JP6970438B2 - Ni-based superalloy - Google Patents

Ni-based superalloy Download PDF

Info

Publication number
JP6970438B2
JP6970438B2 JP2018014260A JP2018014260A JP6970438B2 JP 6970438 B2 JP6970438 B2 JP 6970438B2 JP 2018014260 A JP2018014260 A JP 2018014260A JP 2018014260 A JP2018014260 A JP 2018014260A JP 6970438 B2 JP6970438 B2 JP 6970438B2
Authority
JP
Japan
Prior art keywords
mass
less
hours
based superalloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018014260A
Other languages
Japanese (ja)
Other versions
JP2019131856A (en
Inventor
京子 川岸
広史 原田
忠晴 横川
裕 小泉
敏治 小林
道也 湯山
正雄 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2018014260A priority Critical patent/JP6970438B2/en
Publication of JP2019131856A publication Critical patent/JP2019131856A/en
Application granted granted Critical
Publication of JP6970438B2 publication Critical patent/JP6970438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ジェットエンジンやガスタービンの高温下で使用される部材に好適に用いられるNi基超合金に関する。 The present invention relates to a Ni-based superalloy that is suitably used for members used in jet engines and gas turbines at high temperatures.

Ni基超合金は普通鋳造(CC:Conventional Casting)合金、一方向凝固(DS:Directional Solidification)合金、単結晶(SC:Single Crystal)合金と製造方法が変わり、それにつれて高温強度が改善され耐用温度が向上した。このうちの単結晶合金であるNi基単結晶合金だけでも、初期の第1世代からReを3重量%程度含む第2世代、Reを5重量%程度含む第3世代、さらにReと白金族元素のRuを含む第4世代、第5世代、最新の第6世代と開発が進み耐用温度が向上している。最近ではNi基超合金粉末を用いた3D加工技術による製造方法が新たに加わった。 The manufacturing method of Ni-based superalloys has changed from ordinary casting (CC: Conventional Casting) alloys, unidirectional solidification (DS: Directional Solidification) alloys, and single crystal (SC: Single Crystal) alloys. Has improved. Of these, the Ni-based single crystal alloy, which is a single crystal alloy, is the second generation containing about 3% by weight of Re from the initial first generation, the third generation containing about 5% by weight of Re, and Re and platinum group elements. Development is progressing with the 4th generation, 5th generation, and the latest 6th generation including Ru, and the durable temperature is improving. Recently, a new manufacturing method using 3D processing technology using Ni-based superalloy powder has been added.

ガスタービン機関の効率を向上させる目的でタービンガス入り口温度の高温化がなされている。これに伴い、ガスタービン機関のタービンブレードやタービンベーンとして使用されるNi基超合金に、より高温に耐える強度が要求される。Ni基超合金に要求されるのは強度ばかりではない。従来硫化腐食が問題にならなかった部位も温度上昇とともに次第に硫化腐食温度域に入りつつある。第1世代から第6世代までのNi基単結晶超合金の硫化腐食についての研究(非特許文献1参照)によると、第1世代のNi基単結晶超合金の耐硫化腐食は他世代のNi基単結晶超合金より特に劣ることが明らかとなっている。講演論文集には特に硫化腐食が問題となる温度域は低温側のタイプIIといわれる約700℃と高温側のタイプIといわれる約900℃の二つの温度域があり、これら温度域での硫化腐食挙動が記されている。 The temperature of the turbine gas inlet has been raised for the purpose of improving the efficiency of the gas turbine engine. Along with this, Ni-based superalloys used as turbine blades and turbine vanes of gas turbine engines are required to have strength to withstand higher temperatures. Strength is not the only requirement for Ni-based superalloys. The parts where sulfurization corrosion has not been a problem in the past are gradually entering the sulfurization corrosion temperature range as the temperature rises. According to the study on sulfide corrosion of Ni-based single crystal superalloys from the 1st generation to the 6th generation (see Non-Patent Document 1), the sulfide corrosion resistance of the 1st generation Ni-based single crystal superalloys is the Ni of other generations. It has been shown to be particularly inferior to the basic single crystal superalloy. In the collection of lecture papers, there are two temperature ranges in which sulfurization corrosion is particularly problematic: about 700 ° C, which is called type II on the low temperature side, and about 900 ° C, which is called type I on the high temperature side. Corrosion behavior is noted.

第1世代に相当するNi基単結晶超合金として、ReneN4(商標、特許文献1参照)、PWA1480(商標、非特許文献2の参考文献10参照)、TMS−1700(商標、特許文献2参照)が知られている。 As Ni-based single crystal superalloys corresponding to the first generation, ReneN4 (trademark, see Patent Document 1), PWA1480 (trademark, see Reference 10 of Non-Patent Document 2), TMS-1700 (trademark, see Patent Document 2). It has been known.

これらReneN4(商標)、PWA1480(商標)およびTMS−1700(商標)の第1世代Ni基単結晶超合金は耐腐食性に対して効果があると一般に言われるCr量が多いにもかかわらず第2世代のCr量が少ないNi基単結晶超合金より耐硫化腐食性が良くないことから改善が求められている。また、一般に耐硫化腐食性は合金組成で決定づけられ、製造方法により大差がつくことはない。 These ReneN4 ™, PWA1480 ™ and TMS-1700 ™ first generation Ni-based single crystal superalloys are generally said to be effective for corrosion resistance, despite the large amount of Cr. Since the sulfide corrosion resistance is not as good as that of the Ni-based single crystal superalloy having a small amount of Cr in the second generation, improvement is required. Further, the sulfurization corrosion resistance is generally determined by the alloy composition, and does not make a big difference depending on the manufacturing method.

米国特許第5399313号U.S. Pat. No. 5,399,313 日本国特許第6016016号Japanese Patent No. 6016016

公益社団法人 日本ガスタービン学会第45回日本ガスタービン学会定期講演会講演論文集pp.193―196(2017)Proceedings of the 45th Annual Meeting of the Japan Gas Turbine Society pp.193-196 (2017) 宇多田悟志、原田広史、川岸京子、鈴木進補 『タービン翼用超合金の進化とリサイクル技術開発』 日本ガスタービン学会誌Vol.45 pp.445―451(2017)Satoshi Utada, Hiroshi Harada, Kyoko Kawagishi, Shinsuke Suzuki "Evolution of Superalloys for Turbine Blades and Development of Recycling Technology" Journal of the Japan Gas Turbine Society Vol. 45 pp.445-451 (2017)

本発明は、従来の第1世代Ni基超合金に比べ高温でのクリープ特性および耐硫化腐食に優れており、製造コストは従来の第2世代より低いコストでのNi基超合金を提供することを課題としている。 INDUSTRIAL APPLICABILITY The present invention provides a Ni-based superalloy that is superior in creep characteristics and sulfide corrosion resistance at high temperatures as compared with the conventional first-generation Ni-based superalloy, and has a lower manufacturing cost than the conventional second-generation Ni-based superalloy. Is an issue.

上記のとおりの課題を解決するために、本発明は、以下のとおりの特徴を有している。 In order to solve the above-mentioned problems, the present invention has the following features.

