JP6966969B2 - Buffer - Google Patents

Buffer Download PDF

Info

Publication number
JP6966969B2
JP6966969B2 JP2018058437A JP2018058437A JP6966969B2 JP 6966969 B2 JP6966969 B2 JP 6966969B2 JP 2018058437 A JP2018058437 A JP 2018058437A JP 2018058437 A JP2018058437 A JP 2018058437A JP 6966969 B2 JP6966969 B2 JP 6966969B2
Authority
JP
Japan
Prior art keywords
shock absorber
chamber
tube
cylinder
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018058437A
Other languages
Japanese (ja)
Other versions
JP2019168094A (en
Inventor
健 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Motorcycle Suspension Co Ltd
Original Assignee
KYB Motorcycle Suspension Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Motorcycle Suspension Co Ltd filed Critical KYB Motorcycle Suspension Co Ltd
Priority to JP2018058437A priority Critical patent/JP6966969B2/en
Publication of JP2019168094A publication Critical patent/JP2019168094A/en
Application granted granted Critical
Publication of JP6966969B2 publication Critical patent/JP6966969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Description

本発明は、緩衝器の改良に関する。 The present invention relates to an improvement in a shock absorber.

従来、緩衝器の中には、シリンダと、シリンダ内に軸方向へ移動可能に挿入されるロッドとを有して伸縮し、その伸縮時にメインの減衰力を発揮する緩衝器本体と、この緩衝器本体の外周に設けられて緩衝器本体との間に液体を貯留する液溜室を形成するチューブ部材と、液溜室を上室と下室に仕切るとともに、上室と下室とを連通する絞り孔が形成された円錐台筒状の隔壁部材とを備えるものがある。 Conventionally, the shock absorber has a cylinder and a rod that is movably inserted into the cylinder and expands and contracts, and exerts the main damping force at the time of expansion and contraction. A tube member provided on the outer periphery of the vessel body to form a liquid storage chamber for storing liquid between the shock absorber body and the liquid storage chamber are divided into an upper chamber and a lower chamber, and the upper chamber and the lower chamber are communicated with each other. Some are provided with a truncated cone-shaped partition wall member in which a drawing hole is formed.

このような緩衝器では、緩衝器の伸縮時に緩衝器本体が伸縮してメインの減衰力を発揮する。さらに、液溜室の液面と隔壁部材が緩衝器の伸縮に伴い相対移動するようになっており、隔壁部材が液中に浸漬した状態で緩衝器が伸縮作動を呈すると、液体が絞り孔を通って上室と下室との間を移動する。そして、当該液体の流れに対しては、絞り孔により抵抗が付与されるようになっており、これによりメインの減衰力に加えて二次的な減衰力が発生する(例えば、特許文献1)。 In such a shock absorber, the shock absorber body expands and contracts when the shock absorber expands and contracts to exert the main damping force. Further, the liquid surface of the liquid reservoir and the partition wall member move relative to each other as the shock absorber expands and contracts, and when the shock absorber expands and contracts while the partition wall member is immersed in the liquid, the liquid draws a hole. Move between the upper and lower chambers through. Then, resistance is applied to the flow of the liquid by the throttle hole, whereby a secondary damping force is generated in addition to the main damping force (for example, Patent Document 1). ..

特開2010−261477号公報Japanese Unexamined Patent Publication No. 2010-261477

ここで、例えば、緩衝器が車両のサスペンションに利用されて車体と車軸との間に介装される場合等には、緩衝器の収縮量が大きくなった場合に、その収縮に抗する圧側の減衰力を大きくして最収縮時の衝撃を緩和したい場合がある。 Here, for example, when the shock absorber is used for the suspension of the vehicle and is interposed between the vehicle body and the axle, when the shrinkage amount of the shock absorber becomes large, the compression side resists the shrinkage. There are cases where it is desired to increase the damping force to alleviate the impact at the time of maximum contraction.

このような場合には、緩衝器の収縮量が所定以上となった場合に隔壁部材が液中に浸漬されるように隔壁部材を設置すればよい。このようにすると、緩衝器の収縮量が所定以上となった場合にメインの減衰力に加えて二次的な減衰力が発生し、緩衝器全体としての圧側の減衰力を大きくできる。 In such a case, the partition wall member may be installed so that the partition wall member is immersed in the liquid when the shrinkage amount of the shock absorber becomes a predetermined amount or more. By doing so, when the shrinkage amount of the shock absorber becomes more than a predetermined value, a secondary damping force is generated in addition to the main damping force, and the damping force on the compression side of the shock absorber as a whole can be increased.

上記一例に示したような緩衝器に求められる減衰力の特性は、緩衝器の利用目的等に応じて様々ではあるが、緩衝器のストローク量(無負荷状態からの圧縮量)、或いは作動方向(伸長時又は圧縮時)等に応じて二次的な減衰力を付加的に発生させて、そのときの緩衝器全体としての減衰力を大きくしたい場合がある。 The characteristics of the damping force required for the shock absorber as shown in the above example vary depending on the purpose of use of the shock absorber, etc., but the stroke amount (compression amount from the no-load state) of the shock absorber or the operating direction. There is a case where it is desired to additionally generate a secondary damping force according to (during expansion or compression) or the like to increase the damping force of the shock absorber as a whole at that time.

そして、従来の緩衝器では、隔壁部材を設ける位置を変更すれば、二次的な減衰力の発生し始めるストローク量(位置)を変更できるので、二次的な減衰力の発生するストローク範囲を調整できる。しかし、従来の緩衝器では、隔壁部材の絞り孔が伸縮方向によらず常に開放されていてその開口面積(流路面積)が一定であるので、例えば、伸長時に発生する二次的な減衰力をそのままに、収縮時に発生する二次的な減衰力のみを大きくする等の調整が難しい。 Then, in the conventional shock absorber, the stroke amount (position) at which the secondary damping force starts to be generated can be changed by changing the position where the partition wall member is provided, so that the stroke range in which the secondary damping force is generated can be changed. Can be adjusted. However, in the conventional shock absorber, the throttle hole of the partition wall member is always open regardless of the expansion / contraction direction, and the opening area (flow path area) is constant. Therefore, for example, a secondary damping force generated at the time of extension is generated. It is difficult to make adjustments such as increasing only the secondary damping force generated during contraction while keeping the same.

そこで、本発明は、このような問題を解決し、伸長時に発生する二次的な減衰力と収縮時に発生する二次的な減衰力を個別に容易に調整できる緩衝器の提供を目的とする。 Therefore, an object of the present invention is to solve such a problem and to provide a shock absorber capable of easily adjusting the secondary damping force generated at the time of extension and the secondary damping force generated at the time of contraction individually and easily. ..

