JP6971450B1 - レゾルバ - Google Patents

レゾルバ Download PDF

Info

Publication number
JP6971450B1
JP6971450B1 JP2020564770A JP2020564770A JP6971450B1 JP 6971450 B1 JP6971450 B1 JP 6971450B1 JP 2020564770 A JP2020564770 A JP 2020564770A JP 2020564770 A JP2020564770 A JP 2020564770A JP 6971450 B1 JP6971450 B1 JP 6971450B1
Authority
JP
Japan
Prior art keywords
winding
detection
resolver
windings
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020564770A
Other languages
English (en)
Other versions
JPWO2021205676A1 (ja
Inventor
士郎 嶋原
Original Assignee
士郎 嶋原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 士郎 嶋原 filed Critical 士郎 嶋原
Publication of JPWO2021205676A1 publication Critical patent/JPWO2021205676A1/ja
Application granted granted Critical
Publication of JP6971450B1 publication Critical patent/JP6971450B1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2086Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of two or more coils with respect to two or more other coils
    • G01D5/2093Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of two or more coils with respect to two or more other coils using polyphase currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

多極形式により構成した励磁巻線2x,2y及び検出巻線3を、固定体4における同軸上に配設するとともに、多極形式により構成し、かつ所定の電気的位相Dを異ならせた一対の巻線部Mx1,My1…により構成した中間回動巻線M1…の複数組(M1,M2)を回動体5における同軸上に配設し、当該複数組の中間回動巻線M1,M2の同位相の巻線部同士(Mx1とMx2同士,My1とMy2同士)をそれぞれ閉回路H…となるように接続する。

