JP6971721B2 - Cooling channel system control method - Google Patents

Cooling channel system control method Download PDF

Info

Publication number
JP6971721B2
JP6971721B2 JP2017168156A JP2017168156A JP6971721B2 JP 6971721 B2 JP6971721 B2 JP 6971721B2 JP 2017168156 A JP2017168156 A JP 2017168156A JP 2017168156 A JP2017168156 A JP 2017168156A JP 6971721 B2 JP6971721 B2 JP 6971721B2
Authority
JP
Japan
Prior art keywords
cooling water
valve
water channel
engine
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017168156A
Other languages
Japanese (ja)
Other versions
JP2019044689A (en
Inventor
淑仁 永井
哲史 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamada Manufacturing Co Ltd
Original Assignee
Yamada Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada Manufacturing Co Ltd filed Critical Yamada Manufacturing Co Ltd
Priority to JP2017168156A priority Critical patent/JP6971721B2/en
Publication of JP2019044689A publication Critical patent/JP2019044689A/en
Application granted granted Critical
Publication of JP6971721B2 publication Critical patent/JP6971721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lubrication Of Internal Combustion Engines (AREA)

Description

本発明は、エンジンに冷却水を循環させてエンジンを冷却する、冷却水路系の制御方法に関する。 The present invention relates to a method for controlling a cooling water channel system in which cooling water is circulated in an engine to cool the engine.

多くの車両において、車両に搭載されたエンジンは、冷却水によって冷却される。冷却水路を循環する冷却水は、エンジンから受けた熱によってオイルウォーマ内を流れるオイルと熱交換を行ったり、ラジエータを通過することにより冷却される。エンジンを冷却する従来技術として、特許文献1に開示される技術がある。 In many vehicles, the engine mounted on the vehicle is cooled by cooling water. The cooling water circulating in the cooling water channel is cooled by exchanging heat with the oil flowing in the oil warmer by the heat received from the engine or by passing through the radiator. As a conventional technique for cooling an engine, there is a technique disclosed in Patent Document 1.

特許文献1に示されるような、エンジン冷却装置は、冷却水路にエンジンと、エンジンを通過した冷却水によって温められるヒータコアと、このヒータコアを通過する冷却水を遮断することのできる電磁弁と、冷却水路内の冷却水を循環させる電動ポンプと、これらの電動ポンプ及び電磁弁を制御する制御部と、を備えている。 As shown in Patent Document 1, an engine cooling device includes an engine in a cooling water channel, a heater core heated by cooling water passing through the engine, an electromagnetic valve capable of blocking cooling water passing through the heater core, and cooling. It includes an electric pump that circulates the cooling water in the water channel, and a control unit that controls these electric pumps and electromagnetic valves.

制御部は、電動ポンプの出力を弱めた状態で電磁弁を作動させる。冷却水の流量が多い状態で電磁弁を作動させた場合には、電磁弁に大きな負荷が加わる。電動ポンプの出力を弱めて冷却水の流量を少なくした状態で電磁弁を作動させるため、電磁弁に加わる負荷を軽減することができる。 The control unit operates the solenoid valve with the output of the electric pump weakened. If the solenoid valve is operated with a large flow rate of cooling water, a large load is applied to the solenoid valve. Since the solenoid valve is operated in a state where the output of the electric pump is weakened and the flow rate of the cooling water is reduced, the load applied to the solenoid valve can be reduced.

特開2017−31910号公報Japanese Unexamined Patent Publication No. 2017-31910

特許文献1に開示されたエンジン冷却装置によれば、電磁弁を作動させる際には、電動ポンプの出力が低下している。電動ポンプの出力が低下している間は、冷却水の温度が急激に上昇する虞がある。一方、電動ポンプの出力を低下させずに電磁弁を作動させると、電磁弁に大きな負荷が加わる。 According to the engine cooling device disclosed in Patent Document 1, the output of the electric pump is reduced when the solenoid valve is operated. While the output of the electric pump is decreasing, the temperature of the cooling water may rise sharply. On the other hand, if the solenoid valve is operated without reducing the output of the electric pump, a large load is applied to the solenoid valve.

本発明は、ポンプの出力を低下させなくても、弁に加わる負担を軽減できる技術の提供を課題とする。 An object of the present invention is to provide a technique capable of reducing the load applied to a valve without reducing the output of the pump.

請求項1による発明によれば、冷却水が流れる、第1の冷却水路及び第2の冷却水路の
少なくとも2つの水路を含む冷却水路に、
エンジンと、このエンジンの動力によって駆動され前記冷却水を循環させる機械式のポンプと、少なくとも前記第1の冷却水路に流れる冷却水の流量を制御することができる第1のバルブと、前記冷却水とオイルまたは冷却水と空気の間において熱交換を行うことが可能な熱交換器と、この熱交換器に流れる前記冷却水の流量を制御する第2のバルブと、これらの第1のバルブ及び第2のバルブに接続され前記第1のバルブ及び前記第2のバルブを作動させる制御部と、が設けられ、
前記熱交換器、及び、前記第2のバルブは、前記第1の冷却水路上に配置され、
前記制御部は、前記第2のバルブを作動させる際に、予め前記第1のバルブを作動させて前記第1の冷却水路へ流れる前記冷却水の流量を所定の流量未満としてから、前記第2のバルブを作動させることを特徴とする冷却水路系の制御方法が提供される。
According to the invention according to claim 1, in a cooling water channel including at least two water channels of a first cooling water channel and a second cooling water channel through which cooling water flows.
An engine, a mechanical pump driven by the power of the engine to circulate the cooling water, a first valve capable of controlling at least the flow rate of the cooling water flowing through the first cooling water channel, and the cooling water. A heat exchanger capable of exchanging heat between oil or cooling water and air, a second valve for controlling the flow rate of the cooling water flowing through the heat exchanger, a first valve thereof, and a second valve thereof. A control unit connected to the second valve and operating the first valve and the second valve is provided.
The heat exchanger and the second valve are arranged on the first cooling water channel.
When the second valve is operated, the control unit operates the first valve in advance to set the flow rate of the cooling water flowing to the first cooling water channel to be less than a predetermined flow rate, and then the second. A method of controlling a cooling water channel system is provided, which comprises operating a valve of the above.

