JP6977339B2 - Heat treatment method for steel parts - Google Patents

Heat treatment method for steel parts Download PDF

Info

Publication number
JP6977339B2
JP6977339B2 JP2017132048A JP2017132048A JP6977339B2 JP 6977339 B2 JP6977339 B2 JP 6977339B2 JP 2017132048 A JP2017132048 A JP 2017132048A JP 2017132048 A JP2017132048 A JP 2017132048A JP 6977339 B2 JP6977339 B2 JP 6977339B2
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
steel
furnace
steel component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017132048A
Other languages
Japanese (ja)
Other versions
JP2019014932A (en
Inventor
剛 杉本
圭 田中
大介 山下
仙太郎 中西
敏文 白木
範之 岩田
聖児 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2017132048A priority Critical patent/JP6977339B2/en
Publication of JP2019014932A publication Critical patent/JP2019014932A/en
Application granted granted Critical
Publication of JP6977339B2 publication Critical patent/JP6977339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、鋼材部品の熱処理方法に関するものである。 The present invention relates to a heat treatment method for steel parts.

鋼材部品の焼入れは、鋼材部品を高温状態とした後に急冷してマルテンサイト組織を得る熱処理技術である。これにより、鋼材部品の表面に硬く緻密なマルテンサイト組織が形成され、部品表面の耐摩耗性と衝撃強度が向上する。焼入れにあたっては、鋼材部品を一旦高温にする必要があるが、この際に機械加工などの前工程で与えられた残留応力(微細歪)が解放され、鋼材部品が変形する。このため、前工程の加工条件の変動に応じて、加工完了から焼入れ完了までの熱処理歪も変動するという問題がある。この種の残留応力を小さくする方法として、プレス加工時のプレス型に高硬度の表面処理被膜を製膜し,高速でせん断加工することにより金属薄板に付加された残留応力を極小化するものが知られている(特許文献1)。 Quenching of steel parts is a heat treatment technique for obtaining a martensite structure by quenching the steel parts after heating them to a high temperature. As a result, a hard and dense martensite structure is formed on the surface of the steel material component, and the wear resistance and impact strength of the component surface are improved. In quenching, it is necessary to temporarily heat the steel parts to a high temperature, but at this time, the residual stress (fine strain) given in the previous process such as machining is released, and the steel parts are deformed. Therefore, there is a problem that the heat treatment strain from the completion of machining to the completion of quenching also fluctuates according to the fluctuation of the machining conditions in the previous process. As a method of reducing this kind of residual stress, a method of forming a high-hardness surface-treated film on a press die during press working and shearing at high speed to minimize the residual stress applied to the thin metal plate. It is known (Patent Document 1).

特開2004−261836号公報Japanese Unexamined Patent Publication No. 2004-261863

しかしながら、上述した従来方法ではプレス型に高硬度の表面処理被膜を形成する前処理が必要となり、こうした前処理にコストや時間を要するという問題がある。 However, the above-mentioned conventional method requires a pretreatment for forming a high-hardness surface treatment film on the press mold, and there is a problem that such pretreatment requires cost and time.

本発明が解決しようとする課題は、前工程で生じた残留応力を時間やコストをかけずに除去できる鋼材部品の熱処理方法を提供することである。 An object to be solved by the present invention is to provide a heat treatment method for steel parts, which can remove residual stress generated in a previous step without spending time and cost.

本発明は、可変圧縮比エンジンのクランクシャフトに取り付けられるマルチリンク部品からなる鋼材部品であり、他の鋼材部品とネジ孔に形成したネジにネジを締め付けることで対となり、両鋼材部品を接合して前記クランクシャフトに取り付けられる鋼材部品の熱処理方法において、予め一定の熱容量を有する炉内雰囲気を形成したのち、この熱処理炉に室温状態の鋼材部品を投入し、炉内雰囲気の温度と鋼材部品の温度とが平衡する温度で鋼材部品を5〜15分保持したのち、鋼材部品を浸炭温度まで昇温し、浸炭処理した鋼材部品をネジ研削し、ネジ孔を形成することによって上記課題を解決する。 The present invention is a steel component composed of multi-link components attached to the crank shaft of a variable compression ratio engine, and is paired with other steel components by tightening a screw to a screw formed in a screw hole to join both steel components. In the heat treatment method for steel parts attached to the crank shaft, an atmosphere inside the furnace having a certain heat capacity is formed in advance, and then the steel parts at room temperature are put into this heat treatment furnace to adjust the temperature of the atmosphere inside the furnace and the steel parts. After holding the steel parts at a temperature that is in equilibrium with the temperature for 5 to 15 minutes, the temperature of the steel parts is raised to the carburizing temperature, and the carburized steel parts are screw-ground to form screw holes to solve the above problems. ..

本発明によれば、鋼材部品を熱処理温度まで昇温する前に、当該熱処理温度より低い温度で鋼材部品を所定時間保持することにより、熱処理前に鋼材部品の残留応力を除去することができる。これにより、前工程で生じた残留応力を時間やコストをかけずに除去できる鋼材部品の熱処理方法を提供することができる。 According to the present invention, the residual stress of the steel component can be removed before the heat treatment by holding the steel component at a temperature lower than the heat treatment temperature for a predetermined time before raising the temperature of the steel component to the heat treatment temperature. This makes it possible to provide a heat treatment method for steel parts that can remove the residual stress generated in the previous process without spending time and cost.

