WO2016031089A1 - Drive system - Google Patents

Drive system Download PDF

Info

Publication number
WO2016031089A1
WO2016031089A1 PCT/JP2014/078747 JP2014078747W WO2016031089A1 WO 2016031089 A1 WO2016031089 A1 WO 2016031089A1 JP 2014078747 W JP2014078747 W JP 2014078747W WO 2016031089 A1 WO2016031089 A1 WO 2016031089A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
engine
drive system
loop
inverter
Prior art date
Application number
PCT/JP2014/078747
Other languages
French (fr)
Japanese (ja)
Inventor
一法師 茂俊
健 篠▲崎▼
浩之 東野
勇吾 浅井
阪田 一樹
昌和 谷
裕幸 矢野
松尾 治之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015514683A priority Critical patent/JPWO2016031089A1/en
Publication of WO2016031089A1 publication Critical patent/WO2016031089A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the present invention relates to a hybrid vehicle drive system using both engine drive and motor drive.
  • a dedicated water cooling system that cools the inverter for driving the motor, which is required to cool to a lower temperature, and an engine that is required to dissipate heat at a certain relatively high temperature are cooled. It consists of two cooling systems with a dedicated water cooling system.
  • the drive system includes a first circulation loop and a second circulation loop arranged in parallel therewith.
  • the first circulation loop is a series connection of a pump, an engine, and a heating device (for example, a heater, an exhaust heat recovery device and an EGR cooler), and the cooling water circulates in a low temperature environment.
  • the second circulation loop is a series connection of the pump, the engine, the radiator, and the inverter cooling device that performs cooling with higher efficiency.
  • the first circulation loop and the second circulation loop are connected via a temperature detection valve (for example, a thermostat) and can be switched.
  • a temperature detection valve for example, a thermostat
  • the first circulation loop is cooled.
  • the cooling water circulated through the second circulation loop to cool the inverter with high efficiency.
  • the characteristics of the hybrid vehicle are that the motor is driven in the low speed range such as after an idle stop or starting, and the engine is driven in the medium and high speed ranges, so that energy savings are further improved, and the engine of the engine such as when starting in winter is improved.
  • the motor is driven first, and the inverter operates and generates heat.
  • the order of switching the circulation loop is reverse, and if priority is given to warming up the engine, the cooling water circulates through the first circulation loop, so the inverter rises without being cooled, There was a problem of failure.
  • the cooling of the inverter is prioritized, the heat generated by the inverter is dissipated by the radiator, so that there is a problem that the heat generated by the inverter cannot be used for warming up the engine.
  • the present invention has been made to solve the above problems, and in a hybrid vehicle drive system using both an engine and a motor, the engine is warmed up by utilizing the heat generated by the inverter in a compact configuration.
  • the purpose is to be able to cool the inverter stably.
  • a drive system includes a first flow path that connects the engine and a loop selection unit in a hybrid vehicle drive system using both an engine and a motor, the loop selection unit, A cooler of an inverter that drives the motor, a pump that circulates coolant, a second flow path that sequentially connects the engine, and the engine or the first flow path and the loop selection unit are connected via a radiator.
  • a loop is selected, and when the desired temperature is exceeded, a second circulation loop from the third flow path to the second flow path is selected to circulate the coolant.
  • the first circulation loop is selected by the loop selection unit, and the coolant is sequentially circulated through the inverter cooler ⁇ pump ⁇ engine to cool the inverter.
  • the inverter attached to the heater operates and generates heat, the amount of heat generated can be given to the cooling water to effectively use it to warm up the engine, and the radiator consumes the energy required to warm up the engine. Since there is nothing, it can be reduced.
  • the coolant when the coolant circulates in the pump by passing water through the first circulation loop, the coolant can be supplied to the inverter cooler at the front stage of the pump, and the inverter is stably cooled, so the life of the inverter becomes longer. Further, since the engine can be warmed up earlier, the engine can be operated efficiently, energy saving is improved, and exhaust gas is further purified.
  • the loop selection section allows water to flow through the second circulation loop, so that heat can be dissipated from the radiator in the second circulation loop with high efficiency.
  • a compact structure can be realized.
  • FIG. 10 is a block diagram showing a modification example of the fourth embodiment of the present invention and applicable to the first to third embodiments.
  • FIG. 11 is a block diagram showing another modification of the fourth embodiment of the present invention and a modification that can be applied to the first to third embodiments.
  • It is a graph which shows the typical pressure change along the flow path in the drive system for vehicles by Embodiment 3 of this invention. It is a graph which shows the general relationship between the boiling point and pressure of cooling water and antifreeze.
  • FIG. 1 shows a drive system according to Embodiment 1 of the present invention, in which an engine 1, a temperature detection valve 2 as a loop selection unit (loop switching unit), and a motor (not shown) are driven.
  • a cooler 3 for the inverter to be connected and a pump 4 for circulating the cooling water are connected in series to form a first circulation loop 7.
  • the first circulation loop 7 includes the engine 1, the temperature detection valve 2, and the like.
  • a second flow path 6 for connecting the temperature detection valve 2 and the engine 1 via the inverter cooler 3 and the pump 4.
  • a third flow path 9 that connects the engine 1 and the temperature detection valve 2 via the radiator 8 is connected in parallel to the first flow path 5, and the third flow path and the second flow path 6 are connected.
  • the second circulation loop 10 is formed.
  • An inverter 11 is thermally coupled to the inverter cooler 3, and a fan 12 is attached to the radiator 8.
  • the temperature detection valve 2 selects the first circulation loop including the first flow path 5 and the second flow path 6 when the entire drive system is in a low temperature state during non-operation.
  • the inverter 11 coupled to the inverter cooler 3 is driven, and the motor is driven to run the vehicle.
  • the electronic device in the inverter 11 generates heat as the inverter 11 is driven, heat is released to the cooling water in the cooler 3 by the inverter cooler 3 that is in thermal contact.
  • motor driving having high energy saving and smooth driving characteristics is performed in starting and low speed running.
  • the pump 4 operates in accordance with the vehicle driving operation, and the cooling water circulates.
  • the temperature detection valve 2 is switched and selected so that the cooling water circulates through the first circulation loop 7, and the inverter 11 is stably cooled.
  • the first circulation loop 7 does not include the radiator 8 that radiates heat from the cooling water to the surroundings, the temperature of the cooling water received from the inverter 11 rises.
  • the raised cooling water circulates through the inverter cooler 3, the pump 4, the engine 1, and the temperature detection valve 2 in order to warm the engine 1.
  • the main drive source shifts from motor drive to engine drive.
  • the engine 1 is warmed up to some extent or sufficiently, and the operation of the engine 1 can be started efficiently.
  • the temperature detection valve 2 switches from the first circulation loop 7 to the second circulation loop 10 to perform the second circulation of the cooling water. Circulate through the loop 10.
  • the cooling water circulates in the radiator 8 that dissipates heat to the surrounding environment by running wind or air blown by the fan 12. It is discharged to the environment, the cooling water temperature is prevented from becoming an abnormal temperature, and the cooling water temperature that is lower than the allowable temperature of each device constituting the vehicle drive system and suitable for the engine 1 is maintained.
  • the cooling water is sequentially circulated through the engine 1, the temperature detection valve 2, the inverter cooler 3, and the pump 4, and the inverter attached to the inverter cooler 3.
  • the heat generated by the operation of the engine 11 can be given to the cooling water to be effectively used for warming up the engine 1, and the energy required for warming up the engine 1 is not lost by the radiator, so that it can be reduced. it can.
  • the warm-up of the engine 1 can be completed more quickly, and the engine 1 can be operated in an appropriate temperature state with good fuel efficiency, so that energy saving is improved.
  • the pump 4 operates and the cooling water circulates when the vehicle is driven, the cooling water can be supplied to the inverter cooler 3 and the inverter 11 can be stably cooled. Long life.
  • the engine 1 only needs to have a water channel around the engine so as to generate a driving force so that the temperature of the engine 1 does not become an abnormal temperature.
  • the engine 1 may directly drive the vehicle or generate a driving force of a generator (for example, a series hybrid or a range extender).
  • the temperature detection valve 2 as a loop selection unit, outputs a temperature detection device (sensor), a valve capable of selecting the first circulation loop or the second circulation loop, and a valve opening / closing control signal in response to an output signal from the sensor.
  • a passively movable thermostat As a function of the thermostat in this case, the cooling water circulates through the first circulation loop 7 when the temperature of the temperature detection device mounting portion or the temperature detection valve 2 is below a desired temperature (for example, 85 to 105 ° C.). At the temperature exceeding, the second circulation loop 10 is opened and closed so that the cooling water circulates.
  • the cooling water may be water, a commonly used antifreeze (ethylene glycol aqueous solution), or a refrigerant such as florinate applied to the refrigeration cycle.
  • FIG. FIG. 2 shows a vehicle drive system according to the second embodiment of the present invention.
  • the third flow path 9 is composed of an engine 1-a radiator 8-a temperature detection valve 2.
  • the third flow path 9 is branched from the engine 1 through the second flow path 6, and the temperature detection valve is branched via the radiator 8. 2 has been reached.
  • the functions and effects of the second embodiment are the same as those of the first embodiment.
  • a flow path branching section is provided in the engine 1.
  • the cooling water outlet provided in the engine 1 Therefore, there is no need to provide a flow path branching portion in the engine 1, and the entire flow path area in the engine 1 can be circulated without stopping the cooling water. Can be cooled.
  • FIG. FIG. 3 shows a vehicle drive system according to Embodiment 3 of the present invention, in which the motor 13 and / or generator 14 or both are thermally incorporated in the second flow path 6 according to Embodiment 1. Or, it is different from the second embodiment.
  • the engine 1 can be warmed up more efficiently by utilizing not only the heat generated by the inverter 11 but also the heat generated by the motor 13 and the generator 14 at the same time. Therefore, heat can be radiated from the motor 13 and the generator 14 at the same time.
  • FIG. 4 shows a vehicle drive system according to Embodiment 4 of the present invention, which is different from Embodiment 1 or Embodiment 2 in that a heating device 15 is provided in the first flow path 5.
  • a heating device 15 is provided in the first flow path 5.
  • the present invention can also be applied to the third embodiment.
  • the heating device 15 when the engine 1 is not sufficiently warmed up by heat generated from the inverter, motor, and / or generator, the heating device 15 can appropriately raise the coolant temperature, The warm-up can be completed more quickly than the first to third embodiments. Note that either the motor or the generator may be arranged on the upstream side.
  • FIG. 5 shows a modification of the fourth embodiment, in which a heating device 15 is connected to a flow path (not shown) in the engine 1 instead of being provided in the first flow path 5.
  • a pump 17 and a heating device 15 are provided in the flow path 16.
  • 5 shows a configuration in which the fourth flow path 16 is directly connected to the engine 1, the present invention is not limited to this, and the first flow path 5 and the cooling water are circulated through the flow path in the engine 1. You may provide the heating apparatus 15 in the middle of either the 2nd flow path 6 and the 3rd flow path 9.
  • the warming up can be completed more quickly.
  • the cooling water supply / drain connection port for the EGR cooler (not shown) is mainly used for cooling the high-temperature exhaust gas discharged from the engine 1 by the EGR cooler. It is preferable that the third flow path 9 that operates or the second flow path 6 in which cooling water continues to flow is provided in parallel.
  • the inverter cooler 3 may be a forced convection cooler in which conventional heat radiation fins are installed.
  • a part of the cooling water evaporates or boils and a part of the liquid receives latent heat.
  • a boiling cooler that vaporizes (generates steam bubbles) is preferable. That is, when the inverter 11 generates heat, boiling occurs, and cooling can be performed with high efficiency by boiling heat transfer.
  • the appropriate cooling water temperature of the engine 1 is 85 ° C. to 110 ° C., more preferably about 100 ° C. (the boiling point of water is 100 ° C., but the boiling point of the antifreeze liquid (50 wt% ethylene glycol aqueous solution) is about 107 ° C. Therefore, when the pressure is further increased, the boiling point rises). Therefore, the cooling water temperature is close to the boiling point of the cooling water, and boiling easily occurs in the inverter cooler 3.
  • the flow path pipe is preferably sealed.
  • a semi-enclosed flow channel pipe may be used.
  • the reservoir tank 18 may be disposed in any of the first to third channels, but is downstream from the engine 1 in the first channel 5 or the second channel 6 and upstream from the temperature detection valve 2. It is preferable to arrange in.
  • non-condensable gas generated during system operation can be discharged outside the flow path piping, and even when the system temperature is low and the pressure in the flow path piping decreases, Ambient air does not flow in, and residual air stagnates in the flow path piping, which can suppress flow inhibition and deterioration of heat dissipation capability.
  • the inverter cooler 3 since the inverter cooler 3 is provided between the temperature detection valve 2 and the pump 4, the pressure becomes the lowest in the loop through which the cooling water circulates.
  • the boiling point of the cooling water can be lowered, and the configuration is suitable for a boiling cooler. That is, the position of the inverter cooler as in the system of the present invention has the lowest cooling water pressure, boiling occurs at a low temperature, and cooling can be performed efficiently.
  • the inverter cooler 3 by providing a motor 13 and a generator 14 on the upstream side (first circulation loop 7) of the inverter cooler 3 as shown in FIG.
  • the pressure (saturation temperature) in the cooler 3 can be reduced, and cooling can be performed with higher efficiency.
  • the third flow path 9 ⁇ the second flow when the reservoir tank 18 and the check valve 19 are provided in the third flow path 9 as shown in FIG. 6.
  • the change of the pressure along the 2nd circulation loop 10 comprised by the path 6 is shown typically.
  • FIG. 8 shows the boiling point with respect to the pressure of the cooling water (here, 50% LLC indicated by black triangles indicates an antifreeze mixed with ethylene glycol and water at a ratio of 1: 1).
  • the output pressure of the inverter 11 shown in FIG. It boils at 9 ° C. and boils at 107.5 ° C. at 1.0 atm, which is the atmospheric pressure downstream of the engine 1.
  • the difference can be boiled at a temperature lower by 10.6 ° C., and the inverter 11 can dissipate heat by boiling heat transfer with respect to the lower temperature antifreeze, and the inverter 11 can be kept at a lower temperature. .
  • 1 engine 2 temperature detection valve (loop selection part), 3 cooler for inverter, 4 pump, 5 first flow path, 6 second flow path, 7 first circulation loop, 8 radiator, 9 third flow path, 10 2nd circulation loop, 11 inverter, 12 fan, 13 motor, 14 generator, 15 heating device, 16 4th flow path, 17 pump, 18 reservoir tank, 19 check valve.