好ましくは、前記第1のバルブは、前記第1の冷却水路と前記第2の冷却水路とが分岐する部位又は合流する部位に設けられ、
前記第1の冷却水路は、少なくとも一部が並列に配置され、
並列に配置された前記第1の冷却水路の一方に前記熱交換器が配置されていると共に、他方に前記第2のバルブが配置されている。
Preferably, the first valve is provided at a portion where the first cooling water channel and the second cooling water channel branch or merge.
At least a part of the first cooling water channel is arranged in parallel, and the first cooling water channel is arranged in parallel.
Together with the heat exchanger is disposed in one of the first cooling channel arranged in parallel, that has the second valve is disposed on the other.

請求項1に係る発明では、制御部は、予め第1のバルブを作動させて第1の冷却水路へ流れる冷却水の流量を所定の流量未満としてから、第2のバルブを作動させる。冷却水の流量が所定の流量未満であるため、加わる負荷が小さい状態で第2のバルブを作動させることができる。第1の冷却水路を閉めて減らした分の冷却水は、第2の冷却水路等へ流れる。そのため、ポンプの出力を低下させる必要がない。本発明によれば、ポンプの出力を低下させることなく、弁に加わる負担を軽減できる技術を提供することができる。 In the invention according to claim 1, the control unit operates the first valve in advance to reduce the flow rate of the cooling water flowing to the first cooling water channel to less than a predetermined flow rate, and then operates the second valve. Since the flow rate of the cooling water is less than a predetermined flow rate, the second valve can be operated with a small load applied. The amount of cooling water reduced by closing the first cooling water channel flows to the second cooling water channel or the like. Therefore, it is not necessary to reduce the output of the pump. According to the present invention, it is possible to provide a technique capable of reducing the load applied to the valve without reducing the output of the pump.

加えて、第1のバルブを用いて第1の冷却水路に流れる冷却水の流量を制御する。このため、冷却水路に冷却水を循環させるポンプは、機械式のポンプ等安価なポンプを採用することができる。 In addition, the first valve is used to control the flow rate of the cooling water flowing through the first cooling water channel. Therefore, an inexpensive pump such as a mechanical pump can be adopted as the pump for circulating the cooling water in the cooling water channel.

本発明の実施例1による冷却水路系のブロック図である。It is a block diagram of the cooling water channel system according to Example 1 of this invention. 本発明の実施例2による冷却水路系のブロック図である。It is a block diagram of the cooling water channel system according to Example 2 of this invention. 本発明の実施例3による冷却水路系のブロック図である。It is a block diagram of the cooling water channel system according to Example 3 of this invention. 本発明の実施例4による冷却水路系のブロック図である。It is a block diagram of the cooling water channel system according to Example 4 of this invention.

本発明の実施の形態を添付図に基づいて以下に説明する。
<実施例1>
Embodiments of the present invention will be described below with reference to the accompanying drawings.
<Example 1>

図1を参照する。図1には、簡便な構成の冷却水路系10が示されている。冷却水路系10は、例えば、車両に採用される。冷却水路系10は、冷却水を循環させる冷却水路20上に、冷却水によって冷却されるエンジン12と、冷却水を循環させるポンプ13と、冷却水の温度を検知する水温センサ14と、エンジン12を通過した冷却水を2つの流路に分配可能な第1のバルブ15と、冷却水及び内部を流れる媒体の間において熱交換を行うことが可能な熱交換器16と、この熱交換器16に流れる冷却水の流量を制御する第2のバルブ17と、これらの第1のバルブ15及び第2のバルブ17に接続されると共にこれらの第1のバルブ15及び第2のバルブ17を作動させる制御部18と、が設けられてなる。 See FIG. FIG. 1 shows a cooling water channel system 10 having a simple structure. The cooling water channel system 10 is adopted in a vehicle, for example. The cooling water channel system 10 includes an engine 12 cooled by the cooling water, a pump 13 for circulating the cooling water, a water temperature sensor 14 for detecting the temperature of the cooling water, and an engine 12 on the cooling water channel 20 for circulating the cooling water. A first valve 15 capable of distributing the cooling water passing through the two flow paths, a heat exchanger 16 capable of exchanging heat between the cooling water and a medium flowing inside, and the heat exchanger 16. A second valve 17 that controls the flow of cooling water flowing into the engine, and is connected to the first valve 15 and the second valve 17 and operates the first valve 15 and the second valve 17. A control unit 18 is provided.

冷却水路20は、ポンプ13からエンジン12までを繋いでいるポンプ−エンジン接続部21と、エンジン12から第1のバルブ15までを繋いでいるエンジン−第1のバルブ接続部22と、第1のバルブ15から共に延び第1のバルブ15によって冷却水の流量が制御される第1の冷却水路23及び第2の冷却水路24と、を有する。 The cooling water passage 20 includes a pump-engine connection portion 21 connecting the pump 13 to the engine 12, an engine-first valve connection portion 22 connecting the engine 12 to the first valve 15, and a first valve connection portion 22. It has a first cooling water channel 23 and a second cooling water channel 24 that extend from the valve 15 and whose flow rate of cooling water is controlled by the first valve 15.

第1の冷却水路23は、2つの流路が並列に配置されてなる。一方は、熱交換器16が配置されたメイン流路23aである。他方は、メイン流路23aを迂回し第2のバルブ17が配置されたバイパス流路23bである。メイン流路23a、及び、バイパス流路23bは、共に第2の冷却水路24に合流する。 The first cooling water channel 23 has two flow paths arranged in parallel. One is the main flow path 23a in which the heat exchanger 16 is arranged. The other is a bypass flow path 23b in which the second valve 17 is arranged by bypassing the main flow path 23a. Both the main flow path 23a and the bypass flow path 23b join the second cooling water channel 24.