本発明に係る鋼材部品の熱処理方法に適用される鋼材部品の一例を示す斜視図である。It is a perspective view which shows an example of the steel material parts applied to the heat treatment method of the steel material parts which concerns on this invention. 本発明に係る鋼材部品の熱処理方法が適用される鋼材部品の製造方法の一例を示す工程図である。It is a process drawing which shows an example of the manufacturing method of the steel material parts to which the heat treatment method of the steel material parts which concerns on this invention is applied. 図2の表面硬化熱処理の一例である処理内容、処理時間及び処理温度の関係を示す図である。It is a figure which shows the relationship between the treatment content, the treatment time and the treatment temperature which is an example of the surface hardening heat treatment of FIG. 図2の表面硬化熱処理の他の例である処理内容、処理時間及び処理温度の関係を示す図である。It is a figure which shows the relationship between the treatment content, the treatment time and the treatment temperature which is another example of the surface hardening heat treatment of FIG.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る鋼材部品の熱処理方法に適用される鋼材部品の一例を示す斜視図である。図示する鋼材部品1は、可変圧縮比エンジンのマルチリンクを構成する部品である。このマルチリンクは、たとえば特開2017−088922の図6及び図7に記載されたように、一対の鋼材部品1が相互に対称に組み合わされてネジで結合された構成であり、クランクシャフトを回転軸として圧縮比を変更する分だけ回転する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an example of a steel component applied to the heat treatment method for a steel component according to the present invention. The illustrated steel component 1 is a component constituting the multi-link of the variable compression ratio engine. This multi-link has, for example, as described in FIGS. 6 and 7 of Japanese Patent Laid-Open No. 2017-08892, in which a pair of steel parts 1 are symmetrically combined with each other and connected by a screw to rotate a crankshaft. It rotates as an axis by changing the compression ratio.

鋼材部品1は、半円形状の軸受部11と、一対のピン圧入部12と、ネジ部13とを備える。一対のピン圧入部12とネジ部13との間に軸受部11が設けられている。軸受部11は、クランクシャフトの軸受を構成する。一対のピン圧入部12は、アッパーリンク又はコントロールリンクを連結するためのピンを圧入する孔を有する。ネジ部13は、ネジを螺合させるネジ孔13Aを有する。図示は省略するが、一対のピン圧入部12の間にはネジが挿通されるネジ孔が形成されており、このネジ孔に挿通されたネジが、他方の鋼材部品1のネジ孔13Aに螺合する。 The steel component 1 includes a semicircular bearing portion 11, a pair of pin press-fitting portions 12, and a screw portion 13. A bearing portion 11 is provided between the pair of pin press-fitting portions 12 and the screw portion 13. The bearing portion 11 constitutes the bearing of the crankshaft. The pair of pin press-fitting portions 12 have holes for press-fitting pins for connecting the upper link or the control link. The screw portion 13 has a screw hole 13A for screwing a screw. Although not shown, a screw hole through which a screw is inserted is formed between the pair of pin press-fitting portions 12, and the screw inserted through this screw hole is screwed into the screw hole 13A of the other steel component 1. It fits.

図2は、本発明に係る鋼材部品1の熱処理方法が適用される鋼材部品1の製造方法を示す工程図である。同図に示すように、本実施形態の鋼材部品1の製造方法では、まず、ステップS1において、図示しない原材料を鍛造加工してリンク形状の外形を有する鋼材部品1を形成する。この鍛造加工では、鋼材部品1のネジ部13に、ネジ溝の無い孔13Bを形成する。次に、ステップS2において、面削加工を実施し、鋼材部品1の表面の黒皮を除去する。こうした鍛造及び面削などの機械加工により、得られた鋼材部品1には残留応力が生じる。 FIG. 2 is a process diagram showing a manufacturing method of the steel component 1 to which the heat treatment method of the steel component 1 according to the present invention is applied. As shown in the figure, in the method for manufacturing a steel component 1 of the present embodiment, first, in step S1, a raw material (not shown) is forged to form a steel component 1 having a link-shaped outer shape. In this forging process, a hole 13B without a thread groove is formed in the threaded portion 13 of the steel component 1. Next, in step S2, surface cutting is performed to remove the black skin on the surface of the steel component 1. Residual stress is generated in the obtained steel component 1 by such machining such as forging and face cutting.

