JP6975735B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6975735B2
JP6975735B2 JP2019023119A JP2019023119A JP6975735B2 JP 6975735 B2 JP6975735 B2 JP 6975735B2 JP 2019023119 A JP2019023119 A JP 2019023119A JP 2019023119 A JP2019023119 A JP 2019023119A JP 6975735 B2 JP6975735 B2 JP 6975735B2
Authority
JP
Japan
Prior art keywords
suction pipe
refrigerant
refrigerating
heat insulating
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019023119A
Other languages
Japanese (ja)
Other versions
JP2020133914A (en
Inventor
智史 小沼
正康 津布久
拓人 天坂
圭介 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2019023119A priority Critical patent/JP6975735B2/en
Priority to CN201910831288.XA priority patent/CN111561798B/en
Publication of JP2020133914A publication Critical patent/JP2020133914A/en
Application granted granted Critical
Publication of JP6975735B2 publication Critical patent/JP6975735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2321/00Details or arrangements for defrosting; Preventing frosting; Removing condensed or defrost water, not provided for in other groups of this subclass
    • F25D2321/14Collecting condense or defrost water; Removing condense or defrost water
    • F25D2321/141Removal by evaporation
    • F25D2321/1413Removal by evaporation using heat from electric elements or using an electric field for enhancing removal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.

従来、冷蔵庫の冷凍サイクルは、圧縮機、放熱器、キャピラリチューブ、蒸発器、サクションパイプを順次流れた後、圧縮機に戻るように構成されている。一般的に、キャピラリチューブとサクションパイプは、ロウ付け又は半田付けされて互いに熱交換できるようにしてあるが、圧縮機に至るまでに外気温度相当に温度を上昇させるためには十分に熱交換長さを確保する必要がある。また、サクションパイプの一部の温度は蒸発器と同等となるため、壁面温度を低下させ、露付、霜付などの信頼性上の問題が発生する可能性がある。例えば特許文献1では、複数のサクションパイプを冷蔵庫隅部へ配することで庫内への熱影響の抑制を図っている。 Conventionally, the refrigerating cycle of a refrigerator is configured to flow through a compressor, a radiator, a capillary tube, an evaporator, and a suction pipe in order, and then return to the compressor. Generally, the capillary tube and suction pipe are brazed or soldered so that they can exchange heat with each other, but the heat exchange length is sufficient to raise the temperature equivalent to the outside air temperature before reaching the compressor. It is necessary to secure the temperature. In addition, since the temperature of a part of the suction pipe is the same as that of the evaporator, the wall surface temperature is lowered, which may cause reliability problems such as dew and frost. For example, in Patent Document 1, a plurality of suction pipes are arranged in the corners of the refrigerator to suppress the influence of heat on the inside of the refrigerator.

特開2016−8809号公報Japanese Unexamined Patent Publication No. 2016-8809

しかしながら、上記特許文献1のように、サクションパイプを冷蔵庫背面の隅部に配した場合、冷蔵室において、低温の冷媒の影響を受けてサクションパイプ配設部に露や霜などが発生する可能性がある。 However, when the suction pipe is arranged in the corner of the back surface of the refrigerator as in Patent Document 1, dew or frost may be generated in the suction pipe arrangement portion due to the influence of the low temperature refrigerant in the refrigerator compartment. There is.

そこで、本発明の目的は、低温の冷媒の影響を受けて霜が成長してしまうの防止可能な冷蔵庫を提供することにある。 Therefore, an object of the present invention is to provide a refrigerator capable of preventing frost from growing under the influence of a low-temperature refrigerant.

上記課題を鑑みてなされた本発明は、外箱と内箱との間に発泡断熱材が充填して形成された断熱箱体であって、冷蔵温度帯室と冷凍温度帯室を有し、前記冷蔵温度帯室と前記冷凍温度帯室の間は断熱仕切壁で仕切られた断熱箱体と、冷媒を吐出する圧縮機と、冷媒の熱を外気に放熱する放熱器と、冷媒を減圧する第一の減圧装置と、前記冷蔵温度帯室内から吸熱する第一の冷却器と、前記第一の減圧装置と熱交換を行うように構成され前記断熱箱体の背面側の発泡断熱材に埋設した第一のサクションパイプと、を有する第一の冷却機構と、前記圧縮機と、前記放熱器と、冷媒を減圧する第二の減圧装置と、前記冷凍温度帯室内から吸熱する第二の冷却器と、前記第二の減圧装置と熱交換を行うように構成され前記断熱箱体の背面側の発泡断熱材に埋設した第二のサクションパイプと、を有する第二の冷却機構と、前記第一の冷却器からの冷気を前記冷蔵温度帯室へ送風するファンと、前記冷蔵温度帯室の背面に配置され前記冷蔵温度帯室の上部に吐出口を有する送風路と、を有する送風機構と、を備えた冷蔵庫において、前記第一のサクションパイプは前記第一の冷却器の背面の発泡断熱材に埋設され、前記第二のサクションパイプは前記冷凍温度帯室の背面の発泡断熱材に埋設され、前記第一のサクションパイプと前記第二のサクションパイプは前記第一の冷却器の背面に配置された冷媒合流部にて単一のサクションパイプとなり、前記単一のサクションパイプは前記冷蔵温度帯室の背面の発泡断熱材に埋設され、前記冷媒合流部から前記内箱の上部に至るように配置され、前記単一のサクションパイプの埋設部のうち前記冷媒合流部に近い箇所を、前記送風路の後方投影面に配する。 The present invention made in view of the above problems is a heat insulating box body formed by filling a foam heat insulating material between an outer box and an inner box, and has a refrigerating temperature zone chamber and a freezing temperature zone chamber. A heat insulating box partitioned by a heat insulating partition wall between the refrigerating temperature zone chamber and the refrigerating temperature zone chamber, a compressor for discharging the refrigerant, a radiator for dissipating the heat of the refrigerant to the outside air, and depressurizing the refrigerant. It is configured to exchange heat with the first decompression device, the first cooler that absorbs heat from the refrigerating temperature zone room, and the first decompression device, and is embedded in the foamed heat insulating material on the back side of the heat insulating box. A first cooling mechanism having the first suction pipe, the compressor, the radiator, the second decompression device for depressurizing the refrigerant, and the second cooling that absorbs heat from the refrigerating temperature zone chamber. A second cooling mechanism having a vessel, a second suction pipe configured to exchange heat with the second decompression device and embedded in a foamed heat insulating material on the back side of the heat insulating box, and the first. A blower mechanism having a fan for blowing cold air from one cooler to the refrigerating temperature zone chamber, and an air passage arranged on the back surface of the refrigerating temperature zone chamber and having a discharge port at the upper part of the refrigerating temperature zone chamber. The first suction pipe is embedded in the foam insulation material on the back surface of the first cooler, and the second suction pipe is embedded in the foam insulation material on the back surface of the refrigerating temperature zone chamber. The first suction pipe and the second suction pipe become a single suction pipe at the refrigerant confluence portion arranged on the back surface of the first cooler, and the single suction pipe has the refrigerating temperature. The portion of the buried portion of the single suction pipe, which is embedded in the foamed heat insulating material on the back surface of the band chamber and is arranged so as to extend from the refrigerant confluence portion to the upper part of the inner box, is the portion close to the refrigerant confluence portion. Place it on the rear projection plane of the air passage.

本発明によれば、低温の冷媒の影響を受けて霜が成長してしまうのを防止可能な冷蔵庫を提供することができる。 According to the present invention, it is possible to provide a refrigerator capable of preventing frost from growing under the influence of a low temperature refrigerant.

実施例に係わる冷蔵庫の正面図Front view of the refrigerator according to the embodiment 図1のA−A断面図A-A cross-sectional view of FIG. 図2のB−B断面図BB sectional view of FIG. 実施例の冷蔵庫における断熱構造を示す正面図Front view showing the heat insulating structure in the refrigerator of the embodiment 実施例の冷蔵庫における冷凍サイクル構成を示す概略図Schematic diagram showing the refrigerating cycle configuration in the refrigerator of the example 図2のC−C断面図CC sectional view of FIG. 実施例の冷蔵庫におけるサクションパイプの温度の例Example of suction pipe temperature in the refrigerator of the example 図2のC−C断面図にB-B断面図の冷蔵室風路を投影した概略図Schematic diagram in which the refrigerating chamber air passage in the BB sectional view is projected onto the CC sectional view of FIG. 図1のA−A断面の上部を詳細に示した図The figure which showed the upper part of the AA cross section of FIG. 1 in detail.

以下、本発明の実施形態である。 The following is an embodiment of the present invention.

