JP6975703B2 - 車両制御装置及び車両制御方法 - Google Patents

車両制御装置及び車両制御方法 Download PDF

Info

Publication number
JP6975703B2
JP6975703B2 JP2018236168A JP2018236168A JP6975703B2 JP 6975703 B2 JP6975703 B2 JP 6975703B2 JP 2018236168 A JP2018236168 A JP 2018236168A JP 2018236168 A JP2018236168 A JP 2018236168A JP 6975703 B2 JP6975703 B2 JP 6975703B2
Authority
JP
Japan
Prior art keywords
vehicle
inter
vehicle distance
control state
relative positional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018236168A
Other languages
English (en)
Other versions
JP2020097310A (ja
Inventor
淳之 石岡
完太 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018236168A priority Critical patent/JP6975703B2/ja
Priority to US16/715,461 priority patent/US20200189589A1/en
Priority to CN201911309566.1A priority patent/CN111332291B/zh
Publication of JP2020097310A publication Critical patent/JP2020097310A/ja
Application granted granted Critical
Publication of JP6975703B2 publication Critical patent/JP6975703B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/17Control of distance between vehicles, e.g. keeping a distance to preceding vehicle with provision for special action when the preceding vehicle comes to a halt, e.g. stop and go
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/085Changing the parameters of the control units, e.g. changing limit values, working points by control input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、車両制御装置及び車両制御方法に関する。
特許文献1には、周辺車両の走行状態に応じて第1車間距離を設定し、ドライバの好みに応じて第2車間距離を設定し、第1車間距離と第2車間距離とに基づいて目標車間距離を設定する追従制御装置が開示されている。特許文献1では、第1車間距離と第2車間距離とに基づいて目標車間距離を設定するため、周辺環境とドライバの好みとを考慮した車間距離が確保される。
特許第4743251号公報
しかしながら、特許文献1に開示された技術では、車間距離が必ずしも適切に設定されないこともあり得る。
本発明の目的は、車間距離を制御状態に応じて適切に設定し得る車両制御装置及び車両制御方法を提供することにある。
本発明の一態様による車両制御装置は、自車両と先行車両との間の距離である車間距離を決定する車間距離決定部と、前記車間距離決定部によって決定された前記車間距離に基づいて前記先行車両に対する追従制御を行う追従制御部とを有し、前記追従制御は、第1制御状態と、自動化度が前記第1制御状態より高い第2制御状態とを有し、前記第2制御状態において前記車間距離決定部が決定し得る前記車間距離の最小値は、前記第1制御状態において前記車間距離決定部が決定し得る前記車間距離の最小値より大きい。
本発明の他の態様による車両制御装置は、自車両と先行車両との間の距離である車間距離を決定する車間距離決定部と、前記車間距離決定部によって決定された前記車間距離に基づいて前記先行車両に対する追従制御を行う追従制御部とを有し、前記追従制御は、第1制御状態と、自動化度が前記第1制御状態より高い第2制御状態とを有し、前記第2制御状態において前記車間距離決定部が決定し得る前記車間距離の最小値は、前記第1制御状態において前記車間距離決定部が決定し得る前記車間距離の最小値より大きく、前記第2制御状態において前記車間距離決定部が調整し得る前記車間距離の最大調整可能範囲は、前記第1制御状態において前記車間距離決定部が調整し得る前記車間距離の最大調整可能範囲より狭い。
本発明の更に他の態様による車両制御装置は、自車両と先行車両との相対位置関係を決定する相対位置関係決定部と、前記相対位置関係決定部より決定された前記相対位置関係に基づいて前記自車両と前記先行車両との間の距離である車間距離を決定する車間距離決定部と、前記車間距離決定部によって決定された前記車間距離に基づいて前記先行車両に対する追従制御を行う追従制御部とを有し、前記追従制御は、第1制御状態と、運転者の負担が前記第1制御状態よりも軽い、又は、自動化度が前記第1制御状態より高い第2制御状態とを有し、前記車間距離決定部は、前記第1制御状態においては、ユーザによる操作に基づいて前記相対位置関係決定部によって決定される前記相対位置関係に基づいて前記車間距離を決定し、前記第2制御状態においては、前記ユーザによる操作に基づいて前記相対位置関係決定部によって決定される前記相対位置関係に基づくことなく予め定められた距離に基づいて前記車間距離を決定し、前記第2制御状態における前記自車両の速度の上限は、前記第1制御状態における前記自車両の速度の上限より低く、前記第2制御状態における前記車間距離は、前記相対位置関係が最大の際の前記第1制御状態における前記車間距離より短い。
本発明の更に他の態様による車両制御方法は、自車両と先行車両との間の距離である車間距離を決定するステップと、前記車間距離を決定するステップにおいて決定された前記車間距離に基づいて前記先行車両に対する追従制御を行うステップとを有し、前記追従制御は、第1制御状態と、自動化度が前記第1制御状態より高い第2制御状態とを有し、前記第2制御状態における前記車間距離を決定するステップにおいて決定し得る前記車間距離の最小値は、前記第1制御状態における前記車間距離を決定するステップにおいて決定し得る前記車間距離の最小値より大きい。
本発明の更に他の態様による車両制御方法は、自車両と先行車両との間の距離である車間距離を決定するステップと、前記車間距離を決定するステップにおいて決定された前記車間距離に基づいて前記先行車両に対する追従制御を行うステップとを有し、前記追従制御は、第1制御状態と、自動化度が前記第1制御状態より高い第2制御状態とを有し、前記第2制御状態において前記車間距離を決定するステップで決定し得る前記車間距離の最小値は、前記第1制御状態において前記車間距離を決定するステップで決定し得る前記車間距離の最小値より大きく、前記第2制御状態において調整され得る前記車間距離の最大調整可能範囲は、前記第1制御状態において調整され得る前記車間距離の最大調整可能範囲より狭い。