上記課題を解決する緩衝器は、シリンダとロッドとを有して伸縮する緩衝器本体とその外周に設けられるチューブ部材との間に形成される液溜室を上室と下室に仕切るとともに上室と下室とを連通する通路を有し、緩衝器本体の伸縮時に液溜室の液面に対する位置が変化する隔壁部材を備える。そして、その隔壁部材が、第一部材と、この第一部材との相対移動により通路の流路面積を変更する第二部材とを有し、液体が通路を流れる方向に応じて第一部材と第二部材の相対移動の方向が切替わる。 The shock absorber that solves the above-mentioned problems divides the liquid storage chamber formed between the shock absorber main body that has a cylinder and a rod and expands and contracts and the tube member provided on the outer periphery thereof into an upper chamber and a lower chamber, and is upper. It has a passage connecting the chamber and the lower chamber, and is provided with a partition member whose position of the liquid reservoir with respect to the liquid surface changes when the shock absorber body expands and contracts. The partition wall member has a first member and a second member that changes the flow path area of the passage by relative movement with the first member, and the first member and the liquid depending on the direction in which the liquid flows through the passage. The direction of relative movement of the second member is switched.

上記構成によれば、例えば、緩衝器の収縮時に発生する二次的な減衰力のみを大きくしたい場合には、緩衝器本体の収縮時に通路の流路面積を小さくする方向へ第一部材と第二部材が相対移動するように隔壁部材を配置すればよく、伸縮時の流路面積を個別に設定できる。このため、緩衝器の伸長時に発生する二次的な減衰力と、緩衝器の収縮時に発生する二次的な減衰力を個別に容易に調整できる。 According to the above configuration, for example, when it is desired to increase only the secondary damping force generated when the shock absorber contracts, the first member and the first member and the first member in the direction of reducing the flow path area of the passage when the shock absorber body contracts. The partition wall members may be arranged so that the two members move relative to each other, and the flow path area at the time of expansion and contraction can be set individually. Therefore, the secondary damping force generated when the shock absorber is extended and the secondary damping force generated when the shock absorber is contracted can be easily adjusted individually.

また、上記緩衝器では、第一部材と第二部材がともに筒状で、第一部材の内周側に緩衝器本体が挿通されるとともに、通路が第一部材の肉厚を貫通する通孔を有して形成されており、その第一部材の内周側又は外周側に軸方向へ移動可能に装着される第二部材が第一部材に対して軸方向へ移動することで通孔の開口面積が変更されるとよい。 Further, in the above-mentioned shock absorber, both the first member and the second member are cylindrical, the shock absorber main body is inserted into the inner peripheral side of the first member, and the passage penetrates the wall thickness of the first member. The second member, which is movably mounted on the inner peripheral side or the outer peripheral side of the first member, moves axially with respect to the first member to form a through hole. The opening area should be changed.

上記構成によれば、液体が通路を流れる方向に応じて第一部材と第二部材の相対移動の方向を切替えるのが容易である。さらには、通孔を大きくできるので、通路の流路面積を最大にしたときに発生する二次的な減衰力を小さくできるとともに、二次的な減衰力の調整幅を大きくできる。 According to the above configuration, it is easy to switch the direction of relative movement of the first member and the second member according to the direction in which the liquid flows through the passage. Further, since the through hole can be increased, the secondary damping force generated when the flow path area of the passage is maximized can be reduced, and the adjustment range of the secondary damping force can be increased.

また、上記緩衝器では、第一部材が緩衝器本体の外周に接する環状の小径部と、この小径部の一端に連なり小径部から離れるに従って内径及び外径が徐々に拡径される円錐台筒状の胴部と、この胴部の反小径部側端に連なりチューブ部材の内周に接する環状の大径部とを含むとよい。当該構成によれば、第一部材で液溜室を上室と下室に仕切りつつ、第一部材の内周側又は外周側に第二部材を装着するスペースを確保するのが容易である。 Further, in the above-mentioned shock absorber, an annular small-diameter portion in which the first member is in contact with the outer periphery of the shock absorber main body and a truncated cone cylinder whose inner and outer diameters are gradually increased as the first member is connected to one end of the small-diameter portion and away from the small-diameter portion. It is preferable to include a shaped body portion and an annular large diameter portion connected to the anti-small diameter portion side end of the body portion and in contact with the inner circumference of the tube member. According to this configuration, it is easy to secure a space for mounting the second member on the inner peripheral side or the outer peripheral side of the first member while partitioning the liquid storage chamber into the upper chamber and the lower chamber by the first member.

また、上記緩衝器では、第二部材が通孔を開閉するシャッタ部を含み、このシャッタ部が円錐台筒状で先端へ向かうに従って内径及び外径が徐々に縮径されるとよい。当該構成によれば、シャッタ部の外周面と内周面のそれぞれを、上室又は下室の圧力と、上室又は下室の何れか一方の室から通孔を通って他方の室へ向けて流れる液体の流体力を受ける受圧面にできる。このため、上記構成によれば、液体が通路を流れる方向に応じて第一部材と第二部材の相対移動の方向を切替えるのが容易である。 Further, in the shock absorber, it is preferable that the second member includes a shutter portion that opens and closes a through hole, and the shutter portion has a truncated cone shape and the inner and outer diameters are gradually reduced toward the tip. According to the configuration, each of the outer peripheral surface and the inner peripheral surface of the shutter portion is directed to the pressure of the upper chamber or the lower chamber and the through hole from either the upper chamber or the lower chamber to the other chamber. It can be a pressure receiving surface that receives the fluid force of the flowing liquid. Therefore, according to the above configuration, it is easy to switch the relative movement direction of the first member and the second member according to the direction in which the liquid flows through the passage.

また、上記緩衝器では、第一部材の内周又は外周に軸方向に沿ってリブが形成されていて、第二部材の上室側又は下室側への移動がリブで制限されるとよい。当該構成によれば、第二部材の形状を変更しやすく、二次的な減衰力のチューニングを容易にできる。 Further, in the shock absorber, it is preferable that ribs are formed along the axial direction on the inner circumference or the outer circumference of the first member, and the movement of the second member to the upper chamber side or the lower chamber side is restricted by the ribs. .. According to this configuration, the shape of the second member can be easily changed, and the tuning of the secondary damping force can be easily performed.