図1は実施例に係わる冷蔵庫の正面図、図2は図1のA−A断面図、図3は図2のB−B断面図である。冷蔵庫1の箱体10は、上方から冷蔵室2、左右に併設された製氷室3と上段冷凍室4、下段冷凍室5、野菜室6の順番で貯蔵室を有している。冷蔵庫1はそれぞれの貯蔵室の開口を開閉するドアを備えている。これらのドアは、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室ドア2a、2bと、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6の開口をそれぞれ開閉する引き出し式の製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aである。以下では、製氷室3、上段冷凍室4、下段冷凍室5は、まとめて冷凍室7と呼ぶ。 1 is a front view of the refrigerator according to the embodiment, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIG. 3 is a sectional view taken along the line BB of FIG. The box body 10 of the refrigerator 1 has a refrigerating room 2 from above, an ice making room 3 and an upper freezing room 4 arranged on the left and right sides, a lower freezing room 5, and a vegetable room 6 in this order. Refrigerator 1 is provided with a door that opens and closes the opening of each storage room. These doors open and close the openings of the refrigerating room 2, the left and right rotary refrigerating room doors 2a and 2b, and the openings of the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6. A pull-out type ice making room door 3a, an upper freezing room door 4a, a lower freezing room door 5a, and a vegetable room door 6a that open and close, respectively. Hereinafter, the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing chamber 7.

冷凍室7は、基本的に庫内を冷凍温度帯(0℃未満)の例えば平均的にー18℃程度にした貯蔵室であり、冷蔵室2及び野菜室は庫内を冷蔵温度帯(0℃以上)とし、例えば冷蔵室2は平均的に4℃程度、野菜室は平均的に7℃程度にした貯蔵室である。ドア2aには庫内の温度設定の操作を行う操作部26を設けている。冷蔵庫1とドア2a、2bを固定するためにドアヒンジ(図示せず)が冷蔵室2上部及び下部に設けてあり、上部のドアヒンジはドアヒンジカバー16で覆われている。 The freezer compartment 7 is basically a storage chamber in which the inside of the refrigerator is kept in the freezing temperature zone (less than 0 ° C.), for example, about -18 ° C on average, and the refrigerating chamber 2 and the vegetable compartment are in the refrigerating temperature zone (0 ° C.). ℃ or higher), for example, the refrigerating room 2 is a storage room having an average temperature of about 4 ° C., and the vegetable room is a storage room having an average temperature of about 7 ° C. The door 2a is provided with an operation unit 26 for operating the temperature setting in the refrigerator. Door hinges (not shown) are provided at the upper and lower parts of the refrigerator compartment 2 to fix the refrigerator 1 and the doors 2a and 2b, and the upper door hinges are covered with the door hinge cover 16.

図2に示すように、外箱10aと内箱10bとの間に発泡断熱材(例えば発泡ウレタン)を充填して形成される箱体10により、冷蔵庫1の庫外と庫内は隔てられている。箱体10には発泡断熱材に加えて複数の真空断熱材25を、鋼板製の外箱10aと合成樹脂製の内箱10bとの間に実装している。冷蔵室2と、上段冷凍室4及び製氷室3は断熱仕切壁28によって隔てられ、同様に下段冷凍室5と野菜室6は断熱仕切壁29によって隔てられている。また、製氷室3、上段冷凍室4、及び下段冷凍室5の各貯蔵室の前面側には、ドア3a、4a、5aの隙間から冷凍室7内の空気が庫外へ漏れ、庫外の空気が各貯蔵室に侵入しないよう、断熱仕切壁30を設けている。冷蔵室2のドア2a、2bの庫内側には複数のドアポケット33a、33b、33cと、複数の棚34a、34b、34c、34dを設け、複数の貯蔵スペースに区画されている。冷凍室7及び野菜室6には、それぞれドア3a、4a、5a、6aと一体に引き出される製氷室容器(図示せず)、上段冷凍室容器4b、下段冷凍室容器5b、野菜室容器6bを備えている断熱仕切壁28の上方には、冷蔵室2の温度帯よりも低めに設定されたチルドルーム35を設けている。本チルドルームは、例えば後述するR蒸発器14aとRファン9aの制御、及び断熱仕切壁28内に設けたヒータ(図示せず)により、冷蔵温度帯の例えば約0〜3℃にするモードと冷凍温度帯の例えば約−3〜0℃にするモードに切換えることができる。 As shown in FIG. 2, the outside and inside of the refrigerator 1 are separated by a box body 10 formed by filling a foam insulating material (for example, urethane foam) between the outer box 10a and the inner box 10b. There is. In addition to the foam heat insulating material, a plurality of vacuum heat insulating materials 25 are mounted on the box body 10 between the outer box 10a made of steel plate and the inner box 10b made of synthetic resin. The refrigerating room 2, the upper freezing room 4, and the ice making room 3 are separated by a heat insulating partition wall 28, and similarly, the lower freezing room 5 and the vegetable room 6 are separated by a heat insulating partition wall 29. Further, on the front side of each storage chamber of the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5, the air inside the freezing chamber 7 leaks to the outside of the refrigerator through the gaps between the doors 3a, 4a, and 5a, and the outside of the refrigerator. A heat insulating partition wall 30 is provided to prevent air from entering each storage chamber. A plurality of door pockets 33a, 33b, 33c and a plurality of shelves 34a, 34b, 34c, 34d are provided inside the doors 2a, 2b of the refrigerating chamber 2, and are partitioned into a plurality of storage spaces. The freezer compartment 7 and the vegetable compartment 6 are provided with an ice making chamber container (not shown), an upper freezer compartment container 4b, a lower freezer compartment container 5b, and a vegetable compartment container 6b, which are drawn out integrally with the doors 3a, 4a, 5a, and 6a, respectively. Above the heat insulating partition wall 28 provided, a chilled room 35 set lower than the temperature zone of the refrigerating room 2 is provided. This chilled room has a mode of, for example, about 0 to 3 ° C. in the refrigerating temperature range by controlling the R evaporator 14a and the R fan 9a, which will be described later, and a heater (not shown) provided in the heat insulating partition wall 28. It is possible to switch to a mode in which the refrigerating temperature range is set to, for example, about -3 to 0 ° C.

冷蔵用蒸発器であるR蒸発器14aは冷蔵室2の略背部に備えた冷蔵用蒸発器室であるR蒸発器室8a内に設けてある。R蒸発器14aと熱交換して低温になった空気は、R蒸発器14aの上方に設けた冷蔵用ファンであるRファン9aにより、冷蔵室風路11、冷蔵室吐出口11aを介して冷蔵室2に送風され、冷蔵室2内を冷却する。冷蔵室2に送風された空気は冷蔵室戻り口15a及び15b(図3参照)からR蒸発器室8aに戻り、再びR蒸発器14aにより冷却される。 The R evaporator 14a, which is a refrigerating evaporator, is provided in the R evaporator chamber 8a, which is a refrigerating evaporator chamber provided substantially behind the refrigerating chamber 2. The air that has become cold due to heat exchange with the R evaporator 14a is refrigerated via the refrigerating chamber air passage 11 and the refrigerating chamber discharge port 11a by the R fan 9a, which is a refrigerating fan provided above the R evaporator 14a. The air is blown into the room 2 to cool the inside of the refrigerating room 2. The air blown to the refrigerating chamber 2 returns to the R evaporator chamber 8a from the refrigerating chamber return ports 15a and 15b (see FIG. 3), and is cooled again by the R evaporator 14a.

冷凍用蒸発器であるF蒸発器14bは冷凍室7の略背部に備えた冷凍用蒸発器室であるF蒸発器室8b内に設けてある。F蒸発器14bと熱交換して低温になった空気は、F蒸発器14bの上方に設けた冷凍用ファンであるFファン9bにより、冷凍室風路12、冷凍室吐出口12aを介して冷凍室7に送風し、冷凍室7内を冷却する。冷凍室7に送風された空気は冷凍室戻り口17からF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 The F evaporator 14b, which is a freezing evaporator, is provided in the F evaporator chamber 8b, which is a freezing evaporator chamber provided substantially behind the freezing chamber 7. The air that has become cold due to heat exchange with the F evaporator 14b is frozen by the F fan 9b, which is a freezing fan provided above the F evaporator 14b, via the freezing chamber air passage 12 and the freezing chamber discharge port 12a. Blow air into the chamber 7 to cool the inside of the freezing chamber 7. The air blown to the freezing chamber 7 returns to the F evaporator chamber 8b from the freezing chamber return port 17, and is cooled again by the F evaporator 14b.

本実施例の冷蔵庫1では、野菜室6もF蒸発器14bで低温にした空気で冷却する。F蒸発器14bで低温になったF蒸発器室8bの空気は、Fファン9bにより野菜室風路(図示せず)、野菜室ダンパ(図示せず)を介して野菜室6に送風し、野菜室6内を冷却する。野菜室6が低温の場合は、野菜室ダンパを閉じることで野菜室6の冷却を抑える。なお、野菜室6に送風された空気は断熱仕切壁29の下部前方に設けた野菜室側の冷気戻り部18aから野菜室冷気戻りダクト18を介してF蒸発器室8bの下部に戻る。 In the refrigerator 1 of this embodiment, the vegetable compartment 6 is also cooled by the air cooled by the F evaporator 14b. The air in the F evaporator chamber 8b, which has become cold in the F evaporator 14b, is blown to the vegetable chamber 6 by the F fan 9b through the vegetable chamber air passage (not shown) and the vegetable chamber damper (not shown). Cool the inside of the vegetable compartment 6. When the temperature of the vegetable compartment 6 is low, the cooling of the vegetable compartment 6 is suppressed by closing the vegetable compartment damper. The air blown to the vegetable compartment 6 returns from the cold air return portion 18a on the vegetable compartment side provided in front of the lower portion of the heat insulating partition wall 29 to the lower portion of the F evaporator chamber 8b via the vegetable compartment cold air return duct 18.