Abstract

The purpose of the present invention is to provide, for a drive system for a hybrid vehicle using both an engine and a motor, a compact configuration that allows the heat generated by an inverter to be used to warm up the engine and allows the inverter to be cooled stably. This drive system for a hybrid vehicle is provided with a first flow channel (5) connecting the engine (1) and a loop selection part (2), a second flow channel connecting the loop selection part and the engine across a cooler (3) for a motor-driving inverter (11) and a pump (4) for circulating a coolant, and a third flow channel (9) connecting the engine or first flow channel to the loop selection part across a radiator (8). When the coolant has a temperature less than a desired temperature necessary for the warming-up of the engine (1), the loop selection part (2) selects a first circulation loop (7) from the first flow channel to the second flow channel for the coolant to circulate in. When the temperature exceeds the desired temperature, the loop selection part (2) selects a second circulation loop (10) from the third flow channel to the second flow channel for the coolant to circulate in.

Description

駆動システムDrive system
 本発明は、エンジン駆動とモータ駆動を併用したハイブリッド車輌の駆動システムに関するものである。 The present invention relates to a hybrid vehicle drive system using both engine drive and motor drive.
 このような駆動システムでは、より低温に冷却することが求められる、モータ駆動用のインバータを冷却する専用水冷システムと、或る所望の比較的高い温度にて放熱することが求められる、エンジンを冷却する専用水冷システムとの二つの冷却システムとから構成されている。 In such a drive system, a dedicated water cooling system that cools the inverter for driving the motor, which is required to cool to a lower temperature, and an engine that is required to dissipate heat at a certain relatively high temperature are cooled. It consists of two cooling systems with a dedicated water cooling system.
 一方、近年では、車両の軽量化及び車室内空間を大きくするために駆動システムのコンパクト化が求められており、上記二つの冷却システムを統合した、エンジン冷却水共用冷却駆動システムが提案されている(例えば、特許文献1及び2参照)。 On the other hand, in recent years, there has been a demand for a compact drive system in order to reduce the weight of the vehicle and increase the cabin space, and an engine cooling water shared cooling drive system that integrates the above two cooling systems has been proposed. (For example, refer to Patent Documents 1 and 2).
特開2013-44496号公報JP 2013-44496 A 特開2013-86717号公報JP 2013-86717 A
 特許文献1に示されるような駆動システムにあっては、第1の循環ループと、これに並設された第2の循環ループとで構成されている。第1の循環ループは、ポンプとエンジンと加熱装置(例えばヒーターの他、排熱回収器やEGRクーラを含む。)とを直列接続したもので、低温環境下にて冷却水が循環する。第2の循環ループは、より高効率冷却する、前記ポンプと前記エンジンとラジエータとインバータ冷却装置とを直列接続したものである。 In the drive system as shown in Patent Document 1, the drive system includes a first circulation loop and a second circulation loop arranged in parallel therewith. The first circulation loop is a series connection of a pump, an engine, and a heating device (for example, a heater, an exhaust heat recovery device and an EGR cooler), and the cooling water circulates in a low temperature environment. The second circulation loop is a series connection of the pump, the engine, the radiator, and the inverter cooling device that performs cooling with higher efficiency.
 そして、第1の循環ループと第2の循環ループは、温度検知バルブ(たとえばサーモスタット)を介して連結され切替可能になっており、エンジンの暖機が必要な場合は第1の循環ループを冷却水が循環し、エンジンの暖機が十分できた後は、第2の循環ループを冷却水が循環し、高効率にインバータを冷却するシステムであった。 The first circulation loop and the second circulation loop are connected via a temperature detection valve (for example, a thermostat) and can be switched. When the engine needs to be warmed up, the first circulation loop is cooled. After the water was circulated and the engine was sufficiently warmed up, the cooling water circulated through the second circulation loop to cool the inverter with high efficiency.
 ハイブリッド車輌の特長としては、アイドルストップ後や発進などの低速域においてモータ駆動し、中速及び高速域にてエンジン駆動することで、より省エネ性を向上させるとともに、冬季の発進時などのエンジンの暖機が必要な場合は、モータが先に駆動され、インバータが動作・発熱する。 The characteristics of the hybrid vehicle are that the motor is driven in the low speed range such as after an idle stop or starting, and the engine is driven in the medium and high speed ranges, so that energy savings are further improved, and the engine of the engine such as when starting in winter is improved. When warm-up is required, the motor is driven first, and the inverter operates and generates heat.
 従って、上記の駆動システムでは、循環ループ切替の順序が逆であり、エンジンの暖機を優先すると第1の循環ループを冷却水が循環するため、インバータが冷却されずにその温度が上昇し、故障するという問題があった。一方、インバータの冷却を優先すると、インバータの発熱をラジエータにて放熱するため、インバータの発熱をエンジンの暖機に活用できないという問題があった。 Therefore, in the above drive system, the order of switching the circulation loop is reverse, and if priority is given to warming up the engine, the cooling water circulates through the first circulation loop, so the inverter rises without being cooled, There was a problem of failure. On the other hand, if the cooling of the inverter is prioritized, the heat generated by the inverter is dissipated by the radiator, so that there is a problem that the heat generated by the inverter cannot be used for warming up the engine.
 また、特許文献2のような駆動システムにあっては、冷却水を循環させるポンプは共用されているが、エンジン用の高温用ラジエータとインバータ用の低温用ラジエータの二つが必要で、複雑な配管になるため、コンパクト化が難しいという問題があった。また、細密構造で高効率冷却が必要なインバータ用冷却器と、放熱フィン間隙間が大きな粗い構造のエンジン冷却用冷却器を並列配置するため、経年変化により冷却器内にスケール等付着した場合に生じる流動抵抗の変化により偏流が発生してしまい、特に、インバータ用冷却器に通水する冷却水流量が少なくなり、インバータを十分に冷却できないという問題があった。 Moreover, in the drive system like patent document 2, although the pump which circulates a cooling water is shared, two high temperature radiators for engines and low temperature radiators for inverters are required, and complicated piping is required. Therefore, there was a problem that it was difficult to make it compact. In addition, an inverter cooler that requires high-efficiency cooling with a dense structure and an engine cooling cooler with a rough structure with a large gap between the radiating fins are arranged in parallel. Due to the change in the flow resistance that occurs, a drift occurs, and in particular, there is a problem that the flow rate of cooling water flowing through the inverter cooler decreases, and the inverter cannot be cooled sufficiently.
 本発明は、上記のような課題を解決するためになされたものであり、エンジンとモータを併用したハイブリッド車輌の駆動システムにおいて、コンパクトな構成で、インバータの発熱を利用してエンジンの暖機を行うとともに安定してインバータを冷却できることを目的とする。 The present invention has been made to solve the above problems, and in a hybrid vehicle drive system using both an engine and a motor, the engine is warmed up by utilizing the heat generated by the inverter in a compact configuration. The purpose is to be able to cool the inverter stably.
