JP6978223B2 - Inspection method and performance judgment method for laminated rubber bearings with metal plugs - Google Patents

Inspection method and performance judgment method for laminated rubber bearings with metal plugs Download PDF

Info

Publication number
JP6978223B2
JP6978223B2 JP2017105508A JP2017105508A JP6978223B2 JP 6978223 B2 JP6978223 B2 JP 6978223B2 JP 2017105508 A JP2017105508 A JP 2017105508A JP 2017105508 A JP2017105508 A JP 2017105508A JP 6978223 B2 JP6978223 B2 JP 6978223B2
Authority
JP
Japan
Prior art keywords
metal plug
ray
laminated rubber
laminated
rubber bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017105508A
Other languages
Japanese (ja)
Other versions
JP2018200256A (en
Inventor
剛 広瀬
英行 正木
哲示 山上
譲 河野
裕 新名
Original Assignee
株式会社高速道路総合技術研究所
東日本高速道路株式会社
中日本高速道路株式会社
西日本高速道路株式会社
株式会社日本工業試験所
株式会社川金コアテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高速道路総合技術研究所, 東日本高速道路株式会社, 中日本高速道路株式会社, 西日本高速道路株式会社, 株式会社日本工業試験所, 株式会社川金コアテック filed Critical 株式会社高速道路総合技術研究所
Priority to JP2017105508A priority Critical patent/JP6978223B2/en
Publication of JP2018200256A publication Critical patent/JP2018200256A/en
Application granted granted Critical
Publication of JP6978223B2 publication Critical patent/JP6978223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、橋梁やビル等に用いられた金属プラグ入り積層ゴム支承を原位置で検査する検査方法と、金属プラグ入り積層ゴム支承の性能判定方法に関する。 The present invention relates to an inspection method for inspecting a laminated rubber bearing with a metal plug used for a bridge, a building, or the like in place, and a method for determining the performance of the laminated rubber bearing with a metal plug.

橋梁やビルの下部構造と上部構造の間に設置され、上部構造を支持する支承は、兵庫県南部地震が発生して以降、地震時の揺れを緩和する機能を有するものが急速に普及している。この種の支承としては、板状のゴムと鋼板を交互に複数層積み重ねた積層体と、この積層体の内部に配置された柱状の鉛プラグとを備えた鉛プラグ入り積層ゴム支承が知られている。 Bearings that are installed between the substructure and superstructure of bridges and buildings and that support the superstructure have rapidly become widespread since the Hyogo-ken Nanbu Earthquake, which has the function of alleviating shaking during an earthquake. There is. As this type of bearing, a lead plug-containing laminated rubber bearing including a laminated body in which plate-shaped rubber and steel plates are alternately stacked in multiple layers and a columnar lead plug arranged inside the laminated body is known. ing.

鉛プラグ入り積層ゴム支承は、積層体によって橋梁やビルの上部構造を支持すると共に、地震時に水平方向に変形して上部構造を移動させると共に、移動した上部構造を移動前の位置に復元し、更に、固有周期を長くして上部構造に作用する地震力を低減させる機能を有する。また、鉛プラグにより、振動エネルギーを吸収して上部構造の揺れを減衰するダンパー機能を有する。 Laminated rubber bearings with lead plugs support the superstructure of bridges and buildings with laminated bodies, deform horizontally during an earthquake to move the superstructure, and restore the moved superstructure to its pre-movement position. Further, it has a function of lengthening the natural period and reducing the seismic force acting on the superstructure. In addition, the lead plug has a damper function that absorbs vibration energy and damps the shaking of the superstructure.

この鉛プラグ入り積層ゴム支承は、橋梁やビルに設置された後、経年に伴って種々の劣化や損傷が生じる。鉛プラグ入り積層ゴム支承の経年劣化としては、積層体のゴムと鋼板の剥離や、積層体の側面を被覆する被覆ゴムの剥がれ又はオゾン劣化や、鉛プラグの損傷等がある。これらの経年劣化のうち、鉛プラグの損傷はダンパー機能の低下を招くので、鉛プラグ入り積層ゴム支承の性能に大きく影響する。 After being installed in a bridge or a building, this lead-plugged laminated rubber bearing undergoes various deteriorations and damages over time. Aged deterioration of the lead plug-containing laminated rubber bearing includes peeling of the rubber of the laminated body and the steel plate, peeling of the coated rubber covering the side surface of the laminated body, ozone deterioration, damage to the lead plug, and the like. Of these deteriorations over time, damage to the lead plug causes deterioration of the damper function, which greatly affects the performance of the laminated rubber bearing with the lead plug.

経年により鉛プラグに生じる損傷としては、損傷の程度が小さいものから順に、ひび割れ、破断及び流動突出が知られている。流動突出は、鉛プラグを形成する鉛が、積層体のゴムと鋼板の間を流れて側面から押し出されて生じる現象であり、鉛プラグ入り積層ゴム支承に作用する荷重や、積層体の変形等に起因すると考えられている。鉛プラグにひび割れや破断や流動突出が生じた鉛プラグ入り積層ゴム支承は、鉛プラグのダンパー機能が大幅に低下しているため、速やかに交換する必要がある。 As damages that occur in lead plugs over time, cracks, fractures, and flow protrusions are known in order from the one with the smallest degree of damage. Flow protrusion is a phenomenon that occurs when lead forming a lead plug flows between the rubber of the laminated body and the steel plate and is pushed out from the side surface, and the load acting on the laminated rubber bearing with the lead plug, deformation of the laminated body, etc. It is believed to be due to. Laminated rubber bearings with lead plugs that have cracks, breaks, or fluid protrusions in the lead plugs need to be replaced promptly because the damper function of the lead plugs is significantly reduced.

鉛プラグ入り積層ゴム支承に流動突出が生じるまでの間に、積層体の内部では、鉛の流動やひび割れや破断等の鉛プラグの変状が生じており、鉛プラグのダンパー機能の低下が既に進行し、鉛プラグ入り積層ゴム支承の性能の低下が生じている。しかしながら、積層体の内部で生じる鉛プラグの変状は、外観から察知できないので、流動突出が生じるまでは鉛プラグ入り積層ゴム支承の性能の低下を検知することができない。そこで、鉛プラグ入り積層ゴム支承の性能の低下を早期に検知するために、積層体内の鉛プラグの変状を非破壊で検査する方法が求められる。 Before the flow protrusion occurs in the laminated rubber bearing with lead plug, the lead plug is deformed such as lead flow, cracks and breaks inside the laminated body, and the damper function of the lead plug has already deteriorated. As it progresses, the performance of lead-plugged laminated rubber bearings deteriorates. However, since the deformation of the lead plug that occurs inside the laminated body cannot be detected from the appearance, it is not possible to detect the deterioration of the performance of the laminated rubber bearing containing the lead plug until the flow protrusion occurs. Therefore, in order to detect the deterioration of the performance of the lead plug-containing laminated rubber bearing at an early stage, a method for non-destructively inspecting the deformation of the lead plug in the laminate is required.

従来、積層体の内部に設置された鉛プラグを非破壊で検査する方法として、X線CT装置を用いて鉛プラグの健全性を確認する検査方法が提案されている(特許文献1参照)。この検査方法は、鉛プラグ入り積層ゴム支承の製造過程において、積層体に鉛直方向の荷重をかけながら水平方向に変位させた状態で、X線CT装置を用いて非破壊状態で断層撮影を行う。これにより得られた積層体の断層画像により、鉛プラグと積層ゴムとの界面の状態を確認し、鉛プラグの健全性を確認している。 Conventionally, as a method for non-destructively inspecting a lead plug installed inside a laminated body, an inspection method for confirming the soundness of the lead plug using an X-ray CT apparatus has been proposed (see Patent Document 1). In this inspection method, in the manufacturing process of a laminated rubber bearing with a lead plug, tomography is performed in a non-destructive state using an X-ray CT device with the laminated body displaced in the horizontal direction while applying a vertical load. .. From the tomographic image of the laminated body obtained by this, the state of the interface between the lead plug and the laminated rubber is confirmed, and the soundness of the lead plug is confirmed.

特開2001−033402号公報Japanese Unexamined Patent Publication No. 2001-033402

しかしながら、上記従来の鉛プラグの検査方法は、鉛プラグ入り積層ゴム支承の製造過程で行われるものであり、装置構成の大規模なX線CT装置を用いるので、橋梁やビルに設置された鉛プラグ入り積層ゴム支承に適用することができない。また、上記従来の鉛プラグの検査方法は、積層体を水平方向に変位させた状態で撮影を行う必要があるが、橋梁やビルに設置された鉛プラグ入り積層ゴム支承を水平方向に変位させることは困難であるため、上記従来の方法を適用することは困難である。 However, the above-mentioned conventional lead plug inspection method is performed in the manufacturing process of a laminated rubber bearing containing a lead plug, and since a large-scale X-ray CT device having a device configuration is used, lead installed in a bridge or a building is used. Not applicable to plugged laminated rubber bearings. Further, in the above-mentioned conventional lead plug inspection method, it is necessary to take a picture in a state where the laminated body is displaced in the horizontal direction, but the laminated rubber bearing with a lead plug installed in a bridge or a building is displaced in the horizontal direction. It is difficult to apply the above-mentioned conventional method because it is difficult to do so.

また、上記従来の鉛プラグの検査方法は、鉛プラグと積層ゴムとの界面の状態に基づいて鉛プラグの健全性を確認しているが、鉛プラグが不健全である場合に、鉛プラグ入り積層ゴム支承の性能がどの程度残存しているのかは全く検討されていない。 In addition, the above-mentioned conventional lead plug inspection method confirms the soundness of the lead plug based on the state of the interface between the lead plug and the laminated rubber, but if the lead plug is unhealthy, the lead plug is inserted. The extent to which the performance of the laminated rubber bearings remains has not been investigated at all.

そこで、本発明の課題は、橋梁やビル等に設置されている金属プラグ入り積層ゴム支承の金属プラグを、原位置で検査することができる金属プラグ入り積層ゴム支承の検査方法を提供することにある。また、金属プラグ入り積層ゴム支承の検査結果に基づいて、この金属プラグ入り積層ゴム支承に残存する性能を判定する性能判定方法を提供することにある。 Therefore, an object of the present invention is to provide a method for inspecting a metal plug of a laminated rubber bearing with a metal plug installed in a bridge, a building, or the like, which can inspect the metal plug of the laminated rubber bearing with a metal plug in place. be. Another object of the present invention is to provide a performance determining method for determining the performance remaining in the laminated rubber bearing with a metal plug based on the inspection result of the laminated rubber bearing with a metal plug.

