JP6974343B2 - 反射性ラミネート - Google Patents

反射性ラミネート Download PDF

Info

Publication number
JP6974343B2
JP6974343B2 JP2018547945A JP2018547945A JP6974343B2 JP 6974343 B2 JP6974343 B2 JP 6974343B2 JP 2018547945 A JP2018547945 A JP 2018547945A JP 2018547945 A JP2018547945 A JP 2018547945A JP 6974343 B2 JP6974343 B2 JP 6974343B2
Authority
JP
Japan
Prior art keywords
laminate
reflective substrate
polymer sheet
electrolyte membrane
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018547945A
Other languages
English (en)
Other versions
JP2019510972A (ja
Inventor
アガーポブ アレクサンダー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
WL Gore and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WL Gore and Associates Inc filed Critical WL Gore and Associates Inc
Publication of JP2019510972A publication Critical patent/JP2019510972A/ja
Application granted granted Critical
Publication of JP6974343B2 publication Critical patent/JP6974343B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • C10G1/045Separation of insoluble materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Fuel Cell (AREA)

Description

関連出願
本出願は、2016年3月11日に出願された米国仮出願第62/307,261号の利益を主張し、その全体を参照により本明細書中に取り込む。
発明の分野
本開示は、一般に、固体ポリマー型燃料電池、ポリマー電解質燃料電池(「PEFC」)、電気分解、ガスセンサなどの電気化学反応を伴う用途における電気化学デバイスに関する。より詳細には、本開示は燃料電池用の反射性ラミネートに関する。
発明の背景
プロトン交換メンブレンとしても知られているポリマー電解質メンブレン(PEM)を組み込んだ燃料電池は、自動車用、固定及び携帯用の必要電力のためにかなり受け入れられている。ポリマー電解質燃料電池(PEFC)は、典型的に、一緒にラミネート化された複数の単一セルを含む。各セルは、アノード触媒層とカソード触媒層との間に挟まれたPEMを含む、メンブレン電極アセンブリ(MEA)を含む。アノード触媒層とカソード触媒層との対向面には、それぞれ燃料及び酸素をそこへ供給するためのガス拡散層(GDL)が設けられている。水素燃料電池において、燃料源はアノード触媒層に水素を供給し、ここで、水素イオン及び電子は形成される。電子は外部電気回路で電気を発生させる。カソード触媒層において、空気からの酸素は、メンブレンを通過する水素イオン及び外部回路からの電子と結合して水を生成する。
燃料及び期待される操作条件に応じて、様々な異なるメンブレンはPEM燃料電池に使用される。ポリフッ素化スルホン酸(PFSA)メンブレンは最もよく知られており、最も広く使用されているPEMメンブレンであり、E.I. du Pont de Nemours and Company, USAにより、Nafion(商標)メンブレンにより例示されるとおりである。非フッ素化、いわゆる「炭化水素」メンブレン、ならびに、ポリベンズイミダゾール(PBI)などの電解質としてリン酸を運ぶメンブレンも使用される。単一メンブレン及び多層メンブレンは使用される。メンブレンに使用されている同一(又は類似の)イオノマーと混合された炭素担体上の白金を最も典型的に含む電極(アノード及びカソード)はメンブレン(触媒コート化メンブレン又はCCMを形成する)又はGDL(ガス拡散電極又はGDEを形成する)のいずれかの上でコーティングされる。GDLは、ランダムに整列した炭素繊維の多孔質マットであり、典型的には水濡れを制御するためのポリテトラフルオロエチレン(PTFE)などのポリマーが含浸されている。
PEMコンダクタンス及び全体的なPEFC電力出力を増加させるために、米国特許RE37,307号明細書に記載されているように、PEMの厚さを減少させる努力がなされている。しかし、PEMの厚さを薄くすると、製造プロセスの間の構造的一体性及び取扱上の問題が低減される可能性がある。そのような問題に対処するための方法は開発されている。
例えば、特開平6−203851号公報は、固体高分子電解質膜を電極シート(典型的にはガス拡散層上に形成された触媒層)にラミネートして接合するための方法を開示している。金属メッシュ及びポリテトラフルオロエチレンシートをさらにラミネート化してホットプレスする接合方法は開示されている。この方法では、固体高分子電解質膜及び電極シートから形成されるラミネート上での熱プレスの間に、電極シートの破損及び電極シートの軟化によるプレス板への固着の問題を解消することができることが開示されている。
米国公開公報第2013/0157163号明細書は、取り扱いが困難なカーボンブラック/多孔性PTFE複合材シートをしわや破損を生じさせずに容易に取り扱うことを可能にする方法を開示している。この刊行物は、メンブレン電極アセンブリ(MEA)上に複合材シートをラミネートするための方法であって、MEAを提供すること、機能性粉末及びPTFEシートを含む複合材シートを提供すること、剥離フィルムを提供すること、複合材シートを剥離フィルム上に重ね合わせて常温でプレスすること、剥離フィルムを有する複合材シートをMEA上に重ね合わせてホットプレスすること、及び、複合材シートから剥離フィルムを分離することの工程を含む方法を開示している。
製造中のPEMの取扱性を改善することに加えて、PEMが製造プロセス中に十分な品質であることを確保にするために、PEMをモニター又は検査するためのより良いプロセスの必要性が存在する。より詳細には、MEA製造の前及び/又は間に、厚さ又は損傷の検出のような特定のPEMの特徴又は特性をより良好に決定する必要性が存在する。
上記の参考文献は、その全体が参照により本明細書に取り込まれ、例示的であり、排他的でないことが意図されている。関連技術の他の制限は、明細書を読みそして図面を検討したときに当業者に明らかになるであろう。
発明の要旨
本開示の様々な実施形態は、電気化学デバイス(例えば、燃料電池)を製造する際に使用される反射性ラミネートに関する。
本開示は、電気化学デバイス、特に、燃料電池を形成するのに特に有用なラミネートに関する。1つの実施形態において、ラミネートは、ポリマーシート、及び、該ポリマーシートに接着された反射性基材を含む。
1つの実施形態において、本開示のラミネートは反射性基材にポリマーシートを取り外し可能に取り付けることによって形成することができる。
「取り外し可能に接着される」とは、反射性基材に接着されたポリマーシートを含むラミネートであって、このポリマーシートがポリマーシート又は反射性基材に損傷又は不可逆変形を生じさせることなく反射性基材から除去されうる、ラミネートを意味する。
「反射性」とは、反射性基材が、ラミネートの表面に対して実質的に法線の角度で、好ましくは鏡面反射の様式で、好ましくは可視光線を含む電磁線を反射する能力を有するべきであることを意味する。
「〜に対する法線の角度」とは、ラミネートの表面に対して90°の角度を意味する。反射率は、異なる波長で反射性基材によって変化することがあるので、反射率波長範囲は広く変化しうる。一例として、1つの実施形態において、反射性基材は、6%超、10%超、25%超、50%超、75%超又は85%超の反射率を有する。いくつかの態様において、反射性基材は400nm〜1000nmの波長で6%より大きい反射率を有する。