 上記の目的を達成するため、本発明に係る駆動システムは、エンジンとモータを併用したハイブリッド車輌の駆動システムにおいて、前記エンジンとループ選択部とを連結する第1流路と、前記ループ選択部、前記モータを駆動するインバータの冷却器、冷却液を循環させるポンプ、及び前記エンジンを順次連結する第2流路と、前記エンジン又は前記第1流路と前記ループ選択部とをラジエータを介して連結する第3流路とを備え、前記ループ選択部は、前記冷却液が前記エンジンの暖機に必要な所望温度以下のとき、前記第1流路から前記第2流路への第1の循環ループを選択し、前記所望温度を超えたときは前記第3流路から前記第2流路への第2の循環ループを選択して前記冷却液を循環させるものである。 In order to achieve the above object, a drive system according to the present invention includes a first flow path that connects the engine and a loop selection unit in a hybrid vehicle drive system using both an engine and a motor, the loop selection unit, A cooler of an inverter that drives the motor, a pump that circulates coolant, a second flow path that sequentially connects the engine, and the engine or the first flow path and the loop selection unit are connected via a radiator. A first flow path from the first flow path to the second flow path when the coolant is below a desired temperature required for warming up the engine. A loop is selected, and when the desired temperature is exceeded, a second circulation loop from the third flow path to the second flow path is selected to circulate the coolant.
 本発明によれば、エンジンの暖機が必要な所望温度以下の場合、ループ選択部によって第1循環ループが選択されて順次冷却液がインバータ冷却器→ポンプ→エンジンを循環し、インバータ用の冷却器に取り付けられたインバータが動作・発熱することにより、当該発熱量を冷却水に与えてエンジンの暖機に有効活用することができ、エンジンの暖機に必要とされるエネルギーをラジエータで消費することが無いので削減することができる。 According to the present invention, when the engine temperature is below a desired temperature that requires warming up, the first circulation loop is selected by the loop selection unit, and the coolant is sequentially circulated through the inverter cooler → pump → engine to cool the inverter. When the inverter attached to the heater operates and generates heat, the amount of heat generated can be given to the cooling water to effectively use it to warm up the engine, and the radiator consumes the energy required to warm up the engine. Since there is nothing, it can be reduced.
 また、第1循環ループへ通水することによりポンプで冷却液が循環するとき、ポンプの前段でインバータ用冷却器に冷却水を供給することができ、安定してインバータを冷却するのでインバータの寿命が長くなる。また、より早くエンジンの暖機が行えることから、効率よくエンジンを動作させることができ、省エネ性が向上し排気ガスがより清浄化される。 Also, when the coolant circulates in the pump by passing water through the first circulation loop, the coolant can be supplied to the inverter cooler at the front stage of the pump, and the inverter is stably cooled, so the life of the inverter Becomes longer. Further, since the engine can be warmed up earlier, the engine can be operated efficiently, energy saving is improved, and exhaust gas is further purified.
 所望温度を超えるエンジン駆動時には、ループ選択部によって、この第2循環ループへ通水することにより、第2循環ループ中のラジエータから高効率に放熱させることができ、所望温度のときは、全体としてコンパクトな構造が実現できる。 When the engine exceeds the desired temperature, the loop selection section allows water to flow through the second circulation loop, so that heat can be dissipated from the radiator in the second circulation loop with high efficiency. A compact structure can be realized.
本発明の実施の形態1による車両用の駆動システムを示すブロック図である。It is a block diagram which shows the drive system for vehicles by Embodiment 1 of this invention. 本発明の実施の形態2による車両用の駆動システムを示すブロック図である。It is a block diagram which shows the drive system for vehicles by Embodiment 2 of this invention. 本発明の実施の形態3による車両用の駆動システムを示すブロック図である。It is a block diagram which shows the drive system for vehicles by Embodiment 3 of this invention. 本発明の実施の形態4による車両用の駆動システムを示すブロック図である。It is a block diagram which shows the drive system for vehicles by Embodiment 4 of this invention. 本発明の実施の形態4の変形例であり且つ実施の形態1~3にも適用可能な変形例を示すブロック図である。FIG. 10 is a block diagram showing a modification example of the fourth embodiment of the present invention and applicable to the first to third embodiments. 本発明の実施の形態4の別の変形例であり且つ実施の形態1~3にも適用可能な変形例を示すブロック図である。FIG. 11 is a block diagram showing another modification of the fourth embodiment of the present invention and a modification that can be applied to the first to third embodiments. 本発明の実施の形態3による車両用の駆動システムにおける流路沿いの典型的な圧力変化を示すグラフ図である。It is a graph which shows the typical pressure change along the flow path in the drive system for vehicles by Embodiment 3 of this invention. 冷却水および不凍液の沸点と圧力との一般的な関係を示すグラフ図である。It is a graph which shows the general relationship between the boiling point and pressure of cooling water and antifreeze.
 実施の形態1.
 図1は、本発明の実施の形態1による駆動システムを示しており、図中、エンジン1と、ループ選択部(ループ切替部)としての温度検知バルブ2と、モータ(図示せず)を駆動するインバータのための冷却器3と、冷却水を循環させるためのポンプ4とを直列接続して第1循環ループ7を形成し、この第1循環ループ7は、エンジン1と温度検知バルブ2とを連結する第1流路5と、インバータ用冷却器3及びポンプ4を介して温度検知バルブ2とエンジン1とを連結する第2流路6とから構成される。また、第1流路5には、ラジエータ8を介してエンジン1と温度検知バルブ2とを連結する第3流路9が並列接続されており、この第3流路と前記第2流路6とで第2循環ループ10とを形成する。なお、インバータ用冷却器3にはインバータ11が熱的に結合されており、ラジエータ8にはファン12が取り付けられている。
Embodiment 1 FIG.
FIG. 1 shows a drive system according to Embodiment 1 of the present invention, in which an engine 1, a temperature detection valve 2 as a loop selection unit (loop switching unit), and a motor (not shown) are driven. A cooler 3 for the inverter to be connected and a pump 4 for circulating the cooling water are connected in series to form a first circulation loop 7. The first circulation loop 7 includes the engine 1, the temperature detection valve 2, and the like. And a second flow path 6 for connecting the temperature detection valve 2 and the engine 1 via the inverter cooler 3 and the pump 4. A third flow path 9 that connects the engine 1 and the temperature detection valve 2 via the radiator 8 is connected in parallel to the first flow path 5, and the third flow path and the second flow path 6 are connected. And the second circulation loop 10 is formed. An inverter 11 is thermally coupled to the inverter cooler 3, and a fan 12 is attached to the radiator 8.
 このような構成によれば、非運転時において駆動システム全体が低温状態になっているときに、温度検知バルブ2は第1流路5と第2流路6から成る第1循環ループを選択しており、車輌駆動操作を行うことにより、インバータ用冷却器3に結合されたインバータ11が駆動され、モータを駆動させて車輌を走行させる。
 このインバータ11の駆動に伴い、インバータ11内の電子機器が発熱すると、熱的に接触しているインバータ用冷却器3によって冷却器3内の冷却水に熱が放出される。これにより、発進及び低速走行にて高い省エネ性及び円滑な駆動特性を有するモータ駆動が行われる。
According to such a configuration, the temperature detection valve 2 selects the first circulation loop including the first flow path 5 and the second flow path 6 when the entire drive system is in a low temperature state during non-operation. When the vehicle driving operation is performed, the inverter 11 coupled to the inverter cooler 3 is driven, and the motor is driven to run the vehicle.
When the electronic device in the inverter 11 generates heat as the inverter 11 is driven, heat is released to the cooling water in the cooler 3 by the inverter cooler 3 that is in thermal contact. As a result, motor driving having high energy saving and smooth driving characteristics is performed in starting and low speed running.