上記課題を解決するため、本発明の金属プラグ入り積層ゴム支承の検査方法は、複数の板状ゴムと鋼板が交互に積層されてなる積層体と、この積層体の一方の面と他方の面に配置されて構造物に接続される接続体と、上記積層体及び接続体を貫通して上記板状ゴム及び鋼板の積層方法に延在してダンパー機能を有する金属プラグとを備える金属プラグ入り積層ゴム支承の検査方法であって、
上記金属プラグ入り積層ゴム支承が設置された原位置で、上記積層体にX線を照射してX線撮影画像を取得し、このX線撮影画像中の金属プラグの像の輪郭形状に基づいて検査を行うことを特徴としている。
In order to solve the above problems, the inspection method of the laminated rubber bearing with a metal plug of the present invention comprises a laminated body in which a plurality of plate-shaped rubbers and steel plates are alternately laminated, and one surface and the other surface of the laminated body. Contains a metal plug provided with a connecting body arranged in the above and connected to the structure, and a metal plug penetrating the laminated body and the connecting body and extending to the method of laminating the plate-shaped rubber and the steel plate and having a damper function. It is an inspection method for laminated rubber bearings.
At the original position where the laminated rubber bearing with the metal plug is installed, the laminated body is irradiated with X-rays to acquire an X-ray photographed image, and based on the contour shape of the image of the metal plug in the X-ray photographed image. It is characterized by conducting an inspection.

上記構成によれば、金属プラグ入り積層ゴム支承が、例えば橋梁の下部構造と上部構造の間に設置された場合、積層体の一方の面の接続体と他方の面の接続体が、下部構造と上部構造に夫々接続される。したがって、積層体の内部の金属プラグは、金属プラグ入り積層ゴム支承が設置された原位置では、外観により検査を行うことができない。ここで、本発明の金属プラグ入り積層ゴム支承の検査方法は、金属プラグ入り積層ゴム支承が設置された原位置で、積層体にX線を照射してX線撮影画像を取得するので、従来のX線CT装置を用いた検査方法のように、装置構成が大規模なことに起因して断層画像を取得できない不都合が無い。また、従来のX線CT装置を用いた検査方法のように、金属プラグ入り積層ゴム支承を変形させる必要が無く、金属プラグ入り積層ゴム支承の積層体にX線を照射すればよいので、原位置の金属プラグ入り積層ゴム支承について適用できる。こうして原位置で取得したX線撮影画像を用いることにより、積層体の外観によっては不可能であった金属プラグの検査を行うことができる。 According to the above configuration, when a laminated rubber bearing with a metal plug is installed, for example, between the substructure and superstructure of a bridge, the one-sided and other-sided connectors of the laminate are the substructure. And each connected to the superstructure. Therefore, the metal plug inside the laminate cannot be inspected by appearance at the in-situ where the laminated rubber bearing with the metal plug is installed. Here, in the method of inspecting the laminated rubber bearing with a metal plug of the present invention, the laminated body is irradiated with X-rays at the in-situ where the laminated rubber bearing with a metal plug is installed, and an X-ray photographed image is acquired. There is no inconvenience that a tomographic image cannot be acquired due to the large scale of the device configuration, unlike the inspection method using the X-ray CT device. Further, unlike the inspection method using the conventional X-ray CT device, it is not necessary to deform the laminated rubber bearing with the metal plug, and the laminated body of the laminated rubber bearing with the metal plug may be irradiated with X-rays. Applicable for laminated rubber bearings with metal plugs in position. By using the X-ray photographed image acquired in the original position in this way, it is possible to inspect the metal plug, which was impossible depending on the appearance of the laminated body.

ここで、ダンパー機能を有する金属プラグとしては、例えば、鉛やすず等で形成したものを挙げることができるが、ダンパー機能を奏するのであれば、他の金属で形成されたものでもよい。 Here, examples of the metal plug having a damper function include those formed of lead or tin, but those formed of other metals may be used as long as they have a damper function.

また、金属プラグ入り積層ゴム支承としては、橋梁等の土木構造物に設置されたものや、ビル等の建築物に設置されたものや、各種の工場のプラント設備に設置されたものが該当する。 In addition, laminated rubber bearings with metal plugs correspond to those installed in civil engineering structures such as bridges, those installed in buildings such as buildings, and those installed in plant equipment of various factories. ..

一実施形態の金属プラグ入り積層ゴム支承の検査方法は、上記X線撮影画像を、上記積層体に対するX線の入射位置及び/又は入射角度に応じて補正するものである。 One embodiment of the method for inspecting a laminated rubber bearing with a metal plug corrects the X-ray photographed image according to the incident position and / or the incident angle of X-rays with respect to the laminated body.

上記実施形態によれば、X線撮影画像を、積層体に対するX線の入射位置及び/又は入射角度に応じて補正するので、原位置に存在する他の構造物や部材が障害となって、X線を積層体の正面から照射できない場合でも、積層体の内部を正確に把握して、金属プラグの検査を正確に行うことができる。また、積層体内に複数の金属プラグが存在する場合、X線の入射位置及び/又は入射角度を調整することにより、各金属プラグの像を重複することなく撮影することができる。この場合、X線の入射位置及び/又は入射角度に応じてX線撮影画像を補正することにより、各金属プラグの検査を正確に行うことができる。 According to the above embodiment, since the X-ray photographed image is corrected according to the incident position and / or the incident angle of the X-ray with respect to the laminated body, other structures and members existing in the original position become obstacles. Even when X-rays cannot be emitted from the front of the laminated body, the inside of the laminated body can be accurately grasped and the metal plug can be inspected accurately. Further, when a plurality of metal plugs are present in the laminated body, the images of the metal plugs can be photographed without duplication by adjusting the incident position and / or the incident angle of the X-rays. In this case, each metal plug can be inspected accurately by correcting the X-ray photographed image according to the incident position and / or the incident angle of the X-ray.

一実施形態の金属プラグ入り積層ゴム支承の検査方法は、上記積層体に予め設置されたマークの位置と、上記X線撮影画像中の上記マークの像の位置とに基づいて、上記金属プラグ入り積層ゴム支承における上記X線撮影画像の撮影位置を特定するものである。 The method for inspecting a laminated rubber bearing with a metal plug according to an embodiment is based on the position of a mark previously installed on the laminate and the position of the image of the mark in the X-ray photographed image, and the metal plug is inserted. The position of the X-ray photographed image in the laminated rubber bearing is specified.

上記実施形態によれば、積層体に予め設置されたマークの実際の位置と、X線撮影画像中の上記マークの像の位置とに基づいて、このX線撮影画像の金属プラグ入り積層ゴム支承における撮影位置を特定することができる。したがって、金属プラグの検査を正確に行うことができる。ここで、上記マークは、上記積層体よりもX線の透過率が低い物質で形成されるのが好ましい。また、複数のX線撮影画像に同一のマークの像が含まれる場合、このマークの像に基づいて、上記複数のX線撮影画像の位置合わせを行って、上記複数のX線撮影画像の合成を行うことができる。 According to the above embodiment, based on the actual position of the mark pre-installed on the laminated body and the position of the image of the mark in the X-ray photographed image, the metal-plugged laminated rubber bearing of the X-ray photographed image is supported. It is possible to specify the shooting position in. Therefore, the metal plug can be inspected accurately. Here, the mark is preferably formed of a substance having a lower X-ray transmittance than the laminated body. When a plurality of X-ray images include an image of the same mark, the plurality of X-ray images are aligned based on the image of the mark, and the plurality of X-ray images are combined. It can be performed.

一実施形態の金属プラグ入り積層ゴム支承の検査方法は、上記X線撮影画像を、上記積層体に対して異なるX線の入射位置及び/又は入射角度を設定して複数個作成し、これらの複数個のX線撮影画像を合成して検査用のX線撮影画像を作成するものである。 In the inspection method of the laminated rubber support with a metal plug of one embodiment, a plurality of the X-ray photographed images are created by setting different X-ray incident positions and / or incident angles with respect to the laminated body, and these are created. A plurality of X-ray images are combined to create an X-ray image for inspection.

上記実施形態によれば、X線撮影画像を、積層体に対して異なるX線の入射位置及び/又は入射角度を設定して複数個作成する。X線の入射位置や入射角度は、各X線撮影画像において、積層体中の金属プラグを鮮明に撮影できる位置や角度が設定される。これらの複数個のX線撮影画像を合成して検査用のX線撮影画像を作成することにより、積層体中の金属プラグを正確に撮像することができ、金属プラグの正確な検査を行うことができる。 According to the above embodiment, a plurality of X-ray photographed images are created by setting different X-ray incident positions and / or incident angles with respect to the laminated body. The position and angle of the X-ray incident are set so that the metal plug in the laminated body can be clearly photographed in each X-ray photographed image. By synthesizing these multiple X-ray images to create an X-ray image for inspection, the metal plug in the laminated body can be accurately imaged, and the metal plug can be inspected accurately. Can be done.

一実施形態の金属プラグ入り積層ゴム支承の検査方法は、上記X線撮影画像を2値化処理する。 In the inspection method of the laminated rubber bearing with a metal plug of one embodiment, the X-ray photographed image is binarized.

上記実施形態によれば、X線撮影画像を2値化処理することにより、X線撮影画像中の金属プラグの像を鮮明にすることができる。したがって、金属プラグの正確な検査を行うことができる。ここで、金属プラグ入り積層ゴム支承を構成する部材に対するX線透過量は、例えば積層体の板状ゴムが比較的多い一方、鋼板と金属プラグが比較的少ない。したがって、X線撮影画像の2値化処理により、例えば板状ゴムと鋼板及び金属プラグとを、画像の色の違いによって鮮明に区別することが可能となるように、各構成部材の形状を鮮明に表すことができる。 According to the above embodiment, the image of the metal plug in the X-ray photographed image can be made clear by binarizing the X-ray photographed image. Therefore, an accurate inspection of the metal plug can be performed. Here, the amount of X-ray transmission to the member constituting the laminated rubber bearing containing the metal plug is, for example, relatively large in the plate-shaped rubber of the laminated body, while relatively small in the steel plate and the metal plug. Therefore, by binarizing the X-ray photographed image, for example, the shape of each component can be clearly distinguished so that the plate-shaped rubber, the steel plate, and the metal plug can be clearly distinguished by the difference in the color of the image. Can be expressed in.

本発明の金属プラグ入り積層ゴム支承の性能判定方法は、上記金属プラグ入り積層ゴム支承の検査方法で取得された上記X線撮影画像中の金属プラグの像から金属プラグの体積を推定するステップと、
上記推定された金属プラグの体積を、予め求められた金属プラグの体積と減衰性能との相関関係を示す相関モデルに照らして、上記積層体の減衰性能を評価するステップと
を有することを特徴としている。
The method for determining the performance of the laminated rubber bearing with a metal plug of the present invention includes a step of estimating the volume of the metal plug from the image of the metal plug in the X-ray image obtained by the inspection method for the laminated rubber bearing with a metal plug. ,
It is characterized by having a step of evaluating the damping performance of the laminated body by comparing the estimated volume of the metal plug with a correlation model showing the correlation between the volume of the metal plug obtained in advance and the damping performance. There is.