本発明の更に他の態様による車両制御方法は、自車両と先行車両との相対位置関係を決定するステップと、前記相対位置関係を決定するステップにおいて決定された前記相対位置関係に基づいて前記自車両と前記先行車両との間の距離である車間距離を決定するステップと、前記車間距離を決定するステップにおいて決定された前記車間距離に基づいて前記先行車両に対する追従制御を行うステップとを有し、前記追従制御は、第1制御状態と、運転者の負担が前記第1制御状態よりも軽い、又は、自動化度が前記第1制御状態より高い第2制御状態とを有し、前記第1制御状態においては、ユーザによる操作に基づいて決定される前記相対位置関係に基づいて前記車間距離が決定され、前記第2制御状態においては、前記ユーザによる操作に基づいて決定される前記相対位置関係に基づくことなく予め定められた距離に基づいて前記車間距離が決定され、前記第2制御状態における前記自車両の速度の上限は、前記第1制御状態における前記自車両の速度の上限より低く、前記第2制御状態における前記車間距離は、前記相対位置関係が最大の際の前記第1制御状態における前記車間距離より短い。
本発明によれば、車間距離を制御状態に応じて適切に設定し得る車両制御装置及び車両制御方法を提供することができる。
一実施形態による車両制御装置が備えられた車両を示すブロック図である。 図2A〜図2Cは、各制御状態における車間距離の例を概念的に示す図である。 一実施形態による車両制御装置の動作の例を示すフローチャートである。 一実施形態による車両制御装置の動作の例を示すフローチャートである。 一実施形態による車両制御装置の動作の例を示すフローチャートである。 一実施形態による車両制御装置の動作の例を示すフローチャートである。 図7A〜図7Cは、各制御状態における車間距離の他の例を概念的に示す図である。
本発明による車両制御装置及び車両制御方法について、好適な実施形態を挙げ、添付の図面を参照して以下に詳細に説明する。
[一実施形態]
一実施形態による車両制御装置及び車両制御方法について図面を用いて説明する。図1は、本実施形態による車両制御装置が備えられた車両を示すブロック図である。
車両(自車両)10には、車両制御装置12、即ち、車両制御ECU(Electronic Control Unit)が備えられている。車両10には、外界センサ14と、車体挙動センサ16と、車両操作センサ18と、通信部20と、HMI(ヒューマン・マシン・インタフェース)22とが更に備えられている。車両10には、駆動装置24と、制動装置26と、操舵装置28と、ナビゲーション装置30と、測位部33とが更に備えられている。
外界センサ14は、外界情報、即ち車両10の周辺情報を取得する。外界センサ14には、複数のカメラ32と、複数のレーダ34とが備えられている。外界センサ14には、複数のLiDAR(Light Detection And Ranging、Laser Imaging Detection and Ranging)36が更に備えられている。
カメラ(撮像部)32によって取得された情報、即ち、カメラ情報が、カメラ32から車両制御装置12に供給される。カメラ情報としては、撮影情報等が挙げられる。カメラ情報は、後述するレーダ情報及びLiDAR情報と相俟って、外界情報を構成する。図1においては、1つのカメラ32が図示されているが、実際には複数のカメラ32が備えられている。
レーダ34は、送信波を車両10の外部に向かって発射し、発射した送信波のうちの検出物体によって反射されて戻って来る反射波を受信する。送信波としては、例えば電磁波等が挙げられる。電磁波としては、例えば、ミリ波等が挙げられる。検出物体としては、例えば、先行車両70を含む他車両等が挙げられる。レーダ34は、反射波等に基づいてレーダ情報(反射波信号)を生成する。レーダ34は、生成した当該レーダ情報を車両制御装置12に供給する。図1においては、1つのレーダ34が図示されているが、実際には、複数のレーダ34が車両10に備えられている。なお、レーダ34は、ミリ波レーダに限定されるものではない。例えば、レーザレーダ、超音波センサ等をレーダ34として用いるようにしてもよい。
LiDAR36は、車両10の全方位にレーザを連続的に発射し、発射したレーザの反射波に基づいて反射点の3次元位置を測定し、当該3次元位置に関する情報、即ち、3次元情報を出力する。LiDAR36は、当該3次元情報、即ち、LiDAR情報を、車両制御装置12に供給する。図1においては、1つのLiDAR36が図示されているが、実際には、複数のLiDAR36が車両10に備えられている。
車体挙動センサ16は、車両10の挙動に関する情報、即ち、車体挙動情報を取得する。車体挙動センサ16には、不図示の車速センサ、不図示の車輪速センサ、不図示の加速度センサ、及び、不図示のヨーレートセンサが含まれる。車速センサは、車両10の速度、即ち、車速を検出する。また、車速センサは、車両10の進行方向を更に検出する。車輪速センサは、不図示の車輪の速度、即ち、車輪速を検出する。加速度センサは、車両10の加速度を検出する。加速度は、前後加速度、横加速度、及び、上下加速度を含む。なお、一部の方向のみの加速度が加速度センサによって検出されるようにしてもよい。ヨーレートセンサは、車両10のヨーレートを検出する。
車両操作センサ(運転操作センサ)18は、ユーザ(運転者)による運転操作に関する情報、即ち、運転操作情報を取得する。車両操作センサ18には、不図示のアクセルペダルセンサ、不図示のブレーキペダルセンサ、不図示の舵角センサ、及び、不図示の操舵トルクセンサが含まれる。アクセルペダルセンサは、不図示のアクセルペダルの操作量を検出する。ブレーキペダルセンサは、不図示のブレーキペダルの操作量を検出する。舵角センサは、不図示のステアリングホイールの舵角を検出する。操舵トルクセンサは、ステアリングホイールにかかるトルクを検出する。
通信部20は、不図示の外部機器との間で無線通信を行う。外部機器には、例えば、不図示の外部サーバ等が含まれ得る。通信部20は、車両10に対して、着脱不能であってもよいし、着脱可能であってもよい。車両10に対して着脱可能な通信部20としては、例えば、携帯電話機、スマートフォン等が挙げられる。
HMI22は、ユーザ(乗員)による操作入力を受け付けるとともに、各種情報を視覚的、聴覚的又は触覚的にユーザに提供する。HMI22には、例えば、自動運転スイッチ(運転アシストスイッチ)38と、ディスプレイ40と、接触センサ42と、カメラ44と、スピーカ46とが含まれる。
自動運転スイッチ38は、自動運転の開始及び停止をユーザが指示するためのものである。自動運転スイッチ38は、不図示の開始スイッチと不図示の停止スイッチとを含む。開始スイッチは、ユーザの操作に応じて車両制御装置12に対して開始信号を出力する。停止スイッチは、ユーザの操作に応じて車両制御装置12に対して停止信号を出力する。
ディスプレイ(表示部)40は、例えば、液晶パネル、有機ELパネル等を含む。ここでは、ディスプレイ40がタッチパネルである場合を例に説明するが、これに限定されるものではない。
接触センサ42は、ユーザ(運転者)がステアリングハンドルに触れているか否かを検出するためのものである。接触センサ42から出力される信号は、車両制御装置12に供給される。車両制御装置12は、接触センサ42から供給される信号に基づいて、ユーザがステアリングハンドルに触れているか否かを判定し得る。