 前記車輌駆動操作に伴ってポンプ4が動作し、冷却水が循環する。初期低温状態では、温度検知バルブ2が第1循環ループ7を冷却水が循環するように切替選択しており、インバータ11を安定して冷却する。この場合、第1循環ループ7には、冷却水から周囲へ放熱するラジエータ8を含まないことから、インバータ11から受熱した冷却水は昇温する。この昇温した冷却水は、インバータ用冷却器3、ポンプ4、エンジン1及び温度検知バルブ2を順次循環してエンジン1を暖める。 The pump 4 operates in accordance with the vehicle driving operation, and the cooling water circulates. In the initial low temperature state, the temperature detection valve 2 is switched and selected so that the cooling water circulates through the first circulation loop 7, and the inverter 11 is stably cooled. In this case, since the first circulation loop 7 does not include the radiator 8 that radiates heat from the cooling water to the surroundings, the temperature of the cooling water received from the inverter 11 rises. The raised cooling water circulates through the inverter cooler 3, the pump 4, the engine 1, and the temperature detection valve 2 in order to warm the engine 1.
 この後、車輌が中速又は高速走行に移行した場合、主たる駆動源がモータ駆動からエンジン駆動へ移行する。この時には、ある程度又は十分にエンジン1の暖機が行われており、効率よくエンジン1の動作が始められる。エンジン1の動作に伴い、冷却水温度がさらに上昇し、任意の規定温度に達したとき、温度検知バルブ2が、第1循環ループ7から第2循環ループ10に切り替えて冷却水を第2循環ループ10に循環させる。 After this, when the vehicle shifts to medium speed or high speed, the main drive source shifts from motor drive to engine drive. At this time, the engine 1 is warmed up to some extent or sufficiently, and the operation of the engine 1 can be started efficiently. With the operation of the engine 1, when the cooling water temperature further rises and reaches an arbitrary specified temperature, the temperature detection valve 2 switches from the first circulation loop 7 to the second circulation loop 10 to perform the second circulation of the cooling water. Circulate through the loop 10.
 冷却水が第2循環ループ10を循環すると、走行風又はファン12による送風により周囲環境へ放熱するラジエータ8内を冷却水が循環することから、このラジエータ8にて冷却水が保有する熱を周囲環境へ放出し、冷却水温度が異常温度になることを抑制し、車両用駆動システムを構成する各機器の許容温度以下でかつ、エンジン1に適した冷却水温度を保持する。 When the cooling water circulates in the second circulation loop 10, the cooling water circulates in the radiator 8 that dissipates heat to the surrounding environment by running wind or air blown by the fan 12. It is discharged to the environment, the cooling water temperature is prevented from becoming an abnormal temperature, and the cooling water temperature that is lower than the allowable temperature of each device constituting the vehicle drive system and suitable for the engine 1 is maintained.
 このような構成により、エンジン1の暖機が必要な場合、エンジン1、温度検知バルブ2、インバータ用冷却器3及びポンプ4を順次冷却水が循環し、インバータ用冷却器3に取り付けられたインバータ11の動作に伴う発熱を冷却水に与えて、エンジン1の暖機に有効活用することができ、エンジン1の暖機に必要とされるエネルギーをラジエータで奪われることがないので削減することができる。また、より早くエンジン1の暖機を完了させることができ、燃費効率の良い適温状態でエンジン1を動作させることができるので省エネ性が向上する。さらに、車輌駆動時にポンプ4が動作し、冷却水が循環することから、インバータ用冷却器3に冷却水を供給することができ、安定してインバータ11を冷却することができるので、インバータ11の寿命が長くなる。 With such a configuration, when the engine 1 needs to be warmed up, the cooling water is sequentially circulated through the engine 1, the temperature detection valve 2, the inverter cooler 3, and the pump 4, and the inverter attached to the inverter cooler 3. The heat generated by the operation of the engine 11 can be given to the cooling water to be effectively used for warming up the engine 1, and the energy required for warming up the engine 1 is not lost by the radiator, so that it can be reduced. it can. Further, the warm-up of the engine 1 can be completed more quickly, and the engine 1 can be operated in an appropriate temperature state with good fuel efficiency, so that energy saving is improved. Furthermore, since the pump 4 operates and the cooling water circulates when the vehicle is driven, the cooling water can be supplied to the inverter cooler 3 and the inverter 11 can be stably cooled. Long life.
 なお、エンジン1は、駆動力を発生させ、エンジン1の温度が異常温度にならないように、エンジン周囲に水路が設けられたものであれば良い。また、エンジン1は車輌を直接駆動させるものでも、或いは発電機の駆動力を発生させるものでもよい(例えば、シリーズハイブリッドやレンジ・エクステンダー)。 The engine 1 only needs to have a water channel around the engine so as to generate a driving force so that the temperature of the engine 1 does not become an abnormal temperature. The engine 1 may directly drive the vehicle or generate a driving force of a generator (for example, a series hybrid or a range extender).
 温度検知バルブ2は、ループ選択部として、温度検知機器(センサ)と、第1循環ループ又は第2循環ループを選択可能なバルブと、センサからの出力信号を受けてバルブ開閉の制御信号を出力する制御器とで構成しても良いが、好ましくは受動的に可動するサーモスタットの方が良い。この場合のサーモスタットの機能としては、温度検知機器取付部又は温度検知バルブ2の温度が、所望の温度(例えば、85~105℃)以下では第1循環ループ7を冷却水が循環し、それを超えた温度では、第2循環ループ10を冷却水が循環するように開閉するものである。 The temperature detection valve 2, as a loop selection unit, outputs a temperature detection device (sensor), a valve capable of selecting the first circulation loop or the second circulation loop, and a valve opening / closing control signal in response to an output signal from the sensor. However, it is preferable to use a passively movable thermostat. As a function of the thermostat in this case, the cooling water circulates through the first circulation loop 7 when the temperature of the temperature detection device mounting portion or the temperature detection valve 2 is below a desired temperature (for example, 85 to 105 ° C.). At the temperature exceeding, the second circulation loop 10 is opened and closed so that the cooling water circulates.
 なお、いずれか一方だけの通水でなく、所望の温度帯ではそれぞれの循環ループに分流して通水し、徐々に又は段階的に分流割合が変化する構成でも良い。また、温度検知バルブ2は3方バルブ1個として図示しているが、第1流路5と第3流路9中にそれぞれ温度検知バルブ2を設けたものでも良い。
 冷却水は、水でもよく、通常使用されている不凍液(エチレングリコール水溶液)でも良く、冷凍サイクルに適用されているフロリナートなどの冷媒でも良い。
In addition, it is possible to adopt a configuration in which not only one of the water flows, but the flow is divided into the respective circulation loops in a desired temperature range, and the diversion ratio is changed gradually or stepwise. Further, although the temperature detection valve 2 is illustrated as one three-way valve, the temperature detection valve 2 may be provided in each of the first flow path 5 and the third flow path 9.
The cooling water may be water, a commonly used antifreeze (ethylene glycol aqueous solution), or a refrigerant such as florinate applied to the refrigeration cycle.
 実施の形態2.
 図2は、本発明の実施の形態2による車両用駆動システムを示しており、図1に示した実施の形態1では、第3流路9がエンジン1-ラジエータ8-温度検知バルブ2で構成されているのに対し、図2に示す実施の形態2では、第3流路9が、エンジン1から第2流路6を経由し、その途中で分岐し、ラジエータ8を介して温度検知バルブ2に至っている。
Embodiment 2. FIG.
FIG. 2 shows a vehicle drive system according to the second embodiment of the present invention. In the first embodiment shown in FIG. 1, the third flow path 9 is composed of an engine 1-a radiator 8-a temperature detection valve 2. In contrast, in the second embodiment shown in FIG. 2, the third flow path 9 is branched from the engine 1 through the second flow path 6, and the temperature detection valve is branched via the radiator 8. 2 has been reached.