また、上記緩衝器では、第一部材が大径部を上室又は下室の何れか一方の室へ向けて配置されるとともに、第二部材が大径部の内周に摺接する環状のスライド部を含み、その第二部材の軸方向における一方の室側の端部に、この第二部材の一方の室側への移動が制限された状態で、スライド部の外周に形成された切欠き部によりスライド部と第一部材との間に軸方向に沿って形成された隙間と上記一方の室とを連通する端部溝が形成されるとよい。当該構成によれば、第一部材と第二部材の間に液体が閉じ込められるのを防止して、第一部材と第二部材の相対移動による通路の開閉作動を保障できる。 Further, in the shock absorber, the first member is arranged with the large diameter portion facing either the upper chamber or the lower chamber, and the second member is an annular slide that is in sliding contact with the inner circumference of the large diameter portion. A notch formed on the outer periphery of the slide portion, including the portion, at the end of one chamber side in the axial direction of the second member, with the movement of the second member toward one chamber side restricted. It is preferable that the portion forms an end groove that communicates the gap formed along the axial direction between the slide portion and the first member and the above-mentioned one chamber. According to this configuration, it is possible to prevent the liquid from being trapped between the first member and the second member, and to guarantee the opening / closing operation of the passage by the relative movement of the first member and the second member.

また、上記緩衝器では、チューブ部材がアウターチューブと、このアウターチューブ内に摺動自在に挿入されるインナーチューブとを有するとともに、シリンダがアウターチューブに連結され、ロッドがインナーチューブに連結されていて、第一部材がシリンダの外周に装着されるとともにインナーチューブの内側に摺動可能に挿入されており、第一部材とインナーチューブの一端を塞ぐ蓋部との間にコイルばねが介装されているとよい。 Further, in the shock absorber, the tube member has an outer tube and an inner tube slidably inserted into the outer tube, a cylinder is connected to the outer tube, and a rod is connected to the inner tube. , The first member is mounted on the outer circumference of the cylinder and is slidably inserted inside the inner tube, and a coil spring is interposed between the first member and the lid portion that closes one end of the inner tube. It is good to be there.

上記構成によれば、第一部材がコイルばねの一端を支えるばね受け部材としても機能するので、そのばね受け部材と隔壁部材とを個別に設ける場合と比較して緩衝器の部品数を少なくできる。 According to the above configuration, since the first member also functions as a spring receiving member that supports one end of the coil spring, the number of shock absorber parts can be reduced as compared with the case where the spring receiving member and the partition wall member are individually provided. ..

本発明の緩衝器によれば、伸長時に発生する二次的な減衰力と収縮時に発生する二次的な減衰力を個別に容易に調整できる。 According to the shock absorber of the present invention, the secondary damping force generated during extension and the secondary damping force generated during contraction can be easily adjusted individually.

本発明の一実施の形態に係る緩衝器を原理的に示した縦断面図である。It is a vertical sectional view which showed the shock absorber which concerns on one Embodiment of this invention in principle. (a)は、本発明の一実施の形態に係る緩衝器の隔壁部材が通孔の開口面積を最大にしたときの状態を示した正面図である。(b)は、(a)の隔壁部材の一部を縦方向に切欠いて示した断面図である。(A) is a front view showing a state when the partition wall member of the shock absorber according to the embodiment of the present invention maximizes the opening area of the through hole. (B) is a cross-sectional view showing a part of the partition wall member of (a) cut out in the vertical direction. (a)は、図2の隔壁部材が通孔の開口面積を最小にしたときの状態を示した正面図である。(b)は、(a)の隔壁部材の一部を縦方向に切欠いて示した断面図である。(A) is a front view showing a state when the partition wall member of FIG. 2 minimizes the opening area of the through hole. (B) is a cross-sectional view showing a part of the partition wall member of (a) cut out in the vertical direction. 本発明の一実施の形態に係る緩衝器の隔壁部材における第二部材の変形例を示した部分断面図である。It is a partial cross-sectional view which showed the modification of the 2nd member in the partition wall member of the shock absorber which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る緩衝器の隔壁部材の変形例を示している。(a)は、その変形例に係る隔壁部材が通孔の開口面積を最大にしたときの状態を示した正面図である。(b)は、(a)の隔壁部材の一部を縦方向に切欠いて示した断面図である。A modification of the partition wall member of the shock absorber according to the embodiment of the present invention is shown. (A) is a front view showing a state when the partition wall member according to the modified example maximizes the opening area of the through hole. (B) is a cross-sectional view showing a part of the partition wall member of (a) cut out in the vertical direction. (a)は、図5の隔壁部材が通孔の開口面積を最小にしたときの状態を示した正面図である。(b)は、(a)の隔壁部材の一部を縦方向に切欠いて示した断面図である。(A) is a front view showing a state when the partition wall member of FIG. 5 minimizes the opening area of the through hole. (B) is a cross-sectional view showing a part of the partition wall member of (a) cut out in the vertical direction. 図5,6に示す隔壁部材の第二部材を斜め下側から見た斜視図である。FIG. 5 is a perspective view of the second member of the partition wall member shown in FIGS. 5 and 6 as viewed from diagonally below. 本発明の一実施の形態に係る緩衝器の変形例を示し、当該変形例に係る緩衝器を原理的に示した縦断面図である。It is a vertical sectional view which shows the modification of the shock absorber which concerns on one Embodiment of this invention, and has shown the shock absorber which concerns on the said modification in principle.

以下に本発明の実施の形態の緩衝器について、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品か対応する部品を示す。 Hereinafter, the shock absorber according to the embodiment of the present invention will be described with reference to the drawings. The same reference numerals, given throughout several drawings, indicate the same part or the corresponding part.

図1,8に示す本発明の実施の形態に係る緩衝器A,A1は、それぞれ車両の懸架装置に利用されている。以下の説明では、緩衝器A,A1が車両に取り付けられた状態での緩衝器A,A1の上下を、特別な説明がない限り、単に緩衝器A,A1の「上」「下」という。 The shock absorbers A and A1 according to the embodiment of the present invention shown in FIGS. 1 and 8 are used for the suspension device of the vehicle, respectively. In the following description, the upper and lower parts of the shock absorbers A and A1 when the shock absorbers A and A1 are attached to the vehicle are simply referred to as "upper" and "lower" of the shock absorbers A and A1 unless otherwise specified.