次に、ステップS3において、鋼材部品1の表面全体に対して表面硬化処理を実施し、鋼材部品1の表面全体を熱処理により硬化させる。表面硬化処理としては、焼入れ、浸炭焼入れ、窒化焼入れ又は浸炭窒化焼入れ等の熱処理が挙げられる。以下、図3において、鋼材部品1の材料が、クロム鋼鋼材SCr420Hからなり、鋼材部品1の表面全体に対して浸炭焼入れを行うものとして具体的な温度を例示しつつ、本発明に係る熱処理を説明する。なお、クロム鋼鋼材SCr420Hとは、鉄以外の成分として、Cを0.17〜0.23重量%,Crを0.85〜1.20重量%,Siを0.15〜0.35重量%,Mnを0.60〜1.00重量%,Pを0.03重量%以下,Sを0.03重量%以下,Niを0.25重量%以下、Cuを0.3重量%以下含む鋼材である。ただし、本発明に係る鋼材部品はクロム鋼鋼材にのみ限定されず他の鋼材をも用いることができる。また、クロム鋼鋼材からなる場合であっても、例示する温度には何ら限定されるものではない。 Next, in step S3, the entire surface of the steel component 1 is subjected to surface hardening treatment, and the entire surface of the steel component 1 is cured by heat treatment. Examples of the surface hardening treatment include heat treatments such as quenching, carburizing and quenching, nitriding and nitriding, and carburizing and nitriding and quenching. Hereinafter, in FIG. 3, the material of the steel component 1 is made of chromium steel SCr420H, and the heat treatment according to the present invention is performed while exemplifying a specific temperature assuming that the entire surface of the steel component 1 is carburized and quenched. explain. The chrome steel material SCr420H contains 0.17 to 0.23% by weight of C, 0.85 to 1.20% by weight of Cr, and 0.15 to 0.35% by weight of Si as components other than iron. , Mn is 0.60 to 1.00% by weight, P is 0.03% by weight or less, S is 0.03% by weight or less, Ni is 0.25% by weight or less, and Cu is 0.3% by weight or less. Is. However, the steel parts according to the present invention are not limited to the chromium steel material, and other steel materials can also be used. Further, even if it is made of chrome steel, the temperature is not limited to the example.

図3は、本実施形態の表面硬化熱処理の一例である処理内容、処理時間及び処理温度の関係を示す図である。本実施形態の表面硬化熱処理は、図3の時間t3〜t8の浸炭焼入れ処理を行う前に、時間t0〜t1において、熱処理炉内を第1所定温度T1まで昇温させて一定の熱容量Q1を有する炉内雰囲気を形成したのち、時間t1において熱処理炉に室温状態(たとえば0〜35℃)の鋼材部品1を投入し、時間t1〜t3において、第1所定温度T1より低い、熱処理炉内の雰囲気の温度と鋼材部品1の温度とが平衡する第2所定温度T2で、鋼材部品1を所定時間tm1保持する。 FIG. 3 is a diagram showing the relationship between the treatment content, the treatment time, and the treatment temperature, which is an example of the surface hardening heat treatment of the present embodiment. In the surface hardening heat treatment of the present embodiment, the inside of the heat treatment furnace is heated to the first predetermined temperature T1 at the time t0 to t1 before the carburizing and quenching treatment of the time t3 to t8 in FIG. 3 to obtain a constant heat capacity Q1. After forming the atmosphere in the furnace, the steel component 1 at room temperature (for example, 0 to 35 ° C.) is put into the heat treatment furnace at time t1, and the temperature inside the heat treatment furnace is lower than the first predetermined temperature T1 at times t1 to t3. The steel component 1 is held at tm1 for a predetermined time at a second predetermined temperature T2 in which the temperature of the atmosphere and the temperature of the steel component 1 are in equilibrium.

本実施形態で用いられる熱処理炉としては、従来公知の浸炭炉を用いることができ、時間t0〜t1において、当該熱処理炉内を第1所定温度T1まで昇温させて一定の熱容量Q1を有する炉内雰囲気を形成する。この第1所定温度T1は、熱処理炉内の熱容量と、時間t1にて投入される鋼材部品1の総熱量Q2と、平衡温度たる第2所定温度T2とに応じて定められる。ここで、一定の熱容量Q1を有する炉内雰囲気を形成するための第1所定温度T1は、熱処理炉内の雰囲気の温度と鋼材部品1の温度とが平衡する第2所定温度T2が、好ましくは、その鋼材部品1の再結晶温度Trc±100℃の範囲内になるように定められる。すなわち、熱処理炉の熱容量Q1は、既知である炉内雰囲気ガスの比熱及び重量と第1温度T1により定まり、投入される鋼材部品1の総熱容量Q2は、生産工程の仕様(鋼材部品1の比熱、重量及び熱処理炉に幾つの鋼材部品1が投入されるか)により定まり、鋼材部品1の再結晶温度Trcは既知であることから、これらの数値を用いて理論式又はシミュレーション又は実験によって第1所定温度T1を求めることができる。以下、本例の場合においては、鋼材部品1の再結晶温度Trcを650℃、第2所定温度を550〜750℃、熱処理炉の熱容量Q1と鋼材部品1の総熱容量Q2から第1所定温度T1を1050℃とするものとする。 As the heat treatment furnace used in the present embodiment, a conventionally known carburizing furnace can be used, and the inside of the heat treatment furnace is heated to a first predetermined temperature T1 at time t0 to t1 to have a constant heat capacity Q1. Form an inner atmosphere. The first predetermined temperature T1 is determined according to the heat capacity in the heat treatment furnace, the total heat amount Q2 of the steel component 1 charged at time t1, and the second predetermined temperature T2 which is the equilibrium temperature. Here, the first predetermined temperature T1 for forming the atmosphere in the furnace having a constant heat capacity Q1 is preferably the second predetermined temperature T2 in which the temperature of the atmosphere in the heat treatment furnace and the temperature of the steel component 1 are in equilibrium. , The recrystallization temperature of the steel component 1 is set to be within the range of Trc ± 100 ° C. That is, the heat capacity Q1 of the heat treatment furnace is determined by the known specific heat and weight of the atmosphere gas in the furnace and the first temperature T1, and the total heat capacity Q2 of the steel component 1 to be input is the specification of the production process (specific heat of the steel component 1). , The weight and how many steel parts 1 are put into the heat treatment furnace), and since the recrystallization temperature Trc of the steel parts 1 is known, the first method is based on a theoretical formula, simulation, or experiment using these values. The predetermined temperature T1 can be obtained. Hereinafter, in the case of this example, the recrystallization temperature Trc of the steel component 1 is 650 ° C, the second predetermined temperature is 550 to 750 ° C, the heat capacity Q1 of the heat treatment furnace and the total heat capacity Q2 of the steel component 1 to the first predetermined temperature T1. Is 1050 ° C.