「400nm〜1000nmの波長で」とは、反射性基材が400nm〜1000nmのすべての波長で特定量より大きい反射率を有することを意味する。反射性基材の反射率は、多波長光源及び分光計を備えた反射率計を使用して、ラミネートの表面に対して法線の角度で決定することができる。
「ラミネートの表面」とは、電磁線が照射されるラミネートの表面を意味する。1つの実施形態において、電磁線はポリマーシートの上面に照射される。
いくつかの実施形態において、ポリマーシートはペルフルオロ電解質メンブレンを含む。他の例では、ポリマーシートは、延伸多孔性ポリテトラフルオロエチレン(「ePTFE」)で補強されたペルフルオロスルホン酸樹脂を含むことができる。さらに別の例では、ポリマーシートはポリマー電解質メンブレン(PEM)を含むことができる。
反射性基材は金属基材(例えば、アルミニウム)を含むことができる。いくつかの態様において、反射性基材は反射層及びキャリア層を含む。この態様では、反射層は金属基材(例えば、アルミニウム)を含むことができる。キャリア層は、ポリエチレンテレフタレート(PET)を含むことができる。いくつかの態様において、反射性基材は反射層に取り付けられた保護層を含むこともできる。保護層は、例えば、環状オレフィンコポリマーを含むことができる。
いくつかの実施形態において、ラミネートは、ポリマーシートの1つ以上の特徴又は特性(例えば、ポリマーシートのサイズ又はポリマーシートにおける欠陥の存在)を観察する能力を提供する。例えば、1つの実施形態において、本発明は、ポリマーシートの特徴を決定するための方法に関する。この方法は、反射性基材をポリマーシートに取り外し可能に取り付けてラミネートを形成することを含む。この方法はさらに、電磁線の少なくとも一部を反射するために、電磁線をポリマーシートを通してそしてその下にある反射性基材に伝送させることを含む。この方法は、例えば分光計を用いて電磁線の反射部分を検出し、電磁線の反射部分に基づいてポリマーシートの特徴又は特性を決定することをさらに含むことができる。驚くべきことに、反射性基材をポリマーシートに取り付けることにより、ポリマーシートの特性を従来の手段よりも容易に決定することができる。他の例において、反射性基材は、ポリマーシート中の欠陥形成(例えば、ピンホール形成)を抑制又は防止することもできる。
いくつかの態様において、本方法はまた、メンブレン電極アセンブリ(「MEA」)を形成するために、ポリマーシートの両側に触媒電極(例えば、アノード又はカソード)を適用することを含む。例えば、ポリマーシートの側面又は表面に触媒電極を適用(例えば、ホットプレス、ラミネート化又は別の方法で配置)することができる。別の触媒電極をポリマーシートの反対側又は表面に適用することができる。いくつかの態様において、ポリマーシートに触媒電極を適用する前に、反射性基材をポリマーシートから除去する(例えば、脱結合する)。他の例において、反射性基材を除去する前にポリマーシートに触媒電極を適用することができる。この方法はまた、燃料電池を形成するためにMEAをガス拡散層(GDL)の間に挟むことを含むことができる。
別の実施形態において、本発明は反射性ラミネートの製造方法に関する。この方法は、移動している反射性基材上にある量のポリマー溶液を塗布することを含む。この方法はポリマー溶液を、反射性基材と同じ方向及び同じ速度で移動しているePTFE層とラミネート化(例えば、接触)させることをさらに含むことができる。ポリマー溶液はePTFE層を含浸している。この方法はまた、ある温度で、場合により80℃〜250℃の温度でePTFE層とラミネート化されるポリマー溶液を場合により乾燥させて、コーティングされた構造を形成させることができる。このようにコーティングされた構造は、ePTFEが含浸されたポリマー層に付着した反射性基材を含むことができる。この方法は、場合により、コーティングされた構造を巻き上げる又はロールすることをさらに含む。いくつかの態様において、別の量のポリマー溶液をコーティングされた構造に塗布し、他の量のポリマー溶液をePTFE層とラミネート化し、乾燥して、別のコーティングされた構造を形成することができる。いくつかの実施形態において、このプロセスを繰り返して、少なくとも1つのコーティングされた構造を含む固体多層ポリマーシートを形成することができる。いくつかの実施形態において、固体多層ポリマーシートは1μm〜100μmの平均厚さを有する。
図面の簡単な説明
図1は、本発明の1つの実施形態による、ポリマーシート及び反射性基材を含む反射性ラミネートの概略図である。
図2は、本発明の1つの実施形態による、反射性ラミネート及び入射電磁線ビームの断面模式図であり、その少なくとも一部はポリマーシートの上面から反射し、その別の一部は前記ポリマーシートを横断し、その後、反射性基材との界面で反射される。
図3は、本発明の1つの実施形態による、ポリマーシート中の欠陥の例を示す画像の上面図である。
図4は、本発明の1つの実施形態による、反射性基材に結合されたポリマーシートの特徴を決定する方法の例を示すフローチャートである。
図5は、本発明の1つの実施形態による、反射性ラミネートの製造方法の一例を示すフローチャートである。
図6は、従来のラミネート(例1)及び本発明の1つの実施形態による反射性ラミネート(例2)の様々な波長にわたる反射率を示すグラフである。
図7は、従来のラミネート(例1)及び反射性ラミネート(例2)の測定値から抽出した厚みの値を示すグラフである。
発明の詳細な説明
本開示は、電気化学デバイス、特に燃料電池を形成するのに特に有用な反射性ラミネートに関する。1つの実施形態において、反射性ラミネートは、ポリマーシート、及び、該ポリマーシートに接着された反射性基材を含む。いくつかの実施形態において、反射性基材はポリマーシートに取り外し可能に接着されている。反射性基材は、広範囲の反射特性(例えば、好ましくは可視光を含む電磁線を反射する能力)を有することができる。一例として、反射性基材は400nm〜1000nmの波長で6%より大きい反射率を有することができる。本明細書で特に明記しない限り、反射性基材の反射率は、多波長光源及び分光計を備えた反射率計を使用してラミネートの表面に対して法線の角度で決定される。「〜に対して法線の角度」とは、ラミネートの表面に対して90°の角度を意味する。
ポリマーシートは多孔性補強層を含むことができる。いくつかの実施形態において、ポリマーシートはポリマー電解質メンブレン(PEM)を含む。例えば、ポリマーシートは、ペルフルオロ電解質メンブレンを含むことができる。別の例では、ポリマーシートは、延伸多孔性ポリテトラフルオロエチレンで補強されたペルフルオロスルホン酸樹脂を含むことができる。
反射性基材は、場合により、金属基材(例えば、アルミニウム基材)を含む。選択される特定の金属は、反射性である限り、広範囲に変更可能である。例示の金属の非限定的なリストとして、アルミニウム、ベリリウム、セリウム、クロム、銅、ゲルマニウム、金、ハフニウム、マンガン、モリブデン、ニッケル、白金、ロジウム、銀、タンタル、チタン、タングステン、亜鉛、又は、インコネルもしくはブロンズなどの合金が挙げられる。反射性基材は、場合により、2種以上の金属、場合により2種以上の上記金属の混合物又は合金を含む。反射性基材は、場合により、3M社から入手可能なVikuiti(商標) Enhanced Specular Reflectorなどの高反射率ポリマー多層フィルムを含むことができる。さらに別の例において、反射性基材は、場合により、高反射率非金属無機誘電体多層膜を含むことができ、該膜は、例えば、フッ化マグネシウム、フッ化カルシウム、二酸化チタン、二酸化ケイ素などの材料を含む。いくつかの態様において、反射性基材は、反射層及びキャリア層を含む。反射層は、金属基材(例えば、アルミニウム)又は高反射率非金属多層膜を含むことができる。 キャリア層は、ポリエチレン(「PE」)、ポリスチレン(「PS」)、環状オレフィンコポリマー(「COC」)、環状オレフィンポリマー(「COP」)、フッ素化エチレンプロピレン(「FEP」)、ペルフルオロアルコキシアルカン(「PFA」)、エチレンテトラフルオロエチレン(「ETFE」)、ポリフッ化ビニリデン(「PVDF」)、ポリエーテルイミド(「PEI」)、ポリスルホン(「PSU」)、ポリエーテルスルホン(「PES」)、ポリフェニレンオキシド(「PPO」)、ポリフェニルエーテル(「PPE」)、ポリメチルペンテン(「PMP」)、ポリエチレンテレフタレート(「PET」)又はポリカーボネート(「PC」)を含むことができる。