冷蔵室2、冷凍室7、野菜室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43を設け、R蒸発器14aの上部にはR蒸発器温度センサ40a、F蒸発器14bの上部にはF蒸発器温度センサ40bを設け、これらのセンサにより、冷蔵室2、冷凍室7、野菜室6、R蒸発器14a、及びF蒸発器14bの温度を検知している。また、冷蔵庫1の天井部のドアヒンジカバー16の内部には、外気(庫外空気)の温度、湿度を検知する外気温度センサ37を設けている。その他のセンサとして、ドア2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知するドアセンサ(図示せず)や、後述する仕切部温度検知手段である仕切部温度センサ100等も設けている。 A refrigerating room temperature sensor 41, a freezing room temperature sensor 42, and a vegetable room temperature sensor 43 are provided on the back side of the refrigerator chamber 2, the freezing chamber 7, and the vegetable compartment 6, respectively, and R evaporation is provided above the R evaporator 14a. An F evaporator temperature sensor 40b is provided above the vessel temperature sensor 40a and the F evaporator 14b, and the refrigerator chamber 2, the freezing chamber 7, the vegetable compartment 6, the R evaporator 14a, and the F evaporator 14b are provided with these sensors. The temperature is detected. Further, inside the door hinge cover 16 on the ceiling of the refrigerator 1, an outside air temperature sensor 37 for detecting the temperature and humidity of the outside air (outside air) is provided. Other sensors include a door sensor (not shown) that detects the open / closed state of the doors 2a, 2b, 3a, 4a, 5a, and 6a, a partition temperature sensor 100 that is a partition temperature detecting means described later, and the like. There is.

図2及び図3に示すように、F蒸発器室8bの下部には、F蒸発器14bを加熱する除霜ヒータ21を設けている。除霜ヒータ21は、例えば50W〜200Wの電気ヒータで、本実施例では150Wのラジアントヒータとしている。F蒸発器14bの除霜時に発生した除霜水(融解水)はF蒸発器室8bの下部に設けたトイ23bに落下し、排水口22b、F排水管27bを介して圧縮機24の上部に設けた蒸発皿32に排出される。 As shown in FIGS. 2 and 3, a defrost heater 21 for heating the F evaporator 14b is provided in the lower part of the F evaporator chamber 8b. The defrost heater 21 is, for example, an electric heater of 50 W to 200 W, and in this embodiment, it is a radiant heater of 150 W. The defrosted water (melted water) generated during the defrosting of the F evaporator 14b falls on the toy 23b provided at the lower part of the F evaporator chamber 8b, and falls to the upper part of the compressor 24 via the drain port 22b and the F drain pipe 27b. It is discharged to the evaporating dish 32 provided in.

また、R蒸発器14aの除霜方法については図8を用いて後述するが、R蒸発器14aの除霜時に発生した除霜水は、R蒸発器室8aの下部に設けたトイ23aに落下し、排水口22a、R排水管27aを介して圧縮機24の上部に設けた蒸発皿32に排出される。 The defrosting method of the R evaporator 14a will be described later with reference to FIG. 8, but the defrosted water generated during the defrosting of the R evaporator 14a falls on the toy 23a provided in the lower part of the R evaporator chamber 8a. Then, the water is discharged to the evaporating dish 32 provided on the upper part of the compressor 24 via the drain port 22a and the R drain pipe 27a.

図3に示すように、トイ23aにはトイ23aでの除霜水が凍結した際に除霜水を融解させるトイヒータ101を設けている。R排水管27aには排水管上部ヒータ102及び排水管下部ヒータ103を設けている。また、トイ23aの最終集水部には残水の有無を検知するためのトイ温度センサ45が断熱材内部に埋設されている。トイセンサ45は、発泡ウレタン断熱材に埋設することにより、水の滴下による耐久性低下を避けるように構成されている。また、トイセンサ45は、トイ23aの最終集水部に配置することで、少量の残水に対して反応するように構成されている。残水に対する制御については後述する。トイヒータ101、配水管上部ヒータ102、或いは配水下部ヒータ103の通電を制御している。なお各ヒータ101、102,103は、例えば消費電力20W以下と、除霜ヒータ21よりも消費電力が低い電気ヒータであり、本実施例ではトイヒータ101が6W,排水管上部ヒータ102が3W、排水管下部ヒータ103が1Wのヒータとしている。 As shown in FIG. 3, the toy 23a is provided with a toy heater 101 that melts the defrosted water when the defrosted water in the toy 23a freezes. The drainage pipe 27a is provided with a drainage pipe upper heater 102 and a drainage pipe lower heater 103. Further, in the final water collecting portion of the toy 23a, a toy temperature sensor 45 for detecting the presence or absence of residual water is embedded inside the heat insulating material. The toy sensor 45 is configured to avoid deterioration of durability due to dripping of water by embedding it in a urethane foam heat insulating material. Further, the toy sensor 45 is configured to react to a small amount of residual water by arranging it in the final water collecting portion of the toy 23a. The control for residual water will be described later. It controls the energization of the toy heater 101, the water pipe upper heater 102, or the water pipe lower heater 103. Each heater 101, 102, 103 is an electric heater having a power consumption of 20 W or less, which is lower than that of the defrost heater 21, and in this embodiment, the toy heater 101 is 6 W, the drain pipe upper heater 102 is 3 W, and drainage is performed. The pipe lower heater 103 is a 1 W heater.

ここで、図2、図3に示すように、トイ23aにはRファン9aを駆動させると冷蔵室2から冷蔵室蒸発器14aへの戻り空気が流れる構成にしている。後述するR蒸発器14aの除霜運転時はRファン9aを駆動させるため、このプラス温度の戻り空気でトイ23aを加熱できる。これにより、トイ23aでの除霜水の凍結を抑制し、また凍結した場合も融解に必要なトイヒータ101の加熱量を抑制することができ省エネルギー性能を高めることができる。 Here, as shown in FIGS. 2 and 3, the toy 23a is configured such that when the R fan 9a is driven, the return air from the refrigerating chamber 2 to the refrigerating chamber evaporator 14a flows. Since the R fan 9a is driven during the defrosting operation of the R evaporator 14a, which will be described later, the toy 23a can be heated by the return air having a positive temperature. As a result, the freezing of the defrosted water in the toy 23a can be suppressed, and even when the toy 23a freezes, the heating amount of the toy heater 101 required for thawing can be suppressed, and the energy saving performance can be improved.

また、排水管27a下部(排水管下部ヒータ103を設けた箇所)は、冷凍室7及びF蒸発器室8bよりも外箱10aに近接させている。これにより、特に外気高温時、外箱10aを介して外気により加熱できるため、排水管27a下部での凍結を抑制し、また凍結した場合も排水管下部ヒータ103の加熱量を抑制することができ省エネルギー性能を高めることができる。一方、外気が低温の場合は排水管下部ヒータ103を加熱して除霜水が確実に排出できるようにしている。加えて、R排水管27aは約0℃の除霜水が流れるため、R排水管27aに近接した外箱10aが除霜水により冷却され、露点温度よりも低温になる可能性があるが、排水管下部ヒータ103を設けたことで、外気が高湿の場合は後述するR第一除霜運転とR第二除霜運転時に排水管下部ヒータ103に通電して外箱10aの温度低下を抑え、外箱10aへの結露を抑制できる。 Further, the lower part of the drainage pipe 27a (the place where the drainage pipe lower part heater 103 is provided) is closer to the outer box 10a than the freezing chamber 7 and the F evaporator chamber 8b. As a result, especially when the outside air is at a high temperature, it can be heated by the outside air via the outer box 10a, so that freezing in the lower part of the drainage pipe 27a can be suppressed, and even when freezing, the heating amount of the drainage pipe lower part heater 103 can be suppressed. Energy saving performance can be improved. On the other hand, when the outside air is low temperature, the heater 103 at the bottom of the drain pipe is heated to ensure that the defrosted water can be discharged. In addition, since the defrost water of about 0 ° C. flows through the R drain pipe 27a, the outer box 10a near the R drain pipe 27a is cooled by the defrost water, and the temperature may be lower than the dew point temperature. By providing the drain pipe lower heater 103, when the outside air is highly humid, the temperature of the outer box 10a is lowered by energizing the drain pipe lower heater 103 during the R first defrosting operation and the R second defrosting operation, which will be described later. It can be suppressed and dew condensation on the outer box 10a can be suppressed.