図1に示す本発明の一実施の形態に係る緩衝器Aは、鞍乗型車両の前輪を懸架する懸架装置であるフロントフォークに利用されている。そして、その緩衝器Aは、アウターチューブ10と、このアウターチューブ10内に摺動自在に挿入されるインナーチューブ11とを有して構成されるテレスコピック型のチューブ部材1と、このチューブ部材1内に収容される緩衝器本体D、及び懸架ばねSとを備える。 The shock absorber A according to the embodiment of the present invention shown in FIG. 1 is used for a front fork, which is a suspension device for suspending the front wheels of a saddle-mounted vehicle. The shock absorber A is a telescopic type tube member 1 having an outer tube 10 and an inner tube 11 slidably inserted into the outer tube 10, and the inside of the tube member 1. It is provided with a shock absorber main body D and a suspension spring S housed in the above.

本実施の形態において、チューブ部材1は倒立型であり、アウターチューブ10を上側(車体側)へ、インナーチューブ11を下側(車軸側)へ向けて鞍乗型車両に取り付けられる。このように、本実施の形態では、アウターチューブ10が車体側チューブ、インナーチューブ11が車輪側チューブとなっている。 In the present embodiment, the tube member 1 is an inverted type, and is attached to a saddle-mounted vehicle with the outer tube 10 facing upward (vehicle body side) and the inner tube 11 facing downward (axle side). As described above, in the present embodiment, the outer tube 10 is the vehicle body side tube and the inner tube 11 is the wheel side tube.

そして、アウターチューブ10が車体側ブラケット(図示せず)を介して鞍乗型車両の車体に連結され、インナーチューブ11が車輪側ブラケット12を介して前輪の車軸に連結される。このようにして緩衝器Aは車体と車軸との間に介装されるとともに、鞍乗型車両が凹凸のある路面を走行するなどして前輪が上下に振動すると、インナーチューブ11がアウターチューブ10に出入りして緩衝器Aが伸縮する。 Then, the outer tube 10 is connected to the vehicle body of the saddle-mounted vehicle via the vehicle body side bracket (not shown), and the inner tube 11 is connected to the axle of the front wheel via the wheel side bracket 12. In this way, the shock absorber A is interposed between the vehicle body and the axle, and when the front wheels vibrate up and down as the saddle-mounted vehicle travels on an uneven road surface, the inner tube 11 becomes the outer tube 10. The shock absorber A expands and contracts in and out of.

また、チューブ部材1の上端となるアウターチューブ10の上端は、キャップ13で塞がれている。その一方、チューブ部材1の下端となるインナーチューブ11の下端は、車輪側ブラケット12で塞がれている。さらに、アウターチューブ10とインナーチューブ11の重複部の間に形成される筒状隙間の下端は、シール部材14で塞がれている。このようにしてチューブ部材1内は密閉されている。 Further, the upper end of the outer tube 10 which is the upper end of the tube member 1 is closed by the cap 13. On the other hand, the lower end of the inner tube 11 which is the lower end of the tube member 1 is closed by the wheel side bracket 12. Further, the lower end of the tubular gap formed between the overlapping portion of the outer tube 10 and the inner tube 11 is closed by the sealing member 14. In this way, the inside of the tube member 1 is sealed.

そして、そのチューブ部材1内に、緩衝器本体Dと懸架ばねSが収容されている。より詳しくは、本実施の形態の懸架ばねSはコイルばねであり、チューブ部材1と緩衝器本体Dとの間に形成される液溜室Rに配置されている。その液溜室Rには、下側に作動油等の液体が貯留されるとともに、その液面Rs上方にエア等の気体が封入されている。 The shock absorber main body D and the suspension spring S are housed in the tube member 1. More specifically, the suspension spring S of the present embodiment is a coil spring, and is arranged in a liquid storage chamber R formed between the tube member 1 and the shock absorber main body D. In the liquid storage chamber R, a liquid such as hydraulic oil is stored on the lower side, and a gas such as air is sealed above the liquid level Rs.

つづいて、緩衝器本体Dは、シリンダ2と、このシリンダ2内に摺動自在に挿入されるピストン3と、一端がピストン3に連結されて他端がシリンダ2外へ突出するピストンロッド4と、シリンダ2の一端に装着されてピストンロッド4を摺動自在に支持する環状のロッドガイド20と、シリンダ2内のピストン3から見てロッドガイド20とは反対側に固定されるバルブケース5と、シリンダ2内のバルブケース5から見てピストン3とは反対側に摺動自在に挿入されるフリーピストン6と、フリーピストン6をピストン3側へ附勢する附勢部材60とを備える。 Subsequently, the shock absorber main body D includes a cylinder 2, a piston 3 slidably inserted into the cylinder 2, and a piston rod 4 having one end connected to the piston 3 and the other end protruding outside the cylinder 2. An annular rod guide 20 mounted on one end of the cylinder 2 to slidably support the piston rod 4, and a valve case 5 fixed to the opposite side of the rod guide 20 when viewed from the piston 3 in the cylinder 2. The free piston 6 is slidably inserted on the side opposite to the piston 3 when viewed from the valve case 5 in the cylinder 2, and the biasing member 60 for urging the free piston 6 to the piston 3 side is provided.

また、本実施の形態の緩衝器本体Dは、倒立型であり、シリンダ2外へ突出するピストンロッド4を下側(車軸側)へ向けてチューブ部材1内に配置されている。そして、シリンダ2がキャップ13を介してアウターチューブ10に連結されるとともに、ピストンロッド4が車輪側ブラケット12を介してインナーチューブ11に連結されている。 Further, the shock absorber main body D of the present embodiment is an inverted type, and the piston rod 4 protruding to the outside of the cylinder 2 is arranged in the tube member 1 toward the lower side (axle side). The cylinder 2 is connected to the outer tube 10 via the cap 13, and the piston rod 4 is connected to the inner tube 11 via the wheel side bracket 12.

このように、緩衝器本体Dは、アウターチューブ10とインナーチューブ11との間に介装されている。そして、緩衝器Aが伸縮してインナーチューブ11がアウターチューブ10に出入りすると、ピストンロッド4がシリンダ2に出入りして緩衝器本体Dが伸縮し、ピストン3がシリンダ2内を上下に移動する。 In this way, the shock absorber main body D is interposed between the outer tube 10 and the inner tube 11. Then, when the shock absorber A expands and contracts and the inner tube 11 moves in and out of the outer tube 10, the piston rod 4 moves in and out of the cylinder 2, the shock absorber body D expands and contracts, and the piston 3 moves up and down in the cylinder 2.