幾つかの態様において、反射性基材は保護層も含み、該保護層はポリエチレン(PE)、ポリスチレン(「PS」)、環状オレフィンコポリマー(「COC」)、環状オレフィンポリマー(「COP」)、フッ素化エチレンプロピレン(「FEP」)、ポリフルオロアルコキシアルカン(「PFA」)、エチレンテトラフルオロエチレン(「ETFE」)、ポリフッ化ビニリデン(PVDF)、ポリエーテルイミド(「PEI」)、ポリスルホン(「PSU」)、ポリエーテルスルホン(「PES」)、ポリフェニレンオキシド(「PPO」)、ポリフェニルエーテル(「PPE」)、ポリメチルペンテン(「PMP」)、ポリエチレンテレフタレート(「PET」)又はポリカーボネート(「PC」)を含むことができる。反射性基材は、ポリマーシートを覆い、反射性ラミネートに向かって伝送され又は反射性ラミネートを横断する電磁線の少なくとも一部を反射又は吸収することができる。ポリマーシート及び反射性基材によって反射又は吸収される電磁線の一部は、ポリマーシートを1つ以上の特徴について分析するために、例えば、ポリマーシート中の望ましくない欠陥を特定するために使用することができる。したがって、ポリマーシートの特徴は、例えば、ポリマーシート中の欠陥又はポリマーシートのサイズ又は厚さを含みうる。
1つの実施形態において、ポリマーシートを反射性基材に取り付けて反射性ラミネートを形成することができる。反射ラミネートは電磁線の経路に配置することができ、電磁線はポリマーシートを通過することができる。反射性基材は、次いで、電磁線の少なくとも一部を反射することができる。反射性基材によって反射又は吸収される電磁線の一部に基づいて、ポリマーシート中の欠陥の存在を決定するために、様々な方法及び技術(例えば、反射欠陥検査技術)を使用することができる。
別の例において、ポリマーシートのサイズ又は厚さは、ポリマーシートの上面によって反射される電磁線の部分と、ポリマーシートと反射性基材との界面で反射される電磁線の部分との干渉に基づいて決定することができる。ポリマーシートの上面、及び、ポリマーシートと反射性基材との間の界面から反射される光の干渉パターン基づいて、ポリマーシートのサイズ又は厚さを決定するために、例えば、干渉分光反射測定などの様々な方法及び技術を使用することができる。
反射性基材はまた、ポリマーシートに構造支持体を提供し、それによって、ポリマーシートを損傷することなく反射性ラミネートを取り扱い及び/又は輸送する能力を提供する。さらに、いくつかの態様では、反射性基材は、ポリマーシート中に欠陥(例えば、ピンホール)が形成されるのを抑制又は防止することができる。例えば、包装作業の間に、反射性ラミネートは圧延製品に圧延することができ、そのことはポリマーシートに静電荷を蓄積させうる。続いて、反射性ラミネートのロールを展開することができ、そのことは、同様に静電気放電を引き起こしうる。静電気放電は、ポリマーシート中に欠陥(例えば、ピンホール)をもたらすことがあるため、一般に望ましくない。いくつかの態様において、反射性基材は、包装作業中にポリマーシートに蓄積する静電荷を散逸させ、反射性ラミネートが展開される際に欠陥の形成を抑制又は防止する。
いくつかの実施形態において、ポリマーシートの表面に触媒電極(例えば、アノード又はカソード)を適用(例えば、ホットプレス、ラミネート化又は他の方法で配置)することができる。対向触媒電極は、好ましくは反射性基材を除去した後に、同様の手段を介してポリマーシートの反対面に形成されうる。このようにして、メンブレン電極アセンブリ(「MEA」)を形成することができる。したがって、いくつかの実施形態において、ポリマーシートから反射性基材を除去する前又は後に、ポリマーシートの表面に触媒電極を適用する。
別の実施形態において、本発明は、移動している反射性基材上に特定量のポリマー溶液を塗布することを含む反射性ラミネートの製造方法に関する。この方法は、反射性基材と同じ方向及び同じ速度で移動しているePTFE層とポリマー溶液をラミネート化(例えば、接触)させることをさらに含むことができる。この方法は、ePTFE層にポリマー溶液を含浸させることをさらに含むことができる。この方法はまた、場合により、ある温度で場合により、80℃〜250℃の温度でePTFE層とラミネート化されたポリマー溶液を乾燥させてコーティングされた構造を形成することを含む。コーティングされた構造は、ePTFE層で補強されたポリマー層に付着した反射性基材を含むことができる。この方法は、コーティングされた構造を巻き上げ又はロールすることをさらに含むことができる。いくつかの態様において、別の量のポリマー溶液を、コーティングされた構造に塗布し、他の量のポリマー溶液をePTFE層とラミネート化し、乾燥させて別のコーティングされた構造を形成することができる。例えば、他の量のポリマー溶液を、第一のコーティングされた構造の上に塗布し、乾燥させて、ポリマー含浸ePTFEポリマーを形成することができる。いくつかの実施形態において、この方法を繰り返して、少なくとも1つのコーティングされた構造を含む固体多層ポリマーシートを形成することができる。固体多層ポリマーシートは、1μm〜100μmの平均厚さを有することができる。
これらの例示的な例は、本明細書で論じた一般的な主題を紹介するために与えられており、開示された概念の範囲を限定することは意図されない。これらの例は、個々の工程の順序又は要素の配置が明示的に記述されている場合を除いて、工程又は要素の特定の順序又は配置を意味するものとして解釈されるべきではない。以下のセクションでは、図面を参照して様々な追加の特徴及び例を説明しているが、図面中、同様の番号は同様の要素を示しており、指向性を持った説明を用いて例示的な例を説明しているが、例示的な例のように、本開示を限定するために使用されるべきでない。
図1はポリマーシート102及び反射性基材104を含む反射性ラミネート100の概略図である。ポリマーシート102は、ポリマー又はフルオロポリマーを含むことができる。一例として、ポリマーシート102は多孔性又は微孔性のポリマー補強層を含むことができる。いくつかの実施形態において、ポリマーシート102はPEMを含む。他の例では、ポリマーシート102はペルフルオロ電解質メンブレンを含む。さらに別の例では、ポリマーシート102は延伸多孔性ポリテトラフルオロエチレンで補強されたペルフルオロスルホン酸樹脂を含む。他の例では、ポリマーシート102は、他の材料を含むことができ、かかる材料としては、限定するわけではないが、ペルフルオロ化スルホン酸樹脂、ペルフルオロ化カルボン酸樹脂、ポリビニルアルコール、ジビニルベンゼン、スチレン系ポリマー及びポリマーを含む又は含まない金属塩からなる群より選ばれる材料が挙げられる。ポリマーシート又はポリマーシート102の構成要素として使用するのに適した材料の例としては、限定するわけではないが、E.I. du Pont de Nemours and Company, USAによって製造されたNafion(商標); W.L.Gore & Associates, Co., Ltd., Japanによって製造されたGORE−SELECT(登録商標)メンブレンなどが挙げられる。ポリマーシート102は様々な方法又は技術によって製造することができる。ポリマーシート102を製造する例示的な方法は、米国特許第6,254,978号明細書、米国特許第8,652,705号明細書、米国特許第6,613,203号明細書、米国特許第5,547,551号(RE37,307)明細書、米国特許第5,635,041号(RE37,656)明細書及び米国特許第5,599,614号(RE37,701)明細書に記載されており、これらの各々を参照によりその全体を本明細書中に取り込む。
ポリマーシート102の大きさ、形状及び質量は特に限定されない。例えば、ポリマーシート102は、1μm〜100μm、例えば14μm〜80μm、例えば15μm〜60μmの平均厚さを有することができる。一例として、ポリマーシート102は、1μm以上、14μm以上、15μm以上又は25μm以上の厚さを有することができる。さらに別の例では、ポリマーシート102は、60μm以下の厚さを有することができる。
いくつかの実施形態において、ポリマーシート102は、2000g/モル当量未満の当量(「EW」)を有する。他の実施形態において、ポリマーシート102は、950g/モル当量未満、好ましくは800g/モル当量未満、最も好ましくは700g/モル当量未満のEWを有する。本明細書で使用されるときに、EWは、1モル当量の水酸化ナトリウムを中和するのに必要なポリマーシートの質量として定義される。