冷蔵庫1の上部(図2参照)には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。制御基板31は、冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43、蒸発器温度センサ40a、40b等と接続され、前述のCPUは、これらの出力値や操作部26の設定、前述のROMに予め記録されたプログラム等を基に、圧縮機24やRファン9a、冷蔵用ファン9b、前述の各ヒータ21、101、102、103、及び後述する冷媒制御弁52の制御等を行っている。 A control board 31 on which a CPU, a memory such as a ROM or RAM, an interface circuit, etc., which are a part of the control device, is arranged on the upper part of the refrigerator 1 (see FIG. 2). The control board 31 is connected to the refrigerating room temperature sensor 41, the freezing room temperature sensor 42, the vegetable room temperature sensor 43, the evaporator temperature sensors 40a, 40b, etc., and the CPU described above sets these output values and the operation unit 26. , Control of the compressor 24, the R fan 9a, the refrigerating fan 9b, the above-mentioned heaters 21, 101, 102, 103, and the refrigerant control valve 52 described later, etc., based on the program or the like recorded in advance in the above-mentioned ROM. It is carried out.

図4は、実施例に関わる冷蔵庫の断熱構造を示す正面図である。冷蔵庫1は、内箱83と、外箱84と、内箱83と外箱84との間に配置された真空断熱材87と、を有している。本実施形態においては、真空断熱材87は外箱84側に両面テープやホットメルトなどの接着剤を介して配設されており、真空断熱材87と内箱83との隙間にはウレタン断熱材88が注入発泡され、内箱83と接着あるいは固定されるものである。なお、真空断熱材87は、内箱3側、あるいは内箱83と外箱84の中間、に配置してもよく、そのような場合は、真空断熱材87と外箱84との隙間、あるいは真空断熱材87と内箱83との隙間および真空断熱材87と外箱84との隙間、にウレタン断熱材88が充填される。断熱箱体の断熱性能はウレタン断熱材と真空断熱材が担っており、特に断熱性能の観点では、真空断熱材87の充填比率を高めることが望ましい。 FIG. 4 is a front view showing the heat insulating structure of the refrigerator according to the embodiment. The refrigerator 1 has an inner box 83, an outer box 84, and a vacuum heat insulating material 87 arranged between the inner box 83 and the outer box 84. In the present embodiment, the vacuum heat insulating material 87 is arranged on the outer box 84 side via an adhesive such as double-sided tape or hot melt, and the gap between the vacuum heat insulating material 87 and the inner box 83 is a urethane heat insulating material. 88 is injected and foamed and adhered to or fixed to the inner box 83. The vacuum heat insulating material 87 may be arranged on the inner box 3 side or between the inner box 83 and the outer box 84. In such a case, the gap between the vacuum heat insulating material 87 and the outer box 84, or The urethane heat insulating material 88 is filled in the gap between the vacuum heat insulating material 87 and the inner box 83 and the gap between the vacuum heat insulating material 87 and the outer box 84. The heat insulating performance of the heat insulating box is borne by the urethane heat insulating material and the vacuum heat insulating material, and it is particularly desirable to increase the filling ratio of the vacuum heat insulating material 87 from the viewpoint of the heat insulating performance.

図5は、実施例に関わる冷蔵庫の冷凍サイクル(冷媒流路)構成を示す概略図である。本実施例の冷蔵庫1では、圧縮機24、冷媒の放熱を行う放熱手段である庫外放熱器50aと壁面放熱配管50b、断熱仕切壁28、29、30の前面部への結露を抑制する結露防止配管50c、冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ53a1、53a2と冷凍用キャピラリチューブ53b1、53b2、冷媒と庫内の空気を熱交換させて、庫内の熱を吸熱するR蒸発器14aとF蒸発器14b、冷蔵用キャピラリチューブ53a2と熱交換を行う冷蔵用サクションパイプ55a、冷凍用キャピラリチューブ53b2と熱交換を行う冷凍用サクションパイプ55b、冷蔵用キャピラリチューブ53a1および冷凍用キャピラリチューブ53b1と熱交換を行う共用サクションパイプ55abを備え、これらにより庫内を冷却している。また、冷凍サイクル中の水分を除去するドライヤ51と、液冷媒が圧縮機24に流入するのを防止する気液分離器54a、54bを備え、さらに冷媒流路を制御する三方弁52、逆止弁56、冷媒流を接続する冷媒合流部57も備えており、これらを冷媒配管により接続することで冷凍サイクルを構成している。 FIG. 5 is a schematic view showing the refrigerating cycle (refrigerant flow path) configuration of the refrigerator according to the embodiment. In the refrigerator 1 of this embodiment, dew condensation that suppresses dew condensation on the front portions of the compressor 24, the external radiator 50a that is a heat radiating means for radiating the refrigerant, the wall surface radiating pipe 50b, and the heat insulating partition walls 28, 29, 30. Prevention pipe 50c, refrigerating capillary tubes 53a1, 53a2 and refrigerating capillary tubes 53b1, 53b2, which are depressurizing means for depressurizing the refrigerant, and an R evaporator that absorbs heat in the refrigerator by exchanging heat between the refrigerant and the air inside the refrigerator. 14a and F evaporator 14b, refrigerating suction pipe 55a for exchanging heat with refrigerating capillary tube 53a2, refrigerating suction pipe 55b for exchanging heat with refrigerating capillary tube 53b2, refrigerating capillary tube 53a1 and refrigerating capillary tube 53b1. It is equipped with a shared suction pipe 55ab that exchanges heat with and cools the inside of the refrigerator. Further, a dryer 51 for removing water during the refrigeration cycle, gas-liquid separators 54a and 54b for preventing the liquid refrigerant from flowing into the compressor 24, a three-way valve 52 for controlling the refrigerant flow path, and a check valve are provided. A valve 56 and a refrigerant merging portion 57 for connecting the refrigerant flow are also provided, and these are connected by a refrigerant pipe to form a refrigerating cycle.

なお本実施例の冷蔵庫1は、冷媒に可燃性冷媒のイソブタンを用いている。また、本実施例の圧縮機24はインバータを備えて回転速度を変えることができる。三方弁52は、52a、52bで示す2つの流出口を備え、流出口52a側に冷媒を流す冷蔵モードと、流出口52b側に冷媒を流す冷凍モードを備え、これらを切換えることができる部材である。また、本実施例の三方弁52は、流出口52aと流出口52bの何れも冷媒が流れないようにする全閉、また何れも冷媒が流れるようにする全開のモードも備え、これらにも切換え可能である。 The refrigerator 1 of this embodiment uses isobutane, which is a flammable refrigerant, as a refrigerant. Further, the compressor 24 of this embodiment is provided with an inverter and can change the rotation speed. The three-way valve 52 has two outlets shown by 52a and 52b, and has a refrigerating mode in which the refrigerant flows on the outlet 52a side and a freezing mode in which the refrigerant flows on the outlet 52b side, and these can be switched. be. Further, the three-way valve 52 of the present embodiment has a fully closed mode in which both the outlet 52a and the outlet 52b prevent the refrigerant from flowing, and a fully open mode in which the refrigerant flows in both of them. It is possible.

本実施例の冷蔵庫1では、冷媒は以下のように流れる。圧縮機24から吐出した冷媒は、庫外放熱器50a、庫外放熱器50b、結露防止配管50c、ドライヤ51の順に流れ、三方弁52に至る。三方弁52の流出口52aは冷媒配管を介して冷蔵用キャピラリチューブ53a1と接続され、流出口52bは冷媒配管を介して冷凍用キャピラリチューブ53b1と接続されている。 In the refrigerator 1 of this embodiment, the refrigerant flows as follows. The refrigerant discharged from the compressor 24 flows in the order of the outside radiator 50a, the outside radiator 50b, the dew condensation prevention pipe 50c, and the dryer 51, and reaches the three-way valve 52. The outlet 52a of the three-way valve 52 is connected to the refrigerating capillary tube 53a1 via the refrigerant pipe, and the outlet 52b is connected to the freezing capillary tube 53b1 via the refrigerant pipe.

流出口52a側に冷媒が流れるようにすると、流出口52aから流出した冷媒は、冷蔵用キャピラリチューブ53a1、53a2、R蒸発器14a、気液分離器54a、冷蔵用サクションパイプ55a、冷媒合流部57、共用サクションパイプ55abの順に流れた後、圧縮機24に戻る。冷蔵用キャピラリチューブ53aで低圧低温になった冷媒がR蒸発器14aを流れることでR蒸発器14aが低温となり、R蒸発器室8aの空気を冷却することができ、すなわち冷蔵室2を冷却することができる。このとき、冷蔵用キャピラリチューブ53a1は必ずしもキャピラリチューブである必要はなく、製造上の容易さや冷媒音の対策のために段階的な冷媒の圧力状態の変化を与えたい意図からφ3程度のパイプを用いるのが有効である。このように、冷蔵用キャピラリチューブ53a1、53a2の内径を、R蒸発器14aから遠い側から近い側にかけて徐々に小さくなるように形成することで、圧力の急拡大箇所がなくなり、冷媒音の低下につながる。また、冷蔵用サクションパイプ55aは、熱交換のために冷蔵用キャピラリチューブ53a2とロウ付けや半田付けで接着するなどして併設されているが、冷蔵用サクションパイプの熱交換長さが十分に足りている場合、必ずしも接着する必要はない。 When the refrigerant is allowed to flow to the outlet 52a side, the refrigerant flowing out from the outlet 52a is the refrigerating capillary tubes 53a1, 53a2, the R evaporator 14a, the gas-liquid separator 54a, the refrigerating suction pipe 55a, and the refrigerant confluence portion 57. , After flowing in the order of the shared suction pipe 55ab, it returns to the compressor 24. The low-pressure and low-temperature refrigerant in the refrigerating capillary tube 53a flows through the R evaporator 14a, so that the R evaporator 14a becomes cold and the air in the R evaporator chamber 8a can be cooled, that is, the refrigerating chamber 2 is cooled. be able to. At this time, the refrigerating capillary tube 53a1 does not necessarily have to be a capillary tube, and a pipe of about φ3 is used for the purpose of gradually changing the pressure state of the refrigerant for ease of manufacturing and measures against refrigerant noise. Is effective. In this way, by forming the inner diameters of the refrigerating capillary tubes 53a1 and 53a2 so as to gradually decrease from the far side to the near side of the R evaporator 14a, there is no sudden increase in pressure, and the refrigerant noise is reduced. Connect. Further, the refrigerating suction pipe 55a is attached to the refrigerating capillary tube 53a2 by brazing or soldering for heat exchange, but the heat exchange length of the refrigerating suction pipe is sufficient. If so, it does not necessarily have to be glued.