カメラ44は、車両10の内部、即ち、不図示の車室内を撮像する。カメラ44は、例えば、不図示のダッシュボードに設けられてもよいし、不図示の天井に設けられてもよい。また、カメラ44は、運転者のみを撮像するように設けられてもよいし、乗員の各々を撮影するように設けられてもよい。カメラ44は、車室内を撮像することによって取得される情報、即ち、画像情報を、車両制御装置12に出力する。
スピーカ(報知部)46は、各種の情報を音声でユーザに提供するためのものである。車両制御装置12は、各種の通知、警報等を、スピーカ46を用いて出力する。
駆動装置(駆動力制御システム)24には、不図示の駆動ECUと、不図示の駆動源とが備えられている。駆動ECUは、駆動源を制御することにより、車両10の駆動力(トルク)を制御する。駆動源としては、例えば、エンジン、駆動モータ等が挙げられる。駆動ECUは、アクセルペダルに対するユーザによる操作に基づいて、駆動源を制御することにより、動力を制御し得る。また、駆動ECUは、車両制御装置12から供給される指令に基づいて、駆動源を制御することにより、駆動力を制御し得る。駆動源の駆動力は、不図示のトランスミッション等を介して不図示の車輪に伝達される。
制動装置(制動力制御システム)26には、不図示の制動ECUと、不図示のブレーキ機構とが備えられている。ブレーキ機構は、ブレーキモータ、油圧機構等によってブレーキ部材を作動させる。制動ECUは、ブレーキペダルに対するユーザによる操作に基づいて、ブレーキ機構を制御することにより、制動力を制御し得る。また、制動ECUは、車両制御装置12から供給される指令に基づいて、ブレーキ機構を制御することにより、制動力を制御し得る。
操舵装置(操舵システム)28には、不図示の操舵ECU、即ち、EPS(電動パワーステアリングシステム)ECUと、不図示の操舵モータとが備えられている。操舵ECUは、ステアリングハンドルに対するユーザによる操作に基づいて、操舵モータを制御することによって、車輪(操舵輪)の向きを制御する。また、操舵ECUは、車両制御装置12から供給される指令に基づいて、操舵モータを制御することによって、車輪の向きを制御する。なお、左右の車輪に対するトルク配分や制動力配分を変更することによって操舵が行われるようにしてもよい。
ナビゲーション装置30には、不図示のGNSS(Global Navigation Satellite System、全地球航法衛星システム)センサが備えられている。また、ナビゲーション装置30には、不図示の演算部と、不図示の記憶部とが更に備えられている。GNSSセンサは、車両10の現在位置を検出する。演算部は、GNSSセンサによって検出された現在位置に対応する地図情報を、記憶部に記憶された地図データベースから読み出す。演算部は、当該地図情報を用い、現在位置から目的地までの目標経路を決定する。なお、目的地は、HMI22を介してユーザによって入力される。上述したように、ディスプレイ40はタッチパネルである。タッチパネルがユーザによって操作されることによって、目的地の入力が行われる。ナビゲーション装置30は、作成した目標経路を車両制御装置12に出力する。車両制御装置12は、当該目標経路をHMI22に供給する。HMI22は、当該目標経路をディスプレイ40に表示する。
測位部33には、GNSS48が備えられている。測位部33には、IMU(Inertial Measurement Unit、慣性計測装置)50と、地図データベース(地図DB)52とが更に備えられている。測位部33は、GNSS48によって得られる情報と、IMU50によって得られる情報と、地図データベース52に記憶された地図情報とを適宜用いて、車両10の位置を特定する。
車両制御装置12には、演算部54と、記憶部56とが備えられている。演算部54は、車両制御装置12の全体の制御を司る。演算部54は、例えばCPU(Central Processing Unit)によって構成されている。演算部54は、記憶部56に記憶されているプログラムに基づいて各部を制御することによって、車両制御を実行する。
演算部54には、相対位置関係決定部58、車間距離決定部60と、追従制御部62とが備えられている。相対位置関係決定部58、車間距離決定部60と、追従制御部62とは、記憶部56に記憶されているプログラムが演算部54によって実行されることによって実現され得る。
記憶部56は、不図示の揮発性メモリと、不図示の不揮発性メモリとを含む。揮発性メモリとしては、例えばRAM(Random Access Memory)等が挙げられる。不揮発性メモリとしては、例えばROM(Read Only Memory)、フラッシュメモリ等が挙げられる。外界情報、車体挙動情報、車両操作情報等が、例えば揮発性メモリに格納される。プログラム、テーブル、マップ等が、例えば不揮発性メモリに記憶される。
相対位置関係決定部58は、自車両10と先行車両70との相対的な位置関係、即ち、相対位置関係を、ユーザによる操作に基づいて決定する。相対位置関係は、自車両10と先行車両70との間の距離の度合い、即ち、車間距離の度合いを示すものである。相対位置関係は、例えば、S(小)、M(中)、L(大)、XL(特大)の4段階とすることができるが、これに限定されるものではない。相対位置関係は、2段階であってもよいし、3段階であってもよいし、5段階以上であってもよい。上述したように、ディスプレイ40はタッチパネルである。タッチパネルがユーザによって操作されることによって、相対位置関係S、M、L、XLの入力が行われる。なお、ここでは、相対位置関係S、M、L、XLの入力がタッチパネルの操作によって行われる場合を例に説明するが、これに限定されるものではない。相対位置関係S、M、L、XLを入力するためのスイッチ等をHMI22に設けるようにしてもよい。そして、当該スイッチをユーザが操作することによって、相対位置関係S、M、L、XLが入力されるようにしてもよい。
自車両10が先行車両70に追従する制御である追従制御は、例えば、制御状態Aと、制御状態Bと、制御状態Cとを有する。制御状態Bは、運転者の負担が制御状態Aよりも軽い、又は、自動化度が制御状態Aより高い。制御状態Aにおいては、例えば、運転者がステアリングハンドルを把持する必要があるが、制御状態Bにおいては、例えば、運転者がステアリングハンドルを把持する必要がない。制御状態Cは、運転者の負担が制御状態Bよりも軽い、又は、自動化度が制御状態Bより高い。
図2Aは、制御状態Aにおける車間距離の例を概念的に示す図である。制御状態Aにおいては、車間距離は以下のようになる。即ち、相対位置関係がSの場合、車間距離はLASである。相対位置関係がMの場合、車間距離はLAMである。相対位置関係がLの場合、車間距離はLALである。相対位置関係がXLの場合、車間距離はLAXLである。なお、制御状態Aにおける車間距離一般について説明する際には、符号LAを用い、制御状態Aにおける個々の車間距離について説明する際には、符号LAS、LAM、LAL、LAXLを用いる。車間距離LAは、車両10の速度に応じて変化する。
図2Bは、制御状態Bにおける車間距離の例を概念的に示す図である。制御状態Bにおいては、車間距離は以下のようになる。即ち、相対位置関係がSの場合、車間距離はLBSである。相対位置関係がMの場合、車間距離はLBMである。相対位置関係がLの場合、車間距離はLBLである。相対位置関係がXLの場合、車間距離はLBXLである。なお、車間距離LBS、LBM、LBL、LBXLは、車両10の速度に応じて変化する。なお、制御状態Bにおける車間距離一般について説明する際には、符号LBを用い、制御状態Bにおける個々の車間距離について説明する際には、符号LBS、LBM、LBL、LBXLを用いる。車間距離LBは、車両10の速度に応じて変化する。