エンジン12は、イグニッションスイッチ12aを操作することにより作動する。即ち、イグニッションスイッチ12aは、エンジン12の作動・停止を切り替えるためのスイッチである。イグニッションスイッチ12aの操作情報は、電気信号として制御部18に伝えられる。 The engine 12 is operated by operating the ignition switch 12a. That is, the ignition switch 12a is a switch for switching the operation / stop of the engine 12. The operation information of the ignition switch 12a is transmitted to the control unit 18 as an electric signal.

ポンプ13は、例えば、エンジン12の動力によって駆動される機械式のウォーターポンプである。なお、ポンプ13には、電動式のウォーターポンプを採用することもできる。しかし、冷却水路系10の部品コストの観点から、ポンプ13は、機械式であることが好ましい。 The pump 13 is, for example, a mechanical water pump driven by the power of the engine 12. An electric water pump can also be used for the pump 13. However, from the viewpoint of the component cost of the cooling water channel system 10, the pump 13 is preferably mechanical.

水温センサ14は、例えば、ポンプ13の近傍に設けられる。水温センサ14は、ポンプ13を通過する冷却水の温度を検知することができる。 The water temperature sensor 14 is provided, for example, in the vicinity of the pump 13. The water temperature sensor 14 can detect the temperature of the cooling water passing through the pump 13.

第1のバルブ15は、制御部18からの電気信号に基づいて作動する電動式のバルブである。第1のバルブ15は、第1の冷却水路23に流れる冷却水の流量を制御することができる。エンジン12を通過した冷却水のうち、第1の冷却水路23に流れない冷却水は、第2の冷却水路24に流れる。第1のバルブ15は、第1の冷却水路23及び第2の冷却水路24に流れる冷却水の比率を調整可能なバルブということもできる。 The first valve 15 is an electric valve that operates based on an electric signal from the control unit 18. The first valve 15 can control the flow rate of the cooling water flowing through the first cooling water channel 23. Of the cooling water that has passed through the engine 12, the cooling water that does not flow into the first cooling water channel 23 flows into the second cooling water channel 24. The first valve 15 can also be said to be a valve in which the ratio of the cooling water flowing through the first cooling water channel 23 and the second cooling water channel 24 can be adjusted.

なお、第1のバルブ15は、第1の冷却水路23、又は、第2の冷却水路24への流路の切替を行うバルブであってもよい。この場合、第1の冷却水路23へ冷却水が流れている際には、第2の冷却水路24へは冷却水が流れない。また、第2の冷却水路24へ冷却水が流れている際には、第1の冷却水路23へは冷却水が流れない。 The first valve 15 may be a valve that switches the flow path to the first cooling water passage 23 or the second cooling water passage 24. In this case, when the cooling water is flowing to the first cooling water channel 23, the cooling water does not flow to the second cooling water channel 24. Further, when the cooling water is flowing to the second cooling water channel 24, the cooling water does not flow to the first cooling water channel 23.

また、第1のバルブ15は、複数のバルブによって構成されてもよい。例えば、第1の冷却水路23の開度を調節するバルブと、第2の冷却水路の開度を調節するバルブと、から構成されてもよい。この場合、1つ1つのバルブを安価にすることができると共に、各流路に流れる冷却水の流量を細かく制御することができる。 Further, the first valve 15 may be composed of a plurality of valves. For example, it may be composed of a valve for adjusting the opening degree of the first cooling water passage 23 and a valve for adjusting the opening degree of the second cooling water passage. In this case, each valve can be inexpensive and the flow rate of the cooling water flowing through each flow path can be finely controlled.

熱交換器16は、例えば、オイルウォーマである。オイルウォーマは、エンジン12によって温められた冷却水によって、オイルを温める装置である。また、オイルウォーマは、冷却水の温度よりオイルの温度が高くなった場合には、冷却水によってオイルを冷却することもでき、いわゆるオイルクーラーとしての機能を持つことができる。即ち、熱交換器16は、冷却水とオイルの間で熱の授受を行う。その他にも、熱交換器16は冷却水および/またはオイルと空気や排気ガス等の気体との間で熱の授受を行うヒーターコアも熱交換器に含まれる。本明細書では、適宜「熱交換器16」を「オイルウォーマ16」という。 The heat exchanger 16 is, for example, an oil warmer. The oil warmer is a device that warms oil with cooling water heated by the engine 12. Further, the oil warmer can also cool the oil with the cooling water when the temperature of the oil becomes higher than the temperature of the cooling water, and can have a function as a so-called oil cooler. That is, the heat exchanger 16 transfers heat between the cooling water and the oil. In addition, the heat exchanger 16 also includes a heater core that transfers heat between cooling water and / or oil and a gas such as air or exhaust gas. In the present specification, the "heat exchanger 16" is appropriately referred to as an "oil warmer 16".

オイルウォーマ16は、オイルの温度を検知するオイル温度センサ16aを有している。オイル温度センサ16aは、制御部18に接続されている。即ち、制御部18は、オイル温度センサ16aの検出したオイルの温度を電気信号として受け取る。 The oil warmer 16 has an oil temperature sensor 16a that detects the temperature of the oil. The oil temperature sensor 16a is connected to the control unit 18. That is, the control unit 18 receives the oil temperature detected by the oil temperature sensor 16a as an electric signal.

なお、オイルウォーマ16内を流れるオイルは、エンジン12の潤滑油である。オイルウォーマ16及びエンジン12は、冷却水路20とは別のオイル流路によっても接続されている。オイルは、オイル流路を循環している。 The oil flowing in the oil warmer 16 is the lubricating oil for the engine 12. The oil warmer 16 and the engine 12 are also connected by an oil flow path different from the cooling water channel 20. The oil circulates in the oil flow path.