Description

本発明は、励磁巻線及び検出巻線を備えることにより回動体の変位量(回動角)を検出する際に用いて好適なレゾルバに関する。
従来、電気角で90゜の位相を異ならせた空間位置に固定して設けた励磁信号が入力する二相の励磁巻線と、回動軸に設けた検出信号が出力する検出巻線とを有し、励磁信号と検出信号の位相差から回動軸の回動角を検出するレゾルバは知られている。この種のレゾルバは、回動軸の回動角をθとすると、励磁巻線の一方の相はsinθ,他方の相はcosθとなる。今、励磁巻線に位相を90゜異ならせた励磁信号(A・sinωt)と(A・cosωt)をそれぞれ付与すると、検出巻線から出力する検出信号は、V=(A・sinωt・cosθ)+(A・cosωt・sinθ)=A・sin(ωt+θ)となり、回動軸の回動角に対応して位相が変化する検出信号を得るため、励磁信号と検出信号の位相差から回動軸の回動角θを求めることができる。
一方、本出願人は、変調信号を利用して検出精度の高度化を実現するとともに、併せて小型コンパクト化,軽量化及び低コスト化を図ることができるレゾルバを、既に、特許文献1により提案した。このレゾルバは、励磁信号が入力する励磁巻線及び検出信号が出力する検出巻線を有し、励磁巻線又は検出巻線を設けた受動体の変位量に応じて変化する検出信号に基づいて受動体の変位量を検出するレゾルバを構成するに際し、励磁巻線に、励磁信号により高周波信号を変調した変調信号を入力するとともに、検出巻線から出力する変調信号を復調して検出信号を得るようにしたものである。
特開2000−292205号公報
しかし、上述した特許文献1のレゾルバは、小型化、特に、超小型化を図る観点からは、次のような更なる改善すべき課題も存在した。
即ち、この種のレゾルバは、励磁巻線及び検出巻線を構成するに際し、周方向の導線部と径方向の導線部を組合わせることにより、周方向に沿って矩形波状となるコイルパターンにより構成するが、小型のレゾルバ、特に、直径が5〔mm〕前後となる超小型のレゾルバを実現する場合には、コイルパターンにおける径方向の導線部同士のピッチを0.5〔mm〕程度に設定し、このピッチにより一周の極数を32極(極対数は16)程度に設定する必要がある。通常、極数を多くするほど、検出精度を高くすることができるが、反面、加工精度に精密性が要求されるため、製造コストが無視できないとともに、また、加工上の限界から反って精度が低下する問題がある。
結局、レゾルバの小型化(超小型化)を図る場合、コストメリットを確保しつつ、極数を多くする(ピッチを狭くする)には限界があるため、高度の検出精度、更には、高安定性及び高信頼性の要請に対して、十分に応えることができないという解決すべき課題が存在した。
本発明は、このような背景技術に存在する課題を解決したレゾルバの提供を目的とするものである。
本発明は、上述した課題を解決するため、同軸上に配した固定体4及び回動体5を備え、所定の電気的位相Dを異ならせることにより固定体4に配設した一対の励磁巻線2x,2yに励磁信号Sx,Syを入力し、かつ検出巻線3から出力する検出信号Soに基づいて回動体5の変位量θを検出するレゾルバ1を構成するに際して、多極形式により構成した励磁巻線2x,2y及び検出巻線3を、固定体4の同軸上に配設するとともに、多極形式により構成し、かつ所定の電気的位相Dを異ならせた一対の巻線部Mx1,My1…により構成した中間回動巻線M1…の複数組(M1,M2)を回動体5の同軸上に配設し、当該複数組の中間回動巻線M1,M2の同位相の巻線部同士(Mx1とMx2同士,My1とMy2同士)をそれぞれ閉回路H…となるように接続したことを特徴とする。
この場合、発明の好適な態様により、固定体4及び回動体5は、それぞれ円盤状Bに構成し、励磁巻線2x,2yと検出巻線3を、固定体4の径方向Fdの異なる位置に配設するとともに、複数組の中間回動巻線M1,M2を、当該励磁巻線2x,2yと当該検出巻線3に対向させて配設してもよいし、或いは、固定体4及び回動体5は、それぞれ円筒状Rに構成し、励磁巻線2x,2yと検出巻線3を、固定体4の軸方向Fcの異なる位置に配設するとともに、複数組の中間回動巻線M1,M2を、当該励磁巻線2x,2yと当該検出巻線3に対向させて配設してもよい。一方、固定体4及び回動体5には、励磁巻線2x,2y及び検出巻線3を配設した領域以外の領域に、回動体5の基準位置を検出する位置検出巻線Xp,Xmを設けることができる。また、励磁巻線2x,2y及び中間回動巻線M1,M2は、多極形式により所定の電気的位相Dを異ならせた一対のコイルパターンP,Pを、表裏にそれぞれ形成したシートコイルCi,Cm1,Cm2により構成することができるとともに、検出巻線3は、多極形式のコイルパターンPを表裏の少なくとも一方に配したシートコイルCoにより形成することができる。さらに、コイルパターンPは、周方向Ffの導線部(以下、周導線部)Wo…,Wi…と径方向Fdの導線部(以下、径導線部)Wm…を組合わせることにより、周方向Ffに沿って矩形波状に形成するとともに、周導線部Wo…,Wi…の幅寸法Lo,Liを、径導線部Wm…の幅寸法Lmよりも大きく設定することができる。
このような構成を有する本発明に係るレゾルバ1によれば、次のような顕著な効果を奏する。
(1) 多極形式により構成した励磁巻線2x,2y及び検出巻線3を、固定体4の同軸上に配設するとともに、多極形式により構成し、かつ所定の電気的位相Dを異ならせた一対の巻線部Mx1,My1…により構成した中間回動巻線M1…の複数組(M1,M2)を回動体5の同軸上に配設し、当該複数組の中間回動巻線M1,M2の同位相の巻線部同士(Mx1とMx2同士,My1とMy2同士)をそれぞれ閉回路H…となるように接続したため、加工上の精度を確保しつつ、実質的な極数を増やすことが可能となり、高度の検出精度、更には、高安定性及び高信頼性の要請に対して、十分に応えることができる小型のレゾルバ1、特に、直径が5〔mm〕前後となる超小型のレゾルバ1も容易に実現できる。しかも、検出巻線3は固定体4に配することにより出力トランスを排除できるため、更なる小型化及び低コスト化にも寄与できる。
(2) 好適な態様により、固定体4及び回動体5をそれぞれ円盤状Bに構成し、励磁巻線2x,2yと検出巻線3を、固定体4の径方向Fdの異なる位置に配設するとともに、複数組の中間回動巻線M1,M2を、当該励磁巻線2x,2yと当該検出巻線3に対向させて配設すれば、特に、軸方向Fcにおける全体の厚さを小さくできるため、薄形タイプのレゾルバ1を容易に得ることができる。