いくつかの態様において、反射性基材104は電磁線を反射するために使用される。例えば、反射性基材104は、6%超、10%超、25%超、50%超、75%超又は85%超の反射率を有することができる。一例として、反射性基材104は400nm〜1000nmの波長で6%超、10%超、25%超、50%超、75%超又は85%超の反射率を有することができる。他の態様において、反射性基材104は600nmの波長で6%超、10%超、25%超、50%超、75%超又は85%超の反射率を有することができる。別の態様として、反射性基材104は700nmで6%超、10%超、25%超、50%超以上、75%超又は85%超の反射率を有する。さらに別の態様において、反射性基材104は、900nm〜1000nmの波長で6%超、10%超、25%超、50%超、75%超又は85%超の反射率を有する。
範囲に関して、反射性基材104は、400nm〜1000nmの波長で10%〜99%の反射率を有することができる。一例として、反射性基材104は、800nmの波長又は900nmの波長で10%〜99%の反射率を有することができる。さらに他の態様において、反射性基材104は、400nm〜1000nmの波長で85%〜95%の反射率を有することができる。一例として、反射性基材104は、500nm、600nm、700nm、800nm又は900nmの波長で85%〜95%の反射率を有することができる。
本明細書で別段の断りがない限り、反射性基材104の反射率は、多波長光源及び分光計を備えた反射率計を使用して、ラミネートの表面に対して法線の角度で決定される。多波長光源は、様々な又は複数の波長の光を提供するためのあらゆる白色光源とすることができる。一例として、多波長光源は電球であってよい。
反射性基材104は、ポリマーシート102に取り外し可能に結合されるか、又は取り外し可能に接着されて、反射性ラミネート100を形成することができる。いくつかの態様において、反射性基材104の反射層をポリマーシート102に取り付け、反射性基材104をポリマーシート102に結合し又は接着することができる。別の例において、反射性基材104のキャリア層をポリマーシート102に取り付けて、反射性基材104をポリマーシート102に結合し又は接着することができる。例えば、反射性基材104は、ポリマーシート102を覆うことができ、ポリマーシート102に向かって伝送され又はポリマーシート102を横断する電磁線の少なくとも一部を反射又は吸収することができる。図2は、反射性ラミネート100及び入射電磁線ビーム202の断面概略図であり、前記ビーム202の少なくとも一部204はポリマーシート102の上面から反射し、前記ビーム202の別の部分206は前記ポリマーシート102を横断し、続いて反射性基材104との界面で反射される。
いくつかの態様において、入射電磁線ビーム202は電磁線を提供するためのいずれかの電磁線源又はデバイスから提供される。図示のように、入射電磁線ビーム202の少なくとも一部(例えば、部分204)はポリマーシート102の上面から反射する。入射電磁線ビーム202の他の部分(例えば、部分206)は、ポリマーシート102を横断し、続いて反射性基材104との界面で反射される。ポリマーシート102内の特徴、例えば、欠陥は、電磁線ビーム202の一部を吸収することができる。図2に示す例において、1つの電磁線ビーム202は入射ビームとして示され、ポリマーシート102の上面で部分的に反射し、ポリマーシート102を横断しそして反射性基材104との界面で部分的に反射されるが、いかなる数の異なるビームを採用してもよい。
いくつかの実施形態において、ポリマーシート102の特徴又は特性は、ポリマーシートの上面及び反射性基材104との界面で反射される電磁線ビームの部分(例えば、電磁線ビーム202の部分204、206)の干渉に基づいて決定される。特徴又は特性の例としては、限定するわけではないが、ポリマーシート102のサイズ又は厚さ、ポリマーシート102内の欠陥(例えば、異物粒子、気泡、引掻き傷、不均一性、ピンホールなど)の存在が挙げられる。
図3はポリマーシート102内の欠陥302,304,306,308,310の例を示す画像の上面図を提供する。いくつかの態様において、反射性基材(例えば、図1の反射性基材104)は、ポリマーシート102内の1つ以上の欠陥302,304,306,308,310を容易に観察することができる能力を提供する。ポリマーシート102内の欠陥302,304,306,308,310はそれぞれポリマーシート102内の欠陥であり、各々いかなるサイズ又は形状を有してもよい。一例として、欠陥302は、ポリマーシート102内の繊維でありうる。別の例として、欠陥304はポリマーシート102内の気泡でありうる。いくつかの実施形態において、各欠陥302,304,306,308,310は実質的にいかなる形状又はサイズであってもよい。一例として、欠陥306は、各々約15μmのサイズを有する様々な粒子、気泡、引掻き傷、不均一性、又はピンホールを含むことができる。欠陥308は約200μmのサイズを有することができる。欠陥310は約50μmのサイズを有することができる。検出された欠陥は、場合により、サイズの範囲(例えば、直径又は不規則な形状の欠陥の最大寸法)又は平均サイズが1〜500μm、例えば、1〜100μm又は1〜50μmである。本発明のこの態様による反射性基材が、ポリマーシート及び透明な(非反射性の)基材を通過させることなく電磁線を反射する際に、欠陥をより容易に観察できることが意外にも予期せず発見された。
いくつかの態様において、ポリマーシート102に取り外し可能に取り付けられた反射性基材(例えば、反射性基材104)によって反射された電磁線ビームの部分(例えば、電磁線202の部分204,206)に基づいてポリマーシート102の特徴又は特性を決定するために、様々な方法及び技術(例えば、反射欠陥検査技術又はスペクトル干渉計測及びスペクトル反射測定技術)を使用することができる。
図1〜2に戻ると、いくつかの態様において、反射性基材104はポリマーシート102内に欠陥(例えば、図3の欠陥302,304,306,308,310)が形成されるのを抑制又は防止する。例えば、反射性ラミネート100はロール化製品に巻き上げることができ、そのことはポリマーシート102に静電荷を蓄積させうる。その後、反射性ラミネート100のロールは展開されることができ、そのことは同様に静電放電を引き起こしうる。静電放電はポリマーシート102内に欠陥を形成させうる。いくつかの例において、反射性基材104は、反射性ラミネート100が巻かれたときにポリマーシート102内に蓄積する可能性がある静電荷を散逸させ、反射性ラミネート100が展開される際に欠陥が形成されるのを防止する。
図4は反射基材に結合されたポリマーシートの特徴を決定するための方法の例を示すフローチャートである。
ブロック402において、反射性基材をポリマーシートに結合(取り外し可能に接着)して反射性ラミネートを形成する。いくつかの態様において、反射性基材は、図1〜2の反射性基材104と実質的に同じように構成され、そしてポリマーシートは、図1〜2のポリマーシート102と実質的に同じように構成されている。
ブロック404において、反射性ラミネート(例えば、ブロック402で形成された反射性ラミネート)に向かう経路に沿って電磁線を伝送する。電磁線は、1つの電磁線ビーム又は複数の電磁線ビームを含むことができる。電磁線は、好ましくは、反射性ラミネートに向かって伝送され、ポリマーシートを横断する。伝送源は、好ましくは、ラミネートの表面に対して法線の角度で電磁線を伝送する。
ブロック406において、反射された電磁線を検知する。上述したように、反射性ラミネートの反射性基材は反射性ラミネートのポリマーシートに向かって伝送され又は横断される電磁線又は電磁線ビームの少なくとも一部を反射し、そしておそらく吸収することができる。
反射された電磁線を検知するために使用されるセンサ又はディテクタは広範囲に変更しうるが、好ましくは、電磁線又は電磁線ビームを検知するためのいずれかのセンサ又はデバイスを含む。いくつかの実施形態において、センサは反射性基材によって反射された電磁線を検知するために反射性ラミネートの近くに配置される。ディテクタは、好ましくは分光計を含み、該分光計は、好ましくは、ラミネートの表面に対して法線の角度に配向されている。