上記構成によれば、金属プラグ入り積層ゴム支承の原位置で取得されたX線撮影画像中の金属プラグの像から、金属プラグの体積を推定する。金属プラグの体積は、X線撮影画像中に現れた金属プラグの流動突出の大きさから流動突出の体積を推定し、この流動突出の体積を元の金属プラグの体積から差し引いて算出することができる。このようにして推定された金属プラグの体積を、予め求められた金属プラグの体積と減衰性能との相関関係を示す相関モデルに照らすことにより、X線撮影画像中に表された金属プラグの現在の減衰性能を求めることができる。こうして求めた金属プラグの減衰性能により、積層体の減衰性能を評価することができる。したがって、上記金属プラグ入り積層ゴム支承に残存する性能を、効果的に判定することができる。 According to the above configuration, the volume of the metal plug is estimated from the image of the metal plug in the X-ray photographed image acquired at the in-situ position of the laminated rubber bearing containing the metal plug. The volume of the metal plug can be calculated by estimating the volume of the flow protrusion from the size of the flow protrusion of the metal plug appearing in the radiographed image and subtracting the volume of this flow protrusion from the volume of the original metal plug. can. By comparing the volume of the metal plug thus estimated with a correlation model showing the correlation between the volume of the metal plug and the damping performance obtained in advance, the present state of the metal plug represented in the radiographed image is present. Damping performance can be obtained. The damping performance of the laminated body can be evaluated from the damping performance of the metal plug thus obtained. Therefore, the performance remaining in the laminated rubber bearing with the metal plug can be effectively determined.

本発明の金属プラグ入り積層ゴム支承の性能判定方法は、上記金属プラグ入り積層ゴム支承の検査方法で取得された上記X線撮影画像中の金属プラグの像から金属プラグのひび割れ量を推定するステップと、
上記推定された金属プラグのひび割れ量を、予め求められた金属プラグのひび割れ量と減衰性能の低下量との相関関係を示す相関モデルに照らして、上記積層体の減衰性能を評価するステップと
を有することを特徴としている。
The method for determining the performance of a laminated rubber bearing with a metal plug of the present invention is a step of estimating the amount of cracks in the metal plug from the image of the metal plug in the X-ray image obtained by the inspection method for the laminated rubber bearing with a metal plug. When,
The step of evaluating the damping performance of the laminated body by comparing the estimated cracking amount of the metal plug with a correlation model showing the correlation between the cracked amount of the metal plug obtained in advance and the deterioration amount of the damping performance. It is characterized by having.

上記構成によれば、金属プラグ入り積層ゴム支承の原位置で取得されたX線撮影画像中の金属プラグの像から、金属プラグに生じたひび割れ量を推定する。金属プラグのひび割れ量は、X線撮影画像中に現れた金属プラグのひび割れの太さ及び長さから推定することができる。このようにして推定された金属プラグのひび割れ量を、予め求められた金属プラグのひび割れ量と減衰性能の低下量との相関関係を示す相関モデルに照らすことにより、X線撮影画像中に表された金属プラグの現在の減衰性能を求めることができる。こうして求めた金属プラグの減衰性能により、積層体の減衰性能を評価することができる。したがって、上記金属プラグ入り積層ゴム支承に残存する性能を、効果的に判定することができる。 According to the above configuration, the amount of cracks generated in the metal plug is estimated from the image of the metal plug in the X-ray photographed image acquired at the in-situ position of the laminated rubber bearing containing the metal plug. The amount of cracks in the metal plug can be estimated from the thickness and length of the cracks in the metal plug appearing in the radiographed image. The amount of cracks in the metal plug estimated in this way is represented in the X-ray photographed image by comparing it with a correlation model showing the correlation between the amount of cracks in the metal plug and the amount of decrease in damping performance obtained in advance. The current damping performance of the metal plug can be obtained. The damping performance of the laminated body can be evaluated from the damping performance of the metal plug thus obtained. Therefore, the performance remaining in the laminated rubber bearing with the metal plug can be effectively determined.

本発明の実施形態の検査方法が適用される鉛プラグ入り積層ゴム支承を示す平面図である。It is a top view which shows the laminated rubber bearing with a lead plug to which the inspection method of embodiment of this invention is applied. 鉛プラグ入り積層ゴム支承の断面図である。It is sectional drawing of the laminated rubber bearing with a lead plug. 鉛プラグ入り積層ゴム支承にX線を照射する様子を示す図である。It is a figure which shows the state of irradiating the laminated rubber bearing containing a lead plug with X-ray. X線撮影画像中の鉛プラグの像と、鉛プラグ入り積層ゴム支承の鉛プラグとの関係を示す模式図である。It is a schematic diagram which shows the relationship between the image of the lead plug in the X-ray photograph image, and the lead plug of the laminated rubber bearing containing a lead plug. 補正前のX線撮影画像を示す図である。It is a figure which shows the X-ray photograph image before correction. 補正後のX線撮影画像を示す図である。It is a figure which shows the X-ray photograph image after correction. 鉛プラグ入り積層ゴム支承の上部にX線の中心軸が位置するX線撮影画像である。This is an X-ray photographed image in which the central axis of X-rays is located above the laminated rubber bearing with a lead plug. 図6Aの下方を中心軸が位置するX線によるX線撮影画像である。6 is an X-ray image taken by an X-ray whose central axis is located below FIG. 6A. 図6Bの下方を中心軸が位置するX線によるX線撮影画像である。It is an X-ray photographed image by an X-ray whose central axis is located below FIG. 6B. 図6Cの下方を中心軸が位置するX線によるX線撮影画像である。It is an X-ray photographed image by an X-ray whose central axis is located below FIG. 6C. 図6Dの下方を中心軸が位置するX線によるX線撮影画像である。6 is an X-ray image taken by an X-ray whose central axis is located below FIG. 6D. 図6A乃至6EのX線撮影画像の各々の部分を合成して得たX線撮影画像である。6 is an X-ray photographed image obtained by synthesizing each part of the X-ray photographed images of FIGS. 6A to 6E. 図6A乃至6EのX線撮影画像が得られた鉛プラグ入り積層ゴム支承の断面図である。It is sectional drawing of the laminated rubber bearing containing a lead plug which obtained the X-ray photograph image of FIGS. 6A to 6E. 鉛プラグの体積の減少に対する減衰性能の低下を示すグラフである。It is a graph which shows the decrease of the damping performance with respect to the decrease of the volume of a lead plug.

以下、本発明の実施形態を、添付の図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、実施形態の検査方法を適用する金属プラグ入り積層ゴム支承としての鉛プラグ入り積層ゴム支承を示す平面図であり、図2は、鉛プラグ入り積層ゴム支承の断面図である。この鉛プラグ入り積層ゴム支承1は、構造物としての道路橋に設置されているものである。 FIG. 1 is a plan view showing a lead-plugged laminated rubber bearing as a metal-plugged laminated rubber bearing to which the inspection method of the embodiment is applied, and FIG. 2 is a cross-sectional view of the lead-plugged laminated rubber bearing. The lead-plugged laminated rubber bearing 1 is installed on a road bridge as a structure.

この鉛プラグ入り積層ゴム支承1は、複数の板状ゴム7と鋼板8が交互に積層されて形成された積層体2を備える。この積層体2は、平面が正方形の直方体形状を有する。積層体2の板状ゴム7は天然ゴムで形成されており、接着剤や加硫接着により鋼板8に接着されている。なお、板ゴム7は、天然ゴム及び/又は合成ゴムに各種の樹脂や充填材が添加された高減衰ゴムで構成されてもよい。 The lead-plugged laminated rubber bearing 1 includes a laminated body 2 formed by alternately laminating a plurality of plate-shaped rubbers 7 and steel plates 8. The laminated body 2 has a rectangular parallelepiped shape having a square plane. The plate-shaped rubber 7 of the laminated body 2 is made of natural rubber, and is adhered to the steel plate 8 by adhesive or vulcanization adhesion. The plate rubber 7 may be made of a high damping rubber in which various resins and fillers are added to natural rubber and / or synthetic rubber.

積層体2の一方の面であって、図2において上側に位置する面には、積層体2よりも厚みの大きい鋼板で形成され、構造物の上部構造に接続される上側の接続体3が配置されている。また、積層体2の他方の面であって、図2において下側に位置する面には、構造物の下部構造に接続される下側の接続体3が配置されている。上側と下側の接続体3の縁部には、構造物に接続されるためのボルトやダウエルピン等が螺合する複数の固定孔10が設けられている。 On one surface of the laminated body 2, which is located on the upper side in FIG. 2, an upper connecting body 3 formed of a steel plate having a thickness larger than that of the laminated body 2 and connected to the superstructure of the structure is formed. Have been placed. Further, on the other surface of the laminated body 2, which is located on the lower side in FIG. 2, the lower connecting body 3 connected to the lower structure of the structure is arranged. A plurality of fixing holes 10 into which bolts, dowel pins, etc. for connecting to a structure are screwed are provided at the edges of the upper and lower connecting bodies 3.

上記積層体2の側面と、上側及び下側の接続体3の側面は、内部の劣化を防止するための被覆ゴム5が被覆されている。被覆ゴム5の上端は、上側の接続体3の縁を取り囲むように、接続体3の平面側に屈曲している。被覆ゴム5は、高減衰ゴムや、天然ゴムで形成することができる。高減衰ゴムとしては、エチレンプロピレンゴム、ニトリルゴム、ブチルゴム、ハロゲン化ブチルゴム、クロロプレンゴム、イソプレンゴム、スチレンブタジエン共重合ゴム、アクリロニトリルブタジエンゴム、ブタジエンゴム若しくはシリコーンゴム又はこれらの混合物及びこれらと天然ゴムからなる混合物を用いることができる。 The side surface of the laminated body 2 and the side surface of the upper and lower connecting bodies 3 are coated with a covering rubber 5 for preventing internal deterioration. The upper end of the covering rubber 5 is bent toward the flat surface side of the connecting body 3 so as to surround the edge of the upper connecting body 3. The coated rubber 5 can be formed of a high damping rubber or a natural rubber. High damping rubber includes ethylene propylene rubber, nitrile rubber, butyl rubber, halogenated butyl rubber, chloroprene rubber, isoprene rubber, styrene butadiene copolymer rubber, acrylonitrile butadiene rubber, butadiene rubber or silicone rubber, or a mixture thereof, and natural rubber. Can be used.

上記鉛プラグ入り積層ゴム支承1には、上側及び下側の接続体3と積層体2を厚み方向に貫通する4つの貫通孔が形成されており、これらの貫通孔内に、金属プラグのとしての鉛プラグ4が夫々収容されている。鉛プラグ4は、純度が99.9%以上の鉛で形成されており、積層体2の板状ゴム7と鋼板8の積層方向に中心軸が延在する円筒形状を有する。鉛プラグ4は、鉛プラグ入り積層ゴム支承1の平面視において、対角線上で正方形の頂点を形成する位置に配置されている。この鉛プラグ4は、積層体2に上側及び下側の接続体3が固定された後、これらの積層体2及び接続体3の積層方向に形成された4つの貫通孔に、圧入されて収容されている。 The lead-plugged laminated rubber bearing 1 is formed with four through holes that penetrate the upper and lower connecting bodies 3 and the laminated body 2 in the thickness direction, and the through holes are used as metal plugs. Lead plugs 4 are housed in each. The lead plug 4 is made of lead having a purity of 99.9% or more, and has a cylindrical shape in which the central axis extends in the laminating direction of the plate-shaped rubber 7 of the laminated body 2 and the steel plate 8. The lead plug 4 is arranged at a position forming the apex of the square on the diagonal line in the plan view of the laminated rubber bearing 1 containing the lead plug. The lead plug 4 is press-fitted and accommodated in four through holes formed in the stacking direction of the laminated body 2 and the connecting body 3 after the upper and lower connecting bodies 3 are fixed to the laminated body 2. Has been done.