熱処理炉内を1050℃まで昇温して一定の熱容量Q1を有する炉内雰囲気を形成したら、この熱処理炉内に鋼材部品1を投入する。鋼材部品1を投入したのちは、熱処理炉への熱量の印加を中断し、熱容量Q1の炉内雰囲気と総熱容量Q2の鋼材部品1との間の熱交換のみにより鋼材部品1を第2所定温度T2、すなわち再結晶温度Trcまで昇温する。上述したとおり、第1所定温度T1は、熱処理炉内の雰囲気の温度と鋼材部品1の温度とが第2所定温度T2で平衡するように設定されていることから、時間t1から時間t2の間において炉内雰囲気の温度が降下すると同時に鋼材部品1の温度が上昇し、時間t2において両者の温度が平衡する。そして、熱処理炉内は実質的に断熱空間であるため、この両者の温度が平衡した状態を所定時間tm1保持する。本例において、所定時間tm1は、5〜15分である。 After the temperature inside the heat treatment furnace is raised to 1050 ° C. to form an atmosphere in the furnace having a constant heat capacity Q1, the steel component 1 is put into the heat treatment furnace. After the steel component 1 is charged, the application of the amount of heat to the heat treatment furnace is interrupted, and the steel component 1 is brought to the second predetermined temperature only by heat exchange between the atmosphere inside the furnace having the heat capacity Q1 and the steel component 1 having the total heat capacity Q2. The temperature is raised to T2, that is, the recrystallization temperature Trc. As described above, the first predetermined temperature T1 is set between the time t1 and the time t2 because the temperature of the atmosphere in the heat treatment furnace and the temperature of the steel component 1 are set to be balanced at the second predetermined temperature T2. At the same time as the temperature of the atmosphere in the furnace drops, the temperature of the steel component 1 rises, and the temperatures of both are balanced at time t2. Since the inside of the heat treatment furnace is substantially a heat insulating space, the state in which the temperatures of both are in equilibrium is maintained at tm1 for a predetermined time. In this example, the predetermined time tm1 is 5 to 15 minutes.

時間t4以降に行われる浸炭処理などの表面硬化処理の前に、鋼材部品1を再結晶温度Trcで所定時間tm1保持することにより、鋼材部品1の表面が硬化する前に、図2の鍛造加工や面削加工で鋼材部品1に与えられた残留応力を除去することができる。これにより、浸炭処理などの表面硬化処理を施したときの熱処理歪が、前工程で与えられた残留応力によって影響を受けることを抑制することができる。また、一定の熱容量Q1を有する炉内雰囲気に鋼材部品1を投入して、再結晶温度Trcに平衡させることで、室温状態の炉内雰囲気に鋼材部品1を投入し、この室温状態から再結晶温度Trcまで昇温する場合に比べ、短時間で再結晶温度Trcまで昇温させることができる。 By holding the steel component 1 at the recrystallization temperature Trc for a predetermined time tm1 before the surface hardening treatment such as the carburizing treatment performed after the time t4, the forging process of FIG. 2 is performed before the surface of the steel component 1 is hardened. It is possible to remove the residual stress applied to the steel component 1 by surface cutting. As a result, it is possible to prevent the heat treatment strain when a surface hardening treatment such as carburizing treatment is performed from being affected by the residual stress given in the previous step. Further, by charging the steel component 1 into the atmosphere inside the furnace having a constant heat capacity Q1 and equilibrating it with the recrystallization temperature Trc, the steel component 1 is charged into the atmosphere inside the furnace at room temperature and recrystallized from this room temperature. The temperature can be raised to the recrystallization temperature Trc in a shorter time than in the case of raising the temperature to the temperature Trc.