(3) 好適な態様により、固定体4及び回動体5をそれぞれ円筒状Rに構成し、励磁巻線2x,2yと検出巻線3を、固定体4の軸方向Fcの異なる位置に配設するとともに、複数組の中間回動巻線M1,M2を、当該励磁巻線2x,2yと当該検出巻線3に対向させて配設すれば、特に、径方向Fdにおける全体の寸法を小さくできるため、細形タイプのレゾルバ1を容易に得ることができるとともに、内側に形成される空間に、接続ケーブル等の配線類を通すことができる。
(4) 好適な態様により、固定体4及び回動体5における励磁巻線2x,2y及び検出巻線3を配設した領域以外の領域に、回動体5の基準位置を検出する位置検出巻線Xp,Xmを設ければ、例えば、回動体5の機械的な1回転位置を正確に検出できるなど、未使用領域を有効利用することによりアブソリュートタイプのレゾルバ1を容易に構築することができる。
(5) 好適な態様により、励磁巻線2x,2y及び中間回動巻線M1,M2を、多極形式により所定の電気的位相Dを異ならせた一対のコイルパターンP,Pを、表裏にそれぞれ形成したシートコイルCi,Cm1,Cm2により構成すれば、励磁巻線2x,2y及び中間回動巻線M1,M2を含む全体の厚さを薄くできるため、超小型のレゾルバを実現する上での最適な形態として実施することができる。
(6) 好適な態様により、検出巻線3を、多極形式のコイルパターンPを表裏の少なくとも一方に配したシートコイルCoにより形成すれば、検出巻線3の全体の厚さを薄くできるとともに、励磁巻線2x,2y及び中間回動巻線M1,M2と組合わせて使用することが可能になるため、励磁巻線2x,2y及び中間回動巻線M1,M2と組合わせた際の最適な形態として実施することができる。
(7) 好適な態様により、コイルパターンPを形成するに際し、周導線部Wo…,Wi…と径導線部Wm…を組合わせることにより、周方向Ffに沿って矩形波状に形成するとともに、周導線部Wo…,Wi…の幅寸法Lo,Liを、径導線部Wm…の幅寸法Lmよりも大きく設定すれば、コイルパターンP全体の電気抵抗を小さくできるため、発生する有効磁束密度を大きくしてレゾルバ1の検出効率を高めることができる。
本発明の好適実施形態に係るレゾルバのレゾルバ本体部の原理回路図、 同レゾルバのレゾルバ本体部の内部構造を示す側面断面図、 同レゾルバの巻線配置を説明するための模式的断面構成図、 同レゾルバの中間回動巻線(励磁巻線)に用いるシートコイルの平面図及びその裏面図、 同レゾルバに使用するシートコイルの一部抽出拡大図、 図5中A−A線断面図、 同レゾルバの各巻線に使用する磁気コアの平面図、 本発明の変更実施形態に係るレゾルバのレゾルバ本体部の内部構造を示す側面断面図、 本実施形態に係るレゾルバの信号処理部のブロック回路図、 同レゾルバの各部における信号波形のタイミングチャート、
1:レゾルバ,2x:励磁巻線,2y:励磁巻線,3:検出巻線,4:固定体,5:回動体,D:所定の電気的位相,Sx:励磁信号,Sy:励磁信号,So:検出信号,θ:変位量,M1:中間回動巻線,M2:中間回動巻線,Mx1:巻線部,My1:巻線部,Mx2:巻線部,My2:巻線部,B:円盤状,Fd:径方向,R:円筒状,Fc:軸方向,Xp:位置検出巻線,Xm:位置検出巻線,P:コイルパターン,Ci:シートコイル,Cm1:シートコイル,Cm2:シートコイル,Co:シートコイル,Ff:周方向,Wo…:周導線部(導線部),Wi…:周導線部(導線部),Wm…:径導線部(導線部),Lo:幅寸法,Li:幅寸法,Lm:幅寸法,H…:閉回路
次に、本発明に係る好適実施形態を挙げ、図面に基づき詳細に説明する。
まず、本実施形態に係るレゾルバ1の構成について、図1−図7及び図9を参照して具体的に説明する。
レゾルバ1は、大別して、図2等に示す磁気系及び機械系により構成するレゾルバ本体部U1と、図9に示す電気系により構成する信号処理部U2を備える。
レゾルバ本体部U1は、平面視(軸方向Fc前面視)が円形となる内部中空のケーシング21を備える。ケーシング21の内部には、円盤状Bに構成した回動体5を収容するとともに、この回動体5の中心位置には軸方向Fc前方へ突出した回動軸22を固定する。この回動軸22は、ケーシング21の前面部21fの中心に設けたベアリング23により回動自在に支持される。そして、この回動体5に対面するケーシング21の後面部21rは、円盤状Bの固定体4として機能する。
また、固定体4に対面する回動体5の面には、径の異なる四つの同心円となる巻線収容凹溝24a,24b,24c,24dを形成する。即ち、最も大径となる外周側の巻線収容凹溝24aから最も小径となる中心側の巻線収容凹溝24dまで、径方向Fdへ所定間隔おきに順次形成する。この場合、巻線収容凹溝24aと24bは、できるだけ近接させることが望ましい。各巻線収容凹溝24a…の内部は、いずれも内側(底部側)のコア収容部と外側(表面側)のコイル収容部により形成する。一方、回動体5に対面する固定体4の面にも、各巻線収容凹溝24a,24b,24c,24dにそれぞれ対向(対面)する同様の巻線収容凹溝25a,25b,25c,25dを形成する。即ち、最も大径となる外周側の巻線収容凹溝25aから最も小径となる中心側の巻線収容凹溝25dまで、径方向Fdへ所定間隔おきに順次形成する。各巻線収容凹溝25a…の内部も各巻線収容凹溝24a…と同様になる内側(底部側)のコア収容部と外側(表面側)のコイル収容部により形成する。
次に、各巻線収容凹溝24a…,25a…に収容する磁気コア及びシートコイルについて具体的に説明する。
図7には、巻線収容凹溝24a,25aにそれぞれ収容する磁気コア6a及び巻線収容凹溝24b,25bにそれぞれ収容する磁気コア6bを示す。
各磁気コア6a,6bは、例えば、フェライト等の磁性体により一体成形した所定の厚さを有するリング状に形成し、断面は、図2に示すように、矩形形状に形成する。したがって、後述する各シートコイルCi…に接するコア面は平坦面となる。また、磁気コア6aと6bは、径が異なる点を除いて同様に形成できる。したがって、磁気コア6aは、同一の磁気コアを二つ用意し、図2に示すように、一方の磁気コア6aを巻線収容凹溝24aの内側(底部側)のコア収容部に収容し、他方の磁気コア6aを巻線収容凹溝25aの内側(底部側)のコア収容部に収容して使用することができる。また、磁気コア6bも、磁気コア6aと同様に、同一の磁気コアを二つ用意し、一方の磁気コア6bを巻線収容凹溝24bの内側(底部側)のコア収容部に収容し、他方の磁気コア6bを巻線収容凹溝25bの内側(底部側)のコア収容部に収容して使用することができる。なお、他の巻線収容凹溝24c,25c,24d,25dに収容する磁気コア6c,6dについては、詳細な図示を省略したが、径が異なる点を除いて磁気コア6a(6b)と同様に形成できる。
次に、一対の励磁巻線2x,2yを構成するシートコイルCiの具体的な構成について説明する。