すなわち、本発明のNi基超合金は、
Cr:6質量%以上12質量%以下、
Mo:0.4質量%以上3.0質量%以下、
W:6質量%以上10質量%以下、
Al:4.0質量%以上6.5質量%以下、
Ta:8質量%以上12質量%以下、
Re:0.01質量%以上1.0質量%以下、および
Si:0.01質量%以上0.2質量%以下、
を必須組成元素として含有し、残部がNiおよび不可避的不純物からなるNi基超合金であって、任意的組成元素として下記の元素を含有する。
Co:0質量%以上3質量%以下、
Ti:0質量%以上1質量%以下、
Nb:0質量%以上1質量%以下、
Hf:0質量%以上0.15質量%以下、
Zr:0質量%以上0.04質量%以下、
B:0質量%以上0.03質量%以下、
C:0質量%以上0.3質量%以下。
That is, the Ni-based superalloy of the present invention is
Cr: 6% by mass or more and 12% by mass or less,
Mo: 0.4% by mass or more and 3.0% by mass or less,
W: 6% by mass or more and 10% by mass or less,
Al: 4.0% by mass or more and 6.5% by mass or less,
Ta: 8% by mass or more and 12% by mass or less,
Re: 0.01% by mass or more and 1.0% by mass or less, and Si: 0.01% by mass or more and 0.2% by mass or less,
Is a Ni-based superalloy consisting of Ni and unavoidable impurities as the balance, and contains the following elements as optional composition elements.
Co: 0% by mass or more and 3% by mass or less,
Ti: 0% by mass or more and 1% by mass or less,
Nb: 0% by mass or more and 1% by mass or less,
Hf: 0% by mass or more and 0.15% by mass or less,
Zr: 0% by mass or more and 0.04% by mass or less,
B: 0% by mass or more and 0.03% by mass or less,
C: 0% by mass or more and 0.3% by mass or less.

また、本発明のNi基超合金は、
Cr:7質量%以上12質量%以下、
Mo:0.4質量%以上2.5質量%以下、
W:7質量%以上10質量%以下、
Al:4.0質量%以上6.5質量%以下、
Ta:9質量%以上11質量%以下、
Re:0.08質量%以上0.95質量%以下、および
Si:0.01質量%以上0.2質量%以下、
を必須組成元素として含有し、残部がNiおよび不可避的不純物からなるNi基超合金であって、任意的組成元素として下記の元素を含有する。
Co:0質量%以上3質量%以下、
Ti:0質量%以上1質量%以下、
Nb:0質量%以上1質量%以下、
Hf:0質量%以上0.15質量%以下、
Zr:0質量%以上0.04質量%以下、
B:0質量%以上0.03質量%以下、
C:0質量%以上0.3質量%以下。
Further, the Ni-based superalloy of the present invention is used.
Cr: 7% by mass or more and 12% by mass or less,
Mo: 0.4% by mass or more and 2.5% by mass or less,
W: 7% by mass or more and 10% by mass or less,
Al: 4.0% by mass or more and 6.5% by mass or less,
Ta: 9% by mass or more and 11% by mass or less,
Re: 0.08% by mass or more and 0.95% by mass or less, and Si: 0.01% by mass or more and 0.2% by mass or less,
Is a Ni-based superalloy consisting of Ni and unavoidable impurities as the balance, and contains the following elements as optional composition elements.
Co: 0% by mass or more and 3% by mass or less,
Ti: 0% by mass or more and 1% by mass or less,
Nb: 0% by mass or more and 1% by mass or less,
Hf: 0% by mass or more and 0.15% by mass or less,
Zr: 0% by mass or more and 0.04% by mass or less,
B: 0% by mass or more and 0.03% by mass or less,
C: 0% by mass or more and 0.3% by mass or less.

また、本発明のNi基超合金は、
Cr:8質量%以上10質量%以下、
Mo:0.4質量%以上2.0質量%以下、
W:7質量%以上9質量%以下、
Al:4.0質量%以上6.5質量%以下、
Ta:10質量%以上11質量%以下、
Re:0.1質量%以上0.9質量%以下、および
Si:0.01質量%以上0.2質量%以下、
を必須組成元素として含有し、残部がNiおよび不可避的不純物からなるNi基超合金であって、任意的組成元素として下記の元素を含有する。
Co:0質量%以上3質量%以下、
Ti:0質量%以上1質量%以下、
Nb:0質量%以上1質量%以下、
Hf:0質量%以上0.15質量%以下、
Zr:0質量%以上0.04質量%以下、
B:0質量%以上0.03質量%以下、
C:0質量%以上0.3質量%以下。
Further, the Ni-based superalloy of the present invention is used.
Cr: 8% by mass or more and 10% by mass or less,
Mo: 0.4% by mass or more and 2.0% by mass or less,
W: 7% by mass or more and 9% by mass or less,
Al: 4.0% by mass or more and 6.5% by mass or less,
Ta: 10% by mass or more and 11% by mass or less,
Re: 0.1% by mass or more and 0.9% by mass or less, and Si: 0.01% by mass or more and 0.2% by mass or less,
Is a Ni-based superalloy consisting of Ni and unavoidable impurities as the balance, and contains the following elements as optional composition elements.
Co: 0% by mass or more and 3% by mass or less,
Ti: 0% by mass or more and 1% by mass or less,
Nb: 0% by mass or more and 1% by mass or less,
Hf: 0% by mass or more and 0.15% by mass or less,
Zr: 0% by mass or more and 0.04% by mass or less,
B: 0% by mass or more and 0.03% by mass or less,
C: 0% by mass or more and 0.3% by mass or less.

本発明のNi基超合金において、温度800℃で応力735MPaにおけるクリープ寿命が196時間以上である。 In the Ni-based superalloy of the present invention, the creep life at a temperature of 800 ° C. and a stress of 735 MPa is 196 hours or more.

本発明のNi基超合金において、温度900℃で応力392MPaにおけるクリープ寿命が267時間以上である。 In the Ni-based superalloy of the present invention, the creep life at a temperature of 900 ° C. and a stress of 392 MPa is 267 hours or more.

本発明のNi基超合金において、温度1000℃で応力245MPaにおけるクリープ寿命が81時間以上である。 In the Ni-based superalloy of the present invention, the creep life at a temperature of 1000 ° C. and a stress of 245 MPa is 81 hours or more.

本発明のNi基超合金において、温度1100℃で応力137MPaにおけるクリープ寿命が237時間以上である。 In the Ni-based superalloy of the present invention, the creep life at a temperature of 1100 ° C. and a stress of 137 MPa is 237 hours or more.

本発明のNi基超合金において、所定条件のるつぼ試験において温度700℃で50時間保持の腐食表面積割合が90%以下であり900℃で20時間保持のメタルロスが2.0mm以下であるNi基超合金。 In the Ni-based superalloy of the present invention, the corrosion surface area ratio of holding at a temperature of 700 ° C. for 50 hours is 90% or less and the metal loss of holding at 900 ° C. for 20 hours is 2.0 mm or less in a crucible test under predetermined conditions. alloy.

本発明のNi基超合金を用いて、普通鋳造法、一方向凝固法、単結晶凝固法、粉末を用いた焼結および3D造形法の何れかにより作成したタービン部材。 A turbine member produced by any of the ordinary casting method, the one-way solidification method, the single crystal solidification method, the sintering using powder, and the 3D modeling method using the Ni-based superalloy of the present invention.

本発明のNi基超合金は、従来の第1世代Ni基超合金に比べ高温でのクリープ特性および耐硫化腐食に優れており、製造コストは従来の第2世代より低いコストで提供できる。 The Ni-based superalloy of the present invention is superior in creep characteristics and sulfide corrosion resistance at high temperatures as compared with the conventional first-generation Ni-based superalloy, and can be provided at a lower manufacturing cost than the conventional second-generation.