第2のバルブ17は、例えば、ソレノイドバルブである。第2のバルブ17は、制御部18からの電気信号に基づいてバイパス流路23bの開閉を切り替える。バイパス流路23bが開状態であると、第1の冷却水路23を流れる冷却水は、メイン流路23aとバイパス流路23bの両方に流れる。このとき冷却水は、オイルウォーマ16の存在により流路抵抗が発生するメイン流路23aよりも流路抵抗の少ないバイパス流路23bに流れやすくなる。バイパス流路23bが閉状態であると、第1の冷却水路23を流れる冷却水は、全てがメイン流路23aに流れる。すなわち、第2のバルブ17の開閉の切り替えにより、オイルウォーマ16が存在するメイン流路23aに流す冷却水の量を大きく変化させることができる。第2のバルブ17は、例えば、通電されていない状態において開状態にある。 The second valve 17 is, for example, a solenoid valve. The second valve 17 switches the opening and closing of the bypass flow path 23b based on the electric signal from the control unit 18. When the bypass flow path 23b is in the open state, the cooling water flowing through the first cooling water channel 23 flows into both the main flow path 23a and the bypass flow path 23b. At this time, the cooling water tends to flow to the bypass flow path 23b having less flow path resistance than the main flow path 23a in which the flow path resistance is generated due to the presence of the oil warmer 16. When the bypass flow path 23b is in the closed state, all of the cooling water flowing through the first cooling water passage 23 flows into the main flow path 23a. That is, by switching the opening and closing of the second valve 17, the amount of cooling water flowing through the main flow path 23a in which the oil warmer 16 exists can be significantly changed. The second valve 17 is in an open state, for example, in a state where it is not energized.

なお、第2のバルブ17は、ソレノイドバルブ以外のバルブであっても採用することができる。加えて、第2のバルブ17は、流路の開閉を切り替えるものに限られず、流路の開度を調節するものであってもよい。開度を調節する第2のバルブは、メイン流路23aを通過する冷却水の流量をより細かく制御することができる。 The second valve 17 can be adopted even if it is a valve other than the solenoid valve. In addition, the second valve 17 is not limited to the one that switches the opening and closing of the flow path, and may be the one that adjusts the opening degree of the flow path. The second valve for adjusting the opening degree can more finely control the flow rate of the cooling water passing through the main flow path 23a.

加えて、第2のバルブ17は、通電されていない状態において閉状態にあるバルブを採用することもできる。 In addition, as the second valve 17, it is possible to adopt a valve that is in a closed state when it is not energized.

以上に説明した冷却水路系の作用の一例について説明する。 An example of the operation of the cooling water channel system described above will be described.

イグニッションスイッチ12aをオンにすることにより、エンジン12が作動する。エンジン12の始動直後においては、冷却水の温度、及び、オイルウォーマ16内のオイルの温度は低い。エンジン12が始動ししばらくすると、エンジン12の熱によって徐々に冷却水の温度が上昇する。すると、制御部18は、第1の冷却水路23に冷却水が流れるよう、第1のバルブ15を制御する。このとき、第2のバルブ17は、閉じられている。早急にオイルを温めるために、第1の冷却水路23に流れる冷却水の全てをオイルウォーマ16に流す。 By turning on the ignition switch 12a, the engine 12 is operated. Immediately after starting the engine 12, the temperature of the cooling water and the temperature of the oil in the oil warmer 16 are low. After a while after the engine 12 starts, the temperature of the cooling water gradually rises due to the heat of the engine 12. Then, the control unit 18 controls the first valve 15 so that the cooling water flows through the first cooling water channel 23. At this time, the second valve 17 is closed. In order to warm the oil immediately, all the cooling water flowing through the first cooling water channel 23 is flowed to the oil warmer 16.

しばらくすると、オイルが十分に温められる。オイルが十分に温まった後は、流路抵抗の大きいオイルウォーマ16に全ての冷却水を流す必要がなくなる。一方、オイルの温度を一定に保つために、一定量の冷却水をオイルウォーマ16に流すことが好ましい。このため、第2のバルブ17を開放する必要がある。 After a while, the oil will be warm enough. After the oil is sufficiently warmed, it is no longer necessary to flow all the cooling water through the oil warmer 16 having a large flow path resistance. On the other hand, in order to keep the temperature of the oil constant, it is preferable to flow a constant amount of cooling water through the oil warmer 16. Therefore, it is necessary to open the second valve 17.

制御部18は、第2のバルブ17を作動させるのに先だって第1のバルブ15を作動させる。第1のバルブ15を作動させることにより、第1の冷却水路23を閉じる。これにより、冷却水は、第1の冷却水路23を流れなくなる。第1の冷却水路23に冷却水が流れていない状態で、制御部18は、第2のバルブ17を作動させる。第2のバルブ17が作動することによりバイパス流路23bが開放される。 The control unit 18 operates the first valve 15 prior to operating the second valve 17. By operating the first valve 15, the first cooling water channel 23 is closed. As a result, the cooling water does not flow through the first cooling water channel 23. The control unit 18 operates the second valve 17 in a state where the cooling water does not flow in the first cooling water channel 23. By operating the second valve 17, the bypass flow path 23b is opened.

なお、制御部18は、第1のバルブ15を制御する際に、第1の冷却水路23を完全に閉じなくてもよい。第2のバルブ17を小さな力でも作動させることができる程度の冷却水の流量まで下げることができればよい。具体的には、全開放時の流量と比較して20%以下、望ましくは10%以下の流量となるように第1のバルブを制御すればよい。 The control unit 18 does not have to completely close the first cooling water channel 23 when controlling the first valve 15. It suffices if the flow rate of the cooling water can be reduced to such that the second valve 17 can be operated with a small force. Specifically, the first valve may be controlled so that the flow rate is 20% or less, preferably 10% or less, as compared with the flow rate at the time of full opening.

バイパス流路23bが開放されたら、制御部18は、第1の冷却水路23を開放する。冷却水は、メイン流路23a、及び、バイパス流路23bの両方を流れる。 When the bypass flow path 23b is opened, the control unit 18 opens the first cooling water channel 23. The cooling water flows through both the main flow path 23a and the bypass flow path 23b.

例えば、エンジン12を高回転域で継続して使用すると、エンジンが高温となる。高温となったエンジン12を循環するオイルは、冷却水よりも高温になることがある。このような場合には、バイパス流路23bに逃がしていた冷却水を再びオイルウォーマ16のみに流し、冷却水よりも高温になったオイルを冷却する必要がある。 For example, if the engine 12 is continuously used in a high rotation speed range, the temperature of the engine becomes high. The oil circulating in the hot engine 12 may be hotter than the cooling water. In such a case, it is necessary to flow the cooling water that has escaped to the bypass flow path 23b only to the oil warmer 16 again to cool the oil having a temperature higher than that of the cooling water.