シートコイルCiは、図4−図6に示すように、絶縁基板によりリング形に形成したシート部31を有し、このシート部31の表面(一方の面)31fに、導体(銅箔)による図4(a)に示す一方の励磁巻線(sin側の励磁巻線)2xのコイル部を形成し、かつシート部31の裏面(他方の面)31rに、導体(銅箔)による図4(b)に示す他方の励磁巻線(cos側の励磁巻線)2yのコイル部を形成する。これにより、シートコイルCiは、全体がフレキシブルプリント回路基板(FPCB)として構成される。
一方の励磁巻線2xは、多極形式のコイルパターンPにより形成する。図4は、極対数を「16」(32極)に選定した場合を示す。例示の場合、シート部31の厚さは0.02〔mm〕、導電部となるコイルパターンPの厚さは0.015〔mm〕である。なお、極対数を「16」に選定した場合を示したが、この極対数は任意である。現時点では「2」〜「512」の極対数を想定できるが、今後は、これ以上の極対数の実用化が想定される。また、他方の励磁巻線2yも、一方の励磁巻線2xと同一の多極形式のコイルパターンPにより形成するとともに、図4(a),(b)に示すように、一方の励磁巻線2xに対して、所定の電気的位相Dを異ならせる。具体的には、電気的位相Dを90〔゜〕に設定する。これにより、一方の励磁巻線2xは、後述するsin相側の励磁信号Sxを処理する巻線として機能するとともに、他方の励磁巻線2yは、後述するcos相側の励磁信号Syを処理する巻線として機能する。
コイルパターンPは、図5及び図6に示すように、周方向Ffの導線部(周導線部)Wo,Wiと径方向の導線部(径導線部)Wmを組合わせることにより、周方向Ffに沿って矩形波状に形成する。この際、周導線部Wo,Wiの幅寸法Lo,Liを、径導線部Wmの幅寸法Lmよりも大きく設定する。具体的には、周導線部Wo…,Wi…の幅寸法Lo,Liを、径導線部Wm…の幅寸法Lmに対して1.5〜3.5倍に選定することが望ましい。このように構成すれば、コイルパターンP全体の電気抵抗を小さくできるため、発生する有効磁束密度を大きくしてレゾルバ1の検出効率を高めることができる。
以上により、励磁巻線2x,2yのシートコイルCiが構成される。また、他のシートコイルCm1,Cm2,Coも基本的には、シートコイルCiと同様に構成できる。即ち、巻線収容凹溝24aに収容することによりシートコイルCiに対向して使用する中間回動巻線M1を構成するシートコイルCm1は、このシートコイルCiと同様に構成する。したがって、二つのシートコイルCi…を用意し、一方をシートコイルCiとして使用し、他方をシートコイルCm1として使用することができる。さらに、巻線収容凹溝24bに収容する中間回動巻線M2を構成するシートコイルCm2は、外周側から二番目の巻線収容凹溝24bに収容するため、図4に示すように、シートコイルCm1(Ci)に対して、径を小径に形成する点を除いてシートコイルCm1(Ci)と同様に構成できる。
このように、励磁巻線2x,2y及び中間回動巻線M1,M2を構成するに際し、多極形式により所定の電気的位相Dを異ならせた一対のコイルパターンP,Pを、表裏にそれぞれ形成したシートコイルCi,Cm1,Cm2により構成すれば、励磁巻線2x,2y及び中間回動巻線M1,M2を含む全体の厚さを薄くできるため、超小型のレゾルバ1を実現する上での最適な形態として実施することができる。
他方、検出巻線3を構成するシートコイルCoは、外周側から二番目の巻線収容凹溝25bに収容するため、中間回動巻線M2を構成するシートコイルCm2と同様に形成できるとともに、コイルパターンPは、シート部31における表裏面の一方にのみ形成する。即ち、検出巻線3は単一の巻線部により構成するため、使用するコイルパターンPは、シート部31の表面31f又は裏面31rの少なくとも一方に形成すれば足りる。なお、必要により他方の面には補正巻線等を設けてもよい。例示の場合、シートコイルCm2から一方側のコイルパターンPを除いたシートコイルを形成すればよい。
このように、検出巻線3を構成するに際し、多極形式のコイルパターンPを表裏の少なくとも一方に配したシートコイルCoにより形成すれば、検出巻線3の全体の厚さを薄くできるとともに、励磁巻線2x,2y及び中間回動巻線M1,M2と組合わせて使用することが可能になるため、励磁巻線2x,2y及び中間回動巻線M1,M2と組合わせた際の最適な形態として実施することができる。なお、図5におけるCoは、シートコイルCoを示している。
そして、図2及び図3に示すように、固定体4の巻線収容凹溝25aには、励磁巻線2x,2yを備えるシートコイルCiを収容するとともに、外周側から二番目に位置する巻線収容凹溝25bには、検出巻線3を備えるシートコイルCoを収容する。他方、回動体5の巻線収容凹溝24aには、中間回動巻線M1を備えるシートコイルCm1を収容するとともに、外周側から二番目に位置する巻線収容凹溝24bには、中間回動巻線M2を備えるシートコイルCm2を収容する。
このように、レゾルバ1を構成するに際し、固定体4及び回動体5をそれぞれ円盤状Bに構成し、励磁巻線2x,2yと検出巻線3を、固定体4の径方向Fdの異なる位置に配設するとともに、複数組の中間回動巻線M1,M2を、当該励磁巻線2x,2yと当該検出巻線3に対向させて配設すれば、特に、軸方向Fcにおける全体の厚さを小さくできるため、薄形タイプのレゾルバ1を容易に得ることができる。
他方、外周側から三番目に位置する巻線収容凹溝24cと25cには、回動体5の基準位置を検出する位置検出巻線Xp,Xmを設ける。例示の場合、各巻線収容凹溝24c及び25cを利用して、一対の位置検出巻線(シートコイル)Xp及び位置検出巻線(シートコイル)Xmを設けるとともに、最も中心側に位置する各巻線収容凹溝24d及び25dを利用して、この位置検出巻線Xp,Xmによる検出信号を出力する出力トランスの一次巻線(シートコイル)Xiと二次巻線(シートコイル)Xeを設けた。この場合、位置検出巻線Xp,Xmは、例えば、回動体5の機械的な1回転位置(基準位置)を検出できればよいため、各種公知の構成を採用可能である。
このように、固定体4及び回動体5における励磁巻線2x,2y及び検出巻線3を配設した領域以外の領域に、回動体5の基準位置を検出する位置検出巻線Xp,Xmを設ければ、上述のように、回動体5の機械的な1回転位置を正確に検出できるなど、未使用領域を有効利用することによりアブソリュートタイプのレゾルバ1を容易に構築することができる。
次に、上述したレゾルバ本体部U1に接続して使用する信号処理部U2の構成及び各巻線(巻線部)の結線方法について、図1−図3及び図9を参照して説明する。