また、三方弁52を流出口52b側に冷媒が流れるようにした場合は、流出口52bから流出した冷媒は、冷凍用キャピラリチューブ53b1、53b2、F蒸発器14b、気液分離器54b、冷凍用サクションパイプ55b、逆止弁56、冷媒合流部57、共用サクションパイプ55abの順に流れた後、圧縮機24に戻る。逆止弁56は気液分離器54bから冷媒合流部57側には冷媒が流れ、冷媒合流部57から気液分離器54b側へは流れないように配設している。冷凍用キャピラリチューブ53bで低圧低温になった冷媒がF蒸発器14bを流れることでF蒸発器14bが低温となり、R蒸発器室8aの空気を冷却することができ、すなわち冷凍室7を冷却することができる。このとき、冷凍用キャピラリチューブ53b1は必ずしもキャピラリチューブである必要はなく、製造上の容易さや冷媒音の対策のために段階的な冷媒の圧力状態の変化を与えたい意図からφ3程度のパイプを用いるのが有効である。このように、冷蔵用キャピラリチューブ53b1、53b2の内径を、F蒸発器14bから遠い側から近い側にかけて徐々に小さくなるように形成することで、圧力の急拡大箇所がなくなり、冷媒音の低下につながる。また、冷凍用サクションパイプ55bは、熱交換のために冷凍用キャピラリチューブ53b2とロウ付けや半田付けで接着するなどして併設されているが、冷凍用サクションパイプの熱交換長さが十分に足りている場合、必ずしも接着する必要はない。 When the three-way valve 52 is configured so that the refrigerant flows to the outlet 52b side, the refrigerant flowing out from the outlet 52b is the refrigerating capillary tubes 53b1, 53b2, the F evaporator 14b, the gas-liquid separator 54b, and the refrigerating valve. After flowing in the order of the suction pipe 55b, the check valve 56, the refrigerant merging portion 57, and the common suction pipe 55ab, the compressor returns to the compressor 24. The check valve 56 is arranged so that the refrigerant flows from the gas-liquid separator 54b to the refrigerant merging portion 57 side and does not flow from the refrigerant merging portion 57 to the gas-liquid separator 54b side. The low-pressure and low-temperature refrigerant in the refrigerating capillary tube 53b flows through the F-evaporator 14b, so that the F-evaporator 14b becomes low-temperature and the air in the R-evaporator chamber 8a can be cooled, that is, the freezing chamber 7 is cooled. be able to. At this time, the refrigerating capillary tube 53b1 does not necessarily have to be a capillary tube, and a pipe of about φ3 is used for the purpose of gradually changing the pressure state of the refrigerant for ease of manufacturing and measures against refrigerant noise. Is effective. In this way, by forming the inner diameters of the refrigerating capillary tubes 53b1 and 53b2 so as to gradually decrease from the far side to the near side from the F evaporator 14b, there is no sudden increase in pressure, and the refrigerant noise is reduced. Connect. Further, the refrigerating suction pipe 55b is attached to the refrigerating capillary tube 53b2 by brazing or soldering for heat exchange, but the heat exchange length of the refrigerating suction pipe is sufficient. If so, it does not necessarily have to be glued.

また、共用サクションパイプ55abと冷蔵用キャピラリチューブ53a1、冷凍用キャピラリチューブ53b1は、ロウ付けや半田付けで接着するなどして併設されており、共用サクションパイプ55abと各キャピラリチューブとの間で熱交換が行われる。ここで、共用サクションパイプ55abと各キャピラリチューブとの熱交換長さは必ずしも同じである必要はない。また、冷蔵用キャピラリチューブ53a2、冷凍用キャピラリチューブ53b2の配置は、共用サクションパイプ55abの円を中心に対称にすることで曲げ加工が容易になる一方、同一方向にすることで加工が容易になるため、どうちらを選択してもよい。 Further, the shared suction pipe 55ab, the capillary tube 53a1 for refrigeration, and the capillary tube 53b1 for refrigeration are arranged side by side by being bonded by brazing or soldering, and heat exchange is performed between the shared suction pipe 55ab and each capillary tube. Is done. Here, the heat exchange length between the shared suction pipe 55ab and each capillary tube does not necessarily have to be the same. Further, the arrangement of the refrigerating capillary tube 53a2 and the freezing capillary tube 53b2 is made symmetrical about the circle of the common suction pipe 55ab to facilitate bending, while the same direction facilitates processing. Therefore, you may choose either one.

なお、共用化されていない部分の冷蔵用サクションパイプ55a,冷凍用サクションパイプ55bのうち、特に冷凍用サクションパイプ55bについては、冷媒の温度がより低いので、冷媒合流部57に至る前に冷凍用キャピラリチューブ53b2によって予め熱交換させて、冷媒の温度を低下させておくことが、庫内の霜付き等の抑制に効果的である。 Of the refrigerating suction pipe 55a and the refrigerating suction pipe 55b that are not shared, the refrigerating suction pipe 55b has a lower refrigerant temperature, so that it is used for freezing before reaching the refrigerant confluence 57. It is effective to suppress frosting and the like in the refrigerator by exchanging heat in advance with the capillary tube 53b2 to lower the temperature of the refrigerant.

本実施例のように、冷蔵用サクションパイプの一部と冷凍用サクションパイプの一部とを一体に構成して共用化することで、サクションパイプが冷蔵庫背面に占める割合を減らすことができる。その結果、冷蔵庫への熱影響が抑制されるだけでなく、断熱部材として発泡注入されるウレタンの流動性も高めることが可能となる。 As in this embodiment, by integrally configuring and sharing a part of the suction pipe for refrigeration and a part of the suction pipe for freezing, the ratio of the suction pipe to the back surface of the refrigerator can be reduced. As a result, not only the heat effect on the refrigerator is suppressed, but also the fluidity of urethane foam-injected as a heat insulating member can be increased.

特に、ウレタン発泡断熱材の厚さが真空断熱材の厚さよりも小さくすることで薄壁化した冷蔵庫においては、サクションパイプの配置によりウレタンの流動性が悪化するが、本実施例のような構成とすれば、ウレタンが注入し易くなる。 In particular, in a refrigerator in which the wall is thinned by making the thickness of the urethane foam heat insulating material smaller than the thickness of the vacuum heat insulating material, the fluidity of urethane deteriorates due to the arrangement of the suction pipes. If so, urethane can be easily injected.

図6は、図のC−C断面図であり、実施例に関わる冷蔵庫のサクションパイプ55a、55b、55ab、逆止弁56、冷媒合流部57と、各貯蔵室2、6、7、断熱仕切り28、29の位置関係を示している。 FIG. 6 is a cross-sectional view taken along the line CC of FIG. 2 , in which the suction pipes 55a, 55b, 55ab, the check valve 56, the refrigerant confluence portion 57, and the respective storage chambers 2, 6, 7 and heat insulation of the refrigerator according to the embodiment are shown. The positional relationship between the partitions 28 and 29 is shown.

冷蔵用蒸発器14aに接続された冷蔵用サクションパイプ55aは、R蒸発器14a背面の発泡材に埋設され、略水平方向の冷媒合流部57に至る。F蒸発器14bに接続された冷凍用サクションパイプ55bは、断熱仕切壁28の下面に向かって発泡材内に埋設される。次に断熱仕切壁28の背面にて逆止弁56に接続され、その後、冷媒合流部57に至る。 The refrigerating suction pipe 55a connected to the refrigerating evaporator 14a is embedded in the foam material on the back surface of the R evaporator 14a and reaches the refrigerant confluence portion 57 in the substantially horizontal direction. The freezing suction pipe 55b connected to the F evaporator 14b is embedded in the foam material toward the lower surface of the heat insulating partition wall 28. Next, it is connected to the check valve 56 at the back surface of the heat insulating partition wall 28, and then reaches the refrigerant merging portion 57.