 この実施の形態2の機能及び効果は実施の形態1と同様であるが、実施の形態1の場合、エンジン1内の流路出口が2か所であるため、エンジン1内に流路分岐部が存在し、温度検知バルブ2による循環ループの切替に伴い、エンジン1内流路の一部に冷却水が流れない部分が生じるが、本実施の形態2では、エンジン1に設けられる冷却水出口が1か所になることから、エンジン1内に流路分岐部を設ける必要が無く、エンジン1内の流路全領域を冷却水が止まらずに循環させることができ、エンジン1をより確実に冷却することができる。 The functions and effects of the second embodiment are the same as those of the first embodiment. However, in the first embodiment, since there are two flow path outlets in the engine 1, a flow path branching section is provided in the engine 1. In accordance with the switching of the circulation loop by the temperature detection valve 2, there is a portion where the cooling water does not flow in a part of the flow path in the engine 1. In the second embodiment, the cooling water outlet provided in the engine 1 Therefore, there is no need to provide a flow path branching portion in the engine 1, and the entire flow path area in the engine 1 can be circulated without stopping the cooling water. Can be cooled.
 実施の形態3.
 図3は、本発明の実施の形態3による車両用駆動システムを示しており、第2流路6内にモータ13又は発電機14、又はその両方を熱的に組み込んだ点が実施の形態1又は実施の形態2と異なっている。
 このように構成することにより、インバータ11だけの発熱だけでなく、モータ13や発電機14の発熱も同時に活用して、エンジン1の暖機をより一層効率よく行うことができる。従って、同時に、モータ13や発電機14の放熱を行うことができる。
Embodiment 3 FIG.
FIG. 3 shows a vehicle drive system according to Embodiment 3 of the present invention, in which the motor 13 and / or generator 14 or both are thermally incorporated in the second flow path 6 according to Embodiment 1. Or, it is different from the second embodiment.
With this configuration, the engine 1 can be warmed up more efficiently by utilizing not only the heat generated by the inverter 11 but also the heat generated by the motor 13 and the generator 14 at the same time. Therefore, heat can be radiated from the motor 13 and the generator 14 at the same time.
 そして、発電機や電動機を同一の循環流路を循環する冷却水にて冷却できるとともに、これらの冷却器が圧力損失体として機能し、インバータ用冷却器内圧力を低下することができる。この内圧低下により、インバータ用冷却器内で活発に沸騰が生じ、低圧下における沸点の低下を活用し、高効率にインバータを冷却することができる。
 なお、発電機および電動機もインバータ同様冷却する必要があり、これら全てまたはこれらのうち二つを、一体化させ、一括して冷却する構造であってもよい。
And while a generator and an electric motor can be cooled with the cooling water which circulates through the same circulation channel, these coolers function as a pressure loss object and can reduce the pressure in the inverter cooler. Due to this decrease in internal pressure, boiling occurs actively in the inverter cooler, and the inverter can be cooled with high efficiency by utilizing the decrease in boiling point under low pressure.
In addition, it is necessary to cool a generator and a motor similarly to an inverter, and all or two of them may be integrated and cooled collectively.
 実施の形態4.
 図4は、本発明の実施の形態4による車両用駆動システムを示しており、第1流路5に、加熱装置15を設けた点が実施の形態1又は実施の形態2と異なっている。なお、図示していないが、上記実施の形態3に対しても適用可能である。
 この実施の形態4では、インバータ、モータ及び/又は発電機からの発熱ではエンジン1の暖機が不十分な場合に、加熱装置15により適切に冷却水温度を上昇させることができ、上記の実施の形態1~3より、さらに早く暖機を完了させることができる。なお、モータ及び発電機は、いずれが上流側に配置されていても良い。
Embodiment 4 FIG.
FIG. 4 shows a vehicle drive system according to Embodiment 4 of the present invention, which is different from Embodiment 1 or Embodiment 2 in that a heating device 15 is provided in the first flow path 5. Although not shown, the present invention can also be applied to the third embodiment.
In the fourth embodiment, when the engine 1 is not sufficiently warmed up by heat generated from the inverter, motor, and / or generator, the heating device 15 can appropriately raise the coolant temperature, The warm-up can be completed more quickly than the first to third embodiments. Note that either the motor or the generator may be arranged on the upstream side.
 図5は、本実施の形態4の変形例を示しており、加熱装置15を第1流路5中に設ける代わりに、エンジン1内の流路(図示せず)と連結している第4流路16中に、ポンプ17と加熱装置15を設けている。
 なお、図5では、エンジン1に直接第4流路16を接続した構成を示しているが、これに限定されず、エンジン1内の流路を冷却水が循環するよう第1流路5、第2流路6、及び第3流路9のいずれかの途中時に加熱装置15を設けてもよい。
FIG. 5 shows a modification of the fourth embodiment, in which a heating device 15 is connected to a flow path (not shown) in the engine 1 instead of being provided in the first flow path 5. A pump 17 and a heating device 15 are provided in the flow path 16.
5 shows a configuration in which the fourth flow path 16 is directly connected to the engine 1, the present invention is not limited to this, and the first flow path 5 and the cooling water are circulated through the flow path in the engine 1. You may provide the heating apparatus 15 in the middle of either the 2nd flow path 6 and the 3rd flow path 9. FIG.
 この変形例でも、ポンプ17により第4流路16内を冷却水が循環し、加熱装置15により適切に冷却水温度を上昇させることができ、前記と同様、インバータ、モータ及び/又は発電機からの発熱ではエンジン1の暖機が不十分な場合に、より早く暖機を完了させることができる。 Also in this modified example, the cooling water circulates in the fourth flow path 16 by the pump 17 and the cooling water temperature can be appropriately raised by the heating device 15, and, similarly to the above, from the inverter, the motor and / or the generator. When the engine 1 is not sufficiently warmed up, the warming up can be completed more quickly.
 なお、EGRクーラ(図示せず)用の冷却水の給水/排水接続口は、EGRクーラがエンジン1から排出される高温排ガスの冷却を主目的としていることから、エンジン1の動作に付随して動作する第3流路9、又は冷却水が流れ続ける第2流路6に並設して設けた方が好ましい。 The cooling water supply / drain connection port for the EGR cooler (not shown) is mainly used for cooling the high-temperature exhaust gas discharged from the engine 1 by the EGR cooler. It is preferable that the third flow path 9 that operates or the second flow path 6 in which cooling water continues to flow is provided in parallel.
 なお、インバータ用冷却器3は、従来の放熱フィンが内装された強制対流冷却器でもよく、好ましくは冷却器内で、冷却水の一部が蒸発又は沸騰し、液体の一部が潜熱を受熱し、気化(蒸気泡発生)する沸騰冷却器が良い。すなわち、インバータ11が発熱すると、沸騰が発生し、沸騰熱伝達にて高効率に冷却することができる。 The inverter cooler 3 may be a forced convection cooler in which conventional heat radiation fins are installed. Preferably, a part of the cooling water evaporates or boils and a part of the liquid receives latent heat. A boiling cooler that vaporizes (generates steam bubbles) is preferable. That is, when the inverter 11 generates heat, boiling occurs, and cooling can be performed with high efficiency by boiling heat transfer.
 本発明では、エンジン1の適切な冷却水温度が85℃から110℃、さらに好ましくは100℃程度(水の沸点は100℃であるが、不凍液(50wt%エチレングリコール水溶液)の沸点は107℃程度で、さらに加圧されると沸点は上昇する)であることから、冷却水温度が冷却水の沸点に近く、インバータ用冷却器3内で沸騰が発生しやすい。 In the present invention, the appropriate cooling water temperature of the engine 1 is 85 ° C. to 110 ° C., more preferably about 100 ° C. (the boiling point of water is 100 ° C., but the boiling point of the antifreeze liquid (50 wt% ethylene glycol aqueous solution) is about 107 ° C. Therefore, when the pressure is further increased, the boiling point rises). Therefore, the cooling water temperature is close to the boiling point of the cooling water, and boiling easily occurs in the inverter cooler 3.