鋼材部品1を再結晶温度Trc±100℃で所定時間tm1保持し、残留応力を除去したら、続けて熱処理炉に熱量を再度印加して鋼材部品1を浸炭温度Tcaまで昇温する(時間t3〜t4)。本例の浸炭温度Tcaは、たとえば1050℃であり、この温度を(t5−t4)時間保持したのち、徐冷する(時間t5〜t6)。また本例では、浸炭処理後に焼入れ処理を施すが、この焼入れ処理では、時間t6〜t7において、鋼材部品1の金属組織がオーステナイト組織になる温度Tq、たとえば900℃まで加熱して一定時間保持し、その後、鋼材部品1の金属組織がマルテンサイト組織になるように、熱処理炉のガス雰囲気中で急冷する(時間t7〜t8)。なお、上述した浸炭方法、焼入れ処理の加熱温度及び急冷方法は一実施例であり、何ら限定されるものではない。またステップS3の表面硬化熱処理に次いで、ステップS4においてネジ研削加工を実施する。本工程では、浸炭焼入れしたネジ部13の孔13Bをネジ研削することにより、ネジ部13にネジ孔13Aを形成する。 The steel component 1 is held at a recrystallization temperature Trc ± 100 ° C. for a predetermined time at tm1, and after the residual stress is removed, heat is continuously applied to the heat treatment furnace again to raise the temperature of the steel component 1 to the carburizing temperature Tca (time t3 to ~). t4). The carburizing temperature Tca of this example is, for example, 1050 ° C., and this temperature is maintained for (t5-t4) hours and then slowly cooled (time t5-t6). Further, in this example, the quenching treatment is performed after the carburizing treatment. In this quenching treatment, the metal structure of the steel component 1 is heated to a temperature Tq where the metal structure of the steel component 1 becomes an austenite structure, for example, 900 ° C., and held for a certain period of time. After that, quenching is performed in the gas atmosphere of the heat treatment furnace so that the metal structure of the steel component 1 becomes a martensite structure (time t7 to t8). The carburizing method, the heating temperature of the quenching treatment, and the quenching method described above are examples, and are not limited in any way. Further, following the surface hardening heat treatment in step S3, screw grinding is performed in step S4. In this step, the hole 13B of the carburized and hardened screw portion 13 is screw-ground to form the screw hole 13A in the screw portion 13.

図4は、図2のステップS3の表面硬化熱処理の他の例である処理内容、処理時間及び処理温度の関係を示す図である。図3に示す実施形態では、表面硬化熱処理として浸炭焼入れ処理を行ったが、本実施形態では表面硬化熱処理として焼入れ処理を行う。本例においても、表面硬化熱処理である焼入れ前に、鋼材部品1を第2所定温度で所定時間tm1保持し、前工程の機械加工により鋼材部品1に与えられた残留応力を除去する。 FIG. 4 is a diagram showing the relationship between the treatment content, the treatment time, and the treatment temperature, which is another example of the surface hardening heat treatment in step S3 of FIG. In the embodiment shown in FIG. 3, the carburizing and quenching treatment is performed as the surface hardening heat treatment, but in the present embodiment, the quenching treatment is performed as the surface hardening heat treatment. Also in this example, the steel component 1 is held at a second predetermined temperature for a predetermined time at tm1 before quenching, which is a surface hardening heat treatment, and the residual stress applied to the steel component 1 by the machining in the previous step is removed.

すなわち、図4の時間t3〜t5の焼入れ処理を行う前に、時間t0〜t1において、熱処理炉内を第1所定温度T1まで昇温させて一定の熱容量Q1を有する炉内雰囲気を形成したのち、時間t1において熱処理炉に室温状態(たとえば0〜35℃)の鋼材部品1を投入し、時間t1〜t3において、第1所定温度T1より低い、熱処理炉内の雰囲気の温度と鋼材部品1の温度とが平衡する第2所定温度T2で、鋼材部品1を所定時間tm1保持する。第1所定温度T1の設定は、図3に示す実施形態と同様に、熱処理炉内の雰囲気の温度と鋼材部品1の温度とが平衡する第2所定温度T2が、好ましくは、その鋼材部品1の再結晶温度Trc±100℃の範囲内になるように定められる。 That is, before the quenching treatment of the time t3 to t5 of FIG. 4, the inside of the heat treatment furnace is heated to the first predetermined temperature T1 at the time t0 to t1 to form an atmosphere in the furnace having a constant heat capacity Q1. At time t1, the steel component 1 at room temperature (for example, 0 to 35 ° C.) was charged into the heat treatment furnace, and at time t1 to t3, the temperature of the atmosphere in the heat treatment furnace and the temperature of the steel component 1 lower than the first predetermined temperature T1. At the second predetermined temperature T2 in which the temperature is in equilibrium, the steel component 1 is held at tm1 for a predetermined time. Similar to the embodiment shown in FIG. 3, the first predetermined temperature T1 is set to the second predetermined temperature T2 in which the temperature of the atmosphere in the heat treatment furnace and the temperature of the steel component 1 are in equilibrium, preferably the steel component 1. The recrystallization temperature of Trc is set to be within the range of ± 100 ° C.