本実施例では、冷媒合流部57の配置位置を冷蔵室2の背面にしているが、冷媒合流部57が氷点下以下の冷媒温度であることから、断熱仕切壁28の背面や冷凍室7の背面に配置した方が、庫内の霜付等のリスクが低減することができる。 In this embodiment, the refrigerant merging portion 57 is arranged on the back surface of the refrigerating chamber 2, but since the refrigerant merging portion 57 has a refrigerant temperature below the freezing point, the back surface of the heat insulating partition wall 28 and the back surface of the freezing chamber 7 It is possible to reduce the risk of frosting in the refrigerator by arranging it in.

サクションパイプは、冷媒合流部57に到達後、略垂直方向に配置され、内箱83の上部に至り、略水平方向に配置される。このとき、略水平方向のサクションパイプの一部には、内箱83との間に距離をとるためのスペーサ部材を用いることで、庫内露つきの問題を抑制できる。その後、略垂直方向の断熱仕切壁29に向かって配置される。このとき、断熱仕切壁28の背面にてサクションパイプを略水平方向に延ばす構成にすることで、熱交換性能を調整することができる。次に、断熱仕切壁28の背面、或いは野菜室6の背面に、サクションパイプが略水平方向に配置される。このとき、サクションパイプは、冷凍室7の背面に配置しない方がよく、サクションパイプの温度は後流になるに従い外気温度に近づくため、冷蔵庫1の内部との温度差が小さい箇所に配置するほうが有効である。 After reaching the refrigerant confluence portion 57, the suction pipe is arranged in a substantially vertical direction, reaches the upper part of the inner box 83, and is arranged in a substantially horizontal direction. At this time, by using a spacer member for keeping a distance from the inner box 83 for a part of the suction pipe in the substantially horizontal direction, the problem of dew inside the refrigerator can be suppressed. After that, it is arranged toward the heat insulating partition wall 29 in a substantially vertical direction. At this time, the heat exchange performance can be adjusted by extending the suction pipe in the substantially horizontal direction on the back surface of the heat insulating partition wall 28. Next, a suction pipe is arranged in a substantially horizontal direction on the back surface of the heat insulating partition wall 28 or the back surface of the vegetable compartment 6. At this time, it is better not to arrange the suction pipe on the back surface of the freezing chamber 7, and since the temperature of the suction pipe approaches the outside air temperature as it becomes a wake, it is better to arrange it in a place where the temperature difference from the inside of the refrigerator 1 is small. It is valid.

また、サクションパイプの垂直方向と水平方向の接続部は傾斜があってもよい。この傾斜は、発泡材の注入口を避けることや、真空断熱材87の冷蔵庫1の背面側から内箱83側への投影面にサクションパイプを収めることを目的として設けられている。その後、サクションパイプは、略垂直方向に機械室39へ向けて配置され、圧縮機24に至る。 Further, the vertical and horizontal connection portions of the suction pipe may be inclined. This inclination is provided for the purpose of avoiding the injection port of the foam material and to accommodate the suction pipe in the projection surface of the vacuum heat insulating material 87 from the back surface side of the refrigerator 1 to the inner box 83 side. After that, the suction pipe is arranged substantially vertically toward the machine room 39 and reaches the compressor 24.

図7は、サクションパイプ55a、55bの相対的な長さ(蒸発器出口からの長さ/蒸発器出口から圧縮機までの全長)とサクションパイプ55a、55bの温度の関係を示している。尚、図6の冷蔵庫運転条件は無負荷状態であり、外気温度は30℃である。サクションパイプ55a、55bの温度は、キャピラリチューブ53a、53bとの熱交換により蒸発器出口から下流に流れるほど上昇し、冷媒合流部57に到達すると、キャピラリチューブ53a、53bの入口温度、すなわち外気温度に近い温度帯となる。そのため、断熱材内部に埋設されたサクションパイプ55a、55bは、冷却された冷蔵庫1に放熱してしまうため、冷凍室7の背面部、特にF蒸発器14bの背面を避けるのが有効である。一方で、そのような配置をしようとするとサクションパイプ55a、55bの熱交換長さを十分にとれず、冷却力を損ない省エネ性の悪化につながることがある。そこで、断熱仕切壁28、29の背面側でサクションパイプ55a、55bの長さを稼ぐことで、有効に冷蔵庫及びサクションパイプの性能を向上できる。尚、冷蔵庫の性能とは冷却能力及び省エネ性能であり、サクションパイプの性能とは完全に断熱されている状態での熱交換能力と実際の熱交換能力の比を指している。 FIG. 7 shows the relationship between the relative lengths of the suction pipes 55a and 55b (the length from the evaporator outlet / the total length from the evaporator outlet to the compressor) and the temperature of the suction pipes 55a and 55b. The refrigerator operating condition in FIG. 6 is a no-load state, and the outside air temperature is 30 ° C. The temperature of the suction pipes 55a and 55b rises as it flows downstream from the evaporator outlet due to heat exchange with the capillary tubes 53a and 53b, and when it reaches the refrigerant confluence portion 57, it reaches the inlet temperature of the capillary tubes 53a and 53b, that is, the outside air temperature. The temperature range is close to. Therefore, since the suction pipes 55a and 55b embedded in the heat insulating material dissipate heat to the cooled refrigerator 1, it is effective to avoid the back surface of the freezing chamber 7, particularly the back surface of the F evaporator 14b. On the other hand, if such an arrangement is attempted, the heat exchange lengths of the suction pipes 55a and 55b cannot be sufficiently obtained, which may impair the cooling power and lead to deterioration of energy saving. Therefore, by increasing the lengths of the suction pipes 55a and 55b on the back side of the heat insulating partition walls 28 and 29, the performance of the refrigerator and the suction pipe can be effectively improved. The performance of the refrigerator is the cooling capacity and the energy saving performance, and the performance of the suction pipe refers to the ratio of the heat exchange capacity and the actual heat exchange capacity in a completely insulated state.

図5に示すように冷蔵用サクションパイプ55aは、R蒸発器14aの温度(例えば−10℃)がF蒸発器14b(例えば−25℃)と比較して高温であるため、入口から出口までの全ての箇所において低温部を避けることが有効である。一方で、蒸発器14a、14bから圧縮機までの長さの中心から圧縮機側のサクションパイプ55a、55bの温度は15℃程度と高温になっているため、可能な限り冷凍室背面及びF蒸発器14b背面を避けて構成するのが効果的である。特にR蒸発器14aから圧縮機までの長さの中心から圧縮機側の冷蔵用サクションパイプ55aのうち、冷凍温度帯室の背面を通る長さより、断熱仕切壁の背面及び冷蔵室の背面を通る長さの方が長いので、より高い効果が得られる。更に、この高温部を、F蒸発器14bの除霜水を排水するトイ23bやF排水管27bの背面に埋設することにより、常時加熱し、排水管凍結の抑制に利用してもよい。 As shown in FIG. 5, in the refrigerating suction pipe 55a, the temperature of the R evaporator 14a (for example, -10 ° C) is higher than that of the F evaporator 14b (for example, -25 ° C), so that the temperature from the inlet to the outlet is high. It is effective to avoid low temperature parts in all places. On the other hand, since the temperature of the suction pipes 55a and 55b on the compressor side from the center of the length from the evaporators 14a and 14b to the compressor is as high as about 15 ° C., the back surface of the freezer and F evaporation as much as possible. It is effective to avoid the back surface of the vessel 14b. In particular, of the refrigerating suction pipe 55a from the center of the length from the R evaporator 14a to the compressor, it passes through the back surface of the heat insulating partition wall and the back surface of the refrigerating chamber rather than the length passing through the back surface of the refrigerating temperature zone chamber. Since the length is longer, a higher effect can be obtained. Further, by burying this high temperature portion in the back surface of the toy 23b for draining the defrosted water of the F evaporator 14b and the back surface of the F drain pipe 27b, it may be constantly heated and used for suppressing the freezing of the drain pipe.

図8は、図のC−C断面図に図のB−B断面図の冷蔵室風路11、冷蔵室ファン9aを投影させた図であり、実施例に関わる冷蔵庫の熱交換式サクションパイプ55abと、冷蔵室風路11、冷蔵用ファン9aの位置関係を示している。 Figure 8 is a refrigeration compartment air passage 11 of the B-B sectional view of FIG 2 in sectional view taken along line C-C of FIG. 2 is a diagram obtained by projecting the refrigerating compartment fan 9a, refrigerator heat exchange type suction relating to Example The positional relationship between the pipe 55ab, the refrigerating chamber air passage 11, and the refrigerating fan 9a is shown.

図8に示すように、共用サクションパイプ55abの埋設部のうち冷媒合流部57に近い箇所は、冷蔵室風路11の後方投影面上になるように配置されている。 As shown in FIG. 8, the portion of the buried portion of the common suction pipe 55ab near the refrigerant confluence portion 57 is arranged so as to be on the rear projection surface of the refrigerating chamber air passage 11.