この鉛プラグ入り積層ゴム支承1は、道路橋に設置されており、下部構造である橋脚と、上部構造である橋桁との間に配置されている。鉛プラグ入り積層ゴム支承1の下側の接続体3は、鋼製又はコンクリート製の橋脚の上端面に設置されたアンカーボルトに連結されている。また、上側の接続体3は、鋼製又はコンクリート製の橋桁の下フランジに螺着されたボルトに連結されている。 The lead-plugged laminated rubber bearing 1 is installed on a road bridge, and is arranged between a pier which is a substructure and a bridge girder which is a superstructure. The lower connecting body 3 of the lead-plugged laminated rubber bearing 1 is connected to an anchor bolt installed on the upper end surface of a steel or concrete pier. Further, the upper connecting body 3 is connected to a bolt screwed to the lower flange of the bridge girder made of steel or concrete.

このように橋脚上に設置されて橋桁を支持する鉛プラグ入り積層ゴム支承1には、上部構造の死荷重や、車両の通過等によって変動する活荷重や、風荷重や、地震荷重等が作用する。また、車両の通過や風や地震による振動が、鉛プラグ入り積層ゴム支承1に伝達する。さらに、温度変化に伴う橋梁の部材の膨張又は収縮に起因して、鉛プラグ入り積層ゴム支承1の上側の接続体3と下側の接続体3との間に変位が生じる。これらの荷重や振動や変位により、鉛プラグ入り積層ゴム支承1内の鉛プラグ4に変状が生じる場合がある。鉛プラグ4の変状としては、軸方向のいずれかの位置で横断方向に切断面が形成される破断や、鉛プラグ4の側面から積層体2の板状ゴム7と鋼板8の間に鉛が流出する流動がある。これらの鉛プラグ4の変状は、積層体2の外観からは察知できないが、鉛プラグ入り積層ゴム支承1の性能の劣化を招く。そこで、本実施形態の金属プラグ入り積層ゴム支承の検査方法により、鉛プラグ入り積層ゴム支承1を破壊することなく非破壊で検査し、鉛プラグ4の変状を検出する。 In this way, the lead-plugged laminated rubber bearing 1 installed on the pier and supporting the bridge girder is subject to dead load of the superstructure, live load that fluctuates due to the passage of vehicles, wind load, seismic load, etc. do. Further, the passage of the vehicle and the vibration caused by the wind and the earthquake are transmitted to the laminated rubber bearing 1 containing the lead plug. Further, due to the expansion or contraction of the bridge member due to the temperature change, a displacement occurs between the upper connecting body 3 and the lower connecting body 3 of the lead plug-containing laminated rubber bearing 1. Due to these loads, vibrations, and displacements, the lead plug 4 in the laminated rubber bearing 1 containing the lead plug may be deformed. Deformations of the lead plug 4 include breakage in which a cut surface is formed in the transverse direction at any position in the axial direction, and lead from the side surface of the lead plug 4 between the plate-shaped rubber 7 and the steel plate 8 of the laminate 2. There is a flow of outflow. These deformations of the lead plug 4 cannot be detected from the appearance of the laminated body 2, but cause deterioration in the performance of the laminated rubber bearing 1 containing the lead plug. Therefore, according to the inspection method of the laminated rubber bearing containing a metal plug of the present embodiment, the laminated rubber bearing 1 containing a lead plug is inspected non-destructively without breaking, and the deformation of the lead plug 4 is detected.

図3は、本実施形態の金属プラグ入り積層ゴム支承の検査方法により、鉛プラグ入り積層ゴム支承1を検査する様子を示す模式図である。本実施形態の検査方法は、X線を生成して放射するX線源12と、このX線源12から放射されて検査対象を透過したX線を検出するX線検出器としてのイメージングプレート13を用いる。 FIG. 3 is a schematic view showing how the lead plug-containing laminated rubber bearing 1 is inspected by the method for inspecting the metal-plugged laminated rubber bearing 1 of the present embodiment. The inspection method of the present embodiment includes an X-ray source 12 that generates and emits X-rays, and an imaging plate 13 as an X-ray detector that detects X-rays emitted from the X-ray source 12 and transmitted through an inspection target. Is used.

X線源12は、電子源と、この電子源から生成された電子ビームが照射されるX線ターゲットとを有し、X線を発生させるX線管を有する。イメージングプレート13は、放射線エネルギーを蓄積し、後に熱や光等により励起されて蛍光を発する現象である輝尽性蛍光発光現象を利用したものであり、輝尽性蛍光体(BaFBr:EU2+)の微結晶を塗布したフィルムを有する。検査対象を透過したX線を検出したイメージングプレート13を、図示しないリーダーで読み取ることにより、検査対象のX線撮影画像を得ることができる。リーダーは、イメージングプレート13のフィルムの表面にレーザー光を照射することにより、X線の露光量に応じてフィルムから生じる発光量を光学スキャナで読み取ることにより、検査対象のX線撮影画像を生成する。上記X線源12とイメージングプレート13は、鉛プラグ入り積層ゴム支承1に対して停止した状態で作動する。リーダーで生成されたX線撮影画像はコンピュータに入力され、このコンピュータで画像処理ソフトウェアが実行されて得られる機能により、次のように、補正としての歪修正処理と、合成処理が行われる。なお、歪修正処理で修正される歪みとは、X線撮影画像に、部材が本来有する形状とは異なるように表れた形状をいう。 The X-ray source 12 has an electron source and an X-ray target to which an electron beam generated from the electron source is irradiated, and has an X-ray tube for generating X-rays. The imaging plate 13 utilizes a brilliant fluorescence emission phenomenon, which is a phenomenon in which radiation energy is stored and then excited by heat, light, or the like to emit fluorescence, and is a brilliant fluorescent substance (BaFBr: EU 2+ ). Has a film coated with microcrystals of. By reading the imaging plate 13 that has detected the X-rays transmitted through the inspection target with a reader (not shown), an X-ray photographed image of the inspection target can be obtained. The reader irradiates the surface of the film of the imaging plate 13 with a laser beam, and reads the amount of light emitted from the film according to the amount of X-ray exposure with an optical scanner to generate an X-ray photographed image to be inspected. .. The X-ray source 12 and the imaging plate 13 operate in a stopped state with respect to the laminated rubber bearing 1 containing a lead plug. The X-ray photographed image generated by the reader is input to a computer, and the function obtained by executing the image processing software on the computer performs distortion correction processing as correction and composition processing as follows. The distortion corrected by the distortion correction process means a shape that appears in the X-ray photographed image so as to be different from the shape originally possessed by the member.

検査対象に対して停止したX線源から照射されたX線による検査は、従来は、板状体や管体等のような厚みの小さいものが対象であり、鉛プラグ入り積層ゴム支承のように透過方向の寸法の大きなものは、従来、対象とされていなかった。その理由としては、透過方向の寸法が大きいと、X線の減衰が大きいので鮮明な透過画像を得にくいことや、X線の拡散が大きいので、X線の中心軸から離れるにつれて像の歪みが大きくなることにある。 Conventionally, the inspection by X-rays radiated from the stopped X-ray source to the inspection target has been targeted for small-thick objects such as plate-shaped bodies and pipe bodies, such as lead-plugged laminated rubber bearings. Conventionally, those with large dimensions in the transmission direction have not been targeted. The reason is that if the dimension in the transmission direction is large, it is difficult to obtain a clear transmitted image because the attenuation of X-rays is large, and because the diffusion of X-rays is large, the image is distorted as the distance from the central axis of X-rays increases. To grow up.

また、図1に示す鉛プラグ入り積層ゴム支承1は、鉛プラグ4が、鉛プラグ入り積層ゴム支承1の平面視において、対角線上で正方形の頂点を形成する位置に配置されている。したがって、鉛プラグ入り積層ゴム支承1の側面に対して直角方向にX線を照射すると、2つの鉛プラグ4を透過したX線が検出されるので、いずれの鉛プラグ4に損傷が生じているのかを特定できない問題がある。また、鉛プラグ入り積層ゴム支承1は、橋脚の上端面と橋桁の下フランジとの間に配置されているので、検査のための作業領域が狭く、また、他の構造物が接近して配置されていることが多い。したがって、鉛プラグ入り積層ゴム支承1の周囲には、X線源12やイメージングプレート13を配置するスペースが少なく、X線源12やイメージングプレート13の配置形態の自由度が低い。 Further, in the laminated rubber bearing 1 containing a lead plug shown in FIG. 1, the lead plug 4 is arranged at a position forming a square apex on a diagonal line in a plan view of the laminated rubber bearing 1 containing a lead plug. Therefore, when X-rays are irradiated in the direction perpendicular to the side surface of the laminated rubber bearing 1 containing a lead plug, X-rays transmitted through the two lead plugs 4 are detected, and any of the lead plugs 4 is damaged. There is a problem that it cannot be specified. Further, since the lead plug-containing laminated rubber bearing 1 is arranged between the upper end surface of the pier and the lower flange of the bridge girder, the work area for inspection is narrow and other structures are arranged close to each other. Often done. Therefore, there is little space for arranging the X-ray source 12 and the imaging plate 13 around the lead-plugged laminated rubber bearing 1, and the degree of freedom in arranging the X-ray source 12 and the imaging plate 13 is low.

そこで、本実施形態の金属プラグ入り積層ゴム支承の検査方法では、図3に示すように、X線源12から照射されるX線を、X線の中心軸Xaが鉛プラグ入り積層ゴム支承1の側面に対して傾斜した方向に照射し、X線が入射した側面に対して直角に隣接する側面に配置されたイメージングプレート13で検出する。すなわち、X線源12から照射されるX線の中心軸Xaに対して傾斜して配置されたイメージングプレート13により、X線を検出する。こうして得られたX線撮影画像は、上記X線の特性に起因する歪みが含まれるので、コンピュータの画像処理により、歪修正処理を行って補正する。 Therefore, in the inspection method of the laminated rubber bearing with a metal plug of the present embodiment, as shown in FIG. 3, the X-ray emitted from the X-ray source 12 is the laminated rubber bearing 1 with a lead plug in the central axis Xa of the X-ray. Irradiates in an inclined direction with respect to the side surface of the X-ray, and the X-ray is detected by the imaging plate 13 arranged on the side surface adjacent to the side surface perpendicular to the incident side surface. That is, X-rays are detected by the imaging plate 13 arranged at an angle with respect to the central axis Xa of the X-rays emitted from the X-ray source 12. Since the X-ray photographed image thus obtained contains distortion due to the above-mentioned X-ray characteristics, distortion correction processing is performed by image processing of a computer to correct the distortion.