実施例No.1、実施例No.2、比較合金No.3、比較合金No.4および比較合金No.5について、75%NaSO+25%NaClの混合塩中で700℃、50時間全浸漬のるつぼ試験結果である。Example No. 1. Example No. 2. Comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. No. 5 is a crucible test result of total immersion at 700 ° C. for 50 hours in a mixed salt of 75% Na 2 SO 4 + 25% NaCl. 実施例No.1、実施例No.2、比較合金No.3、比較合金No.4および比較合金No.5について、75%NaSO+25%NaClの混合塩中で900℃、20時間全浸漬のるつぼ試験結果である。Example No. 1. Example No. 2. Comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. No. 5 is a crucible test result of total immersion at 900 ° C. for 20 hours in a mixed salt of 75% Na 2 SO 4 + 25% NaCl. 実施例No.1、実施例No.2、比較合金No.3、比較合金No.4および比較合金No.5の、800℃、応力735MPaでのクリープ試験結果である。Example No. 1. Example No. 2. Comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. 5 is a creep test result at 800 ° C. and a stress of 735 MPa. 実施例No.1、実施例No.2、比較合金No.3、比較合金No.4および比較合金No.5の、900℃、応力392MPaでのクリープ試験結果である。Example No. 1. Example No. 2. Comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. 5 is a creep test result at 900 ° C. and a stress of 392 MPa. 実施例No.1、実施例No.2、比較合金No.3、比較合金No.4および比較合金No.5の、1000℃、応力245MPaでのクリープ試験結果である。Example No. 1. Example No. 2. Comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. 5 is a creep test result at 1000 ° C. and a stress of 245 MPa. 実施例No.1、実施例No.2、比較合金No.3、比較合金No.4および比較合金No.5の、1100℃、応力137MPaでのクリープ試験結果である。Example No. 1. Example No. 2. Comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. 5 is a creep test result at 1100 ° C. and a stress of 137 MPa. 比較合金No.3の75%NaSO+25%NaClの混合塩中で700℃、50時間全浸漬のるつぼ試験後の走査型電子顕微鏡写真である。Comparative Alloy No. 3 is a scanning electron micrograph after a crucible test of full immersion at 700 ° C. for 50 hours in a mixed salt of 75% Na 2 SO 4 + 25% NaCl of 3. 実施例No.1の75%NaSO+25%NaClの混合塩中で700℃、50時間全浸漬のるつぼ試験後の走査型電子顕微鏡写真である。Example No. It is a scanning electron micrograph after a crucible test of total immersion at 700 ° C. for 50 hours in a mixed salt of 75% Na 2 SO 4 + 25% NaCl of 1.

上記のとおりの特徴を有するNi基超合金における組成成分およびその組成比は、以下の観点に基づいている。
Cr(クロム)は、Ni基超合金の高温耐食性および高温耐酸化性を向上させる。Crの組成比は、6質量%以上12質量%以下である。組成比が、6質量%未満であると、高温耐食性および高温耐酸化性を確保することが難しく、12質量%を超えると、σ相やμ相の有害相が生成して高温強度が低下する。Crの組成比は、好ましくは7質量%以上12質量%以下であり、より好ましくは8質量%以上10質量%以下である。
The compositional components and composition ratios thereof in the Ni-based superalloy having the above-mentioned characteristics are based on the following viewpoints.
Cr (chromium) improves the high temperature corrosion resistance and high temperature oxidation resistance of Ni-based superalloys. The composition ratio of Cr is 6% by mass or more and 12% by mass or less. If the composition ratio is less than 6% by mass, it is difficult to secure high-temperature corrosion resistance and high-temperature oxidation resistance, and if it exceeds 12% by mass, harmful phases of σ phase and μ phase are generated and the high temperature strength is lowered. .. The composition ratio of Cr is preferably 7% by mass or more and 12% by mass or less, and more preferably 8% by mass or more and 10% by mass or less.

Mo(モリブデン)は、素地中に固溶し、かつ析出硬化により高温強度の上昇に寄与する。Moの組成比は、0.4質量%以上3.0質量%以下である。組成比が、0.4質量%未満であると、高温強度が低下し、3.0質量%を超えると、有害相が生成して高温強度が低下する。Moの組成比は、好ましくは0.4質量%以上2.5質量%以下であり、より好ましくは0.4質量%以上2.0質量%以下である。 Mo (molybdenum) dissolves in the substrate and contributes to an increase in high-temperature strength by precipitation hardening. The composition ratio of Mo is 0.4% by mass or more and 3.0% by mass or less. If the composition ratio is less than 0.4% by mass, the high temperature intensity is lowered, and if it exceeds 3.0% by mass, a harmful phase is generated and the high temperature strength is lowered. The composition ratio of Mo is preferably 0.4% by mass or more and 2.5% by mass or less, and more preferably 0.4% by mass or more and 2.0% by mass or less.

W(タングステン)は、Moと同様に、固溶強化および析出硬化の作用があり、Ni基超合金の高温強度を向上させる。Wの組成比は、6質量%以上10質量%以下である。組成比が、6質量%未満であると、TMF特性およびクリープ特性が低下し、10質量%を超えると、有害相が生成してTMF特性およびクリープ特性が低下する。Wの組成比は、好ましくは7質量%以上10質量%以下であり、より好ましくは7質量%以上9質量%以下である。
ここで、TMF特性とは、熱疲労(Thermo-mechanical fatigue)特性をいい、例えばタービン動翼における多軸熱疲労条件下でのき裂発生寿命(深さ2mm程度のき裂)を指す。クリープ特性とは、材料のクリープ強さであり、クリープ試験又はクリープ破断試験が用いられる。クリープ破断試験は、ある応力のもとで破断するまでの時間を求めることを目的とし、試験機にはマルチプル型(1試験機あたり多数の試験片)が多く使用されるが、シングル型(1試験機あたり単一の試験片)でもよい。
Like Mo, W (tungsten) has the effects of solid solution strengthening and precipitation hardening, and improves the high-temperature strength of Ni-based superalloys. The composition ratio of W is 6% by mass or more and 10% by mass or less. If the composition ratio is less than 6% by mass, the TMF characteristics and creep characteristics are deteriorated, and if it exceeds 10% by mass, a harmful phase is generated and the TMF characteristics and creep characteristics are deteriorated. The composition ratio of W is preferably 7% by mass or more and 10% by mass or less, and more preferably 7% by mass or more and 9% by mass or less.
Here, the TMF characteristic refers to a thermal fatigue characteristic, for example, a crack generation life (crack having a depth of about 2 mm) under multiaxial thermal fatigue conditions in a turbine blade. The creep property is the creep strength of a material, and a creep test or a creep rupture test is used. The creep rupture test aims to determine the time until rupture under a certain stress, and the multiple type (many test pieces per tester) is often used for the testing machine, but the single type (1). It may be a single test piece per tester).

Al(アルミニウム)は、Niと化合して、ガンマ母相中に析出するガンマプライム相を構成するNiAlで示される金属間化合物を形成し、特に1000℃以下の低温側のTMF特性およびクリープ特性を向上させる。Alの組成比は、4.0質量%以上6.5質量%以下である。組成比が、4質量%未満であると、ガンマプライム相量が少なく、要求されるTMF特性およびクリープ特性が得られず、6.5質量%を超えると、要求されるTMF特性およびクリープ特性が得られない。 Al (aluminum) combines with Ni to form an intermetallic compound represented by Ni 3 Al that constitutes the gamma prime phase that precipitates in the gamma matrix, and in particular, TMF characteristics and creep on the low temperature side of 1000 ° C. or lower. Improve characteristics. The composition ratio of Al is 4.0% by mass or more and 6.5% by mass or less. When the composition ratio is less than 4% by mass, the amount of gamma prime phase is small and the required TMF characteristics and creep characteristics cannot be obtained, and when it exceeds 6.5% by mass, the required TMF characteristics and creep characteristics are obtained. I can't get it.