図2Cは、制御状態Cにおける車間距離の例を概念的に示す図である。制御状態Cにおける車間距離はLCである。車間距離LCは、車両10の速度に応じて変化する。
車間距離決定部60は、相対位置関係決定部58によって決定された相対位置関係S、M、L、XLに基づいて、車間距離LA、LBを決定する。より具体的には、車間距離決定部60は、相対位置関係S、M、L、XLと、車速とに基づいて車間距離LA、LBを決定する。相対位置関係S、M、L、XLと車速と車間距離LA、LBとの関係を示すテーブルが、予め記憶部56に記憶されている。車間距離決定部60は、当該テーブルを用いて車間距離LA、LBを決定する。なお、ここでは、テーブルを用いる場合を例に説明するが、これに限定されるものではない。例えば、所定の計算式に基づいて車間距離LA、LBを算出するようにしてもよい。所定の計算式は、相対位置関係S、M、L、XLと車速と車間距離LA、LBとの関係を示す式である。
制御状態Bにおいて車間距離決定部60が決定し得る車間距離の最小値、即ち、車間距離LBSは、制御状態Aにおいて車間距離決定部60が決定し得る車間距離の最小値、即ち、車間距離LASより大きい。換言すれば、相対位置関係がSに設定されている場合、制御状態Bにおける車間距離LBSは、制御状態Aにおける車間距離LASより長い。
車間距離LBSが車間距離LASより長いのは、以下のような理由によるものである。即ち、制御状態Bにおける運転者の負担は、制御状態Aにおける運転者の負担よりも軽い、又は、制御状態Bにおける自動化度は、制御状態Aにおける自動化度より高い。制御状態Aにおいては、例えば、運転者がハンドルを把持する必要があるが、制御状態Bにおいては、例えば、運転者がハンドルを把持する必要がない。このような場合、運転者が車両10の操作を行い得る状態に至るまでに要する時間、即ち、運転交代に要する時間は、制御状態Aの場合より制御状態Bの場合の方が長い。従って、車間距離LBSは、車間距離LASより長く設定されている。
同様の理由により、車間距離LBMは、車間距離LAMより長く設定されている。また、同様の理由により、車間距離LBLは、車間距離LALより長く設定されている。また、同様の理由により、車間距離LBXLは、車間距離LAXLより長く設定されている。
制御状態Bにおいて車間距離決定部60が調整し得る車間距離の最大調整可能範囲ΔLB(図2B参照)は、制御状態Aにおいて車間距離決定部60が調整し得る車間距離の最大調整可能範囲ΔLA(図2A参照)より狭い。最大調整可能範囲ΔLBが最大調整可能範囲ΔLAより狭いのは、車間距離LBSが車間距離LASより長く設定されているためである。
車間距離決定部60は、制御状態Cにおいては、予め定められた距離に基づいて車間距離LCを決定する。即ち、車間距離決定部60は、制御状態Cにおいては、車間距離LCを所定距離とする。制御状態Cは、例えば、渋滞が生じている場合等において採用され得る。このため、制御状態Cにおける自車両10の速度の上限は、制御状態A、Bにおける自車両10の速度の上限より低い。
渋滞時の際に他車両に割り込まれてしまうのを防止するため、制御状態Cにおける車間距離LCは、相対位置関係が最大の際の制御状態A、Bにおける車間距離LAXL、LBXLより短くなっている。
制御状態Aにおいて相対位置関係S、M、L、XLが変更された場合、車間距離決定部60は、制御状態Bにおいて、変更後の相対位置関係S、M、L、XLに基づいて車間距離LBS、LBM、LBL、LBXLを決定し得る。制御状態Bにおいて相対位置関係S、M、L、XLが変更された場合、車間距離決定部60は、制御状態Aにおいて、変更後の相対位置関係S、M、L、XLに基づいて車間距離LAS、LAM、LAL、LAXLを決定し得る。このように、制御状態A及び制御状態Bのうちの一方において相対位置関係S、M、L、XLが変更された場合、車間距離決定部60は、以下のように動作する。即ち、車間距離決定部60は、制御状態A及び制御状態Bのうちの他方において、変更後の相対位置関係S、M、L、XLに基づいて車間距離LAS〜LAXL、LBS〜LBXLを決定し得る。
自車両10が停止している際に相対位置関係決定部58によって相対位置関係S、M、L、XLが変更された場合、追従制御部62は、以下のように動作し得る。即ち、追従制御部62は、変更後の相対位置関係S、M、L、XLに基づいて車間距離決定部60によって決定される車間距離LAS〜LAXL、LBS〜LBXLを、自車両10が発進した後に適用し得る。
車間距離決定部60は、自車両10を停止させる際の車間距離LAS〜LAXL、LBS〜LBXLを、例えば相対位置関係決定部58によって決定された相対位置関係S、M、L、XLに基づいて決定し得る。
追従制御部62は、車間距離決定部60によって決定された車間距離LAS〜LAXL、LBS〜LBXLに基づいて先行車両70に対する追従制御を行う。
本実施形態による車両制御装置12の動作について説明する。図3及び図4は、本実施形態による車両制御装置の動作の例を示すフローチャートである。
ステップS1において、演算部54は、現在の制御状態が制御状態Cであるか否かを判定する。現在の制御状態が制御状態Cである場合(ステップS1においてYES)、ステップS2に遷移する。現在の制御状態が制御状態Cでない場合(ステップS1においてNO)、ステップS3に遷移する。
ステップS2において、車間距離決定部60は、予め定められた距離に基づいて車間距離LCを決定する。この後、ステップS18に遷移する。
ステップS3において、演算部54は、現在の制御状態が制御状態Bであるか否かを判定する。現在の制御状態が制御状態Bである場合(ステップS3においてYES)、ステップS4に遷移する。現在の制御状態が制御状態Bでない場合(ステップS3においてNO)、ステップS11(図4参照)に遷移する。
ステップS4において、相対位置関係決定部58は、相対位置関係がSに設定されているか否かを判定する。相対位置関係がSに設定されている場合(ステップS4においてYES)、ステップS5に遷移する。相対位置関係がSに設定されていない場合(ステップS4においてNO)、ステップS6に遷移する。
ステップS5において、車間距離決定部60は、相対位置関係Sに基づいて、車間距離LBSを決定する。より具体的には、車間距離決定部60は、相対位置関係Sと車両10の速度とに基づいて、車間距離LBSを決定する。この後、ステップS18に遷移する。
ステップS6において、相対位置関係決定部58は、相対位置関係がMに設定されているか否かを判定する。相対位置関係がMに設定されている場合(ステップS6においてYES)、ステップS7に遷移する。相対位置関係がMに設定されていない場合(ステップS6においてNO)、ステップS8に遷移する。
ステップS7において、車間距離決定部60は、相対位置関係Mに基づいて、車間距離LBMを決定する。より具体的には、車間距離決定部60は、相対位置関係Mと車両10の速度とに基づいて、車間距離LBMを決定する。この後、ステップS18に遷移する。
ステップS8において、相対位置関係決定部58は、相対位置関係がLに設定されているか否かを判定する。相対位置関係がLに設定されている場合(ステップS8においてYES)、ステップS9に遷移する。相対位置関係がLに設定されていない場合(ステップS8においてNO)、即ち、相対位置関係がXLである場合、ステップS10に遷移する。
ステップS9において、車間距離決定部60は、相対位置関係Lに基づいて、車間距離LBLを決定する。より具体的には、車間距離決定部60は、相対位置関係Lと車両10の速度とに基づいて、車間距離LBLを決定する。この後、ステップS18に遷移する。