熱処理炉内を1050℃まで昇温して一定の熱容量Q1を有する炉内雰囲気を形成したら、この熱処理炉内に鋼材部品1を投入する。鋼材部品1を投入したのちは、熱処理炉への熱量の印加を中断し、熱容量Q1の炉内雰囲気と総熱容量Q2の鋼材部品1との間の熱交換のみにより鋼材部品1を第2所定温度T2、すなわち再結晶温度Trcまで昇温する。上述したとおり、第1所定温度T1は、熱処理炉内の雰囲気の温度と鋼材部品1の温度とが第2所定温度T2で平衡するように設定されていることから、時間t1から時間t2の間において炉内雰囲気の温度が降下すると同時に鋼材部品1の温度が上昇し、時間t2において両者の温度が平衡する。そして、熱処理炉内は実質的に断熱空間であるため、この両者の温度が平衡した状態を所定時間tm1保持する。本例において、所定時間tm1は、5〜15分である。 After the temperature inside the heat treatment furnace is raised to 1050 ° C. to form an atmosphere in the furnace having a constant heat capacity Q1, the steel component 1 is put into the heat treatment furnace. After the steel component 1 is charged, the application of the amount of heat to the heat treatment furnace is interrupted, and the steel component 1 is brought to the second predetermined temperature only by heat exchange between the atmosphere inside the furnace having the heat capacity Q1 and the steel component 1 having the total heat capacity Q2. The temperature is raised to T2, that is, the recrystallization temperature Trc. As described above, the first predetermined temperature T1 is set between the time t1 and the time t2 because the temperature of the atmosphere in the heat treatment furnace and the temperature of the steel component 1 are set to be balanced at the second predetermined temperature T2. At the same time as the temperature of the atmosphere in the furnace drops, the temperature of the steel component 1 rises, and the temperatures of both are balanced at time t2. Since the inside of the heat treatment furnace is substantially a heat insulating space, the state in which the temperatures of both are in equilibrium is maintained at tm1 for a predetermined time. In this example, the predetermined time tm1 is 5 to 15 minutes.

時間t3以降に行われる焼入れ処理などの表面硬化処理の前に、鋼材部品1を再結晶温度Trcで所定時間tm1保持することにより、鋼材部品1の表面が硬化する前に、図2の鍛造加工や面削加工で鋼材部品1に与えられた残留応力を除去することができる。これにより、浸炭処理などの表面硬化処理を施したときの熱処理歪が、前工程で与えられた残留応力によって影響を受けることを抑制することができる。また、一定の熱容量Q1を有する炉内雰囲気に鋼材部品1を投入して、再結晶温度Trcに平衡させることで、室温状態の炉内雰囲気に鋼材部品1を投入し、この室温状態から再結晶温度Trcまで昇温する場合に比べ、短時間で再結晶温度Trcまで昇温させることができる。 By holding the steel component 1 at the recrystallization temperature Trc for a predetermined time tm1 before the surface hardening process such as the quenching process performed after the time t3, the forging process of FIG. 2 is performed before the surface of the steel component 1 is cured. It is possible to remove the residual stress applied to the steel component 1 by the surface cutting process. As a result, it is possible to prevent the heat treatment strain when a surface hardening treatment such as carburizing treatment is performed from being affected by the residual stress given in the previous step. Further, by charging the steel component 1 into the atmosphere inside the furnace having a constant heat capacity Q1 and equilibrating it with the recrystallization temperature Trc, the steel component 1 is charged into the atmosphere inside the furnace at room temperature and recrystallized from this room temperature. The temperature can be raised to the recrystallization temperature Trc in a shorter time than in the case of raising the temperature to the temperature Trc.

鋼材部品1を再結晶温度Trc±100℃で所定時間tm1保持し、残留応力を除去したら、続けて熱処理炉に熱量を再度印加し、鋼材部品1の金属組織がオーステナイト組織になる温度Tq、たとえば900℃まで加熱して一定時間保持し、その後、鋼材部品1の金属組織がマルテンサイト組織になるように、熱処理炉のガス雰囲気中で急冷する(時間t3〜t5)。またステップS3の表面硬化熱処理に次いで、ステップS4においてネジ研削加工を実施する。本工程では、浸炭焼入れしたネジ部13の孔13Bをネジ研削することにより、ネジ部13にネジ孔13Aを形成する。 After holding the steel component 1 at a recrystallization temperature Trc ± 100 ° C. for a predetermined time at tm1 and removing the residual stress, the heat treatment is subsequently applied again to the heat treatment furnace, and the temperature Tq at which the metal structure of the steel component 1 becomes an austenite structure, for example. It is heated to 900 ° C. and held for a certain period of time, and then rapidly cooled in the gas atmosphere of the heat treatment furnace so that the metal structure of the steel component 1 becomes a martensite structure (time t3 to t5). Further, following the surface hardening heat treatment in step S3, screw grinding is performed in step S4. In this step, the hole 13B of the carburized and hardened screw portion 13 is screw-ground to form the screw hole 13A in the screw portion 13.