Ta(タンタル)は、ガンマプライム相を強化してクリープ特性を向上させる。Taの組成比は、8質量%以上12質量%以下である。組成比が、8質量%未満であると、要求されるTMF特性およびクリープ特性が得られず、12質量%を超えると、共晶ガンマプライム相の生成を促し、溶体化熱処理が困難となる。Taの組成比は、好ましくは9質量%以上11質量%以下であり、より好ましくは10質量%以上11質量%以下である。 Ta enhances the gamma prime phase and improves creep properties. The composition ratio of Ta is 8% by mass or more and 12% by mass or less. If the composition ratio is less than 8% by mass, the required TMF characteristics and creep characteristics cannot be obtained, and if it exceeds 12% by mass, the formation of a eutectic gamma prime phase is promoted, and solution heat treatment becomes difficult. The composition ratio of Ta is preferably 9% by mass or more and 11% by mass or less, and more preferably 10% by mass or more and 11% by mass or less.

Re(レニウム)は、ガンマ相に固溶して固溶強化により高温強度を向上させるだけでなく耐食性を向上させる効果もある。ただ、Reを多量に含有すると、高温時にTCP相が析出して高温強度を低下させるおそれがある。また、Reは高価でありコストパフォーマンスの点から少量で高温強度と耐食性に効果が発揮されることが望ましい。TCP相の析出を抑制し有害相の生成しないReの範囲を絞り込む必要がある。そのためには他の添加元素とのバランスが必要であり、本発明の各元素の請求範囲でのReは、0.01質量%以上1.0質量%以下である。さらに好ましくは0.08質量%以上0.95質量%以下である。より好ましくは0.1質量%以上0.9質量%以下である。
ここで、TCP相とは、topological close-packed phaseの略称であり、Frank-Kasper (FK) phasesともいい、Ni基超合金の場合はσ相やμ相をいう。
Re (rhenium) not only improves high-temperature strength by solid-solving in the gamma phase and strengthening the solid solution, but also has the effect of improving corrosion resistance. However, if a large amount of Re is contained, the TCP phase may precipitate at high temperatures to reduce the high temperature intensity. Further, Re is expensive, and it is desirable that a small amount of Re is effective in high temperature strength and corrosion resistance from the viewpoint of cost performance. It is necessary to suppress the precipitation of the TCP phase and narrow down the range of Re that does not generate a harmful phase. For that purpose, a balance with other additive elements is required, and Re in the claims of each element of the present invention is 0.01% by mass or more and 1.0% by mass or less. More preferably, it is 0.08% by mass or more and 0.95% by mass or less. More preferably, it is 0.1% by mass or more and 0.9% by mass or less.
Here, the TCP phase is an abbreviation for a topological close-packed phase, also referred to as a Frank-Kasper (FK) phase, and in the case of a Ni-based superalloy, it means a σ phase or a μ phase.

Si(ケイ素)は、合金表面にSiO皮膜を生成させて保護被膜として耐酸化性を向上させ、かつ合金表面からの微少クラックの発生を抑制してTMF特性を改善する可能性がある。Siの組成比は、0.01質量%以上0.2質量%以下である。組成比が0.01質量%未満であると、耐酸化性の向上、TMF特性の改善の効果が得られない。また、組成比が0.2質量%を超えると、他の元素の固溶限を低下させることになるため、要求されるTMF特性およびクリープ特性が得られない。 Si (silicon) may form a SiO 2 film on the alloy surface to improve oxidation resistance as a protective film, and may suppress the generation of minute cracks from the alloy surface to improve TMF characteristics. The composition ratio of Si is 0.01% by mass or more and 0.2% by mass or less. If the composition ratio is less than 0.01% by mass, the effects of improving the oxidation resistance and the TMF characteristics cannot be obtained. Further, if the composition ratio exceeds 0.2% by mass, the solid solution limit of other elements is lowered, so that the required TMF characteristics and creep characteristics cannot be obtained.

Co(コバルト)は、Al、Ta等の母相に対する高温下での固溶限度を大きくし、熱処理によって微細なγ’相を分散析出させ、高温強度を向上させる。Coの組成比は、任意的組成元素とし、0質量%以上3質量%以下である。組成比が、3質量%を超えると、所望の高温強度を確保できないので好ましくない。 Co (cobalt) increases the solid solution limit of the matrix phase such as Al and Ta at high temperature, disperses and precipitates fine γ'phase by heat treatment, and improves the high temperature strength. The composition ratio of Co is an arbitrary composition element, and is 0% by mass or more and 3% by mass or less. If the composition ratio exceeds 3% by mass, the desired high-temperature strength cannot be secured, which is not preferable.

Ti(チタン)は、ガンマプライム相を強化してクリープ特性を向上させる。Tiの組成比は、任意的組成元素とし、0質量%以上1質量%以下である。組成比が、1質量%を超えると、所望の高温強度を確保できないので好ましくない。 Ti (titanium) enhances the gamma prime phase and improves creep characteristics. The composition ratio of Ti is an arbitrary composition element, and is 0% by mass or more and 1% by mass or less. If the composition ratio exceeds 1% by mass, the desired high-temperature strength cannot be secured, which is not preferable.

Nb(ニオブ)の組成比は、任意的組成元素とし、0質量%以上1質量%以下である。組成比が、1質量%を超えると、高温において有害相が生成し、TMF特性およびクリープ特性が低下する。 The composition ratio of Nb (niobium) is an arbitrary composition element, and is 0% by mass or more and 1% by mass or less. When the composition ratio exceeds 1% by mass, a harmful phase is generated at a high temperature, and TMF characteristics and creep characteristics are deteriorated.

Hf(ハフニウム)は、普通凝固および一方向凝固による柱状結晶化の際、粒界強化に寄与するものであり、かつ耐酸化性を向上させ、そのうえTMF特性を改善する可能性がある。また、単結晶で用いる場合も何らかの理由で、再結晶してしまっても粒界が弱くなるのを防ぐことが可能である。Hfの組成比は、任意的組成元素とし、0質量%以上0.15質量%以下である。組成比が、0.15質量%を超えると、有害相の生成が助長され、TMF特性およびクリープ特性が低下する。 Hf (hafnium) contributes to the strengthening of grain boundaries during columnar crystallization by normal solidification and unidirectional solidification, and has the potential to improve oxidation resistance and TMF characteristics. Further, even when it is used as a single crystal, it is possible to prevent the grain boundaries from becoming weak even if it is recrystallized for some reason. The composition ratio of Hf is an arbitrary composition element, and is 0% by mass or more and 0.15% by mass or less. When the composition ratio exceeds 0.15% by mass, the formation of harmful phases is promoted, and the TMF characteristics and creep characteristics are deteriorated.

Zr(ジルコニウム)は、普通凝固および一方向凝固による柱状結晶化の際、結晶粒界に偏析し、粒界強度を高める効果があるが、ほとんどは合金の主成分であるニッケルと金属間化合物NiZrを形成する。この化合物は合金の延性を低下させ、また著しく低融点であるため、合金の溶体化処理を困難にするなど、有害な作用が多い。そのため、Zrの組成比は、任意的組成元素とし、0質量%以上0.04質量%以下である。 Zr (zirconium) has the effect of segregating at grain boundaries and increasing grain boundary strength during columnar crystallization by normal solidification and unidirectional solidification, but most of them are nickel, which is the main component of the alloy, and the intermetallic compound Ni. Form 3 Zr. Since this compound lowers the ductility of the alloy and has a remarkably low melting point, it has many harmful effects such as making it difficult to dissolve the alloy. Therefore, the composition ratio of Zr is 0% by mass or more and 0.04% by mass or less, with an arbitrary composition element.