ステップS10において、車間距離決定部60は、相対位置関係XLに基づいて、車間距離LBXLを決定する。より具体的には、車間距離決定部60は、相対位置関係XLと車両10の速度とに基づいて、車間距離LBXLを決定する。この後、ステップS18に遷移する。
ステップS11において、相対位置関係決定部58は、相対位置関係がSに設定されているか否かを判定する。相対位置関係がSに設定されている場合(ステップS11においてYES)、ステップS12に遷移する。相対位置関係がSに設定されていない場合(ステップS11においてNO)、ステップS13に遷移する。
ステップS12において、車間距離決定部60は、相対位置関係Sに基づいて、車間距離LASを決定する。より具体的には、車間距離決定部60は、相対位置関係Sと車両10の速度とに基づいて、車間距離LASを決定する。この後、ステップS18に遷移する。
ステップS13において、相対位置関係決定部58は、相対位置関係がMに設定されているか否かを判定する。相対位置関係がMに設定されている場合(ステップS13においてYES)、ステップS14に遷移する。相対位置関係がMに設定されていない場合(ステップS13においてNO)、ステップS15に遷移する。
ステップS14において、車間距離決定部60は、相対位置関係Mに基づいて、車間距離LAMを決定する。より具体的には、車間距離決定部60は、相対位置関係Mと車両10の速度とに基づいて、車間距離LAMを決定する。この後、ステップS18に遷移する。
ステップS15において、相対位置関係決定部58は、相対位置関係がLに設定されているか否かを判定する。相対位置関係がLに設定されている場合(ステップS15においてYES)、ステップS16に遷移する。相対位置関係がLに設定されていない場合(ステップS15においてNO)、即ち、相対位置関係がXLである場合には、ステップS17に遷移する。
ステップS16において、車間距離決定部60は、相対位置関係Lに基づいて、車間距離LALを決定する。より具体的には、車間距離決定部60は、相対位置関係Lと車両10の速度とに基づいて、車間距離LALを決定する。この後、ステップS18に遷移する。
ステップS17において、車間距離決定部60は、相対位置関係XLに基づいて、車間距離LAXLを決定する。より具体的には、車間距離決定部60は、相対位置関係XLと車両10の速度とに基づいて、車間距離LAXLを決定する。この後、ステップS18に遷移する。
ステップS18において、追従制御部62は、車間距離決定部60によって決定された車間距離LAS〜LAXL、LBS〜LBXL、LCに基づいて、先行車両70に対する追従制御を行う。
図5は、本実施形態による車両制御装置の動作の例を示すフローチャートである。
ステップS21において、相対位置関係決定部58は、相対位置関係の変更がユーザによる操作によって行われたか否かを判定する。相対位置関係の変更が行われた場合(ステップS21においてYES)、ステップS22に遷移する。相対位置関係の変更が行われていない場合(ステップS21においてNO)、図5に示す処理が終了する。
ステップS22において、演算部54は、制御状態の変更が追従制御部62によって行われたか否かを判定する。制御状態の変更が行われた場合(ステップS22においてYES)、ステップS23に遷移する。制御状態の変更が行われていない場合(ステップS22においてNO)、ステップS22が繰り返される。
ステップS23において、車間距離決定部60は、以下のような処理を行う。即ち、変更後の制御状態が制御状態Aである場合、車間距離決定部60は、変更後の相対位置関係S、M、L、XLに基づいて車間距離LAS〜LAXLを決定する。変更後の制御状態が制御状態Bである場合、車間距離決定部60は、変更後の相対位置関係S、M、L、XLに基づいて車間距離LBS〜LBXLを決定する。なお、変更後の制御状態が制御状態Cである場合、車間距離決定部60は、変更後の相対位置関係S、M、L、XLに基づくことなく、車間距離LCを決定する。
図6は、本実施形態による車両制御装置の動作の例を示すフローチャートである。
ステップS31において、演算部54は、車両10が停止している際に相対位置関係が変更されたか否かを判定する。車両10が停止している際に相対位置関係が変更された場合(ステップS31においてYES)、ステップS32に遷移する。車両10が停止している際に相対位置関係が変更されていない場合(ステップS31においてNO)、図6に示す処理が終了する。
ステップS32において、演算部54は、車両10が発進したか否かを判定する。車両10が発進した場合(ステップS32においてYES)、ステップS33に遷移する。車両10が発進していない場合(ステップS32においてNO)、ステップS32が繰り返される。
ステップS33において、追従制御部62は、変更後の相対位置関係S、M、L、XLに基づいて車間距離決定部60によって決定される車間距離LAS〜LAXL、LBS〜LBXLを適用する。
このように、本実施形態によれば、ユーザによる操作に基づいて決定された相対位置関係S、M、L、XLに基づいて車間距離LAS〜LAXL、LBS〜LBXLが決定される。このため、本実施形態によれば、ユーザの運転能力等に応じた適切な車間距離LAS〜LAXL、LBS〜LBXLを設定することができる。
しかも、本実施形態によれば、現在の制御状態A、B、Cに応じて車間距離LAS〜LAXL、LBS〜LBXL、LCが決定される。このため、本実施形態によれば、制御状態A、B、Cに応じた適切な車間距離LAS〜LAXL、LBS〜LBXL、LCを設定することができる。
[変形実施形態]
本発明についての好適な実施形態を上述したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能である。
例えば、各制御状態における車間距離が以下のように設定されるようにしてもよい。図7Aは、制御状態Aにおける車間距離の他の例を概念的に示す図である。制御状態Aにおいては、相対位置関係をS、M、L、XLのうちのいずれにも設定し得る。図7Bは、制御状態Bにおける車間距離の他の例を概念的に示す図である。制御状態Bにおいては、相対位置関係をM、L又はXLに設定し得るが、Sには設定し得ない。図7Cは、制御状態Cにおける車間距離の他の例を概念的に示す図である。制御状態Cにおいては、相対位置関係をL又はXLに設定し得るが、S、Mには設定し得ない。制御状態Bにおいて車間距離決定部60が調整し得る車間距離の最大調整可能範囲ΔLBは、制御状態Aにおいて車間距離決定部60が調整し得る車間距離の最大調整可能範囲ΔLAより狭い。また、制御状態Cにおいて車間距離決定部60が調整し得る車間距離の最大調整可能範囲ΔLCは、制御状態Bにおいて車間距離決定部60が調整し得る車間距離の最大調整可能範囲ΔLBより狭い。制御状態Aにおいて相対位置関係が例えばSに設定されている状態において、制御状態が例えばAからBに遷移した場合、相対位置関係決定部58は、制御状態Bにおける相対位置関係を例えばMに設定する。この場合、相対位置関係がSからMに変更されたことがスピーカ46等を用いてユーザに通知されるようにしてもよい。制御状態Bにおいて相対位置関係が例えばMに設定されている状態において、制御状態が例えばBからAに遷移した場合、相対位置関係決定部58は、制御状態Aにおける相対位置関係を例えばSに設定する。この場合、相対位置関係がMからSに変更されたことがスピーカ46等を用いてユーザに通知されるようにしてもよい。