ブロック408において、ポリマーシートの特徴は、反射された電磁線に基づいて決定される。いくつかの例では、ポリマーシートの特徴は、ポリマーシートのサイズ又は厚さを含むことができる。別の例では、ポリマーシートの特徴は、ポリマーシート内の欠陥(例えば、異物粒子、気泡、引掻き傷、不均一性、ピンホールなど)を含むことができる。様々な方法及び技術を使用して、反射された電磁線に基づいてポリマーシートの特徴を決定することができる。例えば、反射欠陥検査技術を使用して、ポリマーシートによって吸収された電磁線の部分に基づいてポリマーシート内の欠陥の存在を(例えば、ポリマーシート内の1つ以上の欠陥によって)決定することができる。いくつかの態様において、ポリマーシート内の欠陥の存在は、ポリマーシート内の視覚検査によって決定される。別の例では、干渉分光反射率測定技術を使用して、反射性基材によって反射された電磁線の部分に基づいてポリマーシートのサイズ又は厚さを決定することができる。
いくつかの実施形態において、反射性基材に結合されたポリマーシートの特徴を決定するための方法は、ブロック410に示すように、ポリマーシートから反射性基材を取り外すことをさらに含む。いくつかの実施形態において、反射性基材をポリマーシートから取り外す前に反射性ラミネートを固定する。この態様において、固定は、反射性ラミネート又はその構成要素、例えば、その反射性基材又はポリマーシートを固定することを含むことができる。
いくつかの実施形態において、反射性基材に結合されたポリマーシートの特徴を決定するための方法は、ブロック412に示すように、MEAを形成することをさらに含む。いくつかの実施形態において、触媒電極(例えば、アノード又はカソード)をポリマーシートの両側又は両面に適用することができる。例えば、ポリマーシートの第一の面又は表面に第一の触媒電極を適用(例えば、ホットプレス、ラミネート化又は他の方法で配置)することができる。次いで、第二の触媒電極を、第一の面とは反対側のポリマーシートの第二の面又は表面に適用することができる。いくつかの実施形態において、反射性基材は、第一の触媒電極を適用する前又は後に、ポリマーシートから取り外される(例えば、脱結合)。反射性基材は、好ましくは、第二の触媒電極をポリマーシートに適用する前に取り外される。
図4に関連する上記の説明は、個々の工程の順序又は要素の配置が明示的に記載されている場合を除いて、工程の間の特定の順序又は配置を意味するものとして解釈されるべきではない。図4に記載された工程は任意の論理的順序又は配列で実行されうる。
別の例において、反射性ラミネートは連続法に従って製造することができる。図5は反射性ラミネートを製造するための例示的な方法を示すフローチャートである。
ブロック502において、ある量のポリマー溶液を、移動している反射性基材に塗布する。他の例において、ポリマー溶液を固定反射性基材に塗布することができる。反射性基材は図1又は2の反射性基材104と実質的に同じように構成することができる。ポリマー溶液は、限定を含むことなく、手動適用(例えば手作業)又は自動適用(例えば、装置、デバイス、機械などによる)を含むあらゆる方法で適用することができる。反射性基材に塗布されるポリマー溶液の量は特定量又は予め計量された量でありうる。
ブロック504において、ポリマー溶液は、延伸多孔性ポリテトラフルオロエチレン(「ePTFE」)層とラミネート化される。いくつかの態様において、ポリマー溶液は、反射性基材と同じ方向及び同じ速度で堆積されるePTFE層とラミネート化することができる。ポリマー溶液は、いかなる様式でePTFE層とラミネート化されてもよい。いくつかの実施形態において、ポリマー溶液をePTFE層とラミネート化する工程は、ポリマー溶液をePTFE層と接触させることを含む。
ブロック506において、ePTFE層とラミネート化されたポリマー溶液を乾燥させて、コーティングされた構造を形成する。コーティングされた構造は、ePTFE層で補強されたポリマー層に取り付けられた反射性基材を含むことができる。いくつかの態様において、コーティングされた構造を形成するためにePTFE層とラミネート化されたポリマー溶液を乾燥することは、80℃〜250℃の温度でポリマー溶液、ePTFE層を反射性基材と共に乾燥することを含むことができる。いくつかの態様において、反射性基材と共にポリマー溶液、ePTFE層を乾燥させることにより、コーティングされた構造を形成させることができる。コーティングされた構造は、ePTFE層で補強されたポリマー層に結合された反射性基材を含むことができる。
ブロック508において、コーティングされた構造は、巻き取られるか又は巻き上げられることができる。例えば、コーティングされた構造は、ロールコアの周りでインターリーフを伴って又は伴わずに巻くことができる。インターリーフは、保管及び展開の間にポリマーシートが反射性基材の裏面に粘着しないようにし、展開の間にポリマーシートを清潔に保つために必要である場合又は必要でない場合がある。インターリーフ材料の例としては、限定するわけではないが、ポリエチレン(PE)、ポリスチレン(「PS」)、環状オレフィンコポリマー(「COC」)、環状オレフィンポリマー(「COP」)、フッ素化エチレンプロピレン(「FEP」)、パーフルオロアルコキシアルカン(「PFA」)、エチレンテトラフルオロエチレン(「ETFE」)、ポリフッ化ビニリデン(「PVDF」)、ポリエールイミド(「PEI」)、ポリスルホン(「PSU」)、ポリエーテルスルホン(「PES」)、ポリフェニレンオキシド(「PPO」)、ポリフェニルエーテル(「PPE」)、ポリメチルペンテン(「PMP」)、ポリエチレンテレフタレート(「PET」)又はポリカーボネート(「PC」)が挙げられる。
ブロック510において、コーティングされた構造を含む多層ポリマーシートは形成される。いくつかの例において、多層ポリマーシートは、1つ以上のコーティングされた構造を含む。例えば、多層ポリマーシートの形成は、反射性ラミネートの製造方法の任意の工程を繰り返すことを含むことができる。例えば、多層ポリマーシートの形成は、コーティングされた構造(例えば、ブロック506で形成されたコーティングされた構造)に別の量のポリマー溶液を適用することを含むことができる。多層ポリマーシートの形成は、他の量のポリマー溶液をePTFEとともにラミネート化して、別のコーティングされた構造を形成することを含むこともできる。多層ポリマーシートの形成は、多層ポリマーシートを形成するために、ある温度、例えば80℃〜250℃の温度で様々なコーティングされた構造を乾燥させることを含むこともできる。いくつかの実施形態において、得られる多層ポリマーシートは、任意の形状、サイズ又は質量のものであることができる。例えば、ポリマーシート102は、1μm〜100μmの平均厚さを有することができる。
本発明は以下の非限定的な実施例を考慮してよりよく理解されるであろう。
例1(比較例)透明基材を有するポリマーラミネート
透明基材と、延伸多孔性ポリテトラフルオロエチレンで強化されたペルフルオロスルホン酸樹脂(EW 700g/モル当量)を含む厚さ12μm(公称)のポリマーシートとを含むラミネートを従来の実験室技術を用いて調製した。最初に、PET及び保護COC層(DVC、Japanから入手)を含む50μmの透明基材上に、ドローダウンバーを用いてペルフルオロスルホン酸樹脂溶液(旭硝子社から入手)をコーティングし、金属フレーム上で延伸された、質量/面積4.5g/mを有するePTFE補強層とともにラミネート化した。このラミネートを引き続いて160℃の炉内で乾燥させ、延伸多孔性ポリテトラフルオロエチレンで補強されたポリマー層に結合した透明基材を含む、固体のコーティングされた構造を製造した。
次に、別の量のペルフルオロスルホン酸樹脂溶液を、ドローダウンバーを用いてコーティングされた構造に塗布し、160℃で再び乾燥させた。上に別のポリマー層を有する延伸多孔性ポリテトラフルオロエチレンで補強されたポリマー層に結合された透明基材を含む得られたラミネートは概して透明であり、ePTFE補強層の完全な含浸を示した。このようなラミネートは、W.L.Gore&Associatesから入手したGORE−SELECT(登録商標)メンブレンとして知られている。このラミネートの反射率及び厚さなどの特性を決定するために、米国Filmetrics社のスペクトル反射率計システム(ファイバーベースの照明及び収集オプティックスステージSS3を備えたモデルF3)を使用して、ラミネートに対して法線の角度で分光反射率測定を行った。反射スペクトルは、各測定がF3反射システムでディテクタについて4ミリ秒の積分時間を要する25回の測定を平均することによって得られた。