なお、上述した実施形態では、鋼材部品1を第2の所定温度T2で所定時間tm1保持する間は、熱処理炉に熱量を印加するのを中断したが、熱処理炉内の雰囲気温度が後工程で行われる浸炭温度や焼入れ温度に達しない範囲でならば熱処理炉に熱量を印加してもよい。 In the above-described embodiment, while the steel component 1 is held at the second predetermined temperature T2 for a predetermined time at tm1, the application of heat to the heat treatment furnace is interrupted, but the atmospheric temperature in the heat treatment furnace is changed in the subsequent step. A calorific value may be applied to the heat treatment furnace as long as it does not reach the carburizing temperature or the quenching temperature to be performed.

以上のとおり、本実施形態の熱処理方法によれば、焼入れ、浸炭焼入れ、窒化焼入れ又は浸炭窒化焼入れ等の表面硬化処理の前に、鋼材部品1を好ましくは再結晶温度Trc±100℃で所定時間tm1保持することにより、鋼材部品1の表面が硬化する前に、図2の鍛造加工や面削加工で鋼材部品1に与えられた残留応力を除去することができる。これにより、浸炭処理などの表面硬化処理を施したときの熱処理歪が、前工程で与えられた残留応力によって影響を受けることを抑制することができる。 As described above, according to the heat treatment method of the present embodiment, before the surface hardening treatment such as quenching, carburizing quenching, nitriding quenching, or carburizing nitriding quenching, the steel component 1 is preferably recrystallized at a recrystallization temperature of Trc ± 100 ° C. for a predetermined time. By holding tm1, it is possible to remove the residual stress applied to the steel component 1 by the forging process and the face cutting process of FIG. 2 before the surface of the steel component 1 is hardened. As a result, it is possible to prevent the heat treatment strain when a surface hardening treatment such as carburizing treatment is performed from being affected by the residual stress given in the previous step.

また、本実施形態の熱処理方法によれば、一定の熱容量Q1を有する炉内雰囲気に鋼材部品1を投入して、再結晶温度Trcに平衡させることで、室温状態の炉内雰囲気に鋼材部品1を投入し、この室温状態から再結晶温度Trcまで昇温する場合に比べ、短時間で再結晶温度Trcまで昇温させることができる。 Further, according to the heat treatment method of the present embodiment, the steel component 1 is put into the atmosphere inside the furnace having a constant heat capacity Q1 and balanced with the recrystallization temperature Trc, so that the steel component 1 is brought into the atmosphere inside the furnace at room temperature. It is possible to raise the temperature to the recrystallization temperature Trc in a short time as compared with the case where the temperature is raised from this room temperature state to the recrystallization temperature Trc.

図1に示す鋼材部品1において、一対のピン圧入部12の間隔Lが、機械加工による残留応力の影響を受け易く、浸炭焼入れ等の表面硬化熱処理後にこの間隔Lの寸法が変動する。従来の浸炭焼入れによる表面硬化熱処理を行うと、間隔Lの変形量の平均が0.70mm、同じく変形量の標準偏差3σが1.40mmであるのに対し、同じ鋼材部品1に図3に示す本実施形態の熱処理方法を適用すると、間隔Lの変形量の平均が0.50mm、同じく変形量の標準偏差3σが0.08mmとなった。この結果からも、浸炭焼入れ前に鋼材部品1に与えられた残留応力が充分に除去され、特にばらつき(標準偏差3σ)の点でその影響が著しく減少していることが確認された。 In the steel component 1 shown in FIG. 1, the interval L of the pair of pin press-fitting portions 12 is easily affected by residual stress due to machining, and the dimension of this interval L fluctuates after surface hardening heat treatment such as carburizing and quenching. When surface hardening heat treatment by conventional carburizing and quenching is performed, the average deformation amount of the interval L is 0.70 mm, and the standard deviation 3σ of the deformation amount is 1.40 mm, whereas the same steel component 1 is shown in FIG. When the heat treatment method of the present embodiment was applied, the average deformation amount of the interval L was 0.50 mm, and the standard deviation 3σ of the deformation amount was 0.08 mm. From this result, it was confirmed that the residual stress applied to the steel component 1 before carburizing and quenching was sufficiently removed, and its influence was remarkably reduced especially in terms of variation (standard deviation 3σ).

1…鋼材部品
11…軸受部
12ピン圧入部
13…ネジ部
13A…ネジ孔
1 ... Steel parts 11 ... Bearings 12 Pin press-fitting parts 13 ... Screw parts 13A ... Screw holes

Claims (3)