まず、図1及び図3に示すように、一方(sin側)の励磁巻線2xは、この励磁巻線2xを励磁する励磁回路47に接続し、他方(cos側)の励磁巻線2yは、この励磁巻線2yを励磁する励磁回路50に接続する。また、検出巻線3は、出力処理回路51に接続する。さらに、中間回動巻線M1を構成する一方(sin側)の巻線部Mx1と中間回動巻線M2を構成する一方(sin側)の巻線部Mx2、即ち、同位相となる巻線部Mx1とMx2同士を並列に接続して閉回路Hを構成するとともに、中間回動巻線M1を構成する他方(cos側)の巻線部My1と中間回動巻線M2を構成する他方(cos側)の巻線部My2、即ち、同位相となる巻線部My1とMy2同士を並列に接続して閉回路Hを構成する。他方、例示の場合、位置検出巻線(シートコイル)Xp及び二次巻線(シートコイル)Xeは、位置検出信号処理部61に接続するとともに、位置検出巻線(シートコイル)Xmと一次巻線(シートコイル)Xiは相互に接続する。
一方、図9には、信号処理部U2の具体的回路図を示す。なお、図9中、図1〜図7と同一部分には同一符号を付してその構成を明確にした。この信号処理部U2は、入力側回路U2iを備え、この入力側回路U2iは、発振部41により生成したクロック信号に基づいてカウンタパルスを生成するカウンタパルス回路42、このカウンタパルスに基づいて周波数が1〔MHz〕程度の高周波信号を生成する高周波信号生成回路43、この高周波信号に基づいて励磁信号Sx(A・sinωt),Sy(A・cosωt)を生成する励磁信号生成回路44を備える。また、一方の励磁信号Sxが入力し、かつ励磁信号Sxの極性反転位置で、高周波信号の極性を反転させて出力する極性反転回路45、この極性反転回路45から出力する高周波信号により励磁信号Sxを振幅変調する変調回路46、この変調回路46から出力する変調信号Smx、即ち、振幅変調された励磁信号Sxを、一方の励磁巻線2xに供給する励磁回路47を備えるとともに、他方の励磁信号Syが入力し、かつ励磁信号Syの極性反転位置で、高周波信号の極性を反転させて出力する極性反転回路48、この極性反転回路48から出力する高周波信号により励磁信号Syを振幅変調する変調回路49、この変調回路49から出力する変調信号Smy、即ち、振幅変調された励磁信号Syを、他方の励磁巻線2yに供給する励磁回路50を備える。さらに、U2oは出力側回路であり、検出巻線3に接続することにより出力する変調信号Smoを復調して検出信号Soを出力する出力処理回路51、この出力処理回路51から得た検出信号Soが付与される角度検出回路52を備える。
他方、U2sは、励磁信号Sx,Syと検出信号So間に生じる位相誤差を補正する位相補正回路であり、この位相補正回路U2sは、温度ドリフトに基づく補正信号を生成する温度補正信号生成部53、この温度補正信号生成部53から出力する補正信号によりカウンタパルス回路42から出力したカウンタパルスを補正する補正回路54、この補正回路54から出力する補正されたカウンタパルスに基づいて高周波信号を生成する高周波信号生成回路55、この高周波信号生成回路55から出力する高周波信号に基づいて参照信号を生成する参照信号生成回路56を備え、この参照信号生成回路56により生成された参照信号は角度検出回路52に付与される。なお、温度補正信号生成部53は、出力処理回路51を経由して得る変調信号Smoから高周波信号成分を分離し、得られた高周波信号成分とカウンタパルス回路42から出力するカウンタパルスと高周波信号生成回路55から出力する高周波信号に基づいて当該高周波信号成分の温度ドリフトによる誤差成分を検出する温度ドリフト検出機能を備え、この温度ドリフト検出機能から得られる誤差成分に基づいて上記補正信号を生成する補正信号生成機能を備える。
次に、このような構成を備える本実施形態に係るレゾルバ1の動作について、図10及び各図を参照して説明する。
まず、図9に示す発振部41から出力するクロック信号はカウンタパルス回路42に付与されることにより、カウンタパルスが生成される。このカウンタパルスは高周波信号生成回路43の入力側,温度補正信号生成部53及び補正回路54の入力側にそれぞれ付与される。高周波信号生成回路43ではカウンタパルスに基づいて周波数が1〔MHz〕程度の高周波信号が生成され、この高周波信号は励磁信号生成回路44の入力側に付与され励磁信号Sx,Syが生成される。
そして、一方の励磁信号Sxは、変調回路46及び極性反転回路45にそれぞれ付与され、変調回路46では、極性反転回路45から付与される高周波信号により、励磁信号生成回路44から付与される励磁信号Sxが振幅変調されるとともに、これより得る変調信号Smxは励磁回路47を介して一方の励磁巻線2xに付与される。この際、極性反転回路45により高周波信号の極性は、励磁信号Sxの極性反転位置毎に反転せしめられる。この結果、励磁巻線2xは、変調信号Smxにより励磁され、この励磁巻線2xには変調信号Smxによる高周波電流が流れる。即ち、図5に示すように、シートコイルCiの表面側におけるコイルパターンP(励磁巻線2x)に、実線矢印により一例として示す電流Ixが流れる。
また、他方の励磁信号Syは、変調回路49及び極性反転回路48にそれぞれ付与され、変調回路49では極性反転回路48から付与される高周波信号により、励磁信号生成回路44から付与される励磁信号Syが振幅変調されるとともに、これより得る変調信号Smyは励磁回路50を介して他方の励磁巻線2yに付与される。この際、極性反転回路48により高周波信号生成回路43から付与される高周波信号の極性は、励磁信号Syの極性反転位置毎に反転せしめられる。この結果、励磁巻線2yは、変調信号Smyにより励磁され、この励磁巻線2yには変調信号Smyによる高周波電流が流れる。即ち、図5に示すように、シートコイルCiの裏面側におけるコイルパターンPに、点線矢印により一例として示す電流Iyが流れる。
この場合、電流Ixと電流Iy間、即ち、励磁巻線2xと励磁巻線2yに印加される励磁電圧には、電気角として90〔゜〕の位相差があるため、図10(a)に示すように、励磁巻線2xには、Es=E・sinωtの電圧が付加されるとともに、励磁巻線2yには、Ec=Ecosωtの電圧が付加される。そして、回動体5が所定の角度(θ)、即ち、所定の変位量θだけ回動変位すれば、中間回動巻線M1の一方の巻線部Mx1に、図10(b)に示す誘起電圧Es1=E・sin(ωt+θ)が発生(出力)するとともに、中間回動巻線M1の他方の巻線部My1に、図10(c)に示す誘起電圧Ec1=E・cos(ωt+θ)が発生(出力)する。