図4は、鉛プラグ入り積層ゴム支承1の側面の法線に対して、中心軸Xaが角度(π/2−θ)だけ傾斜したX線により検出された鉛プラグ4のX線撮影画像と、実際の鉛プラグ4に生じている損傷との関係を示す図である。図4において、18はイメージングプレート13で取得されたX線撮影画像を、鉛プラグ入り積層ゴム支承1の平面図におけるイメージングプレート13の幅方向の設置位置と一致させて示したものである。鉛プラグ入り積層ゴム支承1の平面図には、イメージングプレート13で取得されたX線撮影画像18に対応し、この鉛プラグ4に生じた損傷を示している。X線撮影画像18中、44は鉛プラグ4の像であり、45は鉛プラグ4の一方の側に生じた流動損傷15の像であり、46は鉛プラグ4の他方の側に生じた流動損傷16の像である。鉛プラグ4に生じた流動損傷15,16は、積層体2の側面から鉛が突出する流動突出までには至らないが、鉛プラグ4に変状が生じているので、鉛プラグ4の性能が低下している。この鉛プラグ4の変状の形態を正確に特定するために、次のようにして、X線撮影画像18の歪修正処理を行う。 FIG. 4 is an X-ray photographed image of the lead plug 4 detected by X-rays in which the central axis Xa is inclined by an angle (π / 2-θ 4 ) with respect to the normal of the side surface of the laminated rubber bearing 1 containing the lead plug. It is a figure which shows the relationship with the damage which occurs in the actual lead plug 4. In FIG. 4, 18 shows the X-ray photographed image acquired by the imaging plate 13 in agreement with the installation position in the width direction of the imaging plate 13 in the plan view of the laminated rubber bearing 1 containing the lead plug. The plan view of the laminated rubber bearing 1 containing a lead plug corresponds to the X-ray photographed image 18 acquired by the imaging plate 13 and shows the damage caused to the lead plug 4. In the radiographed image 18, 44 is an image of the lead plug 4, 45 is an image of the flow damage 15 generated on one side of the lead plug 4, and 46 is an image of the flow damage generated on the other side of the lead plug 4. It is an image of damage 16. The flow damages 15 and 16 generated in the lead plug 4 do not reach the flow protrusion where the lead protrudes from the side surface of the laminated body 2, but the lead plug 4 is deformed, so that the performance of the lead plug 4 is improved. It is declining. In order to accurately identify the deformed form of the lead plug 4, the distortion correction process of the X-ray photographed image 18 is performed as follows.

まず、図4の平面図に示した各点の符号間の距離を、次のように設定する。

Figure 0006978223
Figure 0006978223
Figure 0006978223
Figure 0006978223
Figure 0006978223
Figure 0006978223
ここで、Aは、X線源12の焦点である。Bは、X線源12の焦点から、鉛プラグ入り積層ゴム支承1のX線が入射する側面と平行に延ばした線と、検査対象の鉛プラグ4の中心Oから上記X線が入射する側面の法線方向に延ばした線との交点である。また、Cは、X線源12の焦点から、鉛プラグ入り積層ゴム支承1のX線が入射する側面と平行に延ばした線と、イメージングプレート13が設置された鉛プラグ入り積層ゴム支承1の側面であってX線が出射する側面を平行に延ばした線との交点である。また、Dは、X線源12の焦点Aから、鉛プラグ入り積層ゴム支承1のX線が入射する側面へ法線方向に延ばした線の交点である。また、Eは、鉛プラグ入り積層ゴム支承1のX線が入射する側面と、イメージングプレート13が設置された鉛プラグ入り積層ゴム支承1の側面との交点である。また、Fは、イメージングプレート13が設置された鉛プラグ入り積層ゴム支承1の側面において、イメージングプレート13の一端に相当する点である。また、Gは、イメージングプレート13の検出面の幅方向において、イメージングプレート13に投射される鉛プラグ4の一方の流動損傷15の端を示す点である。また、Hは、イメージングプレート13の検出面の幅方向において、鉛プラグ4の一方の側の境界を示す点である。また、Iは、イメージングプレート13の検出面の幅方向において、鉛プラグ4の他方の側の境界を示す点である。また、Jは、イメージングプレート13の検出面の幅方向において、イメージングプレート13に照射される鉛プラグ4の他方の流動損傷16の端を示す点である。また、Kは、鉛プラグ入り積層ゴム支承1のX線が入射する側面が平面視において現れる線と、検査対象の鉛プラグ4の中心Oから上記X線が入射する側面の法線方向に延ばした線との交点である。また、Rは、イメージングプレート13に投射される鉛プラグ4の一方の流動損傷15の端を通るX線と、鉛プラグ4の中心Oを通ってイメージングプレート13の検出面と平行な線との交点である。また、Sは、イメージングプレート13に投射される鉛プラグ4の一方の側の境界を通るX線と、鉛プラグ4の中心Oを通ってイメージングプレート13の検出面と平行な線との交点である。また、Tは、一方の流動損傷15が生じた鉛プラグ4の側面と、鉛プラグ4の中心Oを通ってイメージングプレート13の検出面と平行な線との交点である。また、Uは、他方の流動損傷16が生じた鉛プラグ4の側面と、鉛プラグ4の中心Oを通ってイメージングプレート13の検出面と平行な線との交点である。また、Vは、イメージングプレート13に投射される鉛プラグ4の他方の側の境界を通るX線と、鉛プラグ4の中心Oを通ってイメージングプレート13の検出面と平行な線との交点である。また、Wは、イメージングプレート13に投射される鉛プラグ4の他方の流動損傷16の端を通るX線と、鉛プラグ4の中心Oを通ってイメージングプレート13の検出面と平行な線との交点である。また、Oは、鉛プラグ4の中心である。また、Pは、イメージングプレート13に投射される鉛プラグ4の他方の側の境界を通るX線と、鉛プラグ4の側面との接点である。また、Qは、イメージングプレート13に投射される鉛プラグ4の一方の側の境界を通るX線と、鉛プラグ4の側面との接点である。また、rは鉛プラグ4の半径である。 First, the distance between the codes of the points shown in the plan view of FIG. 4 is set as follows.
Figure 0006978223
Figure 0006978223
Figure 0006978223
Figure 0006978223
Figure 0006978223
Figure 0006978223
Here, A is the focal point of the X-ray source 12. B is a line extending from the focal point of the X-ray source 12 in parallel with the side surface where the X-ray of the laminated rubber support 1 containing the lead plug is incident, and the side surface where the X-ray is incident from the center O of the lead plug 4 to be inspected. It is the intersection with the line extending in the normal direction of. Further, C is a line extending from the focal point of the X-ray source 12 in parallel with the side surface where the X-ray of the lead plug-containing laminated rubber bearing 1 is incident, and the lead plug-containing laminated rubber bearing 1 in which the imaging plate 13 is installed. It is an intersection with a line that is a side surface and extends in parallel to the side surface from which X-rays are emitted. Further, D is an intersection of lines extending in the normal direction from the focal point A of the X-ray source 12 to the side surface where the X-rays of the lead-plugged laminated rubber bearing 1 are incident. Further, E is an intersection of the side surface where the X-ray of the lead plug-containing laminated rubber bearing 1 is incident and the side surface of the lead plug-containing laminated rubber bearing 1 in which the imaging plate 13 is installed. Further, F is a point corresponding to one end of the imaging plate 13 on the side surface of the lead plug-containing laminated rubber bearing 1 in which the imaging plate 13 is installed. Further, G is a point indicating the end of one of the flow damages 15 of the lead plug 4 projected on the imaging plate 13 in the width direction of the detection surface of the imaging plate 13. Further, H is a point indicating the boundary on one side of the lead plug 4 in the width direction of the detection surface of the imaging plate 13. Further, I is a point indicating the boundary on the other side of the lead plug 4 in the width direction of the detection surface of the imaging plate 13. Further, J is a point indicating the end of the other flow damage 16 of the lead plug 4 irradiated to the imaging plate 13 in the width direction of the detection surface of the imaging plate 13. Further, K is a line in which the side surface of the laminated rubber bearing 1 containing the lead plug on which the X-ray is incident appears in a plan view, and extends from the center O of the lead plug 4 to be inspected in the normal direction of the side surface on which the X-ray is incident. It is the intersection with the normal line. Further, R is an X-ray that passes through the end of one of the flow damages 15 of the lead plug 4 projected onto the imaging plate 13 and a line that passes through the center O of the lead plug 4 and is parallel to the detection surface of the imaging plate 13. It is an intersection. Further, S is an intersection of an X-ray projected on the imaging plate 13 passing through the boundary on one side of the lead plug 4 and a line passing through the center O of the lead plug 4 and parallel to the detection surface of the imaging plate 13. be. Further, T is an intersection of the side surface of the lead plug 4 in which one of the flow damages 15 has occurred and the line passing through the center O of the lead plug 4 and parallel to the detection surface of the imaging plate 13. Further, U is an intersection of the side surface of the lead plug 4 where the other flow damage 16 has occurred and a line passing through the center O of the lead plug 4 and parallel to the detection surface of the imaging plate 13. Further, V is an intersection of an X-ray projected on the imaging plate 13 passing through the boundary on the other side of the lead plug 4 and a line passing through the center O of the lead plug 4 and parallel to the detection surface of the imaging plate 13. be. Further, W is an X-ray that passes through the end of the other flow damage 16 of the lead plug 4 projected onto the imaging plate 13 and a line that passes through the center O of the lead plug 4 and is parallel to the detection surface of the imaging plate 13. It is an intersection. Further, O is the center of the lead plug 4. Further, P is a contact point between the X-ray passing through the boundary on the other side of the lead plug 4 projected on the imaging plate 13 and the side surface of the lead plug 4. Further, Q is a contact point between the X-ray passing through the boundary on one side of the lead plug 4 projected on the imaging plate 13 and the side surface of the lead plug 4. Further, r is the radius of the lead plug 4.

上記イメージングプレート13で検出されるX線撮影画像18における一方の流動損傷15の像45の長さL11と、他方の流動損傷16の像46の長さL12は、図4に示された幾何学的関係に基づいて、次のように表される。

Figure 0006978223
Figure 0006978223
ここで、
Figure 0006978223
Figure 0006978223
Figure 0006978223
である。また、
Figure 0006978223
Figure 0006978223
Figure 0006978223
である。また、
Figure 0006978223
である。また、
Figure 0006978223
Figure 0006978223
Figure 0006978223
である。 The length L 11 of the image 45 of one flow injury 15 and the length L 12 of the image 46 of the other flow injury 16 in the radiographed image 18 detected by the imaging plate 13 are shown in FIG. Based on the geometrical relationship, it is expressed as follows.
Figure 0006978223
Figure 0006978223
here,
Figure 0006978223
Figure 0006978223
Figure 0006978223
Is. also,
Figure 0006978223
Figure 0006978223
Figure 0006978223
Is. also,
Figure 0006978223
Is. also,
Figure 0006978223
Figure 0006978223
Figure 0006978223
Is.