透明基材と、延伸多孔性ポリテトラフルオロエチレンで補強されたペルフルオロスルホン酸樹脂(EWが700g /モル当量)を含む厚さ12μm(公称)のポリマーシートとを含むラミネートに対して上記設備で得られたスペクトル反射率602を図6に示し、650nm〜800nmの波長領域において5%と測定された。このラミネートのスペクトル反射率は、弱く顕著な干渉縞及び全体的に悪いシグナル対ノイズ比を特徴としている。反射率縞パターンの分析を行い、ポリマーシートの屈折率値1.32を用いてポリマーシートの厚さを計算した。分光反射率の測定を、同じスポット内の同じラミネート上で同じ様式で少なくとも200回繰り返した(ラミネートは動かさなかった)。透明ラミネートについてのこれらの200回の測定値から抽出された厚さ値702を図7に示す。厚さデータの実質的な広がりは702において観察されうる。理想的には、グラフ702に示される厚さデータ702はラミネートの正確な同じスポットからそれに触れることなくすべてのスペクトルが収集されたので、広がりを有しないはずである。しかしながら、厚さデータのノイズは存在し、透明ラミネート602の反射率スペクトルにおける弱く顕著な干渉縞パターンの信頼できる分析に関連する困難さに起因する可能性がある。上述の透明ラミネートにおけるポリマーシートの平均厚さ値は、11.890μmであり、0.084μmのポリマーの標準偏差であった。
例2
反射性基材上のポリマーラミネート
反射性基材と、延伸多孔性ポリテトラフルオロエチレンで補強されたペルフルオロスルホン酸樹脂(EW 700g/モル当量)を含む厚さ12μm(公称)のポリマーシートとを含むラミネートを、従来の実験室技術を用いて調製した。まず、PETキャリア及びアルミニウム金属反射層(Dunmore Corporation、USAから入手可能)を含む25μm反射性基材上に、ドローダウンバーを用いてペルフルオロスルホン酸樹脂溶液(旭硝子社から入手)を塗布し、 金属フレーム上で延伸した4.5g/mの質量/面積のePTFE補強層とラミネート化した。このラミネートを、次いで、160℃のオーブン中で乾燥させて、延伸多孔性ポリテトラフルオロエチレンで補強されたポリマー層に取り外し可能に接着された反射性基材を含む固体のコーティングされた構造を製造した。
次に、ドローダウンバーを用いて別の量のペルフルオロスルホン酸樹脂溶液を、コーティングされた構造に塗布し、160℃で再び乾燥させた。上部に別のポリマー層を有する延伸多孔性ポリテトラフルオロエチレンで補強されたポリマー層に取り外し可能に接着された反射性基材を含む、得られたラミネートは概して反射性であり、ポリマーシートが概して透明であり、ePTFE補強層の完全な含浸を示した。このラミネートの反射率及び厚さなどの特徴を決定するために、例1の分光反射率計システムを使用して、ラミネートに対して法線の角度で分光反射率測定を行った。反射率スペクトルは、25の測定値を平均することにより得られ、各測定値はF3反射率システムのディテクタの4ミリ秒の積分時間で撮った。
ラミネートについて上述した設備を用いて得られたスペクトル反射率604を図6に示し、650nm〜800nmの波長領域において約68%と測定された。このラミネートのスペクトル反射率は、強い干渉縞及び全体的に高いシグナル対ノイズ比を特徴とした。反射率縞パターンの分析を行い、ポリマーシートの屈折率値1.32を用いてポリマーシートの厚さを計算した。スペクトル反射率の測定は、同じスポット内の同じラミネート上で同じ様式で、少なくとも200回繰り返した(ラミネートは動かさなかった)。反射性ラミネートについてのこれらの200回の測定値から抽出された厚さ値704を図7に示す。グラフ702と比較して、グラフ704において厚さデータの有意に小さい広がりは観察されうる。上記の反射性ラミネートにおけるポリマーシートの平均厚さ値は12.070μmであり、0.015μmのポリマーの標準偏差であった。したがって、反射性基材上にポリマーシートを含むラミネートについての反射測定での測定の精度は、透明基材上にポリマーシートを含むラミネートの場合よりも約6倍良好であった。反射性基材の使用は、厚さなどのポリマー特性を特徴付ける能力を有意に改善した。これは、ポリマーシートの厚さをより短時間でより正確にマッピングする能力と解釈される。
例示された例を含む特定の例の前述の説明は、例示及び説明の目的でのみ提示されたものであり、網羅的であること、又は、開示の精密な形態に開示を限定することが意図されない。この説明は、個々の工程の順序又は要素の配置が明示的に記載されている場合を除いて、工程又は要素間の特定の順序又は配置を意味するものとして解釈されるべきではない。いくつかの例では、上記で説明した工程はいかなる順序又は配置で行うことができる。多くの修正、適合及びその使用は本開示の範囲から逸脱することなく、当業者に明らかであろう。
(態様)
(態様1)
表面を有するラミネートであって、
ポリマーシート、及び、
ポリマーシートに接着された反射性基材、
を含み、前記反射性基材は、多波長光源及び分光計を備えた反射率計を使用して、ラミネートの表面に対して法線の角度で決定されるものとして、400nm〜1000nmの波長で6%より大きい反射率を有する、ラミネート。
(態様2)
前記反射性基材は前記ポリマーシートに取り外し可能に接着されている、態様1記載のラミネート。
(態様3)
前記反射性基材は、多波長光源及び分光計を備えた反射率計を使用して、ラミネートの表面に対して法線の角度で決定されるものとして、400nm〜1000nmの波長で10%〜99%の反射率を有する、態様1記載のラミネート。
(態様4)
前記反射性基材は、多波長光源及び分光計を備えた反射率計を使用して、ラミネートの表面に対して法線の角度で決定されるものとして、400nm〜1000nmの波長で85%〜95%の反射率を有する、態様1記載のラミネート。
(態様5)
前記反射性基材は、多波長光源及び分光計を備えた反射率計を使用して、ラミネートの表面に対して法線の角度で決定されるものとして、900nm〜1000nmの波長で6%より大きい反射率を有する、態様1記載のラミネート。
(態様6)
前記ポリマーシートはポリマー電解質メンブレンを含む、態様1〜5のいずれか1項記載のラミネート。
(態様7)
前記ポリマーシートは延伸多孔性ポリテトラフルオロエチレンで補強されたペルフルオロスルホン酸樹脂を含む、態様1〜5のいずれか1項記載のラミネート。
(態様8)
前記ポリマーシートはポリマー電解質メンブレンである、態様1〜5のいずれか1項記載のラミネート。
(態様9)
前記ポリマーシートは1μm〜100μmの平均厚さを有する、先行の態様のいずれか1項記載のラミネート。
(態様10)
前記反射性基材は金属基材を含む、先行の態様のいずれか1項記載のラミネート。
(態様11)
前記反射性基材はアルミニウムを含む、先行の態様のいずれか1項記載のラミネート。
(態様12)
前記反射性基材は反射層及びキャリア層を含む、先行の態様のいずれか1項記載のラミネート。
(態様13)
前記反射層はアルミニウムを含む、態様12記載のラミネート。
(態様14)
前記キャリア層はポリエチレンテレフタレートを含む、態様12記載のラミネート。
(態様15)
前記反射層は前記ポリマーシートと接触している、態様12〜13のいずれか1項記載のラミネート。
(態様16)
前記キャリア層は前記ポリマーシートと接触している、態様12及び14のいずれか1項記載のラミネート。
(態様17)
前記反射性基材は前記反射層に隣接して配置された保護層をさらに含む、態様12〜16のいずれか1項記載のラミネート。
(態様18)
前記保護層は環状オレフィンコポリマーを含む、態様12〜17のいずれか1項記載のラミネート。
(態様19)
表面を有するラミネートであって、ポリマーシート及び該ポリマーシートに接着された反射性基材を含み、前記反射性基材は、多波長光源及び分光計を備えた反射率計を使用して、ラミネートの表面に対して法線の角度で決定されるものとして、400nm〜1000nmの波長で6%より大きい反射率を有する、ラミネートを提供すること、
前記ポリマーシートを通してそして前記反射性基材に電磁線を伝送し、反射された電磁線を形成すること、
前記反射された電磁線をディテクタで検出すること、及び、
前記反射された電磁線に基づいて前記ポリマーシートの特性を決定すること、
を含む、ポリマーシートを分析するための方法。