さらに、中間回動巻線M1の出力、即ち、誘起電圧Es1とEc1は、中間回動巻線M2における一方の巻線部Mx2と他方の巻線部My2にそれぞれ印加される。この場合、中間回動巻線M2に印加される電圧は、角度θ(変位量θ)だけ変移した電圧となって各巻線部Mx2と巻線部My2が励磁される。これにより、検出巻線3には、中間回動巻線M2の出力に基づいて誘起した電圧Eosが発生する。この電圧Eosは、角度θだけ変移した誘起電圧Es1とEc1と、中間回動巻線M2で発生する角度θだけ変移した誘起電圧Es2とEc2とを合わせた電圧となる。即ち、中間回動巻線M2に発生し、検出巻線3に誘起される電圧Eosは、Eos=E´・sin(ωt+2θ)となり、位相変移角度は、理論的に回動軸22の回動角度の2倍、即ち、「θ×2」となる。図10(d)に検出巻線3から出力する電圧Eosを示す。このように、レゾルバ1における出力関係は、励磁巻線2x,2yの極数をNx,Nyとした場合、中間回動巻線M2から出力する実質的な極数は、Nx+Ny(より一般的には、Nx±Ny)となる。
一方、検出巻線3から出力する電圧Eosは変調信号Smoであり、この変調信号Smoは出力処理回路51に付与され、変調信号Smoが復調される。これにより、検出信号Soが得られ、角度検出回路52に付与される。また、出力処理回路51では、変調信号Smoから高周波信号成分が分離され、分離された高周波信号成分は温度ドリフト検出機能を備える温度補正信号生成部53に付与される。これにより、温度補正信号生成部53では、高周波信号分離機能により分離された高周波信号成分とカウンタパルス回路52から得るカウンタパルスと高周波信号生成回路55から得る高周波信号に基づいて当該高周波信号成分の温度ドリフトによる誤差成分が検出され、この誤差成分に基づいて補正信号が生成され、この補正信号は補正回路54に付与される。そして、補正回路54ではカウンタパルス回路42から付与されるカウタパルスが、当該補正信号により補正される。即ち、温度ドリフトによる誤差成分が排除される。
他方、補正回路54から得る補正されたカウンタパルスは、高周波信号生成回路55に付与され、当該カウンタパルスに基づいて高周波信号が生成される。高周波信号生成回路55から得る高周波信号は、温度補正信号生成部53に付与され、温度補正信号生成部53における参照信号生成機能では、当該高周波信号に基づいて参照信号が生成される。この参照信号は角度検出回路52に付与され、角度検出回路52では参照信号から参照パルスを生成するとともに、検出信号Soから検出パルスを生成する。そして、この参照パルスの立上がりと検出パルスの立上がり間でカウンタパルスをカウントし、このカウント値を角度に変換して回動軸22の回動角(θ)、即ち、目的の変位量θを求める。具体的には、カウント値と回動角の関係を予めデータベース化し、データベースからカウント値に対応する回転角を読み出してもよいし、予め設定した関数式を用いることにより演算により求めてもよい。
よって、このような本実施形態に係るレゾルバ1によれば、基本的構成として、多極形式(32極)により構成した励磁巻線2x,2y及び検出巻線3を、固定体4の同軸上に配設するとともに、多極形式(32極)により構成し、かつ所定の電気的位相D(90〔゜〕)を異ならせた一対の巻線部Mx1,My1…により構成した中間回動巻線M1…の二組(M1,M2)(一般的には複数組)を回動体5の同軸上に配設し、当該二組の中間回動巻線M1,M2の同位相の巻線部同士(Mx1とMx2同士,My1とMy2同士)をそれぞれ閉回路H…となるように接続したため、加工上の精度を確保しつつ、実質的な極数を増やすことが可能となり、高度の検出精度、更には、高安定性及び高信頼性の要請に対して、十分に応えることができる小型のレゾルバ1、特に、直径が5〔mm〕前後となる超小型のレゾルバ1も容易に実現することができる。しかも、検出巻線3は固定体4に配することにより出力トランスを排除できるため、更なる小型化及び低コスト化にも寄与できる。
図8は、変更実施形態に係るレゾルバ1を示す。このレゾルバ1は、固定体4及び回動体5をそれぞれ円筒状Rに構成し、励磁巻線2x,2yと検出巻線3を、固定体4の軸方向Fcの異なる位置に配設するとともに、複数組の中間回動巻線M1,M2を、当該励磁巻線2x,2yと当該検出巻線3に対向させて配設したものである。変更実施例のように構成すれば、特に、径方向Fdにおける全体の寸法を小さくできるため、細形タイプのレゾルバ1を容易に得ることができるとともに、内側に形成される空間に、接続ケーブル等の配線類を通すことができる。
なお、図8中、71,72はベアリング、73は、円筒状Rの固定体4の内周面を支持する筒形の支持筒を示す。したがって、例示の場合、支持筒73は回動軸22を兼用する。図8は、図2と関連させる形態で示したが、図8の固定体4を回動体5とし、図8の回動体5を固定体4としてもよい。このように、図2の実施形態に係るレゾルバ1は、回動体5を円盤状Bに構成し、各巻線2x,2y,3,M1,M2を径方向Fdに配設したのに対して、図8に示す変更実施形態に係るレゾルバ1は、回動体5を円筒状Rに構成し、各巻線2x,2y,3,M1,M2を軸方向Fcに配設した点が異なるものであり、基本的な原理構造は同じである。このため、図8において、図2と同一部分には同一符号を付して、その構成を明確にするとともに、その詳細な説明は省略する。
以上、変更実施形態を含む好適実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。
例えば、励磁巻線2x,2yには、高周波信号Shにより励磁信号Sx,Syを振幅変調し、かつ当該高周波信号Shの極性を励磁信号Sx,Syの極性反転位置で反転させた変調信号Smx,Smyを入力し、検出巻線3から出力する変調信号Smoを復調して検出信号Soを得る実施例を示したが、変調することなく、励磁信号Sx,Syを励磁巻線2x,2yに入力し、かつ検出巻線3から出力する検出信号Soに基づいて回動体5の変位量θを検出する場合を排除するものではない。また、電気的位相Dとして90〔゜〕を示したが、他の位相を排除するものではない。さらに、複数組の中間回動巻線M1…として二組の中間回動巻線M1,M2を示したが、三組以上の中間回動巻線M1…を設ける場合を排除するものではない。一方、固定体4及び回動体5の形状として、円盤状B又は円筒状Rに形成する場合を示したが、円盤状Bと円筒状Rを組合わせた形状であっても実施可能である。また、磁気コア6a…は、シートコイルCi…に当接する面を凹凸形成するとともに、シートコイルCi…に、当該凹凸形状に嵌め込む開口や切欠を形成することにより、磁気コア6a…とシートコイルCi…を組付可能に構成してもよい。なお、コイルパターンPは、周導線部Wo…,Wi…の幅寸法Lo,Liを、径導線部Wm…の幅寸法Lmよりも大きく設定することが望ましいが同一である場合や小さく設定する場合を排除するものではない。他方、固定体4及び回動体5には、励磁巻線2及び検出巻線3を配設した領域以外の領域を、例示以外の用途に利用することも可能である。
本発明に係るレゾルバは、励磁巻線及び検出巻線を備えることにより回動体の変位量(回動角)を検出する各種用途に利用できる。