7に示すように共用サクションパイプ55abの冷媒合流部57に近い箇所のパイプ温度は、R蒸発器14aの冷媒温度(例えば−10℃)、あるいはF蒸発器14bの冷媒温度(例えば−25℃)の影響を受けて低温になるため、共用サクションパイプ55abが埋設されている箇所の、特に冷媒合流部57に近い箇所のパイプが埋設されている箇所の庫内側表面温度も、冷却運転中には氷点下の状態になる場合がある。更に、冷蔵室2の温度は4℃程度になるように調整しているため、顧客の使用状況により冷蔵室2の相対湿度が高い場合、冷蔵室内の壁面部には霜が発生する。霜の成長は、空気温度が壁面温度に対して高く、絶対湿度が高いと成長方向となり、空気温度が壁面温度に対して低く、絶対湿度が低いと昇華方向になる。また、空気流速が高いほど物質伝達率が高くなり、霜の成長、あるいは昇華速度が増加するが、一方で空気流速が高いと空気温度と壁面温度の差が小さくなるため、冷蔵室2では、霜から露となる。そこで、図8に示すように、共用サクションパイプ55abの埋設部のうち冷媒合流部57に近い箇所を冷蔵室風路11に曝すことにより、発生する霜を露にし、排水することが可能になる。さらに、冷蔵室2の冷却運転中は、空気温度を低温とすることで、昇華させることも可能になる。また、非風路部材(断熱部材)70の冷蔵室2背面側と共用サクションパイプ55abとの間のうち、少なくとも冷蔵室2の背面側の表面温度が氷点下温度帯となる領域に空気が流入すると必ず霜が成長するため、空気の進入を防止する部材を貼り付けることが望ましいが、除霜・排水が可能であればこの限りではない。 As shown in FIG. 7, the pipe temperature of the shared suction pipe 55ab near the refrigerant confluence portion 57 is the refrigerant temperature of the R evaporator 14a (for example, −10 ° C.) or the refrigerant temperature of the F evaporator 14b (for example, −25 ° C.). ), Therefore, the surface temperature inside the refrigerator where the common suction pipe 55ab is buried, especially where the pipe near the refrigerant confluence 57 is buried, is also during the cooling operation. May be below freezing. Further, since the temperature of the refrigerating room 2 is adjusted to be about 4 ° C., frost is generated on the wall surface of the refrigerating room 2 when the relative humidity of the refrigerating room 2 is high depending on the usage situation of the customer. The growth of frost is in the growth direction when the air temperature is high with respect to the wall surface temperature and the absolute humidity is high, and in the sublimation direction when the air temperature is low with respect to the wall surface temperature and the absolute humidity is low. Further, the higher the air flow velocity, the higher the material transfer rate and the frost growth or sublimation rate, but on the other hand, when the air flow velocity is high, the difference between the air temperature and the wall surface temperature becomes small. Dew from frost. Therefore, as shown in FIG. 8, by exposing the portion of the buried portion of the common suction pipe 55ab near the refrigerant confluence portion 57 to the refrigerating chamber air passage 11, the generated frost can be exposed and drained. .. Further, during the cooling operation of the refrigerating chamber 2, it is possible to sublimate by lowering the air temperature. Further, when air flows into a region between the back surface side of the refrigerating chamber 2 of the non-air passage member (heat insulating member) 70 and the common suction pipe 55ab, at least the surface temperature of the back surface side of the refrigerating chamber 2 is in the sub-freezing temperature zone. Since frost always grows, it is desirable to attach a member to prevent the ingress of air, but this is not the case if defrosting and drainage are possible.

図9は、図1のA−A断面の上部を詳細に示した図であり、実施例に関わる冷蔵庫の共用サクションパイプ55abと、冷蔵室風路11、内箱凸部89の位置関係を示している。 FIG. 9 is a view showing the upper part of the AA cross section of FIG. 1 in detail, and shows the positional relationship between the shared suction pipe 55ab of the refrigerator, the refrigerating room air passage 11, and the inner box convex portion 89 according to the embodiment. ing.

図9に示すとおり、冷蔵室風路11の吐出口は、上方に向けて開口するように形成されている。また、冷蔵室2の背面上方の天井角部には内箱凸部89が設けられており、この内箱凸部89に吐出口からの冷気が当たるようになっている。本実施例では、この内箱凸部89を設けることで、共用サクションパイプ55abと内箱83の間の距離を長くし、断熱性能を向上させている。これは、R蒸発器14aの除霜を行うために、R蒸発器14aに冷媒を流していない状態で、Rファン9aにより空気を循環させる際に、壁面温度よりも空気温度が高い状態になることがあり、その際の霜付、露付きの量を最小限にするためである。また、図3に示すように、制御基板31の配置位置の凹部の断熱性能を向上するために、略水平方向に長く内箱凸部89を配置してもよい。更に、冷蔵室風路11と非風路部材70の天面側投影上に内箱凸部88を設けることで、断熱性能の向上と意匠性を両立することができるが、この限りではない。 As shown in FIG. 9, the discharge port of the refrigerating chamber air passage 11 is formed so as to open upward. Further, an inner box convex portion 89 is provided at the ceiling corner portion above the back surface of the refrigerating chamber 2, and the inner box convex portion 89 is exposed to cold air from the discharge port. In this embodiment, by providing the inner box convex portion 89, the distance between the shared suction pipe 55ab and the inner box 83 is lengthened, and the heat insulating performance is improved. This is because the air temperature is higher than the wall surface temperature when the air is circulated by the R fan 9a in a state where the refrigerant is not flowing through the R evaporator 14a in order to defrost the R evaporator 14a. This is to minimize the amount of frost and dew that may occur. Further, as shown in FIG. 3, in order to improve the heat insulating performance of the concave portion at the arrangement position of the control board 31, the inner box convex portion 89 may be arranged long in the substantially horizontal direction. Further, by providing the inner box convex portion 88 on the top surface side projection of the refrigerating chamber air passage 11 and the non-air passage member 70, it is possible to achieve both improvement in heat insulating performance and designability, but this is not the case.

以上が、本実施の形態例を示す実施例である。なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、蒸発器が2つの冷蔵庫に限らず、蒸発器が1つの冷蔵庫であっても構わない。 The above is an example showing the embodiment of the present embodiment. The present invention is not limited to the above-mentioned examples, and includes various modifications. For example, the number of evaporators is not limited to two refrigerators, and the number of evaporators may be one refrigerator.

1 冷蔵庫
2 冷蔵室
2a、2b 冷蔵室ドア
3 製氷室
4 上段冷凍室
5 下段冷凍室冷凍室
3a,4a、5a 冷凍室ドア
6 野菜室
6a 野菜室ドア
7 冷凍室(3、4、5の総称)
8a R蒸発器室(冷蔵用蒸発器室)
8b F蒸発器室(冷凍用蒸発器室)
9a Rファン(冷蔵用ファン)
9b Fファン(冷凍用ファン)
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室風路
11a 冷蔵室吐出口
12 冷凍室風路
12a 冷凍室吐出口
14a R蒸発器(冷蔵用蒸発器)
14b F蒸発器(冷凍用蒸発器)
15a、b 冷蔵室戻り口
16 ヒンジカバー
17 冷凍室戻り口
18 野菜室戻り風路
18a 野菜室戻り口
21 ラジアントヒータ
22a、22b 排水口
23a、23b トイ
24 圧縮機
27a R排水管
27b F排水管
28、29、30 断熱仕切壁
31 制御基板
32 蒸発皿
35 チルドルーム
39 機械室
40a R蒸発器温度センサ
40b F蒸発器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 野菜室温度センサ
45 トイ温度センサ
50a、50b 放熱器
51 結露抑制パイプ
52 三方弁(冷媒制御手段)
53a 冷蔵用キャピラリチューブ(減圧手段)
53b 冷凍用キャピラリチューブ(減圧手段)
54a 冷蔵用気液分離器
54b 冷凍用気液分離器
55a 冷蔵用サクションパイプ
55b 冷凍用サクションパイプ
55ab 共用サクションパイプ
56 逆止弁
57 冷媒合流部
58 野菜室冷却風路
70 非風路部材
83 内箱
84 外箱
87 真空断熱材
88 発泡材
89 内箱凸部
101 トイ部ヒータ
102 排水管上部ヒータ
103 排水管下部ヒータ
1 Refrigerator 2 Refrigerator room 2a, 2b Refrigerator room door 3 Ice making room 4 Upper freezer room 5 Lower freezer room Freezer room 3a, 4a, 5a Freezer room door 6 Vegetable room 6a Vegetable room door 7 Freezer room (3, 4, 5) )
8a R Evaporator room (refrigerator room)
8b F Evaporator room (freezing evaporator room)
9a R fan (refrigerator fan)
9b F fan (freezing fan)
10 Insulation box body 10a Outer box 10b Inner box 11 Refrigerator room air passage 11a Refrigerator room air passage 12 Freezer room air passage 12a Freezer room discharge port 14a R Evaporator (evaporator for refrigeration)
14b F evaporator (freezing evaporator)
15a, b Refrigerator room return port 16 Hing cover 17 Freezer room return port 18 Vegetable room return port 18a Vegetable room return port 21 Radiant heater 22a, 22b Drain port 23a, 23b Toy 24 Compressor 27a R Drain pipe 27b F Drain pipe 28 , 29, 30 Insulation partition wall 31 Control board 32 Evaporator 35 Child room 39 Machine room 40a R Evaporator temperature sensor 40b F Evaporator temperature sensor 41 Refrigerator room temperature sensor 42 Freezer room temperature sensor 43 Vegetable room temperature sensor 45 Toy temperature sensor 50a, 50b Evaporator 51 Dew condensation suppression pipe 52 Three-way valve (refrigerant control means)
53a Capillary tube for refrigeration (decompression means)
53b Capillary tube for freezing (decompression means)
54a Air-liquid separator for refrigeration 54b Air-liquid separator for refrigeration 55a Suction pipe for refrigeration 55b Suction pipe for refrigeration 55ab Shared suction pipe 56 Check valve 57 Refrigerator confluence 58 Vegetable room Cooling air passage 70 Non-air passage member 83 Inner box 84 Outer box 87 Vacuum heat insulating material 88 Foam material 89 Inner box convex part 101 Toy part heater 102 Drain pipe upper heater 103 Drain pipe lower heater