 従って、液体のみの強制対流熱伝達と、気液二相からなる沸騰熱伝達の異なる放熱形態が混在しやすく、条件によって不連続にインバータ温度が変化しやすい。そこで、インバータ用冷却器3が主に沸騰熱伝達状態になる冷却器を適用することにより、インバータ11の急激な温度変化を抑制することができる。 Therefore, it is easy to mix heat dissipation forms with forced convection heat transfer only with liquid and boiling heat transfer consisting of two phases of gas and liquid, and the inverter temperature easily changes discontinuously depending on conditions. Then, the rapid temperature change of the inverter 11 can be suppressed by applying the cooler in which the inverter cooler 3 is mainly in a boiling heat transfer state.
 なお、沸騰冷却器を適用した場合、冷却水に混入している残留ガスが気泡化し易く、流路途中時に停滞し易くなるので、流路配管は密閉形である方が好ましい。また、半密閉形の流路配管でも良い。
 また、上記の各実施例において、図6に示すように、第3流路9途中にリザーバタンク18を設けると共にその注水口に逆止弁19を設けることが好ましい。この場合、リザーバタンク18は第1~第3流路中のどの流路に配置してもよいが、第1流路5又は第2流路6のエンジン1より下流で温度検知バルブ2より上流に配置することが好ましい。
In addition, when a boiling cooler is applied, since the residual gas mixed in the cooling water is easily bubbled and easily stagnated in the middle of the flow path, the flow path pipe is preferably sealed. Alternatively, a semi-enclosed flow channel pipe may be used.
In each of the above embodiments, as shown in FIG. 6, it is preferable to provide a reservoir tank 18 in the middle of the third flow path 9 and a check valve 19 at the water inlet. In this case, the reservoir tank 18 may be disposed in any of the first to third channels, but is downstream from the engine 1 in the first channel 5 or the second channel 6 and upstream from the temperature detection valve 2. It is preferable to arrange in.
 このようにすることにより、システム動作時に発生する不凝縮ガスを流路配管外へ排出することができるとともに、システム停止時には低温になり流路配管内圧力が低下しても、流路配管外から周囲空気が流入せず、流路配管中に残留空気が停滞し、流動阻害及び放熱能力の劣化を抑制することができる。 In this way, non-condensable gas generated during system operation can be discharged outside the flow path piping, and even when the system temperature is low and the pressure in the flow path piping decreases, Ambient air does not flow in, and residual air stagnates in the flow path piping, which can suppress flow inhibition and deterioration of heat dissipation capability.
 また、本発明では、温度検知バルブ2とポンプ4との間にインバータ用冷却器3を設けたことにより、冷却水が循環するループ内で最も低い圧力になることから、インバータ用冷却器3内の冷却水沸点を低温にすることができ、沸騰冷却器に適した構成になっている。すなわち、本発明システムのようなインバータ用冷却器の配置位置が最も冷却水圧力が低く、低い温度にて沸騰が発生し、効率よく冷却することができる。 Further, in the present invention, since the inverter cooler 3 is provided between the temperature detection valve 2 and the pump 4, the pressure becomes the lowest in the loop through which the cooling water circulates. The boiling point of the cooling water can be lowered, and the configuration is suitable for a boiling cooler. That is, the position of the inverter cooler as in the system of the present invention has the lowest cooling water pressure, boiling occurs at a low temperature, and cooling can be performed efficiently.
 さらに、インバータ用冷却器3の上流側(第1循環ループ7)に、図3に示す如くモータ13や発電機14を設けることにより、これらを冷却する流路中の圧力損失により、さらにインバータ用冷却器3内の圧力(飽和温度)を低下させることができ、より高効率に冷却することができる。 Further, by providing a motor 13 and a generator 14 on the upstream side (first circulation loop 7) of the inverter cooler 3 as shown in FIG. The pressure (saturation temperature) in the cooler 3 can be reduced, and cooling can be performed with higher efficiency.
 これを、図7及び8を参照して以下に詳細に説明する。
 図7に、図3に示す実施の形態3において、図6に示す如く、第3流路9にリザーバタンク18と逆止弁19とを設けたときの、第3流路9→第2流路6で構成される第2循環ループ10に沿った圧力の変化を模式的に示す。
This will be described in detail below with reference to FIGS.
7, in the third embodiment shown in FIG. 3, the third flow path 9 → the second flow when the reservoir tank 18 and the check valve 19 are provided in the third flow path 9 as shown in FIG. 6. The change of the pressure along the 2nd circulation loop 10 comprised by the path 6 is shown typically.
 例えば、エンジン1から冷却水が、第3流路9に沿って、ラジエータ8→温度検知バルブ2から第2流路6へ入り、発電機14→モータ13→インバータ11を経由して流れると、流れに伴う圧力損失が各構成要素の増加に伴って大きくなり、インバータ11内の冷却水の圧力はエンジン1下流の大気圧(1at)に比べ、より低圧(0.7at)になる。その後、その下流のポンプ4にて昇圧され、エンジン1へ1.1atで流入する。 For example, when cooling water from the engine 1 enters the second flow path 6 from the radiator 8 → the temperature detection valve 2 along the third flow path 9 and flows via the generator 14 → the motor 13 → the inverter 11, The pressure loss due to the flow increases as each component increases, and the pressure of the cooling water in the inverter 11 becomes lower (0.7 at) than the atmospheric pressure (1 at) downstream of the engine 1. Thereafter, the pressure is increased by the downstream pump 4 and flows into the engine 1 at 1.1 at.
 図8に、冷却水の圧力に対する沸点を示す(ここで、黒三角印で示す50%LLCはエチレングリコールと水が1:1で配合された不凍液を示す)。図から分かるように、本発明では、一般に車輌用の冷却水として良く使用される不凍液(黒三角印)の場合、図7に示したインバータ11の出口圧力である0.7atの時は96.9℃で沸騰し、エンジン1の下流の大気圧である1.0atの時は107.5℃で沸騰する。従って、その差10.6℃だけ低い温度で沸騰させることができ、より低温の不凍液に対してインバータ11は沸騰熱伝達にて放熱することができ、インバータ11をより低温に保持することができる。 FIG. 8 shows the boiling point with respect to the pressure of the cooling water (here, 50% LLC indicated by black triangles indicates an antifreeze mixed with ethylene glycol and water at a ratio of 1: 1). As can be seen from the figure, in the present invention, in the case of the antifreeze liquid (black triangle mark) that is generally used as a cooling water for vehicles, the output pressure of the inverter 11 shown in FIG. It boils at 9 ° C. and boils at 107.5 ° C. at 1.0 atm, which is the atmospheric pressure downstream of the engine 1. Therefore, the difference can be boiled at a temperature lower by 10.6 ° C., and the inverter 11 can dissipate heat by boiling heat transfer with respect to the lower temperature antifreeze, and the inverter 11 can be kept at a lower temperature. .
 一方、仮にポンプ4とエンジン1との間にインバータ11を装着したと仮定した場合、インバータ11から1.1atで流出させるには110.0℃が必要であるから、図7に示す本発明に比べて、110.0‐96.9=13.1℃も高くなってしまう。
 従って、インバータ用冷却器3が沸騰熱伝達を利用して熱交換する冷却器の場合、本発明の配置(インバータ11→ポンプ4→エンジン1)が最も低温の冷却水へ放熱することを可能とし、インバータ11をより低温に保持することができ、インバータ11を長寿命化することが可能となる。
On the other hand, if it is assumed that the inverter 11 is mounted between the pump 4 and the engine 1, 110.0 ° C. is required to flow out from the inverter 11 at 1.1 at. Therefore, the present invention shown in FIG. Compared to 110.0-96.9 = 13.1 ° C., it becomes higher.
Therefore, when the inverter cooler 3 is a cooler that exchanges heat using boiling heat transfer, the arrangement of the present invention (inverter 11 → pump 4 → engine 1) can dissipate heat to the coldest cooling water. The inverter 11 can be kept at a lower temperature, and the life of the inverter 11 can be extended.
 1 エンジン、2 温度検知バルブ(ループ選択部)、3 インバータ用冷却器、4 ポンプ、5 第1流路、6 第2流路、7 第1循環ループ、8 ラジエータ、9 第3流路、10 第2循環ループ、11 インバータ、12 ファン、13 モータ、14 発電機、15 加熱装置、16 第4流路、17 ポンプ、18 リザーバタンク、19 逆止弁。 1 engine, 2 temperature detection valve (loop selection part), 3 cooler for inverter, 4 pump, 5 first flow path, 6 second flow path, 7 first circulation loop, 8 radiator, 9 third flow path, 10 2nd circulation loop, 11 inverter, 12 fan, 13 motor, 14 generator, 15 heating device, 16 4th flow path, 17 pump, 18 reservoir tank, 19 check valve.

