by an upper clearance in the absence.
一対の柱と一対の横架材によって囲まれた空間部を有する構造部材を組み合わせて構成される木造建築物において、
前記各構造部材に固定されることなく、当該構造部材に対応する空間部にそれぞれ嵌め込まれる、複数の発泡樹脂板状部材を備え、
前記発泡樹脂板状部材は、
幅方向の側面による圧縮力が5ニュートン/平方センチメートル以上の発泡プラスチック系フォームであって、
その立面形状の幅が前記空間部の幅よりも側面クリアランスだけ小さく選ばれ、かつその立面形状の高さが空間部の高さよりも上部クリアランスだけ小さく選ばれることによって、前記空間部に嵌め込まれたときに前記一対の柱に対して幅方向に側面クリアランスを有するとともに、前記一対の柱が水平力を受けて傾いたときに、その上辺および下辺が横架材に接触しないようにするための切欠部を形成し、
さらに、層間変形角が既存の耐力壁では対応しない1/15ラジアンから木造建築物が倒壊し始めるとされる1/8ラジアンの範囲において耐力を発揮するように、前記側面クリアランスが0.5mm~3.5mmに選ばれ、かつ前記切欠部が25mm~50mmに選ばれ、
それによって、前記発泡樹脂板状部材は、水平力が加わることにより、一対の柱が傾いてその幅が狭まったときに、その両側面が前記構造部材に含まれる一対の柱に密接することによって、その両側面で水平力を受けて、耐力壁として作用することを特徴とする、木造建築物の耐力構造。
In a wooden building composed of a combination of structural members having a space surrounded by a pair of columns and a pair of horizontal members.
A plurality of foamed resin plate-shaped members are provided, which are not fixed to the structural members but are fitted into the spaces corresponding to the structural members.
The foamed resin plate-shaped member is
A foamed plastic foam with a compressive force of 5 Newtons / square centimeter or more due to the lateral side surface.
The width of the elevation is selected to be smaller than the width of the space by the side clearance, and the height of the elevation is selected to be smaller than the height of the space by the upper clearance, so that the space is fitted into the space. In order to have a side clearance in the width direction with respect to the pair of columns and to prevent the upper and lower sides of the pair of columns from coming into contact with the horizontal member when the pair of columns are tilted by a horizontal force. Form a notch in the
Furthermore, the side clearance is 0. The notch is selected from 5 mm to 3.5 mm and the notch is selected from 25 mm to 50 mm.
As a result, when the pair of pillars is tilted and the width of the foamed resin plate-like member is narrowed due to the application of a horizontal force, both side surfaces thereof come into close contact with the pair of pillars included in the structural member. By doing so, it receives horizontal force on both sides and acts as a bearing wall, which is a bearing structure of a wooden building.
前記発泡樹脂板状部材は、前記切欠部の形状が矩形であって、その上辺が横架材に対して平行に形成されることによって、水平力が加えられない状態において、幅方向に均等な上部クリアランスを確保することを特徴とする、請求項1または請求項2に記載の木造建築物の耐力構造。 The foamed resin plate-shaped member has a rectangular shape of the notch, and its upper side is formed parallel to the horizontal member, so that it is uniform in the width direction in a state where no horizontal force is applied. The load-bearing structure of a wooden building according to claim 1 or 2, characterized in that an upper clearance is secured. 前記発泡樹脂板状部材は、その上辺が幅方向の中央部から両側面に向かって傾斜を有する山形に形成されることによって、左右両端部で最大値となる上部クリアランスを確保することを特徴とする、請求項1または請求項2に記載の木造建築物の耐力構造。 The foamed resin plate-shaped member is characterized in that the upper side thereof is formed in a chevron shape having an inclination from the central portion in the width direction toward both side surfaces, thereby ensuring a maximum upper clearance at both left and right ends. The load-bearing structure of the wooden building according to claim 1 or 2. 前記発泡樹脂板状部材の上辺より上の上部クリアランスには、前記発泡樹脂板状部材とは異なる材質であって、耐力を有しない断熱材を充填することを特徴とする、請求項1または請求項2に記載の木造建築物の耐力構造。 1. The load-bearing structure of the wooden building described in Item 2. 前記木造建築物は、前記空間部を有する複数の構造部材に筋かいや合板等の耐力壁要素が形成されて、前記発泡樹脂板状部材と併用され、
記筋かいや合板等の耐力壁要素は層間変形角が少なくとも1/15ラジアンまでの範囲で耐力を発揮し、前記発泡樹脂板状部材は層間変形角が1/15ラジアン~1/8ラジアンの範囲で耐力を発揮することにより、広範囲で耐力を発揮することを特徴とする請求項1または請求項2に記載の木造建築物の耐力構造。
In the wooden building , bearing wall elements such as streaks and plywood are formed on a plurality of structural members having the space portion, and the wooden building is used in combination with the foamed resin plate-like member.
The load-bearing wall elements such as streaks and plywood exhibit proof stress in a range where the interlayer deformation angle is at least 1/15 radian, and the foamed resin plate-like member has an interlayer deformation angle of 1/15 radian to 1/8 radian. The bearing structure of a wooden building according to claim 1 or 2, wherein the bearing is exhibited in a wide range by exhibiting the bearing in the range of.
JP2017109522A 2017-06-01 2017-06-01 Bearing structure of wooden building Active JP6989909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017109522A JP6989909B2 (en) 2017-06-01 2017-06-01 Bearing structure of wooden building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017109522A JP6989909B2 (en) 2017-06-01 2017-06-01 Bearing structure of wooden building