また、制御状態Aにおいても制御状態Bにおいても、ユーザによって操作される相対位置関係はS、M、L、XL(図7A参照)とし、相対位置関係決定部58によって以下のような処理が行われるようにしてもよい。例えば、制御状態Aにおいてユーザによって相対位置関係が例えばSに操作された場合には、相対位置関係決定部58によって相対位置関係がS(図7A参照)に設定される。一方、制御状態Bにおいてユーザによって相対的位置関係が例えばSに操作された場合には、相対位置関係決定部58によって相対位置関係がM(図7B参照)に設定される。このように、ユーザによる操作に対して相対位置関係決定部58によって所定の変換処理が行われるようにしてもよい。
上記実施形態をまとめると以下のようになる。
車両制御装置(12)は、自車両(10)と先行車両(70)との間の距離である車間距離(LAS〜LAXL、LBS〜LBXL)を決定する車間距離決定部(60)と、前記車間距離決定部によって決定された前記車間距離に基づいて前記先行車両に対する追従制御を行う追従制御部(62)とを有し、前記追従制御は、第1制御状態(A)と、運転者の負担が前記第1制御状態よりも軽い、又は、自動化度が前記第1制御状態より高い第2制御状態(B)とを有し、前記第2制御状態において前記車間距離決定部が決定し得る前記車間距離の最小値(LBS)は、前記第1制御状態において前記車間距離決定部が決定し得る前記車間距離の最小値(LAS)より大きい。運転者が車両の操作を行い得る状態に至るまでに要する時間は、第1制御状態の場合より第2制御状態の場合の方が長いため、第2制御状態においては、第1制御状態よりも車間距離を長めに設定することが好ましい。このような構成によれば、車間距離を制御状態に応じて適切に設定することができる。
車両制御装置は、自車両と先行車両との間の距離である車間距離を決定する車間距離決定部と、前記車間距離決定部によって決定された前記車間距離に基づいて前記先行車両に対する追従制御を行う追従制御部とを有し、前記追従制御は、第1制御状態と、運転者の負担が前記第1制御状態よりも軽い、又は、自動化度が前記第1制御状態より高い第2制御状態とを有し、前記第2制御状態において前記車間距離決定部が調整し得る前記車間距離の最大調整可能範囲(ΔLB)は、前記第1制御状態において前記車間距離決定部が調整し得る前記車間距離の最大調整可能範囲(ΔLA)より狭い。このような構成によれば、車間距離を制御状態に応じて適切に設定することができる。
前記自車両と前記先行車両との相対位置関係(S、M、L、XL)をユーザによる操作に基づいて決定する相対位置関係決定部(58)を更に有し、前記車間距離決定部は、前記相対位置関係決定部によって決定された前記相対位置関係に基づいて、前記車間距離を決定するようにしてもよい。このような構成によれば、相対位置関係をユーザが適宜設定することができる。
前記第1制御状態及び前記第2制御状態のうちの一方において前記相対位置関係が変更された場合、前記車間距離決定部は、前記第1制御状態及び前記第2制御状態のうちの他方において、変更後の前記相対位置関係に基づいて前記車間距離を決定するようにしてもよい。このような構成によれば、制御状態が遷移した場合であっても、遷移前の制御状態において設定した相対位置関係が遷移後の制御状態においても引き継がれるため、操作が煩雑になるのを防止することができる。
前記自車両が停止している際に前記相対位置関係が変更された場合、前記追従制御部は、変更後の前記相対位置関係に基づいて前記車間距離決定部によって決定される前記車間距離を、前記自車両が発進した後に適用するようにしてもよい。このような構成によれば、停止している自車両が車間距離の調整のために動き出してしまうことがない。このような構成によれば、ユーザに違和感を与えるような挙動が車両に生ずるのを防止することができる。
前記車間距離決定部は、前記自車両を停止させる際の前記車間距離を前記相対位置関係に基づいて決定するようにしてもよい。このような構成によれば、ユーザに違和感を与えるような挙動が車両の停止時に生じるのを防止することができる。
前記相対位置関係が最小の際の前記第2制御状態における前記車間距離は、前記相対位置関係が最小の際の前記第1制御状態における前記車間距離より長いようにしてもよい。運転者が車両の操作を行い得る状態に至るまでに要する時間は、第1制御状態の場合より第2制御状態の場合の方が長いため、第2制御状態においては、第1制御状態よりも車間距離を長めに設定することが好ましい。このような構成によれば、車間距離を制御状態に応じて適切に設定することができる。
車両制御装置は、自車両と先行車両との相対位置関係を決定する相対位置関係決定部と、前記相対位置関係決定部より決定された前記相対位置関係に基づいて前記自車両と前記先行車両との間の距離である車間距離を決定する車間距離決定部と、前記車間距離決定部によって決定された前記車間距離に基づいて前記先行車両に対する追従制御を行う追従制御部とを有し、前記追従制御は、第1制御状態(A、B)と、運転者の負担が前記第1制御状態よりも軽い、又は、自動化度が前記第1制御状態より高い第2制御状態(C)とを有し、前記車間距離決定部は、前記第1制御状態においては、ユーザによる操作に基づいて前記相対位置関係決定部によって決定される前記相対位置関係に基づいて前記車間距離(LAS〜LAXL、LBS〜LBXL)を決定し、前記第2制御状態においては、予め定められた距離に基づいて前記車間距離(LC)を決定する。このような構成によれば、車間距離を制御状態に応じて適切に設定することができる。
前記第2制御状態における前記自車両の速度の上限は、前記第1制御状態における前記自車両の速度の上限より低いようにしてもよい。
前記第2制御状態における前記車間距離(LC)は、前記相対位置関係が最大の際の前記第1制御状態における前記車間距離(LAXL、LBXL)より短いようにしてもよい。このような構成によれば、渋滞時に他車両に割り込まれてしまうのを防止することができる。
車両制御方法は、自車両と先行車両との間の距離である車間距離を決定するステップ(S5、S7、S9、S10、S12、S14、S16、S17)と、前記車間距離を決定するステップにおいて決定された前記車間距離に基づいて前記先行車両に対する追従制御を行うステップ(S18)とを有し、前記追従制御は、第1制御状態と、運転者の負担が前記第1制御状態よりも軽い、又は、自動化度が前記第1制御状態より高い第2制御状態とを有し、前記第2制御状態における前記車間距離を決定するステップにおいて決定し得る前記車間距離の最小値は、前記第1制御状態における前記車間距離を決定するステップにおいて決定し得る前記車間距離の最小値より大きい。
車両制御方法は、自車両と先行車両との間の距離である車間距離を決定するステップと、前記車間距離を決定するステップにおいて決定された前記車間距離に基づいて前記先行車両に対する追従制御を行うステップとを有し、前記追従制御は、第1制御状態と、運転者の負担が前記第1制御状態よりも軽い、又は、自動化度が前記第1制御状態より高い第2制御状態とを有し、前記第2制御状態において調整され得る前記車間距離の最大調整可能範囲は、前記第1制御状態において調整され得る前記車間距離の最大調整可能範囲より狭い。