制御部18は、第2のバルブ17を作動させるのに先だって第1のバルブ15を作動させる。第1のバルブ15を作動させることにより、第1の冷却水路23を閉じる。これにより、冷却水は、第1の冷却水路23を流れなくなる。第1の冷却水路23に冷却水が流れていない状態で、制御部18は、第2のバルブ17を作動させる。第2のバルブ17が作動することによりバイパス流路23bが閉鎖される。 The control unit 18 operates the first valve 15 prior to operating the second valve 17. By operating the first valve 15, the first cooling water channel 23 is closed. As a result, the cooling water does not flow through the first cooling water channel 23. The control unit 18 operates the second valve 17 in a state where the cooling water does not flow in the first cooling water channel 23. By operating the second valve 17, the bypass flow path 23b is closed.

バイパス流路23bが閉鎖されたら、制御部18は、第1の冷却水路23を開放する。冷却水は、メイン流路23aのみを流れる。オイルウォーマ16を流れる冷却水の流量を増加させ、オイルの温度を早急に低下させる。 When the bypass flow path 23b is closed, the control unit 18 opens the first cooling water channel 23. The cooling water flows only in the main flow path 23a. The flow rate of the cooling water flowing through the oil warmer 16 is increased, and the temperature of the oil is lowered immediately.

以上に説明した本発明は、以下の効果を奏する。 The present invention described above has the following effects.

制御部18は、予め第1のバルブ15を作動させて第1の冷却水路23へ流れる冷却水の流量を減らしてから、第2のバルブ17を作動させる。減らした分の冷却水は、第2の冷却水路24等へ流れる。本発明によれば、冷却水の必要な流量を確保しつつ、第2のバルブ17に加わる負荷を軽減できる技術を提供することができる。 The control unit 18 operates the first valve 15 in advance to reduce the flow rate of the cooling water flowing to the first cooling water channel 23, and then operates the second valve 17. The reduced amount of cooling water flows to the second cooling water channel 24 and the like. According to the present invention, it is possible to provide a technique capable of reducing the load applied to the second valve 17 while ensuring the required flow rate of the cooling water.

加えて、第1のバルブ15を用いて第1の冷却水路23に流れる冷却水の流量を制御する。ポンプの出力自体は変える必要がないため、冷却水路20に冷却水を循環させるポンプ13は、機械式のポンプ等安価なポンプを採用することができる。換言すれば、安価な機械式のポンプを用いた場合であっても、第2のバルブ17を作動させる際に第2のバルブ17に加わりうる負荷を軽減することができる。
<実施例2>
In addition, the first valve 15 is used to control the flow rate of the cooling water flowing through the first cooling water channel 23. Since the output of the pump itself does not need to be changed, an inexpensive pump such as a mechanical pump can be adopted as the pump 13 for circulating the cooling water in the cooling water channel 20. In other words, even when an inexpensive mechanical pump is used, the load that can be applied to the second valve 17 when the second valve 17 is operated can be reduced.
<Example 2>

次に、本発明の実施例2を図面に基づいて説明する。図2には、実施例2による冷却水路系10Aが示されている。 Next, Example 2 of the present invention will be described with reference to the drawings. FIG. 2 shows the cooling water channel system 10A according to the second embodiment.

冷却水路系10Aは、第2の冷却水路24に冷却水を冷却するラジエータ19が設けられている。さらに、第1のバルブ15Aから第3の冷却水路25Aが延びると共に、この第3の冷却水路25A上には、車室内を温めるためのヒータコア31Aが設けられている。 In the cooling water channel system 10A, a radiator 19 for cooling the cooling water is provided in the second cooling water channel 24. Further, a third cooling water channel 25A extends from the first valve 15A, and a heater core 31A for warming the vehicle interior is provided on the third cooling water channel 25A.

ラジエータ19は、走行風やファンからの風を当てることにより、内部に流される冷却水の温度を低下させるものである。 The radiator 19 lowers the temperature of the cooling water flowing inside by applying a running wind or a wind from a fan.

ヒータコア31Aは、内部にエンジン12によって温められた冷却水が流れている。ヒータコア31Aに向かってファンからの風を当てることにより、冷却水の熱によって風が温められる。この風を車室内に導くことにより、車室内を温めることができる。 Cooling water heated by the engine 12 flows inside the heater core 31A. By blowing the wind from the fan toward the heater core 31A, the wind is warmed by the heat of the cooling water. By guiding this wind into the vehicle interior, the vehicle interior can be warmed.

その他の基本的な構成については、実施例1と共通する。実施例1と共通する部分については、符号を流用すると共に、詳細な説明を省略する。 Other basic configurations are the same as in the first embodiment. For the parts common to the first embodiment, reference numerals are used and detailed description thereof will be omitted.

実施例2による冷却水路系10Aの作用について、実施例1による冷却水路系10(図1参照)と異なる部分を説明する。 Regarding the operation of the cooling water channel system 10A according to the second embodiment, a portion different from the cooling water channel system 10 according to the first embodiment (see FIG. 1) will be described.

例えば、運転者(操作者)は、エンジン12を停止させる際にイグニッションスイッチ12aを押す。制御部18は、イグニッションスイッチ12aの操作情報に基づき、第1〜第3の冷却水路23,24,25Aの全てに冷却水を流すことができるよう、第1のバルブ15を作動させる。 For example, the driver (operator) presses the ignition switch 12a when stopping the engine 12. The control unit 18 operates the first valve 15 so that the cooling water can flow to all of the first to third cooling water passages 23, 24, 25A based on the operation information of the ignition switch 12a.