これらから、一方の流動損傷15が鉛プラグ4の側面から流動した流動長について、X線撮影画像18に投影された流動長から算出した第1流動長L13を、次の式により算出する。

Figure 0006978223
また、他方の流動損傷16が鉛プラグ4の側面から流動した流動長について、X線撮影画像18に投影された流動長から算出した第2流動長L14を、次の式により算出する。
Figure 0006978223
さらに、これらの第1流動長L13及び第2流動長L14は、傾斜方向からの投影により、流動長が過少に評価される傾向にある。そこで、下記のように、流動損傷15,16を含めた全幅から鉛プラグ4の幅を差し引くことにより、上記第1及び第2流動長L13,L14よりも高い精度の合計流動長L15を求めることができる。
Figure 0006978223
These, for flow length of one flow damage 15 is flow from the side of the lead plug 4, the first flow length L 13 which is calculated from the flow length projected on the X-ray image 18 is calculated by the following equation.
Figure 0006978223
Further, regarding the flow length in which the other flow damage 16 flows from the side surface of the lead plug 4, the second flow length L 14 calculated from the flow length projected on the X-ray photographed image 18 is calculated by the following formula.
Figure 0006978223
Further, the first flow length L 13 and the second flow length L 14 of which, by the projection from the inclined direction, tends to flow length is evaluated under-. Therefore, as described below, by subtracting the width of the lead plug 4 from the total width including the flow damages 15 and 16, the total flow length L 15 with higher accuracy than the first and second flow lengths L 13 and L 14 described above. Can be asked.
Figure 0006978223

このような歪修正処理により、鉛プラグ入り積層ゴム支承1に対する傾斜角度θや、X線源12及びイメージングプレート13の互いの間の距離や、鉛プラグ入り積層ゴム支承1とX線源12との間の距離等に基づいて、X線撮影画像における鉛プラグ4の寸法の歪みを修正し、実質的に実寸の鉛プラグ4の流動長である合計流動長L15を求めることができる。なお、第1及び第2流動長L13,L14を流動長として採用してもよい。 By such distortion correction processing, the inclination angle θ 4 with respect to the lead-plugged laminated rubber support 1 and the distance between the X-ray source 12 and the imaging plate 13 and the lead-plugged laminated rubber support 1 and the X-ray source 12 It is possible to correct the distortion of the dimensions of the lead plug 4 in the X-ray photographed image based on the distance between the lead plug 4 and the like, and obtain the total flow length L 15 which is the flow length of the lead plug 4 of the actual size. The first and second flow lengths L 13 and L 14 may be adopted as the flow length.

上記歪修正処理を、鉛プラグ入り積層ゴム支承1の高さ方向の複数の断面に関して実行することにより、イメージングプレート13で取得されたX線撮影画像18の補正を行うことができる。 By performing the distortion correction process on a plurality of cross sections of the lead-plugged laminated rubber bearing 1 in the height direction, the X-ray photographed image 18 acquired by the imaging plate 13 can be corrected.

また、歪修正処理では、上述のように、X線源12のX線の照射角度と、X線の照射経路と鉛プラグ入り積層ゴム支承1の構成部分との幾何学的関係に基づいて補正を行うほか、鉛プラグ入り積層ゴム支承1の構成部分が本来有する形状に基づいて、X線撮影画像の補正を行う。図5Aは、補正としての歪修正処理を行う前の鉛プラグ4の側部を示すX線撮影画像であり、図5Bは、補正としての歪修正処理を行った後の鉛プラグ4の側部を示すX線撮影画像である。図5Aに示すように、修正前のX線撮影画像では、X線源からの距離に伴って拡散することにより、積層体2の鋼板41の像の端部が、先端程狭まるテーパー状に映る。積層体2の鋼板41は、本来、厚みが均一に形成されているので、この鋼板41の本来の形状となるように、X線撮影画像の歪みを修正する。具体的には、図5Aの鋼板41の像のテーパー状の部分が、平行となるように、このテーパー状の部分を含む所定領域を変形させる。このように、X線撮影画像を、X線撮影画像中の部材の像の形状が、本来の形状となるように修正することにより、X線撮影画像の歪みを効果的に修正することができる。こうして歪修正を行って補正したX線撮影画像により、鉛プラグ4の検査が可能となる。例えば、図5Bによれば、鉛プラグ44の側面に凹凸部19が形成されており、鉛の流動による損傷が生じていることが分かる。 Further, in the distortion correction process, as described above, correction is made based on the geometrical relationship between the X-ray irradiation angle of the X-ray source 12, the X-ray irradiation path, and the constituent parts of the laminated rubber bearing 1 containing the lead plug. In addition, the X-ray photographed image is corrected based on the shape originally possessed by the constituent portion of the laminated rubber bearing 1 containing the lead plug. FIG. 5A is an X-ray image showing the side portion of the lead plug 4 before the distortion correction processing as correction, and FIG. 5B is the side portion of the lead plug 4 after the distortion correction processing as correction. It is an X-ray photographed image which shows. As shown in FIG. 5A, in the X-ray photographed image before correction, the end portion of the image of the steel plate 41 of the laminated body 2 appears as a taper narrowing toward the tip due to diffusion with the distance from the X-ray source. .. Since the steel plate 41 of the laminated body 2 is originally formed to have a uniform thickness, the distortion of the X-ray photographed image is corrected so as to have the original shape of the steel plate 41. Specifically, a predetermined region including the tapered portion is deformed so that the tapered portion of the image of the steel plate 41 in FIG. 5A is parallel to each other. In this way, by modifying the X-ray photographed image so that the shape of the image of the member in the X-ray photographed image becomes the original shape, the distortion of the X-ray photographed image can be effectively corrected. .. The lead plug 4 can be inspected by the X-ray photographed image corrected by correcting the distortion in this way. For example, according to FIG. 5B, it can be seen that the uneven portion 19 is formed on the side surface of the lead plug 44, and the damage is caused by the flow of lead.

上記X線撮影画像は、歪修正処理を行った後、合成処理を行うのが好ましい。鉛プラグ入り積層ゴム支承1は、積層体2内に複数の鋼板8が互いに平行に平面方向に延在しているので、積層体2の側面へX線が入射すると、X線の中心軸Xaに対して積層体2の高さ方向へ離れた位置の鋼板8は、イメージングプレート13で取得されたX線撮影画像において、高さ方向に傾斜して投影された像が映る。そこで、本実施形態の金属プラグ入り積層ゴム支承の検査方法では、X線源12によるX線の照射位置を、高さ方向に互いに異なる5つの位置に設定してX線撮影画像を取得する。取得した5つのX線撮影画像の夫々から、X線の中心軸Xaに対応する高さの近傍の部分を取り出して、取り出した部分を組み合わせて1つのX線撮影画像を作成する。 It is preferable that the X-ray photographed image is subjected to a distortion correction process and then a composite process. In the laminated rubber support 1 containing a lead plug, since a plurality of steel plates 8 extend in a plane direction in parallel with each other in the laminated body 2, when X-rays are incident on the side surface of the laminated body 2, the central axis Xa of the X-rays is Xa. On the other hand, the steel plate 8 at a position separated in the height direction of the laminated body 2 shows an image projected inclined in the height direction in the X-ray photographed image acquired by the imaging plate 13. Therefore, in the inspection method of the laminated rubber bearing with a metal plug of the present embodiment, the X-ray irradiation positions by the X-ray source 12 are set to five positions different from each other in the height direction, and an X-ray photographed image is acquired. From each of the five acquired X-ray images, a portion near the height corresponding to the central axis Xa of the X-ray is extracted, and the extracted portions are combined to create one X-ray photographed image.

図6A乃至6Eは、合成処理を行うために使用するX線撮影画像である。図6Aは、X線の中心軸Xaが積層体2の上部に位置するX線撮影画像であり、図6Bは、X線の中心軸Xaが積層体2の図6Aよりも下方に位置するX線撮影画像であり、図6Cは、X線の中心軸Xaが積層体2の図6Bよりも下方に位置するX線撮影画像であり、図6Dは、X線の中心軸Xaが積層体2の図6Cよりも下方に位置するX線撮影画像であり、図6Eは、X線の中心軸Xaが積層体2の図6Dよりも下方に位置するX線撮影画像である。これらのX線撮影画像の各々から、X線の中心軸Xaに対応する高さの部分を、所定の高さに亘って抽出し、抽出した部分を順次高さ方向に配列すると、図6FのようなX線撮影画像が得られる。すなわち、図6A乃至6EのX線撮影画像から、高さ方向において歪みの少ない部分を抽出し、高さ方向に合成して、図6FのX線撮影画像を作成する。図6Gは、X線を照射してX線撮影画像を取得した鉛プラグ入り積層ゴム支承1を切断した様子を示す断面図である。図6Fと図6Gを比較すれば明らかなように、合成処理を行うことにより、鉛プラグ入り積層ゴム支承1の積層体2の内部を示す正確なX線撮影画像が得られる。例えば、図6G中の鉛プラグ4の流動部20は、図6F中の鉛プラグ44の流動部46として鮮明に現れている。このように、合成処理は、異なる高さからX線を照射して取得したX線撮影画像を合成することにより、歪みの少ない鮮明な積層体2のX線撮影画像を得ることができる。したがって、鉛プラグ4の形状を正確に把握して、正確な検査を行うことができる。なお、合成するX線撮影画像は、高さ方向に異なる位置から積層体2にX線を照射して得たもののほか、入射角度の異なるX線を照射して得たものでもよい。 6A to 6E are X-ray photographed images used for performing the compositing process. FIG. 6A is an X-ray photographed image in which the central axis Xa of X-rays is located in the upper part of the laminated body 2, and FIG. 6B is an X in which the central axis Xa of X-rays is located below FIG. 6A of the laminated body 2. FIG. 6C is an X-ray photographed image in which the central axis Xa of X-rays is located below FIG. 6B of the laminated body 2, and FIG. 6D is an X-ray photographed image in which the central axis Xa of X-rays is the laminated body 2. 6C is an X-ray photographed image located below FIG. 6C, and FIG. 6E is an X-ray photographed image in which the central axis Xa of X-rays is located below FIG. 6D of the laminated body 2. From each of these X-ray images, a portion having a height corresponding to the central axis Xa of the X-ray is extracted over a predetermined height, and the extracted portions are sequentially arranged in the height direction. An X-ray photographed image like this can be obtained. That is, a portion having less distortion in the height direction is extracted from the X-ray photographed images of FIGS. 6A to 6E and combined in the height direction to create the X-ray photographed image of FIG. 6F. FIG. 6G is a cross-sectional view showing a state in which a lead plug-containing laminated rubber bearing 1 obtained by irradiating X-rays and acquiring an X-ray photographed image is cut. As is clear from a comparison between FIGS. 6F and 6G, by performing the synthesis processing, an accurate X-ray photographed image showing the inside of the laminated body 2 of the laminated rubber bearing 1 containing the lead plug can be obtained. For example, the flow portion 20 of the lead plug 4 in FIG. 6G clearly appears as the flow portion 46 of the lead plug 44 in FIG. 6F. As described above, in the compositing process, by synthesizing the X-ray photographed images obtained by irradiating X-rays from different heights, it is possible to obtain a clear X-ray photographed image of the laminated body 2 with less distortion. Therefore, the shape of the lead plug 4 can be accurately grasped and an accurate inspection can be performed. The X-ray photographed image to be combined may be obtained by irradiating the laminated body 2 with X-rays from different positions in the height direction, or may be obtained by irradiating X-rays having different incident angles.