シリンダ2の上端は、キャップ13で塞がれている。その一方、シリンダ2の下端はロッドガイド20で塞がれている。このように、軸方向の両端を塞がれたシリンダ2内は、フリーピストン6で液室Lと気室Gに仕切られている。液室Lには、液溜室R内と同じ液体が充填されており、気室Gには、液溜室R内と同じ気体が充填されている。 The upper end of the cylinder 2 is closed with a cap 13. On the other hand, the lower end of the cylinder 2 is closed by the rod guide 20. In this way, the inside of the cylinder 2 whose both ends in the axial direction are closed is partitioned into the liquid chamber L and the air chamber G by the free piston 6. The liquid chamber L is filled with the same liquid as in the liquid storage chamber R, and the air chamber G is filled with the same gas as in the liquid storage chamber R.

液室Lは、ピストン3とバルブケース5でそれぞれ上下に区画されており、ピストン3のピストンロッド4側が伸側室L1、ピストン3とバルブケース5との間が圧側室L2、バルブケース5のフリーピストン6側が加圧室L3となっている。換言すると、伸側室L1と圧側室L2がピストン3で区画され、その圧側室L2と加圧室L3がバルブケース5で区画され、その加圧室L3と気室Gがフリーピストン6で区画されている。 The liquid chamber L is vertically partitioned by a piston 3 and a valve case 5, respectively, the piston rod 4 side of the piston 3 is the extension side chamber L1, the space between the piston 3 and the valve case 5 is the compression side chamber L2, and the valve case 5 is free. The piston 6 side is the pressurizing chamber L3. In other words, the extension side chamber L1 and the compression side chamber L2 are partitioned by the piston 3, the compression side chamber L2 and the pressurization chamber L3 are partitioned by the valve case 5, and the pressurization chamber L3 and the air chamber G are partitioned by the free piston 6. ing.

また、気室Gには、附勢部材60が収容されている。その附勢部材60は、本実施の形態ではコイルばねであり、キャップ13とフリーピストン6との間に圧縮された状態で介装されている。このため、附勢部材60は、フリーピストン6を介して加圧室L3を加圧する。この加圧室L3の圧力は、バルブケース5とピストン3にそれぞれ形成される後述の通路を介して圧側室L2及び伸側室L1へと伝わる。このため、附勢部材60とフリーピストン6とを利用して加圧室L3を加圧すると、液室L全体を加圧できる。 Further, the supporting member 60 is housed in the air chamber G. The supporting member 60 is a coil spring in the present embodiment, and is interposed between the cap 13 and the free piston 6 in a compressed state. Therefore, the urging member 60 pressurizes the pressurizing chamber L3 via the free piston 6. The pressure of the pressurizing chamber L3 is transmitted to the compression side chamber L2 and the extension side chamber L1 via the passages described later formed in the valve case 5 and the piston 3, respectively. Therefore, when the pressurizing chamber L3 is pressurized by using the biasing member 60 and the free piston 6, the entire liquid chamber L can be pressurized.

さらに、シリンダ2の上部には、連通孔2aが形成されており、気体がその連通孔2aを介して気室Gと液溜室Rとの間を自由に行き来できるようになっている。しかし、連通孔2aを廃して気室Gに圧縮ガスを封入し、当該気室Gを有して構成されるエアばねを附勢部材として利用したり、気室Gに収容したゴム等の弾性部材を附勢部材として利用したりしてもよい。 Further, a communication hole 2a is formed in the upper part of the cylinder 2 so that the gas can freely move between the air chamber G and the liquid storage chamber R through the communication hole 2a. However, the communication hole 2a is eliminated and the compressed gas is sealed in the air chamber G, and the air spring having the air chamber G can be used as an auxiliary member, or the elasticity of rubber or the like housed in the air chamber G can be used. The member may be used as an auxiliary member.

つづいて、ピストン3には、伸側室L1と圧側室L2とを連通する伸側通路3aと圧側通路3bが形成されている。そして、伸側通路3aには伸側バルブ30が設けられている。その伸側バルブ30は、伸側減衰要素であり、緩衝器Aの伸長時に開いて伸側室L1から圧側室L2へ向かう液体の流れに抵抗を与える。その一方、圧側通路3bには圧側バルブ31が設けられている。その圧側バルブ31は、チェックバルブであり、緩衝器Aの収縮時にのみ開いて圧側室L2から伸側室L1へ向かう液体の流れを許容する。 Subsequently, the piston 3 is formed with an extension side passage 3a and a compression side passage 3b that communicate the extension side chamber L1 and the compression side chamber L2. An extension valve 30 is provided in the extension passage 3a. The extension valve 30 is an extension damping element, which opens when the shock absorber A is extended to resist the flow of liquid from the extension chamber L1 to the compression side chamber L2. On the other hand, the compression side valve 31 is provided in the compression side passage 3b. The compression side valve 31 is a check valve, which opens only when the shock absorber A contracts to allow the flow of liquid from the compression side chamber L2 to the extension side chamber L1.

また、バルブケース5には、圧側室L2と加圧室L3とを連通する吸込通路5aと排出通路5bが形成されている。そして、吸込通路5aには吸込バルブ50が設けられている。その吸込バルブ50は、チェックバルブであり、緩衝器Aの伸長時にのみ開いて加圧室L3から圧側室L2へ向かう液体の流れを許容する。その一方、排出通路5bには減衰バルブ51が設けられている。その減衰バルブ51は、圧側減衰要素であり、緩衝器Aの収縮時に開いて圧側室L2から加圧室L3へ向かう液体の流れに抵抗を与える。 Further, the valve case 5 is formed with a suction passage 5a and a discharge passage 5b that communicate the compression side chamber L2 and the pressurization chamber L3. A suction valve 50 is provided in the suction passage 5a. The suction valve 50 is a check valve, which opens only when the shock absorber A is extended to allow the flow of liquid from the pressurizing chamber L3 to the compression side chamber L2. On the other hand, the discharge passage 5b is provided with a damping valve 51. The damping valve 51 is a compression side damping element and opens when the shock absorber A contracts to resist the flow of liquid from the compression side chamber L2 to the pressure chamber L3.

上記構成によれば、インナーチューブ11がアウターチューブ10から退出する緩衝器Aの伸長時には、ピストンロッド4がシリンダ2から退出して緩衝器本体Dが伸長し、ピストン3がシリンダ2内を下方へ移動して伸側室L1を圧縮する。そして、この緩衝器Aの伸長時には、伸側室L1の液体が伸側バルブ30を押し開き、伸側通路3aを通って圧側室L2へと移動する。当該液体の流れに対しては、伸側バルブ30により抵抗が付与される。このため、緩衝器Aの伸長時には伸側室L1の圧力が上昇し、緩衝器本体Dが伸長作動を妨げるメインの伸側減衰力を発揮する。 According to the above configuration, when the shock absorber A in which the inner tube 11 exits from the outer tube 10 is extended, the piston rod 4 retracts from the cylinder 2 and the shock absorber body D extends, and the piston 3 moves downward in the cylinder 2. It moves and compresses the extension side chamber L1. Then, when the shock absorber A is extended, the liquid in the extension side chamber L1 pushes open the extension side valve 30 and moves to the compression side chamber L2 through the extension side passage 3a. Resistance is imparted to the flow of the liquid by the extension valve 30. Therefore, when the shock absorber A is extended, the pressure of the extension side chamber L1 rises, and the shock absorber main body D exerts a main extension side damping force that hinders the extension operation.