Claims (3)

外箱と内箱との間に発泡断熱材が充填して形成された断熱箱体であって、冷蔵温度帯室と冷凍温度帯室を有し、前記冷蔵温度帯室と前記冷凍温度帯室の間は断熱仕切壁で仕切られた断熱箱体と、
冷媒を吐出する圧縮機と、冷媒の熱を外気に放熱する放熱器と、冷媒を減圧する第一の減圧装置と、前記冷蔵温度帯室内から吸熱する第一の冷却器と、前記第一の減圧装置と熱交換を行うように構成され前記断熱箱体の背面側の発泡断熱材に埋設した第一のサクションパイプと、を有する第一の冷却機構と、
前記圧縮機と、前記放熱器と、冷媒を減圧する第二の減圧装置と、前記冷凍温度帯室内から吸熱する第二の冷却器と、前記第二の減圧装置と熱交換を行うように構成され前記断熱箱体の背面側の発泡断熱材に埋設した第二のサクションパイプと、を有する第二の冷却機構と、
前記第一の冷却器からの冷気を前記冷蔵温度帯室へ送風するファンと、前記冷蔵温度帯室の背面に配置され前記冷蔵温度帯室の上部に吐出口を有する送風路と、を有する送風機構と、
を備えた冷蔵庫において、
前記第一のサクションパイプは前記第一の冷却器の背面の発泡断熱材に埋設され、
前記第二のサクションパイプは前記冷凍温度帯室の背面の発泡断熱材に埋設され、
前記第一のサクションパイプと前記第二のサクションパイプは前記第一の冷却器の背面に配置された冷媒合流部にて単一のサクションパイプとなり、
前記単一のサクションパイプは前記冷蔵温度帯室の背面の発泡断熱材に埋設され、前記冷媒合流部から前記内箱の上部に至るように配置され、前記単一のサクションパイプの埋設部のうち前記冷媒合流部に近い箇所が、前記送風路の後方投影面に配されることを特徴とする冷蔵庫。
It is a heat insulating box body formed by filling a foam heat insulating material between an outer box and an inner box, and has a refrigerating temperature zone chamber and a refrigerating temperature zone chamber, and the refrigerating temperature zone chamber and the refrigerating temperature zone chamber. Between the heat insulating box body separated by the heat insulating partition wall,
A compressor that discharges the refrigerant, a radiator that dissipates the heat of the refrigerant to the outside air, a first decompression device that decompresses the refrigerant, a first cooler that absorbs heat from the refrigerated temperature zone room, and the first. A first cooling mechanism having a first suction pipe configured to exchange heat with a decompressor and embedded in a foamed heat insulating material on the back side of the heat insulating box.
The compressor, the radiator, the second decompression device for depressurizing the refrigerant, the second cooler for absorbing heat from the refrigerating temperature zone room, and the second decompression device are configured to exchange heat. A second cooling mechanism having a second suction pipe embedded in a foamed heat insulating material on the back side of the heat insulating box body, and a second cooling mechanism.
A blower having a fan for blowing cold air from the first cooler to the refrigerating temperature zone chamber and an air passage arranged on the back surface of the refrigerating temperature zone chamber and having a discharge port at the upper part of the refrigerating temperature zone chamber. Mechanism and
In a refrigerator equipped with
The first suction pipe is embedded in the foam insulation on the back of the first cooler.
The second suction pipe is embedded in the foam insulation material on the back surface of the freezing temperature zone chamber.
The first suction pipe and the second suction pipe become a single suction pipe at the refrigerant confluence portion arranged on the back surface of the first cooler.
The single suction pipe is embedded in the foam insulation material on the back surface of the refrigerated temperature zone chamber, and is arranged so as to extend from the refrigerant confluence portion to the upper part of the inner box, and among the buried portions of the single suction pipe. A refrigerator characterized in that a portion close to the refrigerant confluence portion is arranged on the rear projection surface of the air passage.
請求項記載の冷蔵庫において、
記単一のサクションパイプに対して前記第一の減圧装置と前記第二の減圧装置が配されることで、いずれの減圧装置に対しても熱交換する機構を備えたことを特徴とする冷蔵庫。
In the refrigerator according to claim 1,
By against previous Kitan one suction pipe said first decompressor and said second decompressor is arranged, characterized by comprising a mechanism for heat exchange for any decompressor refrigerator.
請求項1記載の冷蔵庫において、
前記単一のサクションパイプは前記内箱の上部に至った後、略水平方向に配置され、
前記送風路の吐出口が、上方に向けて開口するように形成されており、前記吐出口からの冷気が天井角部に設けられた凸部に当たることを特徴とする冷蔵庫。
In the refrigerator according to claim 1,
The single suction pipe is placed approximately horizontally after reaching the top of the inner box.
A refrigerator characterized in that the discharge port of the air passage is formed so as to open upward, and the cold air from the discharge port hits a convex portion provided at a corner of the ceiling.
JP2019023119A 2019-02-13 2019-02-13 refrigerator Active JP6975735B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019023119A JP6975735B2 (en) 2019-02-13 2019-02-13 refrigerator
CN201910831288.XA CN111561798B (en) 2019-02-13 2019-09-04 Refrigerator with a door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019023119A JP6975735B2 (en) 2019-02-13 2019-02-13 refrigerator

Publications (2)

Publication Number Publication Date
JP2020133914A JP2020133914A (en) 2020-08-31
JP6975735B2 true JP6975735B2 (en) 2021-12-01

Family

ID=72074054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019023119A Active JP6975735B2 (en) 2019-02-13 2019-02-13 refrigerator

Country Status (2)

Country Link
JP (1) JP6975735B2 (en)
CN (1) CN111561798B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024082068A (en) * 2022-12-07 2024-06-19 日立グローバルライフソリューションズ株式会社 refrigerator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297464U (en) * 1985-12-09 1987-06-22
JP3488640B2 (en) * 1998-09-30 2004-01-19 株式会社東芝 refrigerator
JP2005226894A (en) * 2004-02-12 2005-08-25 Sharp Corp Cooling storage
JP2007113800A (en) * 2005-10-18 2007-05-10 Toshiba Corp Refrigerator
JP5872143B2 (en) * 2010-07-28 2016-03-01 株式会社東芝 refrigerator
JP5861052B2 (en) * 2011-06-02 2016-02-16 パナソニックIpマネジメント株式会社 refrigerator
JP6373655B2 (en) * 2014-06-26 2018-08-15 東芝ライフスタイル株式会社 refrigerator
JP2017156027A (en) * 2016-03-02 2017-09-07 シャープ株式会社 refrigerator
JP2019138514A (en) * 2018-02-08 2019-08-22 日立グローバルライフソリューションズ株式会社 refrigerator

Also Published As

Publication number Publication date
CN111561798A (en) 2020-08-21
CN111561798B (en) 2022-02-01
JP2020133914A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP4848332B2 (en) refrigerator
JP2011058684A (en) Damper device and refrigerator equipped with the damper device
TWI716636B (en) refrigerator
CN111351300A (en) Refrigerator with a door
JP6975735B2 (en) refrigerator
CN111473573B (en) Refrigerator with a door
JP2019138514A (en) refrigerator
JP5039761B2 (en) refrigerator
JP2019138481A (en) refrigerator
JP6940424B2 (en) refrigerator
JP6847063B2 (en) refrigerator
CN113028707A (en) Refrigerator with a door
JP6934433B2 (en) refrigerator
JP7254227B2 (en) refrigerator
JP2017020753A (en) refrigerator
JP7277339B2 (en) refrigerator
CN110131958A (en) Refrigerator
JP7267673B2 (en) refrigerator
JP2019132506A (en) refrigerator
JP7454458B2 (en) refrigerator
JP6883531B2 (en) refrigerator
WO2024122126A1 (en) Refrigerator
JP2020034205A (en) refrigerator
JP7369520B2 (en) refrigerator
JP6807882B2 (en) refrigerator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210305

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6975735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150