車両制御方法は、自車両と先行車両との相対位置関係を決定するステップ(S4、S6、S8、S11、S13、S15)と、前記相対位置関係を決定するステップにおいて決定された前記相対位置関係に基づいて前記自車両と前記先行車両との間の距離である車間距離を決定するステップ(S5、S7、S9、S10、S12、S14、S16、S17)と、前記車間距離を決定するステップにおいて決定された前記車間距離に基づいて前記先行車両に対する追従制御を行うステップ(S18)とを有し、前記追従制御は、第1制御状態(A、B)と、運転者の負担が前記第1制御状態よりも軽い、又は、自動化度が前記第1制御状態より高い第2制御状態(C)とを有し、前記第1制御状態においては、ユーザによる操作に基づいて決定される前記相対位置関係に基づいて前記車間距離(LAS〜LAXL、LBS〜LBXL)が決定され、前記第2制御状態においては、予め定められた距離に基づいて前記車間距離(LC)が決定される。
10…自車両 12…車両制御装置
14…外界センサ 16…車体挙動センサ
18…車両操作センサ 20…通信部
22…HMI 24…駆動装置
26…制動装置 28…操舵装置
30…ナビゲーション装置 32、44…カメラ
34…レーダ 36…LiDAR
38…自動運転スイッチ 40…ディスプレイ
42…接触センサ 46…スピーカ
48…GNSS 50…IMU
52…地図データベース 54…演算部
56…記憶部 58…相対位置関係決定部
60…車間距離決定部 62…追従制御部
70…先行車両

Claims (10)

  1. 自車両と先行車両との間の距離である車間距離を決定する車間距離決定部と、
    前記車間距離決定部によって決定された前記車間距離に基づいて前記先行車両に対する追従制御を行う追従制御部とを有し、
    前記追従制御は、第1制御状態と、自動化度が前記第1制御状態より高い第2制御状態とを有し、
    前記第2制御状態において前記車間距離決定部が決定し得る前記車間距離の最小値は、前記第1制御状態において前記車間距離決定部が決定し得る前記車間距離の最小値より大きい、車両制御装置。
  2. 自車両と先行車両との間の距離である車間距離を決定する車間距離決定部と、
    前記車間距離決定部によって決定された前記車間距離に基づいて前記先行車両に対する追従制御を行う追従制御部とを有し、
    前記追従制御は、第1制御状態と、自動化度が前記第1制御状態より高い第2制御状態とを有し、
    前記第2制御状態において前記車間距離決定部が決定し得る前記車間距離の最小値は、前記第1制御状態において前記車間距離決定部が決定し得る前記車間距離の最小値より大きく、
    前記第2制御状態において前記車間距離決定部が調整し得る前記車間距離の最大調整可能範囲は、前記第1制御状態において前記車間距離決定部が調整し得る前記車間距離の最大調整可能範囲より狭い、車両制御装置。
  3. 請求項1又は2に記載の車両制御装置において、
    前記自車両と前記先行車両との相対位置関係をユーザによる操作に基づいて決定する相対位置関係決定部を更に有し、
    前記車間距離決定部は、前記相対位置関係決定部によって決定された前記相対位置関係に基づいて、前記車間距離を決定し、
    前記相対位置関係が最小の際の前記第2制御状態における前記車間距離は、前記相対位置関係が最小の際の前記第1制御状態における前記車間距離より長い、車両制御装置。
  4. 請求項3に記載の車両制御装置において、
    前記第1制御状態及び前記第2制御状態のうちの一方において前記相対位置関係が変更された場合、前記車間距離決定部は、前記第1制御状態及び前記第2制御状態のうちの他方において、変更後の前記相対位置関係に基づいて前記車間距離を決定する、車両制御装置。
  5. 請求項3又は4に記載の車両制御装置において、
    前記自車両が停止している際に前記相対位置関係が変更された場合、前記追従制御部は、変更後の前記相対位置関係に基づいて前記車間距離決定部によって決定される前記車間距離を、前記自車両が発進した後に適用する、車両制御装置。
  6. 請求項3〜5のいずれか1項に記載の車両制御装置において、
    前記車間距離決定部は、前記自車両を停止させる際の前記車間距離を前記相対位置関係に基づいて決定する、車両制御装置。
  7. 自車両と先行車両との相対位置関係を決定する相対位置関係決定部と、
    前記相対位置関係決定部より決定された前記相対位置関係に基づいて前記自車両と前記先行車両との間の距離である車間距離を決定する車間距離決定部と、
    前記車間距離決定部によって決定された前記車間距離に基づいて前記先行車両に対する追従制御を行う追従制御部とを有し、
    前記追従制御は、第1制御状態と、運転者の負担が前記第1制御状態よりも軽い、又は、自動化度が前記第1制御状態より高い第2制御状態とを有し、
    前記車間距離決定部は、前記第1制御状態においては、ユーザによる操作に基づいて前記相対位置関係決定部によって決定される前記相対位置関係に基づいて前記車間距離を決定し、前記第2制御状態においては、前記ユーザによる操作に基づいて前記相対位置関係決定部によって決定される前記相対位置関係に基づくことなく予め定められた距離に基づいて前記車間距離を決定し、
    前記第2制御状態における前記自車両の速度の上限は、前記第1制御状態における前記自車両の速度の上限より低く、
    前記第2制御状態における前記車間距離は、前記相対位置関係が最大の際の前記第1制御状態における前記車間距離より短い、車両制御装置。
  8. 自車両と先行車両との間の距離である車間距離を決定するステップと、
    前記車間距離を決定するステップにおいて決定された前記車間距離に基づいて前記先行車両に対する追従制御を行うステップとを有し、
    前記追従制御は、第1制御状態と、自動化度が前記第1制御状態より高い第2制御状態とを有し、
    前記第2制御状態における前記車間距離を決定するステップにおいて決定し得る前記車間距離の最小値は、前記第1制御状態における前記車間距離を決定するステップにおいて決定し得る前記車間距離の最小値より大きい、車両制御方法。
  9. 自車両と先行車両との間の距離である車間距離を決定するステップと、
    前記車間距離を決定するステップにおいて決定された前記車間距離に基づいて前記先行車両に対する追従制御を行うステップとを有し、
    前記追従制御は、第1制御状態と、自動化度が前記第1制御状態より高い第2制御状態とを有し、
    前記第2制御状態において前記車間距離を決定するステップで決定し得る前記車間距離の最小値は、前記第1制御状態において前記車間距離を決定するステップで決定し得る前記車間距離の最小値より大きく、
    前記第2制御状態において調整され得る前記車間距離の最大調整可能範囲は、前記第1制御状態において調整され得る前記車間距離の最大調整可能範囲より狭い、車両制御方法。
  10. 自車両と先行車両との相対位置関係を決定するステップと、
    前記相対位置関係を決定するステップにおいて決定された前記相対位置関係に基づいて前記自車両と前記先行車両との間の距離である車間距離を決定するステップと、
    前記車間距離を決定するステップにおいて決定された前記車間距離に基づいて前記先行車両に対する追従制御を行うステップとを有し、
    前記追従制御は、第1制御状態と、運転者の負担が前記第1制御状態よりも軽い、又は、自動化度が前記第1制御状態より高い第2制御状態とを有し、
    前記第1制御状態においては、ユーザによる操作に基づいて決定される前記相対位置関係に基づいて前記車間距離が決定され、前記第2制御状態においては、前記ユーザによる操作に基づいて決定される前記相対位置関係に基づくことなく予め定められた距離に基づいて前記車間距離が決定され、
    前記第2制御状態における前記自車両の速度の上限は、前記第1制御状態における前記自車両の速度の上限より低く、
    前記第2制御状態における前記車間距離は、前記相対位置関係が最大の際の前記第1制御状態における前記車間距離より短い、車両制御方法。