B(ホウ素)は普通凝固および一方向凝固による柱状結晶化の際、結晶粒界に偏析して粒界強度を向上させるとともに、一部は(Cr、Ni、Mo)等のホウ化物を形成し、合金の粒界に析出する。粒界強化の効果が得られるには0.01%以上の添加が必要であるが、生成するホウ化物は融点が合金の融点よりも低く、合金の融点温度を低下させ、溶体化処理温度範囲を狭くする。そのため、任意的組成元素とし、Bの組成比は0質量%以上0.03質量%以下である。 B (boron) segregates at grain boundaries during columnar crystallization by normal solidification and unidirectional solidification to improve grain boundary strength, and some are boroforms such as (Cr, Ni, Mo) 3 B 2. Is formed and precipitates at the grain boundaries of the alloy. Although it is necessary to add 0.01% or more to obtain the effect of strengthening the grain boundary, the boride produced has a melting point lower than the melting point of the alloy, lowers the melting point temperature of the alloy, and has a solution treatment temperature range. Narrow. Therefore, it is an arbitrary composition element, and the composition ratio of B is 0% by mass or more and 0.03% by mass or less.

C(炭素)は結晶粒界に偏析して粒界強度を向上させ、一部はTaC等の炭化物を形成して塊状に析出する。結晶粒界に偏析して粒界強度を上げる場合には、0.08%以上の添加をするとよい。しかし、0.3%を超えて添加すると過剰の炭化物が形成され、高温強度や延性が低下し、耐食性も低下する。また、凝固時における炭化物の晶出温度が高くなることから、デンドライト間に炭化物がピニングされ、鋳造欠陥であるポロシティの生成を招きうる。そのため、任意的組成元素とし、Cの組成比は0質量%以上0.3質量%以下である。 C (carbon) segregates at the grain boundaries to improve the grain boundary strength, and a part of it forms carbides such as TaC and precipitates in a lump form. When segregating at the grain boundaries to increase the grain boundary strength, it is advisable to add 0.08% or more. However, if it is added in excess of 0.3%, excess carbide is formed, the high temperature strength and ductility are lowered, and the corrosion resistance is also lowered. In addition, since the crystallization temperature of the carbide during solidification becomes high, the carbide is pinned between the dendrites, which may lead to the formation of porosity, which is a casting defect. Therefore, it is an arbitrary composition element, and the composition ratio of C is 0% by mass or more and 0.3% by mass or less.

なお、単結晶凝固法により作成するタービンブレードやタービンベーン部品では以下のような熱処理を施して製造することができる。すなわち、熱処理は、1280℃〜1300℃で2時間〜40時間保持後に200℃/min〜400℃/minで空冷または不活性ガス雰囲気中で冷却する溶体化処理、1000℃〜1150℃で2時間〜5時間保持後に空冷または不活性ガス雰囲気中で冷却する1次時効処理、そして850℃〜950℃で10時間〜30時間保持後に空冷または不活性ガス雰囲気中で冷却する2次時効処理という一連のものである。 Turbine blades and turbine vane parts produced by the single crystal solidification method can be manufactured by subjecting the following heat treatments. That is, the heat treatment is a solution treatment in which the mixture is held at 1280 ° C to 1300 ° C for 2 hours to 40 hours and then cooled by air cooling at 200 ° C / min to 400 ° C / min or in an inert gas atmosphere, and is cooled at 1000 ° C to 1150 ° C for 2 hours. A series of primary aging treatments in which air cooling or cooling in an inert gas atmosphere is performed after holding for ~ 5 hours, and secondary aging treatment in which cooling is performed in an air cooling or inert gas atmosphere after holding at 850 ° C. to 950 ° C. for 10 hours to 30 hours. belongs to.

また、普通鋳造法により作成するタービンブレードやタービンベーン部品では以下のような熱処理を施して製造することができる。すなわち、熱処理は、1200℃〜1300℃で2時間〜40時間保持後に150℃/min〜400℃/minで空冷または不活性ガス雰囲気中で冷却する溶体化処理、1000℃〜1150℃で2時間〜5時間保持後に空冷または不活性ガス雰囲気中で冷却する1次時効処理、そして800℃〜950℃で10時間〜30時間保持後に空冷または不活性ガス雰囲気中で冷却する2次時効処理という一連のものである。 In addition, turbine blades and turbine vane parts produced by the ordinary casting method can be manufactured by subjecting the following heat treatments. That is, the heat treatment is a solution treatment in which the mixture is held at 1200 ° C. to 1300 ° C. for 2 hours to 40 hours and then air-cooled at 150 ° C./min to 400 ° C./min or cooled in an inert gas atmosphere, and is cooled at 1000 ° C. to 1150 ° C. for 2 hours. A series of primary aging treatments in which air cooling or cooling in an inert gas atmosphere is performed after holding for ~ 5 hours, and secondary aging treatment in which cooling is performed in an air cooling or inert gas atmosphere after holding at 800 ° C. to 950 ° C. for 10 hours to 30 hours. belongs to.

また、一方向凝固法により作成するタービンブレードやタービンベーン部品では以下のような熱処理を施して製造することができる。すなわち、熱処理は、1200℃〜1300℃で2時間〜40時間保持後に200℃/min〜400℃/minで空冷または不活性ガス雰囲気中で冷却する溶体化処理、1000℃〜1150℃で2時間〜5時間保持後に空冷または不活性ガス雰囲気中で冷却する1次時効処理、そして800℃〜950℃で10時間〜30時間保持後に空冷または不活性ガス雰囲気中で冷却する2次時効処理という一連のものである。 In addition, turbine blades and turbine vane parts produced by the one-way solidification method can be manufactured by subjecting the following heat treatments. That is, the heat treatment is a solution treatment in which the mixture is held at 1200 ° C. to 1300 ° C. for 2 hours to 40 hours and then air-cooled at 200 ° C./min to 400 ° C./min or cooled in an inert gas atmosphere, and is cooled at 1000 ° C. to 1150 ° C. for 2 hours. A series of primary aging treatments in which air cooling or cooling in an inert gas atmosphere is performed after holding for ~ 5 hours, and secondary aging treatment in which cooling is performed in an air cooling or inert gas atmosphere after holding at 800 ° C. to 950 ° C. for 10 hours to 30 hours. belongs to.

さらに、本発明のNi基超合金粉末を用いて焼結または3D造形で作成されたタービンブレードやタービンベーン部品では以下のような熱処理を施して製造することができる。すなわち、熱処理は、1200℃〜1300℃で2時間〜40時間保持後に200℃/min〜400℃/minで空冷または不活性ガス雰囲気中で冷却する溶体化処理、1000℃〜1150℃で2時間〜5時間保持後に空冷または不活性ガス雰囲気中で冷却する1次時効処理、そして850℃〜950℃で10時間〜30時間保持後に空冷または不活性ガス雰囲気中で冷却する2次時効処理という一連のものである。 Further, turbine blades and turbine vane parts produced by sintering or 3D modeling using the Ni-based superalloy powder of the present invention can be manufactured by subjecting the following heat treatments. That is, the heat treatment is a solution treatment in which the mixture is held at 1200 ° C. to 1300 ° C. for 2 hours to 40 hours and then air-cooled at 200 ° C./min to 400 ° C./min or cooled in an inert gas atmosphere, and is cooled at 1000 ° C. to 1150 ° C. for 2 hours. A series of primary aging treatments in which air cooling or cooling in an inert gas atmosphere is performed after holding for ~ 5 hours, and secondary aging treatment in which cooling is performed in an air cooling or inert gas atmosphere after holding at 850 ° C. to 950 ° C. for 10 hours to 30 hours. belongs to.