Claims (7)

  1. 同軸上に配した固定体及び回動体を備え、所定の電気的位相を異ならせることにより前記固定体に配設した一対の励磁巻線に励磁信号を入力し、かつ検出巻線から出力する検出信号に基づいて前記回動体の変位量を検出するレゾルバにおいて、多極形式により構成した前記励磁巻線及び前記検出巻線を、前記固定体の同軸上に配設するとともに、多極形式により構成し、かつ所定の電気的位相を異ならせた一対の巻線部により構成した中間回動巻線の複数組を前記回動体の同軸上に配設し、当該複数組の中間回動巻線の同位相の巻線部同士をそれぞれ閉回路となるように接続したことを特徴とするレゾルバ。
  2. 前記固定体及び前記回動体は、それぞれ円盤状に構成し、前記励磁巻線と前記検出巻線を、前記固定体の径方向の異なる位置に配設するとともに、前記複数組の中間回動巻線を、当該励磁巻線と当該検出巻線に対向させて配設することを特徴とする請求項1記載のレゾルバ。
  3. 前記固定体及び前記回動体は、それぞれ円筒状に構成し、前記励磁巻線と前記検出巻線を、前記固定体の軸方向の異なる位置に配設するとともに、前記複数組の中間回動巻線を、当該励磁巻線と当該検出巻線に対向させて配設することを特徴とする請求項1記載のレゾルバ。
  4. 前記固定体及び前記回動体は、前記励磁巻線及び前記検出巻線を配設した領域以外の領域に、前記回動体の基準位置を検出する位置検出巻線を備えることを特徴とする請求項1,2又は3記載のレゾルバ。
  5. 前記励磁巻線及び前記中間回動巻線は、多極形式により所定の電気的位相を異ならせた一対のコイルパターンを、表裏にそれぞれ形成したシートコイルにより構成することを特徴とする請求項1記載のレゾルバ。
  6. 前記検出巻線は、多極形式のコイルパターンを表裏の少なくとも一方に配したシートコイルにより形成することを特徴とする請求項1記載のレゾルバ。
  7. 前記コイルパターンは、周方向の導線部と径方向の導線部を組合わせることにより、周方向に沿って矩形波状に形成するとともに、前記周方向の導線部の幅寸法を、前記径方向の導線部の幅寸法よりも大きく設定してなることを特徴とする請求項5又は6記載のレゾルバ。
JP2020564770A 2020-04-06 2020-08-04 レゾルバ Active JP6971450B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020068130 2020-04-06
JP2020068130 2020-04-06
PCT/JP2020/029876 WO2021205676A1 (ja) 2020-04-06 2020-08-04 レゾルバ