停止しているエンジン12を作動させる際には、運転者は、イグニッションスイッチ12aを押す。制御部18は、イグニッションスイッチ12aの操作情報に基づき、第1〜第3の冷却水路23,24,25Aの全てに冷却水が流れないよう、第1のバルブ15を作動させる。 When operating the stopped engine 12, the driver presses the ignition switch 12a. The control unit 18 operates the first valve 15 so that the cooling water does not flow to all of the first to third cooling water passages 23, 24, 25A based on the operation information of the ignition switch 12a.

エンジン12が作動し、冷却水が所定の温度まで温まったところで、制御部18は、第1のバルブ15を作動させて冷却水がオイルウォーマ16に流れるようにする。 When the engine 12 is operated and the cooling water has warmed up to a predetermined temperature, the control unit 18 operates the first valve 15 to allow the cooling water to flow to the oil warmer 16.

以上に説明した実施例2による冷却水路系10Aも本発明所定の効果を奏する。さらに、実施例2による冷却水路系10Aは、以下の効果を奏する。 The cooling water channel system 10A according to the second embodiment described above also has the predetermined effect of the present invention. Further, the cooling water channel system 10A according to the second embodiment has the following effects.

制御部18は、エンジン12の停止操作が行われた際には、第1〜第3の冷却水路23,24,25Aの全てに冷却水を流すことができるよう、第1のバルブ15Aを作動させる。即ち、制御部18は、エンジン12の停止に先立って、冷却水路20Aに冷却水が流れる状態とする。エンジン12の停止中に外部からの衝撃等により、第1のバルブ15が作動しなくなることが考えられる。このような場合であっても、冷却水路20Aが開放した状態とされているため、冷却水路20Aに冷却水は流れる。このため、エンジン12の停止中に第1のバルブ15Aが作動しなくなった場合であっても、エンジン12を再始動させることができる。 The control unit 18 operates the first valve 15A so that the cooling water can flow to all of the first to third cooling water passages 23, 24, 25A when the engine 12 is stopped. Let me. That is, the control unit 18 sets the cooling water to flow in the cooling water passage 20A prior to stopping the engine 12. It is conceivable that the first valve 15 will not operate due to an external impact or the like while the engine 12 is stopped. Even in such a case, since the cooling water channel 20A is in an open state, the cooling water flows through the cooling water channel 20A. Therefore, even if the first valve 15A does not operate while the engine 12 is stopped, the engine 12 can be restarted.

特に、エンジン12が再始動した際に、冷却水は、ラジエータ19を流れる。第1のバルブ15が作動しなかった場合であっても冷却水を冷却することができる。冷却水を冷却することにより、エンジン12も冷却することができ、エンジン12の保護に資する。
<実施例3>
In particular, when the engine 12 is restarted, the cooling water flows through the radiator 19. The cooling water can be cooled even when the first valve 15 does not operate. By cooling the cooling water, the engine 12 can also be cooled, which contributes to the protection of the engine 12.
<Example 3>

次に、本発明の実施例3を図面に基づいて説明する。図3には、実施例3による冷却水路系10Bが示されている。 Next, Example 3 of the present invention will be described with reference to the drawings. FIG. 3 shows the cooling water channel system 10B according to the third embodiment.

冷却水路系10Bは、冷却水路20Bを構成する第1の冷却水路23Bが並列に分岐している。第1の冷却水路23Bは、オイルウォーマ16が設けられたオイルウォーマ側流路23cと、ヒータコア16Bが設けられたヒータコア側流路23dと、からなる。 In the cooling water channel system 10B, the first cooling water channel 23B constituting the cooling water channel 20B is branched in parallel. The first cooling water channel 23B includes an oil warmer side flow path 23c provided with an oil warmer 16 and a heater core side flow path 23d provided with a heater core 16B.

オイルウォーマ側流路23cには、第2のバルブ17、及び、オイルウォーマ16が冷却水の流れ方向を基準としてこの順に直列に設けられている。 A second valve 17 and an oil warmer 16 are provided in series in the oil warmer side flow path 23c in this order with reference to the flow direction of the cooling water.

なお、冷却水の流れ方向を基準として、オイルウォーマ16、及び、第2のバルブ17は、図3に記載の順番とは逆となるように直列に設けられてもよい。 The oil warmer 16 and the second valve 17 may be provided in series in the reverse order of the order shown in FIG. 3 with respect to the flow direction of the cooling water.

ヒータコア側流路23dには、第2のバルブ17B、及び、ヒータコア16B(熱交換器16B)が冷却水の流れ方向を基準としてこの順に直列に設けられている。 A second valve 17B and a heater core 16B (heat exchanger 16B) are provided in series in the heater core side flow path 23d in this order with reference to the flow direction of the cooling water.

なお、冷却水の流れ方向を基準として、ヒータコア16B、及び、第2のバルブ17Bは、図3に記載の順番とは逆となるように直列に設けられてもよい。 The heater core 16B and the second valve 17B may be provided in series in the reverse order of the order shown in FIG. 3 with respect to the flow direction of the cooling water.

ヒータコア16Bは、図2に示されたヒータコア31Aと機能は同じである。ヒータコア16Bは、流れる冷却水の流量が第2のバルブ17Bによって制御される点においてヒータコア31Aとは異なる。ヒータコア16Bは、第1の冷却水路23B上に配置された熱交換器ということができる。 The heater core 16B has the same function as the heater core 31A shown in FIG. The heater core 16B differs from the heater core 31A in that the flow rate of the flowing cooling water is controlled by the second valve 17B. The heater core 16B can be said to be a heat exchanger arranged on the first cooling water channel 23B.

2つの第2のバルブ17、17Bは、それぞれ独立して制御部18に制御される。第2のバルブ17を開状態にすると、冷却水をオイルウォーマ16に流すことができる。第2のバルブ17を閉状態にすると、冷却水はオイルウォーマ16に流れない。同様に、第2のバルブ17Bを開状態にすると、冷却水をヒータコア16Bに流すことができる。第2のバルブ17Bを閉状態にすると、冷却水はヒータコア16Bに流れない。 The two second valves 17 and 17B are independently controlled by the control unit 18. When the second valve 17 is opened, the cooling water can flow to the oil warmer 16. When the second valve 17 is closed, the cooling water does not flow to the oil warmer 16. Similarly, when the second valve 17B is opened, the cooling water can flow to the heater core 16B. When the second valve 17B is closed, the cooling water does not flow to the heater core 16B.