このような一連の所定温度で所定時間の保持は、すべて真空中または不活性ガス雰囲気中で行うことが、高温酸化の影響を受けないという観点からも好ましい。 It is preferable to hold the series at a predetermined temperature for a predetermined time in a vacuum or in an atmosphere of an inert gas from the viewpoint of not being affected by high temperature oxidation.

以下、実施例を示し、本発明のNi基超合金についてさらに詳しく説明する。 Hereinafter, examples will be shown and the Ni-based superalloy of the present invention will be described in more detail.

表1に示した組成(質量%)を有するNi基単結晶超合金を、真空溶解炉を用いて溶解し、加熱保持されたロストワックス鋳型で鋳造し、鋳型を200mm/hの凝固速度で引き下げて単結晶凝固鋳造物を得た。次に、得られた単結晶凝固鋳造物を真空中において1320℃で5時間保持してから約300℃/minで空冷する溶体化処理を行った。その後、真空中において1100℃で2時間保持してから空冷する1次時効処理と、真空中において870℃で24時間保持してから空冷する2次時効処理とを行った。 The Ni-based single crystal superalloy having the composition (% by mass) shown in Table 1 was melted using a vacuum melting furnace, cast in a heat-held lost wax mold, and the mold was pulled down at a solidification rate of 200 mm / h. A single crystal solidified casting was obtained. Next, the obtained single crystal solidified casting was held in vacuum at 1320 ° C. for 5 hours and then air-cooled at about 300 ° C./min for solution treatment. Then, a primary aging treatment in which the product was held at 1100 ° C. for 2 hours in a vacuum and then air-cooled, and a secondary aging treatment in which the product was held in a vacuum at 870 ° C. for 24 hours and then air-cooled were performed.

実施例No.1および実施例No.2のNi基単結晶超合金の溶体化処理の温度範囲は1280℃〜1340℃であり、1次時効処理の温度範囲は1000℃〜1150℃である。比較合金No.3および比較合金No.4は、1280℃で1時間保持してから1320℃に昇温し5時間保持後に空冷した。次いで1100℃に4時間保持してから空冷し、この後、870℃に20時間保持して空冷する熱処理を施した。比較合金No.5の熱処理は、1130℃で1時間保持してから1180℃に昇温し2時間保持後に空冷し、その後1050℃に4時間保持してから空冷し、この後、870℃に20時間保持して空冷する熱処理を施した。 Example No. 1 and Example No. The temperature range of the solution treatment of the Ni-based single crystal superalloy of No. 2 is 1280 ° C to 1340 ° C, and the temperature range of the primary aging treatment is 1000 ° C to 1150 ° C. Comparative Alloy No. 3 and Comparative Alloy No. No. 4 was held at 1280 ° C. for 1 hour, then heated to 1320 ° C., held for 5 hours, and then air-cooled. Then, it was held at 1100 ° C. for 4 hours and then air-cooled, and then it was held at 870 ° C. for 20 hours and air-cooled. Comparative Alloy No. The heat treatment of No. 5 was carried out at 1130 ° C. for 1 hour, then heated to 1180 ° C., held for 2 hours and then air-cooled, then held at 1050 ° C. for 4 hours and then air-cooled, and then held at 870 ° C. for 20 hours. It was heat-treated to be air-cooled.

Figure 0006970438
Figure 0006970438

硫化腐食が問題となる低温側のタイプIIといわれる約700℃での耐硫化腐食性については、るつぼ試験法による加速試験を実施し検討した。
るつぼ試験に用いた溶融塩組成は、通常最もよく用いられる75%NaSO+25%NaClとした。この組成の混合塩12gを容量15mlのアルミナ磁製るつぼ中で700℃に溶融させ、試験片(φ9mm×5mm)を全浸漬させた。なお、試験片表面はあらかじめエメリー紙#600まで研磨した後、試験片をアセトンで洗浄して腐食試験に供した。腐食試験時間は50hとし、試験終了後の腐食表面積を求めて試験結果とした。図1に結果を示す。実施例No.1および実施例No.2は比較合金No.3、比較合金No.4および比較合金No.5のいずれより腐食面積率が少なく耐硫化性の良いことが明らかである。
The resistance to sulfurization at about 700 ° C, which is called type II on the low temperature side where sulfurization corrosion is a problem, was examined by conducting an accelerated test using the crucible test method.
The molten salt composition used in the crucible test was 75% Na 2 SO 4 + 25% NaCl, which is usually the most commonly used. 12 g of the mixed salt having this composition was melted at 700 ° C. in an alumina porcelain crucible having a capacity of 15 ml, and the test piece (φ9 mm × 5 mm) was completely immersed. The surface of the test piece was polished to emery paper # 600 in advance, and then the test piece was washed with acetone and subjected to a corrosion test. The corrosion test time was 50 hours, and the corroded surface area after the end of the test was obtained and used as the test result. Figure 1 shows the results. Example No. 1 and Example No. 2 is the comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. It is clear that the corrosion area ratio is smaller than that of any of 5 and the sulfurization resistance is good.

高温側のタイプIといわれる約900℃での耐硫化腐食性については供試合金、溶融塩組成、るつぼ容量、試験形状は低温側の試験条件と同様である。高温側(タイプI)の硫化腐食試験は試験温度900℃、試験時間を20hとした。試験終了後スケールをワイヤブラシでおとして重量減(%)を測定し、これを表面からの金属の消耗量に換算して試験結果とし図2に示す。実施例No.1および実施例No.2は比較合金No.3、比較合金No.4および比較合金No.5のいずれよりメタルロスが少なく耐硫化腐食性の良いことが明らかである。
表2に、図1及び図2に示す耐硫化腐食性の試験結果の数値を表す。700℃の試料表面部腐食割合が2段で記載してあるのは、実験回数が2回あって、その試験結果に対応している。

Figure 0006970438
Regarding the sulfurization corrosion resistance at about 900 ° C, which is called type I on the high temperature side, the match gold, molten salt composition, crucible capacity, and test shape are the same as the test conditions on the low temperature side. In the sulfurization corrosion test on the high temperature side (type I), the test temperature was 900 ° C. and the test time was 20 hours. After the test is completed, the weight loss (%) is measured by using a wire brush on the scale, and this is converted into the amount of metal consumed from the surface to obtain the test results, which is shown in FIG. Example No. 1 and Example No. 2 is the comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. It is clear that there is less metal loss than any of 5 and the sulfurization corrosion resistance is good.
Table 2 shows the numerical values of the sulfurization corrosion resistance test results shown in FIGS. 1 and 2. The fact that the corrosion rate of the sample surface at 700 ° C. is described in two stages corresponds to the test results because the number of experiments was two.
Figure 0006970438

高温でのクリープ試験は、熱処理後の単結晶凝固合金鋳造物を平行部の直径が4mmで、長さが20mmのクリープ試験片に加工し、800℃で735MPa、900℃で392MPa、1000℃で245MPaおよび1100℃で137MPaの条件でクリープ試験を行った。 In the creep test at high temperature, the heat-treated single crystal solidified alloy casting is processed into a creep test piece having a parallel portion having a diameter of 4 mm and a length of 20 mm, and processed at 800 ° C. at 735 MPa, 900 ° C. at 392 MPa, and 1000 ° C. Creep tests were performed at 245 MPa and 1100 ° C. under the conditions of 137 MPa.

実施例No.1、実施例No.2、比較合金No.3、比較合金No.4および比較合金No.5の800℃で735MPa条件でのクリープ試験の結果を図3に示す。発明合金のクリープ寿命が比較例より優れていることが図3からも確認される。 Example No. 1. Example No. 2. Comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. The results of the creep test at 800 ° C. and 735 MPa condition of No. 5 are shown in FIG. It is also confirmed from FIG. 3 that the creep life of the invented alloy is superior to that of the comparative example.