Publications (2)

Publication Number Publication Date
JP2018204262A JP2018204262A (en) 2018-12-27
JP6989909B2 true JP6989909B2 (en) 2022-01-12

Family

ID=64956740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017109522A Active JP6989909B2 (en) 2017-06-01 2017-06-01 Bearing structure of wooden building

Country Status (1)

Country Link
JP (1) JP6989909B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032140U (en) 1996-06-07 1996-12-17 光好 庄子 Insulation wall structure
JP2000204690A (en) 1999-01-18 2000-07-25 Kanegafuchi Chem Ind Co Ltd Earthquake-resistant heat insulating panel and earthquake-resistant heat insulating structure constructed thereof
JP2000204693A (en) 1999-01-18 2000-07-25 Kanegafuchi Chem Ind Co Ltd Earthquake resistant heat insulating panel and earthquake resistant heat insulating structure using it
JP2000204702A (en) 1999-01-18 2000-07-25 Kanegafuchi Chem Ind Co Ltd Earthquake resistant heat insulating panel and earthquake resistant heat insulating structure using the same
JP2002235391A (en) 2001-02-09 2002-08-23 Fuji House Kk Earthquake resisting wall structure, and earthquake resisting panel for use therein
JP2007040045A (en) 2005-08-05 2007-02-15 Nakamura Bussan Kk Wooden building, or reinforcement structure and reinforcement method of wooden building
JP2017101538A (en) 2015-11-25 2017-06-08 芳英 春城 Bearing force structure and bearing force method of wooden building

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032140U (en) 1996-06-07 1996-12-17 光好 庄子 Insulation wall structure
JP2000204690A (en) 1999-01-18 2000-07-25 Kanegafuchi Chem Ind Co Ltd Earthquake-resistant heat insulating panel and earthquake-resistant heat insulating structure constructed thereof
JP2000204693A (en) 1999-01-18 2000-07-25 Kanegafuchi Chem Ind Co Ltd Earthquake resistant heat insulating panel and earthquake resistant heat insulating structure using it
JP2000204702A (en) 1999-01-18 2000-07-25 Kanegafuchi Chem Ind Co Ltd Earthquake resistant heat insulating panel and earthquake resistant heat insulating structure using the same
JP2002235391A (en) 2001-02-09 2002-08-23 Fuji House Kk Earthquake resisting wall structure, and earthquake resisting panel for use therein
JP2007040045A (en) 2005-08-05 2007-02-15 Nakamura Bussan Kk Wooden building, or reinforcement structure and reinforcement method of wooden building
JP2017101538A (en) 2015-11-25 2017-06-08 芳英 春城 Bearing force structure and bearing force method of wooden building

Also Published As

Publication number Publication date
JP2018204262A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US8281551B2 (en) Corrugated shearwall
KR101240380B1 (en) The friction damper for the earthquake-proof
KR101751432B1 (en) Seismic reinforcement structure of conventional ferroconcrete structure using corrugate steel plate
JP2008248673A (en) Building
JP2007046235A (en) Vibration control panel and building
US20050284073A1 (en) Corrugated shearwall
JP6989909B2 (en) Bearing structure of wooden building
JP6962681B2 (en) Load-bearing structure and load-bearing method of wooden buildings
JP2007255128A (en) Wall face structure of building and earthquake control panel used in wall face structure
JP4945428B2 (en) Reinforced structure
JP2017101538A5 (en)
JP6414877B2 (en) Reinforcement structure and building
JP2013217122A (en) Foundation block for earthquake-proof shelter room
KR20130055945A (en) The insulation complex panel with structural wood and the construct method of wall therewith
Ince et al. Investigation of soft stories in buildings with hollow block slab
JP6180985B2 (en) Bearing wall structure
JP7383651B2 (en) Wall structure of simple structure and simple structure
JP6667908B2 (en) Seismic isolation structure and seismic isolation wooden building
JP2000204693A (en) Earthquake resistant heat insulating panel and earthquake resistant heat insulating structure using it
JP2018076735A (en) Collapse prevention structure for building
JPH09170284A (en) Bearing wall panel and bearing wall structure
JP2017096041A (en) Complete collapse preventive member of existing wooden framework structure in earthquake time
JP6404019B2 (en) Load-bearing wall frames and buildings using load-bearing wall frames
Wong et al. Hin Cheong Saw, Kok Keong Choong, Veng Wye Tong
WO2015152735A1 (en) Cross laminated timber construction

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211124

R150 Certificate of patent or registration of utility model

Ref document number: 6989909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150