これらの第2のバルブ17、17Bの開閉を行う際は、制御部18は、第2のバルブ17、17Bの開閉に先立って第1のバルブ15を作動させる。第1のバルブ15を作動させて、第1の冷却水路23Bを通過する冷却水の流量を第2のバルブ17、17Bを作動させることができる程度に減少させる。どちらか一方の第2のバルブ17、17Bを操作する場合であっても、制御部18は、第2のバルブ17、17Bの作動に先立って、第1のバルブ15を作動させ冷却水の流量を減らす。 When opening and closing these second valves 17 and 17B, the control unit 18 operates the first valve 15 prior to opening and closing the second valves 17 and 17B. The first valve 15 is operated to reduce the flow rate of the cooling water passing through the first cooling water channel 23B to such an extent that the second valves 17 and 17B can be operated. Even when operating either of the second valves 17 and 17B, the control unit 18 operates the first valve 15 and the flow rate of the cooling water prior to the operation of the second valves 17 and 17B. To reduce.

その他の基本的な構成・作用については、実施例1及び/又は実施例2と共通する。実施例1及び/又は実施例2と共通する部分については、符号を流用すると共に、詳細な説明を省略する。 Other basic configurations / operations are common to those of Example 1 and / or Example 2. For the parts common to the first and / or the second embodiment, the reference numerals are used and detailed description thereof will be omitted.

以上に説明した実施例3による冷却水路系10Bも本発明所定の効果を奏する。
<実施例4>
The cooling water channel system 10B according to the third embodiment described above also has the predetermined effect of the present invention.
<Example 4>

次に、本発明の実施例4を図面に基づいて説明する。図4には、実施例4による冷却水路系10Cが示されている。 Next, Example 4 of the present invention will be described with reference to the drawings. FIG. 4 shows the cooling water channel system 10C according to the fourth embodiment.

冷却水路系10Cは、第1のバルブ15Cがポンプ13の下流側に設けられている。 In the cooling water channel system 10C, the first valve 15C is provided on the downstream side of the pump 13.

冷却水路20Cは、第1のバルブ15Cからポンプ13までを繋ぐ第1のバルブ−ポンプ接続部26Cを有している。 The cooling water channel 20C has a first valve-pump connection portion 26C connecting the first valve 15C to the pump 13.

第3の冷却水路20Cは、ヒータコア31Cへの冷却水の流量を制御する第3のバルブ32Cが設けられている。第3のバルブ32Cは、制御部18から送られる電気信号に基づいてし、第3の冷却水路20Cの開閉を行う。 The third cooling water channel 20C is provided with a third valve 32C that controls the flow rate of the cooling water to the heater core 31C. The third valve 32C opens and closes the third cooling water channel 20C based on the electric signal sent from the control unit 18.

その他の基本的な構成・作用については、実施例1、実施例2及び/又は実施例3と共通する。実施例1、実施例2及び/又は実施例3と共通する部分については、符号を流用すると共に、詳細な説明を省略する。 Other basic configurations / operations are common to those of Example 1, Example 2, and / or Example 3. For the parts common to the first, second and / or third embodiments, reference numerals are used and detailed description thereof will be omitted.

以上に説明した実施例4による冷却水路系10Cも本発明所定の効果を奏する。 The cooling water channel system 10C according to the fourth embodiment described above also has the predetermined effect of the present invention.

尚、本発明による冷却水路系は、図2に示した熱交換器16にヒータコアを採用することもできる。このとき、第3の冷却水路25Aにオイルウォーマを設けてもよい。第1の冷却水路23に配置される熱交換器は、オイルウォーマやヒータコアに限られない。 In the cooling water channel system according to the present invention, a heater core can also be adopted for the heat exchanger 16 shown in FIG. At this time, an oil warmer may be provided in the third cooling water channel 25A. The heat exchanger arranged in the first cooling water channel 23 is not limited to the oil warmer and the heater core.

加えて、各実施例を適宜組み合わせることもできる。例えば図4に示した第1のバルブ15Cがポンプ13の下流側に配置された冷却水路系10Cに、図3に示したような2種類の熱交換器17、17B及び2種類の第2のバルブ16、16Bを設けてもよい。このとき、熱交換器17、17B及び第2のバルブ16、16Bは、冷却水の流れを基準としてどちらを上流側に配置してもよい。さらに、図3に示した冷却水路系10Bにおいて、オイルウォーマ側流路23cをさらに分岐させ、オイルウォーマ16及び第2のバルブ17を並列に配置することもできる。ヒータコア16B及び第2のバルブ17Bについても同様である。 In addition, each embodiment can be combined as appropriate. For example, in the cooling water channel system 10C in which the first valve 15C shown in FIG. 4 is arranged on the downstream side of the pump 13, two types of heat exchangers 17 and 17B and two types of second types as shown in FIG. 3 are used. Valves 16 and 16B may be provided. At this time, either of the heat exchangers 17 and 17B and the second valves 16 and 16B may be arranged on the upstream side with reference to the flow of the cooling water. Further, in the cooling water channel system 10B shown in FIG. 3, the oil warmer side flow path 23c can be further branched, and the oil warmer 16 and the second valve 17 can be arranged in parallel. The same applies to the heater core 16B and the second valve 17B.

本発明の作用及び効果を奏する限りにおいて、本発明は、実施例に限定されるものではない。 The present invention is not limited to the examples as long as the actions and effects of the present invention are exhibited.

本発明の冷却水路系の制御方法は、車両に好適である。 The cooling water channel control method of the present invention is suitable for vehicles.