実施例No.1、実施例No.2、比較合金No.3、比較合金No.4および比較合金No.5の900℃で392MPa条件でのクリープ試験の結果を図4に示す。発明合金のクリープ寿命が比較例より優れていることが図4からも確認される。 Example No. 1. Example No. 2. Comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. The results of the creep test at 900 ° C. and 392 MPa condition of No. 5 are shown in FIG. It is also confirmed from FIG. 4 that the creep life of the invented alloy is superior to that of the comparative example.

実施例No.1、実施例No.2、比較合金No.3、比較合金No.4および比較合金No.5の1000℃で245MPa条件でのクリープ試験の結果を図5に示す。発明合金のクリープ寿命が比較例より優れていることが図5からも確認される。 Example No. 1. Example No. 2. Comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. The results of the creep test at 1000 ° C. and 245 MPa condition of 5 are shown in FIG. It is also confirmed from FIG. 5 that the creep life of the invented alloy is superior to that of the comparative example.

実施例No.1、実施例No.2、比較合金No.3、比較合金No.4および比較合金No.5の1100℃で137MPa条件でのクリープ試験の結果を図6に示す。発明合金のクリープ寿命が比較例より優れていることが図6からも確認される。
表3に、図3〜図6に示すクリープ破断試験結果の数値(単位:h)を表す。

Figure 0006970438
Example No. 1. Example No. 2. Comparative alloy No. 3. Comparative alloy No. 4 and Comparative Alloy No. The results of the creep test at 1100 ° C. and 137 MPa condition of No. 5 are shown in FIG. It is also confirmed from FIG. 6 that the creep life of the invented alloy is superior to that of the comparative example.
Table 3 shows the numerical values (unit: h) of the creep rupture test results shown in FIGS. 3 to 6.
Figure 0006970438

比較合金No.3の75%NaSO+25%NaClの混合塩中で700℃、50時間全浸漬のるつぼ試験後の走査型電子顕微鏡写真を図7に示す。酸化被膜が400μmと厚く、縦方向に酸化物が形成されており基材の酸化を防ぎにくい組織である。 Comparative Alloy No. FIG. 7 shows a scanning electron micrograph after a crucible test in which the product is completely immersed in a mixed salt of 75% Na 2 SO 4 + 25% NaCl at 700 ° C. for 50 hours. The oxide film is as thick as 400 μm, and oxides are formed in the vertical direction, making it difficult to prevent oxidation of the substrate.

実施例No.1の75%NaSO+25%NaClの混合塩中で700℃、50時間全浸漬のるつぼ試験後の走査型電子顕微鏡写真を図8に示す。酸化被膜が200μmと薄く、層状に重なるように酸化物が形成されており基材の酸化を防ぐ組織である。実施例No.2も同様の酸化被膜を形成していた。 Example No. FIG. 8 shows a scanning electron micrograph after a crucible test in which the product is completely immersed in a mixed salt of 75% Na 2 SO 4 + 25% NaCl at 700 ° C. for 50 hours. The oxide film is as thin as 200 μm, and oxides are formed so as to overlap in layers, which is a structure that prevents oxidation of the base material. Example No. 2 also formed a similar oxide film.

本発明のNi基超合金は、耐硫化腐食性、クリープ特性に優れ、実用面においてコストパフォーマンスに優れている。したがって、ジェットエンジンやガスタービンのタービンブレードやタービンベーンの高温かつ高応力下で使用される部材に有効である。 The Ni-based superalloy of the present invention is excellent in sulfurization corrosion resistance and creep characteristics, and is excellent in cost performance in practical use. Therefore, it is effective for members used under high temperature and high stress of turbine blades and turbine vanes of jet engines and gas turbines.

1 酸化被膜
2 基材
1 Oxidation film 2 Base material

Claims (6)