また、緩衝器Aの伸長時には、吸込バルブ50が開き、シリンダ2から退出したピストンロッド4体積分の液体が吸込通路5aを通って加圧室L3から圧側室L2へと供給される。このようにして加圧室L3の液体が減少すると、附勢部材60の附勢力によりフリーピストン6が押し下げられて前進し、加圧室L3の容積が縮小されるとともに気室Gの容積が拡大する。このように、本実施の形態では、緩衝器Aの伸長時にシリンダ2から退出したピストンロッド4の体積分シリンダ2内の容積が増加しても、その容積変化を加圧室L3及び気室Gで補償できる。 Further, when the shock absorber A is extended, the suction valve 50 is opened, and the liquid corresponding to 4 volumes of the piston rod discharged from the cylinder 2 is supplied from the pressurizing chamber L3 to the compression side chamber L2 through the suction passage 5a. When the liquid in the pressurizing chamber L3 decreases in this way, the free piston 6 is pushed down and advanced by the urging force of the urging member 60, the volume of the pressurizing chamber L3 is reduced, and the volume of the air chamber G is expanded. do. As described above, in the present embodiment, even if the volume in the volume integral cylinder 2 of the piston rod 4 that has exited from the cylinder 2 increases when the shock absorber A is extended, the volume change is notified to the pressurizing chamber L3 and the air chamber G. Can be compensated with.

反対に、インナーチューブ11がアウターチューブ10内へ侵入する緩衝器Aの収縮時には、ピストンロッド4がシリンダ2内へ侵入して緩衝器本体Dが収縮し、ピストン3がシリンダ2内を上方へ移動して圧側室L2を圧縮する。そして、この緩衝器Aの収縮時には、圧側バルブ31が開き、圧側室L2の液体が圧側通路3bを通って伸側室L1へと移動する。前述のように、圧側バルブ31はチェックバルブであるので、緩衝器Aの収縮時には伸側室L1と圧側室L2の圧力が略同じになる。 On the contrary, when the shock absorber A in which the inner tube 11 enters the outer tube 10 contracts, the piston rod 4 invades into the cylinder 2 and the shock absorber body D contracts, and the piston 3 moves upward in the cylinder 2. Then, the compression side chamber L2 is compressed. Then, when the shock absorber A contracts, the compression side valve 31 opens, and the liquid in the compression side chamber L2 moves to the extension side chamber L1 through the compression side passage 3b. As described above, since the compression side valve 31 is a check valve, the pressures of the extension side chamber L1 and the compression side chamber L2 become substantially the same when the shock absorber A contracts.

さらに、緩衝器Aの収縮時には、圧側室L2の液体が減衰バルブ51を押し開き、シリンダ2内へ侵入したピストンロッド4体積分の液体が排出通路5bを通って圧側室L2から加圧室L3へと排出される。当該液体の流れに対しては、減衰バルブ51により抵抗が付与される。このため、緩衝器Aの収縮時には伸側室L1と圧側室L2の圧力が上昇し、緩衝器本体Dが収縮作動を妨げるメインの圧側減衰力を発揮する。 Further, when the shock absorber A contracts, the liquid in the compression side chamber L2 pushes the damping valve 51 open, and the liquid corresponding to 4 volumes of the piston rod that has entered the cylinder 2 passes through the discharge passage 5b from the compression side chamber L2 to the pressurization chamber L3. Is discharged to. Resistance is imparted to the flow of the liquid by the damping valve 51. Therefore, when the shock absorber A contracts, the pressures of the extension side chamber L1 and the compression side chamber L2 increase, and the shock absorber main body D exerts a main compression side damping force that hinders the contraction operation.

また、緩衝器Aの収縮時に液体が圧側室L2から加圧室L3へと移動して加圧室L3の液体が増えると、附勢部材60の附勢力に抗してフリーピストン6が押し上げられて後退し、加圧室L3の容積が拡大するとともに気室Gの容積が縮小される。このように、本実施の形態では、緩衝器Aの収縮時にシリンダ2内へ侵入したピストンロッド4の体積分シリンダ2内の容積が減少しても、その容積変化を加圧室L3及び気室Gで補償できる。 Further, when the liquid moves from the compression side chamber L2 to the pressurization chamber L3 and the liquid in the pressurization chamber L3 increases when the shock absorber A contracts, the free piston 6 is pushed up against the urging force of the urging member 60. The volume of the pressurizing chamber L3 is expanded and the volume of the air chamber G is reduced. As described above, in the present embodiment, even if the volume in the volume integral cylinder 2 of the piston rod 4 that has penetrated into the cylinder 2 decreases when the shock absorber A contracts, the volume change is notified to the pressurizing chamber L3 and the air chamber. It can be compensated by G.

さらに、本実施の形態では、附勢部材60とフリーピストン6とを有して液室Lを加圧する加圧機構を構成している。このため、シリンダ2内の液柱剛性を高めて減衰力発生応答性を良好にできる。さらに、本実施の形態では、図示しないが、フリーピストン6の後退量(バルブケース5から離れる方向への移動量)が大きくなると、連通孔2aを通じて加圧室L3の液体を液溜室Rへ逃がすリリーフ機構を備えている。このため、加圧機構を有していてもシリンダ2内の圧力が過大になるのを防止できる。 Further, in the present embodiment, a pressurizing mechanism having the supporting member 60 and the free piston 6 to pressurize the liquid chamber L is configured. Therefore, the rigidity of the liquid column in the cylinder 2 can be increased to improve the damping force generation response. Further, in the present embodiment, although not shown, when the retreat amount of the free piston 6 (the amount of movement in the direction away from the valve case 5) becomes large, the liquid in the pressurizing chamber L3 is transferred to the liquid storage chamber R through the communication hole 2a. It has a relief mechanism to let it escape. Therefore, even if the pressurizing mechanism is provided, it is possible to prevent the pressure in the cylinder 2 from becoming excessive.