次に、以上のような歪修正処理や合成処理を行って得たX線撮影画像に基づいて、鉛プラグ4に残存する減衰性能の評価を行う。図7は、鉛プラグ4の体積の減少に対する減衰性能の低下を示すグラフである。図7において、横軸は、変状前の鉛プラグの体積に対する変状後の鉛プラグの体積の比であり、縦軸は、変状前の鉛プラグの減衰性能に対する変状後の鉛プラグの減衰性能の比である。図7に示すように、鉛プラグの減衰性能と、体積との間には、相関関係がある。そこで、鉛プラグ4の変状に伴う体積の変化に基づいて、鉛プラグ4の減衰性能を特定することができる。具体的には、図6Fに示すようなX線撮影画像から変状後の鉛プラグ4の体積を求め、この鉛プラグ4の製造当初の体積から変状後の体積の比の値を算出する。なお、図6Fには、一つの方向から撮影した鉛プラグ4が現れているが、この鉛プラグ4を異なる方向から撮影した複数のX線撮影画像を用いることにより、鉛プラグ4の流動突出量を正確に把握して、鉛プラグ4の変状後の体積を正確に求めることができる。特に、鉛プラグ4の全周方向のX線撮影画像を用いることができれば、鉛プラグ4の変状後の体積を、更に正確に求めることができる。この鉛プラグ4の製造当初に対する体積の比の値を、図7のグラフに照らして、鉛プラグ4の製造当初の減衰性能に対する比を特定する。こうして特定された比に基づいて鉛プラグ4の減衰性能を特定し、鉛プラグ入り積層ゴム支承1に残存する性能を評価することができる。 Next, the attenuation performance remaining in the lead plug 4 is evaluated based on the X-ray photographed image obtained by performing the distortion correction processing and the composition processing as described above. FIG. 7 is a graph showing the decrease in damping performance with respect to the decrease in volume of the lead plug 4. In FIG. 7, the horizontal axis is the ratio of the volume of the lead plug after the transformation to the volume of the lead plug before the transformation, and the vertical axis is the lead plug after the transformation with respect to the damping performance of the lead plug before the transformation. It is the ratio of the damping performance of. As shown in FIG. 7, there is a correlation between the damping performance of the lead plug and the volume. Therefore, the damping performance of the lead plug 4 can be specified based on the change in volume due to the deformation of the lead plug 4. Specifically, the volume of the lead plug 4 after the deformation is obtained from the X-ray photographed image as shown in FIG. 6F, and the value of the ratio of the volume after the deformation is calculated from the volume of the lead plug 4 at the time of manufacture. .. Although the lead plug 4 taken from one direction appears on FIG. 6F, the flow protrusion amount of the lead plug 4 can be obtained by using a plurality of X-ray images taken from different directions. Can be accurately grasped and the volume of the lead plug 4 after deformation can be accurately obtained. In particular, if an X-ray image taken in the entire circumferential direction of the lead plug 4 can be used, the volume of the lead plug 4 after deformation can be obtained more accurately. The value of the volume ratio of the lead plug 4 to the initial production is specified with reference to the graph of FIG. 7 to specify the ratio of the lead plug 4 to the damping performance at the initial production. The damping performance of the lead plug 4 can be specified based on the ratio thus specified, and the performance remaining in the lead plug-containing laminated rubber bearing 1 can be evaluated.

このように、本実施形態の金属プラグ入り積層ゴム支承の検査方法によれば、鉛プラグ入り積層ゴム支承1が設置された原位置において、鉛プラグ入り積層ゴム支承1を破壊することなく非破壊で検査し、鉛プラグ4の変状を検出することができる。また、橋脚と橋桁の間に設置された鉛プラグ入り積層ゴム支承1は、検査のためのスペースが少ないこと等に起因して、イメージングプレート13に対してX線源12のX線の照射方向が傾斜しても、X線撮影画像に歪修正処理や合成処理を行うことにより、鉛プラグ4の正確な検査を行うことができる。また、鉛プラグ4の体積に対する減衰性能の相関性を利用して、X線撮影画像から求めた鉛プラグ4の体積の減少量から、鉛プラグ4の減衰性能の低下量を求めることができ、その結果、鉛プラグ入り積層ゴム支承1に残存する性能を、非破壊により評価することができる。 As described above, according to the inspection method of the laminated rubber bearing with a metal plug of the present embodiment, the laminated rubber bearing 1 with a lead plug is not destroyed at the in-situ position where the laminated rubber bearing 1 with a lead plug is installed. It is possible to detect the deformation of the lead plug 4 by inspecting with. Further, the laminated rubber bearing 1 with a lead plug installed between the pier and the bridge girder has an X-ray irradiation direction of the X-ray source 12 with respect to the imaging plate 13 due to a small space for inspection and the like. Even if the X-ray image is tilted, the lead plug 4 can be accurately inspected by performing distortion correction processing and composition processing on the X-ray photographed image. Further, by utilizing the correlation of the damping performance with respect to the volume of the lead plug 4, the amount of decrease in the damping performance of the lead plug 4 can be obtained from the amount of decrease in the volume of the lead plug 4 obtained from the X-ray image. As a result, the performance remaining in the lead plug-containing laminated rubber support 1 can be evaluated non-destructively.

上記実施形態において、複数のX線撮影画像を合成することにより、歪みの少ないX線撮影画像を形成したが、これらのX線撮影画像を撮影する場合、鉛プラグ入り積層ゴム支承1に、X線撮影画像中に現れるマークを付しておくのが好ましい。こうして撮影された複数のX線撮影画像を、X線撮影画像中のマークの像を基準とすることにより、容易に合成することができる。 In the above embodiment, a plurality of X-ray images are combined to form an X-ray image with less distortion. However, when these X-ray images are taken, X is attached to the lead-plugged laminated rubber support 1. It is preferable to add a mark that appears in the radiographed image. By using the image of the mark in the X-ray photographed image as a reference, the plurality of X-ray photographed images photographed in this way can be easily combined.

また、上記実施形態において、歪修正処理や合成処理に先立って、X線撮影画像の2値化を行ってもよい。鉛プラグ入り積層ゴム支承1は、X線が透過する距離が長いため、減衰が生じやすい。特に、積層体2を構成する板状ゴム7と鋼板8を透過する距離が、鉛プラグ4を透過する距離よりも長いため、板状ゴム7又は鋼板8に隣接する鉛プラグ4の像が不鮮明になりやすい。ここで、X線撮影画像の2値化を行うことにより、鉛プラグ4の像を鮮明にすることができ、その結果、鉛プラグ4の正確な検査を行うことができる。また、金属プラグ入り積層ゴム支承1を構成する部材に対するX線透過量は、積層体2の板状ゴム7が比較的多い一方、鋼板8及び鉛プラグ4が比較的少ない。したがって、X線撮影画像の2値化処理を行うことにより、積層体2の板状ゴム7と、鋼板8及び鉛プラグ4とを、鮮明に区別することができる。このように、金属プラグ入り積層ゴム支承1のX線撮影画像の鮮明化を行うためには、構成部材のX線透過性の違いにより、2値化処理が有効である。 Further, in the above embodiment, the X-ray photographed image may be binarized prior to the distortion correction process and the composition process. Since the laminated rubber bearing 1 containing a lead plug has a long distance through which X-rays pass, attenuation is likely to occur. In particular, since the distance between the plate-shaped rubber 7 constituting the laminated body 2 and the steel plate 8 is longer than the distance through which the lead plug 4 is transmitted, the image of the plate-shaped rubber 7 or the lead plug 4 adjacent to the steel plate 8 is unclear. It is easy to become. Here, by binarizing the X-ray photographed image, the image of the lead plug 4 can be made clear, and as a result, the lead plug 4 can be accurately inspected. Further, the amount of X-ray transmission to the member constituting the laminated rubber bearing 1 containing the metal plug is relatively large in the plate-shaped rubber 7 of the laminated body 2, while it is relatively small in the steel plate 8 and the lead plug 4. Therefore, by performing the binarization process of the X-ray photographed image, the plate-shaped rubber 7 of the laminated body 2 and the steel plate 8 and the lead plug 4 can be clearly distinguished. As described above, in order to sharpen the X-ray photographed image of the laminated rubber bearing 1 with the metal plug, the binarization process is effective due to the difference in the X-ray transparency of the constituent members.

また、上記実施形態では、金属プラグ入り積層ゴム支承として、鉛プラグ4を有する鉛プラグ入り積層ゴム支承1を検査する例を記載したが、例えばすず等の他の材料で形成された金属プラグを有する金属プラグ入り積層ゴム支承であってもよい。本発明の検査方法及び性能判定方法は、ダンパー機能を有する種々の金属プラグを有する金属プラグ入り積層ゴム支承について、適用可能である。 Further, in the above embodiment, as an example of inspecting a lead plug-containing laminated rubber bearing 1 having a lead plug 4 as a metal plug-containing laminated rubber bearing, an example is described in which a metal plug made of another material such as tin is used. It may be a laminated rubber bearing with a metal plug. The inspection method and the performance determination method of the present invention are applicable to a laminated rubber bearing with a metal plug having various metal plugs having a damper function.

また、本発明の検査方法は、地震や経年劣化により損傷が生じていることが想定される金属プラグ入り積層ゴム支承に限らず、あらゆる金属プラグ入り積層ゴム支承の現在の性能を判定するために適用可能である。例えば、設置後の経過時間が比較的短いにもかかわらず、金属プラグ入り積層ゴム支承の性能に疑義が生じた場合に、本発明の検査方法を適用することにより、金属プラグ入り積層ゴム支承が現在有する性能を判定することができる。 Further, the inspection method of the present invention is not limited to the laminated rubber bearings with metal plugs that are assumed to be damaged due to an earthquake or deterioration over time, in order to determine the current performance of all laminated rubber bearings with metal plugs. Applicable. For example, when the performance of the laminated rubber bearing with a metal plug is questionable even though the elapsed time after installation is relatively short, the inspection method of the present invention can be applied to make the laminated rubber bearing with a metal plug. The current performance can be determined.