10、10A、10B、10C…冷却水路系
12…エンジン
12a…イグニッションスイッチ
13…ポンプ
15、15A、15C…第1のバルブ
16…オイルウォーマ(熱交換器)
16B…ヒータコア(熱交換器)
17、17B…第2のバルブ
18…制御部
19…ラジエータ
20、20A、20B、20C…冷却水路
23…第1の冷却水路
24…第2の冷却水路
10, 10A, 10B, 10C ... Cooling water channel system 12 ... Engine 12a ... Ignition switch 13 ... Pump 15, 15A, 15C ... First valve 16 ... Oil warmer (heat exchanger)
16B ... Heater core (heat exchanger)
17, 17B ... Second valve 18 ... Control unit 19 ... Radiator 20, 20A, 20B, 20C ... Cooling water channel 23 ... First cooling water channel 24 ... Second cooling water channel

Claims (2)

冷却水が流れる、第1の冷却水路及び第2の冷却水路の少なくとも2つの水路を含む冷
却水路に、
エンジンと、このエンジンの動力によって駆動され前記冷却水を循環させる機械式のポンプと、少なくとも前記第1の冷却水路に流れる冷却水の流量を制御することができる第1のバルブと、前記冷却水とオイルまたは冷却水と空気の間において熱交換を行うことが可能な熱交換器と、この熱交換器に流れる前記冷却水の流量を制御する第2のバルブと、これらの第1のバルブ及び第2のバルブに接続され前記第1のバルブ及び前記第2のバルブを作動させる制御部と、が設けられ、
前記熱交換器、及び、前記第2のバルブは、前記第1の冷却水路上に配置され、
前記制御部は、前記第2のバルブを作動させる際に、予め前記第1のバルブを作動させて前記第1の冷却水路へ流れる前記冷却水の流量を所定の流量未満としてから、前記第2のバルブを作動させることを特徴とする冷却水路系の制御方法。
In a cooling channel containing at least two channels, a first cooling channel and a second cooling channel, through which cooling water flows.
An engine, a mechanical pump driven by the power of the engine to circulate the cooling water, a first valve capable of controlling at least the flow rate of the cooling water flowing through the first cooling water passage, and the cooling water. A heat exchanger capable of exchanging heat between oil or cooling water and air, a second valve for controlling the flow rate of the cooling water flowing through the heat exchanger, and a first valve thereof. A control unit connected to the second valve and operating the first valve and the second valve is provided.
The heat exchanger and the second valve are arranged on the first cooling water channel.
When the second valve is operated, the control unit operates the first valve in advance to set the flow rate of the cooling water flowing to the first cooling water channel to be less than a predetermined flow rate, and then the second. A method of controlling a cooling water channel system, which comprises operating a valve of.
前記第1のバルブは、前記第1の冷却水路と前記第2の冷却水路とが分岐する部位又は合流する部位に設けられ、
前記第1の冷却水路は、少なくとも一部が並列に配置され、
並列に配置された前記第1の冷却水路の一方に前記熱交換器が配置されていると共に、他方に前記第2のバルブが配置されていることを特徴とする請求項1記載の冷却水路系の制御方法。
The first valve is provided at a portion where the first cooling water channel and the second cooling water channel branch or merge.
At least a part of the first cooling water channel is arranged in parallel, and the first cooling water channel is arranged in parallel.
Together with the heat exchanger is disposed one on the first cooling channel arranged in parallel, the cooling water channel system of claim 1 wherein said second valve to the other, characterized that you have been arranged Control method.
JP2017168156A 2017-09-01 2017-09-01 Cooling channel system control method Active JP6971721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017168156A JP6971721B2 (en) 2017-09-01 2017-09-01 Cooling channel system control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017168156A JP6971721B2 (en) 2017-09-01 2017-09-01 Cooling channel system control method

Publications (2)

Publication Number Publication Date
JP2019044689A JP2019044689A (en) 2019-03-22
JP6971721B2 true JP6971721B2 (en) 2021-11-24

Family

ID=65816338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017168156A Active JP6971721B2 (en) 2017-09-01 2017-09-01 Cooling channel system control method

Country Status (1)

Country Link
JP (1) JP6971721B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013832B2 (en) * 2003-05-30 2007-11-28 アイシン精機株式会社 Vehicle cooling system
JP2006200393A (en) * 2005-01-19 2006-08-03 Mitsubishi Electric Corp Cooling system of vehicle power source
JP5811797B2 (en) * 2011-11-18 2015-11-11 アイシン精機株式会社 Engine cooling system
KR101637779B1 (en) * 2014-12-15 2016-07-07 현대자동차주식회사 Exhaust heat recovery system of vehicle and method thereof
JP6181119B2 (en) * 2015-08-04 2017-08-16 アイシン精機株式会社 Engine cooling system

Also Published As

Publication number Publication date
JP2019044689A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP4196802B2 (en) Cooling water circuit
US20080223317A1 (en) Cooling apparatus for internal combustion engine
US20140165932A1 (en) Engine cooling system for vehicle and control method of the same
JP2006515052A (en) Cooling circulation, especially for automobile transmissions
US8944017B2 (en) Powertrain cooling system with cooling and heating modes for heat exchangers
JP2007107522A (en) Cooling system for combustion engine
US20080190597A1 (en) Coolant Cooler With A Gearbox-Oil Cooler Integrated Into One Of The Cooling Water Reservoirs
JP5633199B2 (en) Internal combustion engine cooling system
EP3194810B1 (en) Transmission heat exchange system
WO2016031089A1 (en) Drive system
JP2014025381A (en) Engine cooling device
JP2006161806A (en) Cooling device for liquid cooling type internal combustion engine
JP2012184671A (en) Engine cooling device
JP6971721B2 (en) Cooling channel system control method
JP2004084882A (en) Oil temperature controller of transmission
KR100482542B1 (en) cooling system of engine
EP3162600A1 (en) Vehicle cooling system
JP2002340161A (en) Oil temperature control device
CN111788081A (en) Air conditioner for vehicle
JP2005083225A (en) Oil temperature controller for transmission
JP2002364362A (en) Engine cooling apparatus
CA2494517A1 (en) Combination hvac and auxiliary engine cooling
JP3292217B2 (en) Oil temperature control device for vehicles
WO2017090548A1 (en) Engine cooling device
JP2001271644A (en) Method and device for adjusting engine oil temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211102

R150 Certificate of patent or registration of utility model

Ref document number: 6971721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150