Claims (10)

  1. 表面を有するラミネートであって、
    ポリマー電解質メンブレン、及び、
    前記ポリマー電解質メンブレンに取り外し可能に接着された反射性基材、
    を含み、
    前記ポリマー電解質メンブレンは、前記ポリマー電解質メンブレンまたは前記反射性基材になんらかの損傷または不可逆的な変形を生じることなく、前記反射性基材から除去され得、
    前記反射性基材は金属基材およびキャリア層を含み、前記キャリア層は、ポリエチレン、ポリスチレン、環状オレフィンコポリマー、環状オレフィンポリマー、フッ素化エチレンプロピレン、パーフルオロアルコキシアルカン、エチレンテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエールイミド、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリフェニルエーテル、ポリメチルペンテン、ポリエチレンテレフタレート又はポリカーボネートを含み、前記キャリア層は前記ポリマー電解質メンブレンと接触しており、前記反射性基材は、多波長光源及び分光計を備えた反射率計を使用して、ラミネートの表面に対して90°の角度で、400nm〜1000nmのすべての波長で6%より大きい反射率を有する、ラミネート。
  2. 前記反射性基材は、多波長光源及び分光計を備えた反射率計を使用して、ラミネートの表面に対して90°の角度で、400nm〜1000nmのすべての波長で10%〜99%の反射率を有する、請求項1記載のラミネート。
  3. 前記反射性基材は、多波長光源及び分光計を備えた反射率計を使用して、ラミネートの表面に対して90°の角度で、400nm〜1000nmのすべての波長で85%〜95%の反射率を有する、請求項1記載のラミネート。
  4. 前記反射性基材は、多波長光源及び分光計を備えた反射率計を使用して、ラミネートの表面に対して90°の角度で、900nm〜1000nmのすべての波長で6%より大きい反射率を有する、請求項1記載のラミネート。
  5. 前記ポリマー電解質メンブレンは延伸多孔性ポリテトラフルオロエチレンで補強されたペルフルオロスルホン酸樹脂を含む、請求項1〜4のいずれか1項記載のラミネート。
  6. 前記ポリマー電解質メンブレンは1μm〜100μmの平均厚さを有する、請求項1〜5のいずれか1項記載のラミネート。
  7. 前記反射性基材はアルミニウムを含む、請求項1〜6のいずれか1項記載のラミネート。
  8. 前記反射性基材は前記金属基材に隣接して配置された保護層をさらに含む、請求項1記載のラミネート。
  9. 前記保護層は環状オレフィンコポリマーを含む、請求項記載のラミネート。
  10. 面を有するラミネートであって、ポリマー電解質メンブレン及び該ポリマー電解質メンブレンに接着された反射性基材を含む、ラミネートを提供すること、
    前記ポリマー電解質メンブレンを通してそして前記反射性基材に電磁線を伝送し、反射された電磁線を形成すること、
    前記反射された電磁線をディテクタで検出すること、及び、
    前記反射された電磁線に基づいて前記ポリマー電解質メンブレンの特性であって、ポリマー電解質メンブレンの厚さ又はポリマー電解質メンブレンにおける欠陥の存在である特性を決定すること、
    を含み、前記反射性基材は金属基材およびキャリア層を含み、前記キャリア層は前記ポリマー電解質メンブレンと接触しており、前記反射性基材は前記ポリマー電解質メンブレンに取り外し可能に接着されており、前記ポリマー電解質メンブレンは、前記ポリマー電解質メンブレンまたは前記反射性基材になんらかの損傷または不可逆的な変形を生じることなく、前記反射性基材から除去され得る、ポリマー電解質メンブレンを分析するための方法。
JP2018547945A 2016-03-11 2017-03-09 反射性ラミネート Active JP6974343B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662307261P 2016-03-11 2016-03-11
US62/307,261 2016-03-11
PCT/US2017/021607 WO2017156293A1 (en) 2016-03-11 2017-03-09 Reflective laminates