可変圧縮比エンジンのクランクシャフトに取り付けられるマルチリンク部品からなる鋼材部品であり、他の鋼材部品とネジ孔に形成したネジにネジを締め付けることで対となり、両鋼材部品を接合して前記クランクシャフトに取り付けられる鋼材部品の熱処理方法において、
熱処理炉内を第1所定温度まで昇温させて一定の熱容量を有する炉内雰囲気を形成したのち、
前記熱処理炉に室温状態の前記鋼材部品を投入し、
前記第1所定温度より低い、前記炉内雰囲気の温度と前記鋼材部品の温度とが平衡する第2所定温度で、前記鋼材部品を5〜15分保持したのち、
前記鋼材部品を前記第2所定温度より高い浸炭温度まで加熱し、
前記浸炭処理した鋼材部品をネジ研削し、ネジ孔を形成する鋼材部品の熱処理方法。
It is a steel part consisting of multi-link parts attached to the crankshaft of a variable compression ratio engine. It is paired with other steel parts by tightening screws to the screws formed in the screw holes, and both steel parts are joined to join the crankshaft. In the heat treatment method of steel parts attached to
After raising the temperature inside the heat treatment furnace to the first predetermined temperature to form an atmosphere inside the furnace having a constant heat capacity,
Put the steel parts of room temperature state to the heat treatment furnace,
After holding the steel parts for 5 to 15 minutes at a second predetermined temperature at which the temperature of the atmosphere in the furnace and the temperature of the steel parts are in equilibrium, which is lower than the first predetermined temperature, the steel parts are held.
The steel parts are heated to a carburizing temperature higher than the second predetermined temperature, and then the steel parts are heated to a carburizing temperature higher than the second predetermined temperature.
A method for heat-treating a steel part that forms a screw hole by screw-grinding the carburized steel part.
前記第2所定温度が、前記鋼材部品の再結晶温度±100℃である請求項1に記載の鋼材部品の熱処理方法。 The heat treatment method for a steel component according to claim 1, wherein the second predetermined temperature is the recrystallization temperature of the steel component ± 100 ° C. 前記一定の熱容量を有する炉内雰囲気を形成したのち、前記熱処理炉への熱量の付加を停止した状態で前記熱処理炉に室温状態の鋼材部品を投入する請求項1又は2に記載の鋼材部品の熱処理方法。 The steel parts according to claim 1 or 2 , after forming an atmosphere in the furnace having a certain heat capacity, and then charging the steel parts in a room temperature state into the heat treatment furnace in a state where the addition of heat to the heat treatment furnace is stopped. Heat treatment method.
JP2017132048A 2017-07-05 2017-07-05 Heat treatment method for steel parts Active JP6977339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017132048A JP6977339B2 (en) 2017-07-05 2017-07-05 Heat treatment method for steel parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017132048A JP6977339B2 (en) 2017-07-05 2017-07-05 Heat treatment method for steel parts

Publications (2)

Publication Number Publication Date
JP2019014932A JP2019014932A (en) 2019-01-31
JP6977339B2 true JP6977339B2 (en) 2021-12-08

Family

ID=65357117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017132048A Active JP6977339B2 (en) 2017-07-05 2017-07-05 Heat treatment method for steel parts

Country Status (1)

Country Link
JP (1) JP6977339B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582588B2 (en) * 1978-12-29 1983-01-17 日産自動車株式会社 Gas carburizing pretreatment method and equipment
JPH07103417B2 (en) * 1991-02-21 1995-11-08 日本発条株式会社 Heating furnace and quenching and heating method for steel
JP4074929B2 (en) * 2002-01-17 2008-04-16 関東冶金工業株式会社 Operation method of continuous heating furnace
WO2016098143A1 (en) * 2014-12-18 2016-06-23 新日鐵住金株式会社 Method for manufacturing nitrided component and steel for nitriding
CN107801403B (en) * 2015-06-24 2020-11-24 诺维尔里斯公司 Fast response heater for use in conjunction with a metal processing furnace and related control system
KR101738503B1 (en) * 2016-04-07 2017-05-22 한국생산기술연구원 Method for heat treatment for reducing deformation of cold-work articles

Also Published As

Publication number Publication date
JP2019014932A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
US20040025340A1 (en) Fracture split method for connecting rod
CN106319535B (en) Heat treatment method for gear shaft
CN104099518A (en) Carburized part, method for manufacturing thereof, and steel for carburized part
JP6977339B2 (en) Heat treatment method for steel parts
US4039354A (en) Method of making Belleville springs
US3964737A (en) Belleville spring
JP5371084B2 (en) Heat treatment method for cylindrical parts
US5297338A (en) Method of connecting metal ring gear to metal boss portion
JPH08295904A (en) Preparation of cam for jointed cam shaft
US5037490A (en) Process for allowing pretreatment of assembled camshaft components
JP5424298B2 (en) Heat treatment method for cylindrical parts
JP2006219706A (en) Heat-treated iron based sintered component and method for producing the same
JP2017020555A (en) Method for manufacturing gear
WO2018061087A1 (en) Steel component manufacturing method
KR101823890B1 (en) Method for gas nitriding of steel
JPH06100942A (en) Production of piston pin
JP4919556B2 (en) Gear manufacturing method
JP2827592B2 (en) Manufacturing method of steel parts
JP2019014931A (en) Heat treatment method for steel material component
JPH01112014A (en) Connecting rod
JPH0453937B2 (en)
JP2004308887A (en) High strength connecting rod and manufacturing method thereof
JP6228733B2 (en) Induction hardening method of iron-based sintered body
JP2007246975A (en) Method of manufacturing steel shaft
JP4421334B2 (en) bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210806

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210806

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210816

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R151 Written notification of patent or utility model registration

Ref document number: 6977339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151