また、本実施の形態では、伸側バルブ30が伸側減衰力を発生させるための伸側減衰要素として機能し、減衰バルブ51が圧側減衰力を発生させるための圧側減衰要素として機能する。そして、伸側と圧側の減衰要素を設けた通路がそれぞれ一方通行となっているので、伸側減衰力と圧側減衰力を独立して設定できる。このような減衰要素としては、リーフバルブ、ポペットバルブ等を採用できる。 Further, in the present embodiment, the extension side valve 30 functions as an extension side damping element for generating an extension side damping force, and the damping valve 51 functions as a compression side damping element for generating a compression side damping force. Since the passages provided with the damping elements on the extension side and the compression side are one-way, the extension side damping force and the compression side damping force can be set independently. As such a damping element, a leaf valve, a poppet valve, or the like can be adopted.

しかし、減衰要素は、オリフィス、又はチョーク通路等であってもよく、この場合には、減衰要素を設けた通路の双方向流れが許容されていてもよい。また、圧側バルブ31を圧側減衰要素に替えて、圧側通路3bを圧側室L2から伸側室L1へ向かう液体の流れに抵抗を与えてもよい。このように、減衰要素の構成及び配置は適宜変更できる。 However, the damping element may be an orifice, a choke passage, or the like, and in this case, bidirectional flow of the passage provided with the damping element may be allowed. Further, the compression side valve 31 may be replaced with a compression side damping element to give resistance to the flow of liquid from the compression side chamber L2 to the extension side chamber L1 in the compression side passage 3b. In this way, the configuration and arrangement of the damping elements can be changed as appropriate.

さらに、緩衝器本体Dの様式も適宜変更できる。例えば、緩衝器本体Dを正立型にしてシリンダ2外へ突出するピストンロッド4を上側(車体側)へ向け、そのピストンロッドを車体側チューブに連結するとともにシリンダを車軸側チューブに連結してもよい。そして、このような場合には、シリンダ2内の加圧室L3、気室G、フリーピストン6、及び附勢部材60を廃し、吸込通路5aと排出通路5bで圧側室L2と液溜室Rとを連通してもよい。 Further, the style of the shock absorber main body D can be changed as appropriate. For example, the shock absorber main body D is made upright and the piston rod 4 protruding to the outside of the cylinder 2 is directed upward (vehicle body side), the piston rod is connected to the vehicle body side tube, and the cylinder is connected to the axle side tube. May be good. In such a case, the pressurizing chamber L3, the air chamber G, the free piston 6, and the supporting member 60 in the cylinder 2 are abolished, and the pressure side chamber L2 and the liquid storage chamber R are eliminated in the suction passage 5a and the discharge passage 5b. May communicate with.

また、シリンダ2内と液溜室Rとの間を液体又は気体が移動しない構成にしてもよい。この場合には、シリンダ2内と液溜室Rに異なる液体又は気体を収容してもよい。 Further, the liquid or gas may not move between the inside of the cylinder 2 and the liquid storage chamber R. In this case, different liquids or gases may be accommodated in the cylinder 2 and the liquid reservoir R.

つづいて、緩衝器Aは、チューブ部材1と緩衝器本体Dとの間に設けられて、液溜室Rを上室r1と下室r2とに仕切る隔壁部材Pを備えている。この隔壁部材Pは、シリンダ2の外周に装着される筒状の第一部材7と、この第一部材7の内周側に軸方向へ移動可能に挿入される第二部材8とを有して構成されている。 Subsequently, the shock absorber A is provided between the tube member 1 and the shock absorber main body D, and includes a partition wall member P that divides the liquid storage chamber R into an upper chamber r1 and a lower chamber r2. The partition wall member P has a tubular first member 7 mounted on the outer periphery of the cylinder 2 and a second member 8 movably inserted into the inner peripheral side of the first member 7 in the axial direction. It is composed of.

図2,3に示すように、第一部材7は、先端よりも末端の方が太い末広の筒状の部材であり、その先端部に設けられる環状の小径部7aと、この小径部7aの末端に連なり、小径部7aから離れるに従って徐々に太くなる円錐台筒状の胴部7bと、この胴部7bの小径部7aとは反対側の端に連なる環状の大径部7cとを含む。そして、第一部材7は、図1に示すように、小径部7aを上側へ、大径部7cを下側へ向けた状態でシリンダ2の外周に装着される。 As shown in FIGS. 2 and 3, the first member 7 is a cylindrical member having a wider end than the tip, and has an annular small diameter portion 7a provided at the tip portion and the small diameter portion 7a. It includes a truncated cone-shaped body portion 7b that is continuous with the end and gradually becomes thicker as the distance from the small diameter portion 7a is increased, and an annular large diameter portion 7c that is connected to the end of the body portion 7b opposite to the small diameter portion 7a. Then, as shown in FIG. 1, the first member 7 is mounted on the outer periphery of the cylinder 2 with the small diameter portion 7a facing upward and the large diameter portion 7c facing downward.

図2(b),3(b)に示すように、小径部7aの内径は、大径部7cの内径よりも小さく、その小径部7aの内周がシリンダ2(図1)の外周に当接する。図1に示すように、シリンダ2の外周には、スナップリング等のストッパ部材21が装着されており、小径部7aの上端がそのストッパ部材21に突き当たるようになっている。このため、第一部材7のシリンダ2に対する上側への移動がストッパ部材21で規制される。 As shown in FIGS. 2 (b) and 3 (b), the inner diameter of the small diameter portion 7a is smaller than the inner diameter of the large diameter portion 7c, and the inner circumference of the small diameter portion 7a hits the outer circumference of the cylinder 2 (FIG. 1). Contact. As shown in FIG. 1, a stopper member 21 such as a snap ring is mounted on the outer periphery of the cylinder 2, and the upper end of the small diameter portion 7a abuts on the stopper member 21. Therefore, the movement of the first member 7 upward with respect to the cylinder 2 is restricted by the stopper member 21.

また、図2(b),3(b)に示すように、大径部7cの外径は、小径部7aの外径よりも大きく、その大径部7cの外周がインナーチューブ11(図1)の内周に摺接する。そして、その大径部7cの下端には、環状のばねシート9が装着されており、図1に示すように、そのばねシート9に懸架ばねSの上端が当接する。さらに、その懸架ばねSの下端は、車輪側ブラケット12で支えられている。 Further, as shown in FIGS. 2 (b) and 3 (b), the outer diameter of the large diameter portion 7c is larger than the outer diameter of the small diameter portion 7a, and the outer circumference of the large diameter portion 7c is the inner tube 11 (FIG. 1). ) Sliding on the inner circumference. An annular spring sheet 9 is attached to the lower end of the large diameter portion 7c, and as shown in FIG. 1, the upper end of the suspension spring S abuts on the spring sheet 9. Further, the lower end of the suspension spring S is supported by the wheel side bracket 12.