Publications (2)

Publication Number Publication Date
JP2019510972A JP2019510972A (ja) 2019-04-18
JP6974343B2 true JP6974343B2 (ja) 2021-12-01

Family

ID=58358981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018547945A Active JP6974343B2 (ja) 2016-03-11 2017-03-09 反射性ラミネート

Country Status (7)

Country Link
US (1) US20190081341A1 (ja)
EP (1) EP3427322B1 (ja)
JP (1) JP6974343B2 (ja)
KR (1) KR102229595B1 (ja)
CN (1) CN108713269B (ja)
CA (1) CA3016596C (ja)
WO (1) WO2017156293A1 (ja)

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203851A (ja) 1992-12-25 1994-07-22 Tokyo Gas Co Ltd 固体高分子電解質膜と電極との接合方法および接合装置
US5599614A (en) 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
US6254978B1 (en) 1994-11-14 2001-07-03 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
USRE37307E1 (en) 1994-11-14 2001-08-07 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
USRE37701E1 (en) 1994-11-14 2002-05-14 W. L. Gore & Associates, Inc. Integral composite membrane
US5547551A (en) 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
CN1163998C (zh) * 1998-08-05 2004-08-25 日本电池株式会社 高分子电解质膜、电化学装置和高分子电解质膜的制造方法
US6613203B1 (en) 2001-09-10 2003-09-02 Gore Enterprise Holdings Ion conducting membrane having high hardness and dimensional stability
JP2005121438A (ja) * 2003-10-15 2005-05-12 Sony Corp 基板検査装置
JP2005294016A (ja) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd 集電シート
US7517604B2 (en) * 2005-09-19 2009-04-14 3M Innovative Properties Company Fuel cell electrolyte membrane with acidic polymer
US8652705B2 (en) 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
ATE487531T1 (de) * 2005-09-30 2010-11-15 Sympatex Technologies Gmbh Verfahren zum herstellen einer reflektierenden membran
US20070196630A1 (en) * 2005-12-30 2007-08-23 Hayes Richard A Decorative solar control laminates
KR20080020259A (ko) * 2006-08-31 2008-03-05 삼성에스디아이 주식회사 연료 전지용 막-전극 어셈블리, 이의 제조방법 및 이를포함하는 연료 전지 시스템
JP2008101926A (ja) * 2006-10-17 2008-05-01 Toppan Printing Co Ltd 金属パターンを有する基板の検査方法及び検査装置
JP2009133725A (ja) * 2007-11-30 2009-06-18 Sumitomo Chemical Co Ltd 樹脂塗布フィルムの塗膜欠陥の検査方法
CN101945761B (zh) * 2008-02-21 2013-07-24 三菱树脂株式会社 强酸聚合物片制造用膜
WO2009139947A2 (en) * 2008-02-25 2009-11-19 Nanomaterials Discovery Corporation Permselective membrane-free direct fuel cell and components thereof
US7988881B2 (en) * 2008-09-30 2011-08-02 E. I. Du Pont De Nemours And Company Multilayer laminates comprising chiral nematic liquid crystals
JP2011029064A (ja) * 2009-07-28 2011-02-10 Japan Gore Tex Inc 固体高分子形燃料電池用ガス拡散層部材および固体高分子形燃料電池
JP5725744B2 (ja) 2010-07-01 2015-05-27 日本ゴア株式会社 離型フィルムを用いて複合化シートを積層する方法、その方法による積層物、ならびにその方法に用いる離型フィルム
WO2012099118A1 (ja) * 2011-01-17 2012-07-26 住友化学株式会社 高分子電解質膜、膜電極接合体、燃料電池
JP2014199348A (ja) * 2013-03-29 2014-10-23 富士フイルム株式会社 フィルムミラー及びフィルムミラーの製造方法
JP2016224076A (ja) * 2013-10-29 2016-12-28 コニカミノルタ株式会社 フィルムミラーおよびこれを用いた太陽熱反射用光反射装置
JP2015175815A (ja) * 2014-03-18 2015-10-05 東レ株式会社 透明シートの欠点検査方法および欠点検査装置
JP6081959B2 (ja) * 2014-05-19 2017-02-15 ダイセルバリューコーティング株式会社 樹脂フィルム、積層体及びその製造方法並びに燃料電池の製造方法
KR20160026107A (ko) * 2014-08-29 2016-03-09 주식회사 엘지화학 백시트

Also Published As

Publication number Publication date
KR102229595B1 (ko) 2021-03-17
CN108713269B (zh) 2022-02-25
WO2017156293A1 (en) 2017-09-14
CA3016596C (en) 2021-03-30
CN108713269A (zh) 2018-10-26
EP3427322A1 (en) 2019-01-16
JP2019510972A (ja) 2019-04-18
KR20180118758A (ko) 2018-10-31
EP3427322B1 (en) 2022-10-05
CA3016596A1 (en) 2017-09-14
US20190081341A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
Lai et al. Accelerated stress testing of fuel cell membranes subjected to combined mechanical/chemical stressors and cerium migration
KR102239198B1 (ko) 박층 전사용 시트, 전극 촉매층을 갖는 박층 전사용 시트, 박층 전사용 시트의 제조 방법 및 막 전극 접합체의 제조 방법
JP6606448B2 (ja) 塗膜検査装置、塗膜検査方法および膜・触媒層接合体の製造装置
Arcot et al. Investigation of catalyst layer defects in catalyst‐coated membrane for PEMFC application: non‐destructive method
Bender et al. Detecting and localizing failure points in proton exchange membrane fuel cells using IR thermography
Luo et al. Thickness dependence of proton-exchange-membrane properties
JP6868962B2 (ja) 膜・電極層接合体の製造装置および製造方法
KR101145628B1 (ko) 연료전지의 핀홀 감지 시스템
JP2009152166A (ja) 複合型電解質膜、膜電極接合体、燃料電池、及びのこれらの製造方法
JP2021043210A (ja) 膜電極接合体の検査装置
JP2014190706A (ja) 検査方法
KR20240005171A (ko) 연속 이오노머상을 갖는 일체형 복합막
JP6974343B2 (ja) 反射性ラミネート
US20230343979A1 (en) Composite electrolyte membrane
Ralph et al. Reinforced membrane durability in proton exchange membrane fuel cell stacks for automotive applications
US20130226330A1 (en) Optical techniques for monitoring continuous manufacturing of proton exchange membrane fuel cell components
JP5439710B2 (ja) 触媒層付電解質膜及びその製造方法
JP2007134214A (ja) 燃料電池用電解質膜の検査方法と該電解質膜の製造方法及びその製造装置
JP7331253B2 (ja) 高分子電解質膜、及びこれを含む膜-電極アセンブリー
JP6907825B2 (ja) 燃料電池用セパレータの製造方法
JP7090374B2 (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP2019046659A (ja) 膜電極接合体の製造方法
JP6957899B2 (ja) 電極触媒層の評価方法
Bodner et al. Structural Characterization of Membrane-Electrode-Assemblies in High Temperature Polymer Electrolyte Membrane Fuel Cells
WO2024024937A1 (ja) 膜電極接合体、固体高分子形燃料電池、膜電極接合体の製造方法、および、固体高分子形燃料電池の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211104

R150 Certificate of patent or registration of utility model

Ref document number: 6974343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150