JP2018236168A 2018-12-18 2018-12-18 車両制御装置及び車両制御方法 Active JP6975703B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018236168A JP6975703B2 (ja) 2018-12-18 2018-12-18 車両制御装置及び車両制御方法
US16/715,461 US20200189589A1 (en) 2018-12-18 2019-12-16 Vehicle control device and vehicle control method
CN201911309566.1A CN111332291B (zh) 2018-12-18 2019-12-18 车辆控制装置和车辆控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018236168A JP6975703B2 (ja) 2018-12-18 2018-12-18 車両制御装置及び車両制御方法

Publications (2)

Publication Number Publication Date
JP2020097310A JP2020097310A (ja) 2020-06-25
JP6975703B2 true JP6975703B2 (ja) 2021-12-01

Family

ID=71071303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018236168A Active JP6975703B2 (ja) 2018-12-18 2018-12-18 車両制御装置及び車両制御方法

Country Status (3)

Country Link
US (1) US20200189589A1 (ja)
JP (1) JP6975703B2 (ja)
CN (1) CN111332291B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022144975A1 (ja) * 2020-12-28 2022-07-07 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4176690B2 (ja) * 2004-09-03 2008-11-05 本田技研工業株式会社 車両の走行制御装置
JP4450208B2 (ja) * 2005-01-19 2010-04-14 三菱自動車工業株式会社 インホイールモータ
US7966118B2 (en) * 2007-12-18 2011-06-21 GM Global Technology Operations LLC Automatic time headway setting for adaptive cruise control system
DE102014218198A1 (de) * 2014-09-11 2016-03-17 Robert Bosch Gmbh Abstandsregelsystem für Kraftfahrzeuge
JP6491929B2 (ja) * 2015-03-31 2019-03-27 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム
EP3081447B1 (en) * 2015-04-14 2020-07-01 Honda Research Institute Europe GmbH Intelligent gap setting for adaptive cruise control
WO2017179193A1 (ja) * 2016-04-15 2017-10-19 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP6669267B2 (ja) * 2016-09-21 2020-03-18 日産自動車株式会社 車両の走行制御方法および走行制御装置
US20180292836A1 (en) * 2017-04-06 2018-10-11 Delphi Technologies, Inc. Automated vehicle operation-rules selected based on automation-level other vehicles
JP6863194B2 (ja) * 2017-09-19 2021-04-21 トヨタ自動車株式会社 自動運転システム

Also Published As

Publication number Publication date
CN111332291B (zh) 2023-08-11
JP2020097310A (ja) 2020-06-25
CN111332291A (zh) 2020-06-26
US20200189589A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
JP6821644B2 (ja) 車両制御装置及び車両制御方法
JP7083762B2 (ja) 車両制御装置、車両及び車両制御方法
JP6975703B2 (ja) 車両制御装置及び車両制御方法
US11292484B2 (en) Vehicle control device, vehicle, and vehicle control method
JP7496448B2 (ja) 移動体制御装置、移動体及び移動体制御方法
JP7068365B2 (ja) 車両制御装置、車両及び車両制御方法
US20200255016A1 (en) Vehicle control device, vehicle, and vehicle control method
US11577731B2 (en) Moving body control apparatus, moving body, and moving body control method
US20210300376A1 (en) Moving body control apparatus, moving body, and moving body control method
US20210284167A1 (en) Moving body control apparatus, moving body, and moving body control method
JP7083764B2 (ja) 車両制御装置、車両及び車両制御方法
JP7038097B2 (ja) 車両制御装置及び車両制御方法
US20200255023A1 (en) Vehicle control device, vehicle, and vehicle control method
US11872993B2 (en) Moving body control apparatus, moving body, and moving body control method for controlling a moving body to perform an automated lane change based on a driver preparation level
JP6856679B2 (ja) 車両制御装置、車両及び車両制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6975703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150