上記実施形態では、本発明を、道路橋に設置された鉛プラグ入り積層ゴム支承1に適用する場合について説明したが、道路橋に限らず、鉄道橋、人道橋又はパイプライン橋等の種々の橋梁の支承について本発明を適用することができる。また、本発明は、橋梁の支承に限らず、ビル等の建築物の基礎に設置される免振装置としての支承にも適用できる。また、プラントの構造物に設置される免振装置としての支承にも適用できる。 In the above embodiment, the case where the present invention is applied to a laminated rubber bearing 1 containing a lead plug installed on a road bridge has been described, but the present invention is not limited to road bridges, but various bridges such as railway bridges, humanitarian bridges, pipeline bridges, and the like. The present invention can be applied to the bearing of a bridge. Further, the present invention can be applied not only to bearings of bridges but also to bearings as a seismic isolation device installed on the foundation of a building such as a building. It can also be applied as a bearing as a seismic isolation device installed in the structure of a plant.

1 鉛プラグ入り積層ゴム支承
2 積層体
3 接続体
4 鉛プラグ
5 被覆ゴム

7 板状ゴム
8 鋼板
12 X線源
13 イメージングプレート
15,16 流動損傷
18 X線撮影画像
1 Laminated rubber bearing with lead plug 2 Laminated body 3 Connection body 4 Lead plug 5 Coated rubber 6
7 Plate-shaped rubber 8 Steel plate 12 X-ray source 13 Imaging plate 15, 16 Flow damage 18 X-ray photographed image

Claims (7)

複数の板状ゴムと鋼板が交互に積層されてなる積層体と、この積層体の一方の面と他方の面に配置されて構造物に接続される接続体と、上記積層体及び接続体を貫通して上記板状ゴム及び鋼板の積層方法に延在してダンパー機能を有する金属プラグとを備える金属プラグ入り積層ゴム支承の検査方法であって、
上記金属プラグ入り積層ゴム支承が設置された原位置で、上記積層体にX線を照射してイメージングプレートによりX線撮影画像を取得し、このX線撮影画像中の金属プラグの像の輪郭形状に基づいて、当該支承の使用に伴う金属プラグの変状に関する検査を行うことを特徴とする金属プラグ入り積層ゴム支承の検査方法。
A laminated body in which a plurality of plate-shaped rubbers and steel plates are alternately laminated, a connecting body arranged on one surface and the other surface of the laminated body and connected to a structure, and the above-mentioned laminated body and the connecting body. It is an inspection method for a laminated rubber bearing with a metal plug, which penetrates and extends to the above-mentioned method for laminating a plate-shaped rubber and a steel plate and has a metal plug having a damper function.
At the original position where the laminated rubber bearing with the metal plug is installed, the laminated body is irradiated with X-rays and an X-ray photographed image is acquired by an imaging plate , and the contour shape of the image of the metal plug in the X-ray photographed image is obtained. A method for inspecting a laminated rubber bearing with a metal plug, which comprises inspecting the deformation of the metal plug due to the use of the bearing based on the above.
請求項1に記載の金属プラグ入り積層ゴム支承の検査方法において、
上記X線撮影画像を、上記積層体に対するX線の入射位置及び/又は入射角度に応じて補正することを特徴とする金属プラグ入り積層ゴム支承の検査方法。
In the method for inspecting a laminated rubber bearing with a metal plug according to claim 1.
A method for inspecting a laminated rubber bearing with a metal plug, characterized in that the X-ray photographed image is corrected according to the incident position and / or the incident angle of X-rays with respect to the laminated body.
請求項1に記載の金属プラグ入り積層ゴム支承の検査方法において、
上記積層体に予め設置されたマークの位置と、上記X線撮影画像中の上記マークの像の位置とに基づいて、上記金属プラグ入り積層ゴム支承における上記X線撮影画像の撮影位置を特定することを特徴とする金属プラグ入り積層ゴム支承の検査方法。
In the method for inspecting a laminated rubber bearing with a metal plug according to claim 1.
Based on the position of the mark pre-installed on the laminated body and the position of the image of the mark in the X-ray photographed image, the photographing position of the X-ray photographed image in the laminated rubber bearing with a metal plug is specified. An inspection method for laminated rubber bearings with metal plugs, which is characterized by this.
請求項1に記載の金属プラグ入り積層ゴム支承の検査方法において、
上記X線撮影画像を、上記積層体に対して異なるX線の入射位置及び/又は入射角度を設定して複数個作成し、これらの複数個のX線撮影画像を合成して検査用のX線撮影画像を作成することを特徴とする金属プラグ入り積層ゴム支承の検査方法。
In the method for inspecting a laminated rubber bearing with a metal plug according to claim 1.
A plurality of the X-ray-photographed images are created by setting different X-ray incident positions and / or incident angles with respect to the laminated body, and these plurality of X-ray-photographed images are combined to form an X for inspection. An inspection method for laminated rubber supports with metal plugs, which is characterized by creating radiographic images.
請求項1に記載の金属プラグ入り積層ゴム支承の検査方法において、
上記X線撮影画像を2値化処理することを特徴とする金属プラグ入り積層ゴム支承の検査方法。
In the method for inspecting a laminated rubber bearing with a metal plug according to claim 1.
An inspection method for laminated rubber bearings containing a metal plug, which comprises binarizing the X-ray photographed image.
請求項1に記載の金属プラグ入り積層ゴム支承の検査方法で取得された上記X線撮影画像中の金属プラグの像から金属プラグの体積を推定するステップと、
上記推定された金属プラグの体積を、予め求められた金属プラグの体積と減衰性能との相関関係を示す相関モデルに照らして、上記積層体の減衰性能を評価するステップと
を有することを特徴とする金属プラグ入り積層ゴム支承の性能判定方法。
The step of estimating the volume of the metal plug from the image of the metal plug in the X-ray photographed image obtained by the inspection method of the laminated rubber bearing containing the metal plug according to claim 1.
It is characterized by having a step of evaluating the damping performance of the laminated body by comparing the estimated volume of the metal plug with a correlation model showing the correlation between the volume of the metal plug obtained in advance and the damping performance. How to judge the performance of laminated rubber bearings with metal plugs.
請求項1に記載の金属プラグ入り積層ゴム支承の検査方法で取得された上記X線撮影画像中の金属プラグの像から金属プラグのひび割れ量を推定するステップと、
上記推定された金属プラグのひび割れ量を、予め求められた金属プラグのひび割れ量と減衰性能の低下量との相関関係を示す相関モデルに照らして、上記積層体の減衰性能を評価するステップと
を有することを特徴とする金属プラグ入り積層ゴム支承の性能判定方法。
A step of estimating the amount of cracks in the metal plug from the image of the metal plug in the X-ray photographed image obtained by the inspection method of the laminated rubber bearing containing the metal plug according to claim 1.
The step of evaluating the damping performance of the laminated body by comparing the estimated cracking amount of the metal plug with a correlation model showing the correlation between the cracked amount of the metal plug obtained in advance and the deterioration amount of the damping performance. A method for determining the performance of a laminated rubber bearing with a metal plug, which is characterized by having.
JP2017105508A 2017-05-29 2017-05-29 Inspection method and performance judgment method for laminated rubber bearings with metal plugs Active JP6978223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017105508A JP6978223B2 (en) 2017-05-29 2017-05-29 Inspection method and performance judgment method for laminated rubber bearings with metal plugs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017105508A JP6978223B2 (en) 2017-05-29 2017-05-29 Inspection method and performance judgment method for laminated rubber bearings with metal plugs

Publications (2)

Publication Number Publication Date
JP2018200256A JP2018200256A (en) 2018-12-20
JP6978223B2 true JP6978223B2 (en) 2021-12-08

Family

ID=64668076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017105508A Active JP6978223B2 (en) 2017-05-29 2017-05-29 Inspection method and performance judgment method for laminated rubber bearings with metal plugs

Country Status (1)

Country Link
JP (1) JP6978223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171389B2 (en) * 2018-11-27 2022-11-15 株式会社高速道路総合技術研究所 Inspection method for laminated rubber bearings

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288187A (en) * 1985-06-14 1986-12-18 Nitsukouken Service Kk Method for radiographic measurement of structure
JPH10197456A (en) * 1997-01-08 1998-07-31 Hitachi Ltd Non-destructive inspecting instrument
WO1999018428A1 (en) * 1997-10-03 1999-04-15 Hitachi, Ltd. Radiographic inspection apparatus
JP4264913B2 (en) * 1999-07-16 2009-05-20 独立行政法人 日本原子力研究開発機構 Inspection method using X-ray CT of an elastic isolator having a laminated rubber structure
JP4237370B2 (en) * 2000-02-02 2009-03-11 パナソニック株式会社 X-ray imaging method and apparatus
JP2009109447A (en) * 2007-11-01 2009-05-21 Rigaku Corp X-ray inspection apparatus and x-ray inspection method
JP2014106113A (en) * 2012-11-27 2014-06-09 Topcon Corp X-ray inspection device and x-ray inspection method
WO2016006085A1 (en) * 2014-07-10 2016-01-14 株式会社ニコン X-ray device and structure manufacturing method

Also Published As

Publication number Publication date
JP2018200256A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP6978223B2 (en) Inspection method and performance judgment method for laminated rubber bearings with metal plugs
US20170153188A1 (en) X-ray scatter systems and methods for detecting structural variations
Hu et al. Use of measured vibration of in-situ sleeper for detecting underlying railway ballast damage
Cabaleiro et al. First results on the combination of laser scanner and drilling resistance tests for the assessment of the geometrical condition of irregular cross-sections of timber beams
JP6192973B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP4707506B2 (en) Method for detecting cracks in structural members
JP2016061602A (en) Deformation measuring device of structure and deformation measuring method
JP2010025573A (en) Method and device for bending fracture test
JP7171389B2 (en) Inspection method for laminated rubber bearings
CN110779938A (en) On-site nondestructive testing method and device for construction quality of prefabricated concrete column sleeve joint
JP4981433B2 (en) Inspection device, inspection method, inspection program, and inspection system
NZ538649A (en) Estimating strengths of wooden supports using gamma rays
JP2015075469A (en) Concrete member soundness estimation method and concrete member repair method
Lederer et al. Exploring a Multi‐modal Experimental Approach to Investigation of Local Embedment Behaviour of Wood under Steel Dowels
US8858076B2 (en) Multi-step contrast sensitivity gauge
JP6373725B2 (en) Evaluation method and apparatus for joint surface treatment
Franke et al. Assessment of timber structures using the X-ray technology
TW200827712A (en) Testing method for the crack of cement structure
Christensen et al. Quantification of digital image correlation applicability related to in-situ proof load testing of bridges
Anton et al. An optimal method of determining the position of bends on shear reinforcement as part of the diagnosis of reinforced concrete beam structures
JPS61288187A (en) Method for radiographic measurement of structure
US20120033787A1 (en) Method for radiographic inspection of components
Iwashita et al. Brittle fracture estimation at ends of groove welded joints under cyclic loading
Schneberk et al. Application of offset-CT scanning to the inspection of high power feeder lines and connections
KR102586791B1 (en) Fire Damaged Concrete Structure Recovery System

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211111

R150 Certificate of patent or registration of utility model

Ref document number: 6978223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150