Cr:6質量%以上12質量%以下、
Mo:0.4質量%以上3.0質量%以下、
W:6質量%以上10質量%以下、
Al:4.0質量%以上6.5質量%以下、
Ta:8質量%以上12質量%以下、
Re:0.01質量%以上1.0質量%以下、
Si:0.01質量%以上0.2質量%以下、
を必須組成元素として含有し、残部がNiおよび不可避的不純物からなるNi基超合金であって、任意的組成元素として下記の元素を含有することを特徴とするNi基超合金。
Co:0質量%以上3質量%以下、
Ti:0質量%以上1質量%以下、
Nb:0質量%以上1質量%以下、
Hf:0質量%以上0.15質量%以下、
Zr:0質量%以上0.04質量%以下、
B:0質量%以上0.03質量%以下、
C:0質量%以上0.3質量%以下。
Cr: 6% by mass or more and 12% by mass or less,
Mo: 0.4% by mass or more and 3.0% by mass or less,
W: 6% by mass or more and 10% by mass or less,
Al: 4.0% by mass or more and 6.5% by mass or less,
Ta: 8% by mass or more and 12% by mass or less,
Re: 0.01% by mass or more and 1.0% by mass or less,
Si: 0.01% by mass or more and 0.2% by mass or less,
Is a Ni-based superalloy containing Ni as an essential composition element and the balance being Ni and unavoidable impurities, and the Ni-based superalloy is characterized by containing the following elements as optional composition elements.
Co: 0% by mass or more and 3% by mass or less,
Ti: 0% by mass or more and 1% by mass or less,
Nb: 0% by mass or more and 1% by mass or less,
Hf: 0% by mass or more and 0.15% by mass or less,
Zr: 0% by mass or more and 0.04% by mass or less,
B: 0% by mass or more and 0.03% by mass or less,
C: 0% by mass or more and 0.3% by mass or less.
Cr:7質量%以上12質量%以下、
Mo:0.4質量%以上2.5質量%以下、
W:7質量%以上10質量%以下、
Al:4.0質量%以上6.5質量%以下、
Ta:9質量%以上11質量%以下、
Re:0.08質量%以上0.95質量%以下、および
Si:0.01質量%以上0.2質量%以下、
を必須組成元素として含有し、残部がNiおよび不可避的不純物からなるNi基超合金であって、任意的組成元素として下記の元素を含有することを特徴とするNi基超合金。
Co:0質量%以上3質量%以下、
Ti:0質量%以上1質量%以下、
Nb:0質量%以上1質量%以下、
Hf:0質量%以上0.15質量%以下、
Zr:0質量%以上0.04質量%以下、
B:0質量%以上0.03質量%以下、
C:0質量%以上0.3質量%以下。
Cr: 7% by mass or more and 12% by mass or less,
Mo: 0.4% by mass or more and 2.5% by mass or less,
W: 7% by mass or more and 10% by mass or less,
Al: 4.0% by mass or more and 6.5% by mass or less,
Ta: 9% by mass or more and 11% by mass or less,
Re: 0.08% by mass or more and 0.95% by mass or less, and Si: 0.01% by mass or more and 0.2% by mass or less,
Is a Ni-based superalloy containing Ni as an essential composition element and the balance being Ni and unavoidable impurities, and the Ni-based superalloy is characterized by containing the following elements as optional composition elements.
Co: 0% by mass or more and 3% by mass or less,
Ti: 0% by mass or more and 1% by mass or less,
Nb: 0% by mass or more and 1% by mass or less,
Hf: 0% by mass or more and 0.15% by mass or less,
Zr: 0% by mass or more and 0.04% by mass or less,
B: 0% by mass or more and 0.03% by mass or less,
C: 0% by mass or more and 0.3% by mass or less.
Cr:8質量%以上10質量%以下、
Mo:0.4質量%以上2.0質量%以下、
W:7質量%以上9質量%以下、
Al:4.0質量%以上6.5質量%以下、
Ta:10質量%以上11質量%以下、
Re:0.1質量%以上0.9質量%以下、および
Si:0.01質量%以上0.2質量%以下、
を必須組成元素として含有し、残部がNiおよび不可避的不純物からなるNi基超合金であって、任意的組成元素として下記の元素を含有することを特徴とするNi基超合金。
Co:0質量%以上3質量%以下、
Ti:0質量%以上1質量%以下、
Nb:0質量%以上1質量%以下、
Hf:0質量%以上0.15質量%以下、
Zr:0質量%以上0.04質量%以下、
B:0質量%以上0.03質量%以下、
C:0質量%以上0.3質量%以下。
Cr: 8% by mass or more and 10% by mass or less,
Mo: 0.4% by mass or more and 2.0% by mass or less,
W: 7% by mass or more and 9% by mass or less,
Al: 4.0% by mass or more and 6.5% by mass or less,
Ta: 10% by mass or more and 11% by mass or less,
Re: 0.1% by mass or more and 0.9% by mass or less, and Si: 0.01% by mass or more and 0.2% by mass or less,
Is a Ni-based superalloy containing Ni as an essential composition element and the balance being Ni and unavoidable impurities, and the Ni-based superalloy is characterized by containing the following elements as optional composition elements.
Co: 0% by mass or more and 3% by mass or less,
Ti: 0% by mass or more and 1% by mass or less,
Nb: 0% by mass or more and 1% by mass or less,
Hf: 0% by mass or more and 0.15% by mass or less,
Zr: 0% by mass or more and 0.04% by mass or less,
B: 0% by mass or more and 0.03% by mass or less,
C: 0% by mass or more and 0.3% by mass or less.
請求項1乃至3のいずれか1項に記載のNi基超合金であって、
温度800℃で応力735MPaにおけるクリープ寿命が196時間以上であり、温度900℃で応力392MPaにおけるクリープ寿命が267時間以上であり、温度1000℃で応力245MPaにおけるクリープ寿命が80時間以上であり、温度1100℃で応力137MPaにおけるクリープ寿命が237時間以上であるNi基超合金。
The Ni-based superalloy according to any one of claims 1 to 3.
The creep life at a temperature of 800 ° C. and a stress of 735 MPa is 196 hours or more, the creep life at a temperature of 900 ° C. and a stress of 392 MPa is 267 hours or more, the creep life at a temperature of 1000 ° C. and a stress of 245 MPa is 80 hours or more, and the temperature is 1100. A Ni-based superalloy having a creep life of 237 hours or more at a temperature of 137 MPa at a temperature of 137 MPa.
請求項1乃至3のいずれか1項に記載のNi基超合金であって、
所定条件のるつぼ試験において温度700℃で50時間保持の腐食表面積割合が90%以下であり、900℃で20時間保持のメタルロスが2.0mm以下であるNi基超合金。
The Ni-based superalloy according to any one of claims 1 to 3.
A Ni-based superalloy having a corrosion surface area ratio of 90% or less at a temperature of 700 ° C. for 50 hours and a metal loss of 2.0 mm or less at 900 ° C. for 20 hours in a crucible test under predetermined conditions.
請求項1乃至3のいずれかのNi基超合金を用いて、普通鋳造法、一方向凝固法、単結晶凝固法、粉末を用いた焼結および3D造形法の何れかにより作成したタービン部材。
A turbine member produced by any of the ordinary casting method, the one-way solidification method, the single crystal solidification method, the sintering using powder, and the 3D modeling method using the Ni-based superalloy according to any one of claims 1 to 3.
JP2018014260A 2018-01-31 2018-01-31 Ni-based superalloy Active JP6970438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018014260A JP6970438B2 (en) 2018-01-31 2018-01-31 Ni-based superalloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014260A JP6970438B2 (en) 2018-01-31 2018-01-31 Ni-based superalloy

Publications (2)

Publication Number Publication Date
JP2019131856A JP2019131856A (en) 2019-08-08
JP6970438B2 true JP6970438B2 (en) 2021-11-24

Family

ID=67545702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014260A Active JP6970438B2 (en) 2018-01-31 2018-01-31 Ni-based superalloy

Country Status (1)

Country Link
JP (1) JP6970438B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102600099B1 (en) 2021-07-22 2023-11-09 창원대학교 산학협력단 Ni-BASED SUPERALLOY WITH HIGH γ` VOLUME FRACTION SUITABLE FOR ADDITIVE MANUFACTURING AND ADDITIVE MANUFACTURING METHOD OF HIGH-TEMPERATURE MEMBER USING THE SAME
WO2023214567A1 (en) * 2022-05-02 2023-11-09 株式会社プロテリアル Alloy, alloy powder, alloy member, and composite member
CN114934211B (en) * 2022-07-21 2022-10-25 北京钢研高纳科技股份有限公司 Nickel-base superalloy, nickel-base superalloy powder, and nickel-base superalloy component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885216A (en) * 1987-04-03 1989-12-05 Avco Corporation High strength nickel base single crystal alloys
JPH04131343A (en) * 1990-09-21 1992-05-06 Natsuo Yugawa Ni-base superalloy for single crystal
JPH11310839A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Grain-oriented solidification casting of high strength nickel-base superalloy
JP5636639B2 (en) * 2009-06-18 2014-12-10 独立行政法人物質・材料研究機構 Ni-base superalloy
JP5133453B2 (en) * 2009-08-10 2013-01-30 株式会社Ihi Ni-based single crystal superalloy and turbine blade

Also Published As

Publication number Publication date
JP2019131856A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP5296046B2 (en) Ni-based alloy and turbine moving / stator blade of gas turbine using the same
JP5696995B2 (en) Heat resistant superalloy
JP2881626B2 (en) Single crystal nickel-based superalloy
JP5773596B2 (en) Nickel-base superalloys and articles
EP2420584B1 (en) Nickel-based single crystal superalloy and turbine blade incorporating this superalloy
KR101687320B1 (en) Ni-BASED SINGLE CRYSTAL SUPERALLOY
JP2011074493A (en) Nickel-based superalloy and article
JP5252348B2 (en) Ni-base superalloy, manufacturing method thereof, and turbine blade or turbine vane component
JP5024797B2 (en) Cobalt-free Ni-base superalloy
JP6970438B2 (en) Ni-based superalloy
JP5626920B2 (en) Nickel-base alloy castings, gas turbine blades and gas turbines
JP2005097649A (en) Ni-BASED SUPERALLOY
JP5063550B2 (en) Nickel-based alloy and gas turbine blade using the same
JP6267890B2 (en) Ni-base cast superalloy and casting made of the Ni-base cast superalloy
KR20170058065A (en) Ni base superalloy and Method of manufacturing thereof
JP5891463B2 (en) Method for evaluating oxidation resistance of Ni-base superalloy
JPWO2019193630A1 (en) Ni-based superalloy castings and Ni-based superalloy products using them
JP5427642B2 (en) Nickel-based alloy and land gas turbine parts using the same
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JP5636639B2 (en) Ni-base superalloy
KR101866833B1 (en) Nickel-based heat-resistant material improved cyclic oxidation property and method of preparing the same
JP6803573B2 (en) Ni-based unidirectional solidified alloy
JP2023018394A (en) Ni-BASED SUPERALLOY, AND TURBINE WHEEL
JP2013185210A (en) Nickel-based alloy and gas turbine blade using the same
JP5396445B2 (en) gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201224

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211022

R150 Certificate of patent or registration of utility model

Ref document number: 6970438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150