Claims (13)

  1.  エンジンとモータを併用したハイブリッド車輌の駆動システムにおいて、
     前記エンジンとループ選択部とを連結する第1流路と、
     前記ループ選択部、前記モータを駆動するインバータの冷却器、冷却液を循環させるポンプ、及び前記エンジンを順次連結する第2流路と、
     前記エンジン又は前記第1流路と前記ループ選択部とをラジエータを介して連結する第3流路とを備え、
     前記ループ選択部は、前記冷却液が前記エンジンの暖機に必要な所望温度以下のとき、前記第1流路から前記第2流路への第1の循環ループを選択し、前記所望温度を超えたときは前記第3流路から前記第2流路への第2の循環ループを選択して前記冷却液を循環させる
     駆動システム。
    In a hybrid vehicle drive system that uses both an engine and a motor,
    A first flow path connecting the engine and the loop selector;
    A loop selector, a cooler of an inverter that drives the motor, a pump that circulates a coolant, and a second flow path that sequentially connects the engine;
    A third flow path for connecting the engine or the first flow path and the loop selection section via a radiator;
    The loop selection unit selects a first circulation loop from the first flow path to the second flow path when the coolant is below a desired temperature required for warming up the engine, and sets the desired temperature. When exceeded, the second circulation loop from the third flow path to the second flow path is selected to circulate the coolant.
  2.  前記ループ選択部は、前記冷却液が前記所望温度のときは前記第1の循環ループに加えて前記第2の循環ループも同時に選択し、前記冷却液を分流循環させる
     請求項1記載の駆動システム。
    2. The drive system according to claim 1, wherein when the coolant is at the desired temperature, the loop selection unit simultaneously selects the second circulation loop in addition to the first circulation loop, and diverts and circulates the coolant. .
  3.  前記所望温度が一定の幅を有する
     請求項1記載の駆動システム。
    The drive system according to claim 1, wherein the desired temperature has a certain width.
  4.  前記第2流路中に発電機及び電動機の少なくともいずれか一方を設けた
     請求項1に記載の駆動システム。
    The drive system according to claim 1, wherein at least one of a generator and an electric motor is provided in the second flow path.
  5.  前記第1流路中に加熱装置を設けた
     請求項1に記載の駆動システム。
    The drive system according to claim 1, wherein a heating device is provided in the first flow path.
  6.  前記エンジン内の流路と連結している第4流路中に加熱装置とポンプを設けた
     請求項1に記載の駆動システム。
    The drive system according to claim 1, wherein a heating device and a pump are provided in a fourth flow path connected to the flow path in the engine.
  7.  前記第1流路から第3流路のいずれかの流路中にリザーバタンクを設けると共にその注水口に逆止弁を設けた
     請求項1、4、又は5に記載の駆動システム。
    The drive system according to claim 1, 4 or 5, wherein a reservoir tank is provided in any one of the first flow path to the third flow path, and a check valve is provided in a water inlet thereof.
  8.  前記第1流路から第3流路のいずれかの流路が、前記第1流路又は第2流路の内、前記エンジンの下流で前記ループ選択部の上流の流路である
     請求項7記載の駆動システム。
    8. The flow path from the first flow path to the third flow path is a flow path that is downstream of the engine and upstream of the loop selection unit in the first flow path or the second flow path. The described drive system.
  9.  前記ループ選択部は、受動切替型三方バルブ式サーモスタットである
     請求項1に記載の駆動システム。
    The drive system according to claim 1, wherein the loop selection unit is a passive switching type three-way valve thermostat.
  10.  前記ループ選択部は、循環液の温度センサと、前記第1循環ループ又は前記第2循環ループを選択するバルブと、前記センサからの出力信号を受けて前記バルブへの制御信号を出力する制御器とで構成されている
     請求項1に記載の駆動システム。
    The loop selection unit includes a circulating fluid temperature sensor, a valve that selects the first circulation loop or the second circulation loop, and a controller that receives an output signal from the sensor and outputs a control signal to the valve. The drive system according to claim 1, comprising:
  11.  前記バルブが、前記第1流路と前記第3流路中にそれぞれ分離して設けられており、前記制御器からの前記出力信号に応じて開閉制御される
     請求項10記載の駆動システム。
    The drive system according to claim 10, wherein the valve is provided separately in the first flow path and the third flow path, and is controlled to open and close according to the output signal from the controller.
  12.  前記ループ選択部は、前記分流の割合を、徐々に又は段階的に変化させるものである
     請求項2に記載の駆動システム。
    The drive system according to claim 2, wherein the loop selection unit changes the proportion of the diversion gradually or stepwise.
  13.  前記冷却器が、沸騰冷却器である
     請求項1記載の駆動システム。
    The drive system according to claim 1, wherein the cooler is a boiling cooler.
PCT/JP2014/078747 2014-08-27 2014-10-29 Drive system WO2016031089A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015514683A JPWO2016031089A1 (en) 2014-08-27 2014-10-29 Drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014172599 2014-08-27
JP2014-172599 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031089A1 true WO2016031089A1 (en) 2016-03-03