Publications (2)

Publication Number Publication Date
JPWO2021205676A1 JPWO2021205676A1 (ja) 2021-10-14
JP6971450B1 true JP6971450B1 (ja) 2021-11-24

Family

ID=78023075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020564770A Active JP6971450B1 (ja) 2020-04-06 2020-08-04 レゾルバ

Country Status (4)

Country Link
US (1) US20230146396A1 (ja)
JP (1) JP6971450B1 (ja)
DE (1) DE112020006711T5 (ja)
WO (1) WO2021205676A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236199B1 (en) * 1997-09-05 2001-05-22 Hella Kg Hueck & Co. Inductive angle sensor
JP2001194183A (ja) * 2000-01-05 2001-07-19 Tamagawa Seiki Co Ltd 基板形レゾルバ
JP2008309598A (ja) * 2007-06-14 2008-12-25 Hitachi Ltd 角度検出センサおよびその角度検出センサを備えた吸入空気量制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047231B1 (ja) * 1999-04-02 2000-05-29 士郎 嶋原 レゾルバ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236199B1 (en) * 1997-09-05 2001-05-22 Hella Kg Hueck & Co. Inductive angle sensor
JP2001194183A (ja) * 2000-01-05 2001-07-19 Tamagawa Seiki Co Ltd 基板形レゾルバ
JP2008309598A (ja) * 2007-06-14 2008-12-25 Hitachi Ltd 角度検出センサおよびその角度検出センサを備えた吸入空気量制御装置

Also Published As

Publication number Publication date
JPWO2021205676A1 (ja) 2021-10-14
WO2021205676A1 (ja) 2021-10-14
DE112020006711T5 (de) 2022-12-22
US20230146396A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP5477926B2 (ja) 磁気電気角度センサ、詳細にはリラクタンス・リゾルバ
JP5226694B2 (ja) 渦電流式回転角度検出用センサ
US8729887B2 (en) Rotation angle sensor
JP2007285774A (ja) 磁気レゾルバ及びその製造方法
JP4654348B1 (ja) 検出装置用巻線の正弦波巻線方法
US8669760B2 (en) Angle detection system and method of manufacturing the same
WO2021038967A1 (ja) レゾルバ
JP2012168205A (ja) 位置センサ
EP1677080A2 (en) Flat resolver
JPH0953909A (ja) 誘導型回転位置検出装置
JPH04222447A (ja) 平坦な巻線を有するレゾルバー
JP4603973B2 (ja) 磁気レゾルバ
JP6971450B1 (ja) レゾルバ
JP5182752B2 (ja) 角度検出装置及びその製造方法
US11874141B2 (en) Resolver
WO1998011649A1 (en) Electromechanical device, coil configuration for the electromechanical device, and infor- mation storage and/or reproduction apparatus including such a device
JP2009174925A (ja) 回転角度検出装置
JP5342963B2 (ja) シートコイル型レゾルバ
US20180226862A1 (en) Rotational position detection device and motor device
JP2013083485A (ja) 角度センサ
JP4842644B2 (ja) 磁気レゾルバ
JP2011202966A (ja) 回転角センサ
JP2017042007A (ja) モータ
JP2006333640A (ja) 回転電機、及び電機子コア
US12018962B2 (en) Resolver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211022

R150 Certificate of patent or registration of utility model

Ref document number: 6971450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150