Family

ID=55399018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078747 WO2016031089A1 (en) 2014-08-27 2014-10-29 Drive system

Country Status (2)

Country Link
JP (1) JPWO2016031089A1 (en)
WO (1) WO2016031089A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108705928A (en) * 2017-04-11 2018-10-26 邦迪克斯商用车***有限责任公司 Use the mixed powered vehicle heat management of dynamic heater
CN109578126A (en) * 2018-10-30 2019-04-05 中国北方发动机研究所(天津) High/low temperature dual cycle cooling system for hybrid vehicle
CN112302778A (en) * 2020-09-23 2021-02-02 东风汽车集团有限公司 Whole-vehicle thermal management device and management method for hybrid electric vehicle
WO2021192528A1 (en) * 2020-03-23 2021-09-30 日立Astemo株式会社 Hybrid control device and method for controlling hybrid control device
US11807112B2 (en) 2016-12-14 2023-11-07 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038874A (en) * 2005-08-03 2007-02-15 Toyota Motor Corp Cooling system of hybrid vehicle
JP2008044514A (en) * 2006-08-15 2008-02-28 T Rad Co Ltd Cooling system
JP2012171557A (en) * 2011-02-23 2012-09-10 Toyota Motor Corp Cooling system for hybrid vehicle
JP2013044496A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Evaporative cooling device and cooling system for vehicle using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358661A (en) * 1976-11-08 1978-05-26 Tokyo Shibaura Electric Co Device for cooling electronic parts
JPH06104357A (en) * 1992-08-27 1994-04-15 Hitachi Ltd Semiconductor cooling device
JP2000179375A (en) * 1998-12-16 2000-06-27 Nissan Diesel Motor Co Ltd Warming-up device for hybrid car
JP2004349551A (en) * 2003-05-23 2004-12-09 Denso Corp Boiling cooling system
JP3710804B2 (en) * 2004-01-09 2005-10-26 本田技研工業株式会社 Hybrid vehicle cooling system
JP2011098628A (en) * 2009-11-05 2011-05-19 Toyota Motor Corp Cooling system of hybrid vehicle
JP2012184753A (en) * 2011-03-08 2012-09-27 Toyota Motor Corp Cooling system
JP6155907B2 (en) * 2012-08-28 2017-07-05 株式会社デンソー Thermal management system for vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038874A (en) * 2005-08-03 2007-02-15 Toyota Motor Corp Cooling system of hybrid vehicle
JP2008044514A (en) * 2006-08-15 2008-02-28 T Rad Co Ltd Cooling system
JP2012171557A (en) * 2011-02-23 2012-09-10 Toyota Motor Corp Cooling system for hybrid vehicle
JP2013044496A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Evaporative cooling device and cooling system for vehicle using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11807112B2 (en) 2016-12-14 2023-11-07 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method
CN108705928A (en) * 2017-04-11 2018-10-26 邦迪克斯商用车***有限责任公司 Use the mixed powered vehicle heat management of dynamic heater
CN108705928B (en) * 2017-04-11 2022-03-25 邦迪克斯商用车***有限责任公司 Hybrid commercial vehicle thermal management using dynamic heat generators
CN109578126A (en) * 2018-10-30 2019-04-05 中国北方发动机研究所(天津) High/low temperature dual cycle cooling system for hybrid vehicle
CN109578126B (en) * 2018-10-30 2021-05-28 中国北方发动机研究所(天津) High and low temperature dual cycle cooling system for hybrid vehicle
WO2021192528A1 (en) * 2020-03-23 2021-09-30 日立Astemo株式会社 Hybrid control device and method for controlling hybrid control device
CN112302778A (en) * 2020-09-23 2021-02-02 东风汽车集团有限公司 Whole-vehicle thermal management device and management method for hybrid electric vehicle

Also Published As

Publication number Publication date
JPWO2016031089A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP7185469B2 (en) vehicle thermal management system
JP4023472B2 (en) Thermoelectric generator
JP6169225B1 (en) Battery pack thermal management system
JP3910612B2 (en) Coolant fan control for fuel cell systems
WO2016031089A1 (en) Drive system
WO2015139662A1 (en) Circulation system for extended-range electric bus
JP2009190687A (en) Air conditioning system for vehicle
KR20200142617A (en) Thermal management system for vehicle
JP2011173543A (en) Battery cooling/heating device
JP2013188098A (en) Cooling device of hybrid electric vehicle
JP2015112943A (en) Vehicle cooling circulation system
US20220258558A1 (en) Heat management device for vehicle, and heat management method for vehicle
JP5633199B2 (en) Internal combustion engine cooling system
JP2015085699A (en) Method for adjusting temperature of refrigerant liquid for cooling engine of hybrid vehicle
JP2015052308A (en) Cooling water control device
CN110758088B (en) Thermal management system and control method of hybrid electric vehicle and vehicle
JP2011157035A (en) Cooling device for hybrid vehicle
JP6637005B2 (en) Vehicle cooling system
JP4396351B2 (en) Thermoelectric generator
KR20090102478A (en) Heat pump system for vehicles
JP2016050545A (en) Cooling system for vehicle
JP2006258069A (en) Cooling system
CN111434904B (en) Heat storage and radiation device for internal combustion engine
JP2004324445A (en) Combined cooling system for hybrid vehicle
JP2006105452A (en) Cogeneration system and its control method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015514683

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900920

Country of ref document: EP

Kind code of ref document: A1