このため、緩衝器Aが収縮してシリンダ2がインナーチューブ11内へ侵入すると、ストッパ部材21によりシリンダ2に対する上側への移動が阻止された第一部材7が車輪側ブラケット12に接近して懸架ばねSを圧縮する。このように、懸架ばねSが圧縮されると弾性力を発揮して、緩衝器Aを伸長方向へ附勢する。このため、懸架ばねSで車体を弾性支持できる。 Therefore, when the shock absorber A contracts and the cylinder 2 enters the inner tube 11, the first member 7 whose upward movement with respect to the cylinder 2 is blocked by the stopper member 21 approaches the wheel side bracket 12 and is suspended. Compress the spring S. In this way, when the suspension spring S is compressed, it exerts an elastic force to urge the shock absorber A in the extension direction. Therefore, the vehicle body can be elastically supported by the suspension spring S.

なお、本実施の形態では、車輪側ブラケット12がインナーチューブ11の下端を塞ぐ蓋部として機能して、その車輪側ブラケット12で懸架ばねSの一端を支持している。しかし、車輪側ブラケット12と別体形成された蓋部で懸架ばねSの下端を支えていてもよい。このように、インナーチューブ11の一端を塞ぎ、懸架ばねSの一端を支持する蓋部の構成は、車輪側ブラケット12に限らず、適宜変更できる。 In the present embodiment, the wheel-side bracket 12 functions as a lid portion that closes the lower end of the inner tube 11, and the wheel-side bracket 12 supports one end of the suspension spring S. However, the lower end of the suspension spring S may be supported by a lid portion formed separately from the wheel side bracket 12. As described above, the configuration of the lid portion that closes one end of the inner tube 11 and supports one end of the suspension spring S is not limited to the wheel side bracket 12, and can be appropriately changed.

つづいて、図2(b),3(b)に示すように、胴部7bは、前述のように円錐台筒状であり、その内径及び外径がそれぞれ上端(小径部7a側の端)から下端(大径部7c側の端)へ向かうに従って徐々に大きくなる。そして、図1に示すように、第一部材7が取付状態にある場合、胴部7bの内周側及び外周側にそれぞれ隙間ができる。 Subsequently, as shown in FIGS. 2 (b) and 3 (b), the body portion 7b has a truncated cone shape as described above, and its inner diameter and outer diameter are the upper ends (ends on the small diameter portion 7a side), respectively. It gradually increases from the lower end to the lower end (the end on the large diameter portion 7c side). Then, as shown in FIG. 1, when the first member 7 is in the mounted state, gaps are formed on the inner peripheral side and the outer peripheral side of the body portion 7b, respectively.

その胴部7bの内周側(シリンダ2側)にできる隙間は、下室r2に開口するとともに上側を小径部7aで塞がれる。その一方、胴部7bの外周側(インナーチューブ11側)にできる隙間は、上室r1に開口するとともに下側を大径部7cで塞がれる。 The gap formed on the inner peripheral side (cylinder 2 side) of the body portion 7b is opened to the lower chamber r2 and the upper side is closed by the small diameter portion 7a. On the other hand, the gap formed on the outer peripheral side (inner tube 11 side) of the body portion 7b is opened to the upper chamber r1 and the lower side is closed by the large diameter portion 7c.

また、胴部7bには、その胴部7bの肉厚を貫通し、上室r1と下室r2とを連通する通孔7dが形成されている。その通孔7dは、図2,3に示すように、胴部7bの軸方向に長い縦長の孔であり、胴部7bの周方向に複数形成されている。 Further, the body portion 7b is formed with a through hole 7d that penetrates the wall thickness of the body portion 7b and communicates the upper chamber r1 and the lower chamber r2. As shown in FIGS. 2 and 3, the through holes 7d are vertically long holes that are long in the axial direction of the body portion 7b, and a plurality of holes are formed in the circumferential direction of the body portion 7b.

さらに、図2(b),3(b)に示すように、胴部7bの内周には、軸方向に沿ってリブ7eが形成されている。このリブ7eは、通孔7dと同じ数だけ設けられており、通孔7dとリブ7eが胴部7bの周方向に交互に配置されている。 Further, as shown in FIGS. 2 (b) and 2 (b), ribs 7e are formed on the inner circumference of the body portion 7b along the axial direction. The number of ribs 7e is the same as that of the through holes 7d, and the through holes 7d and the ribs 7e are alternately arranged in the circumferential direction of the body portion 7b.

なお、本実施の形態では、通孔7dとリブ7eが四つ(本)ずつ形成されているが、その数は適宜変更できる。さらには、通孔7dとリブ7eの数は、必ずしも同じでなくてもよく、通孔7dとリブ7eの形状及び配置も適宜変更できる。 In the present embodiment, four through holes 7d and four ribs 7e are formed, but the number thereof can be changed as appropriate. Furthermore, the numbers of the through holes 7d and the ribs 7e do not necessarily have to be the same, and the shapes and arrangements of the through holes 7d and the ribs 7e can be appropriately changed.

つづいて、第一部材7の内周側に挿入される第二部材8は、その先端部に設けられて先端へ向かうに従って先細りとなる円錐台筒状のシャッタ部8aと、このシャッタ部8aの末端に連なる環状のスライド部8bとを含む。そして、第二部材8は、シャッタ部8aを上側へ、スライド部8bを下側へ向けた状態で第一部材7内に挿入されるとともに、スライド部8bを大径部7cの内周に摺接させつつ第一部材7内を軸方向(上下方向)へ移動する。 Subsequently, the second member 8 inserted into the inner peripheral side of the first member 7 has a truncated cone-shaped shutter portion 8a provided at the tip portion thereof and tapered toward the tip portion, and the shutter portion 8a. Includes an annular slide portion 8b connected to the end. The second member 8 is inserted into the first member 7 with the shutter portion 8a facing upward and the sliding portion 8b facing downward, and the slide portion 8b is slid on the inner circumference of the large diameter portion 7c. It moves in the axial direction (vertical direction) in the first member 7 while being in contact with the first member 7.

また、第二部材8の上端からスライド部8bの途中まで溝8cが形成されており、この溝8cにリブ7eの下部が挿入される。そして、第二部材8が第一部材7に対して上方(上室側)へ移動していくとリブ7eの下端が溝8cの底に突き当たり、第二部材8のそれ以上の上方への移動が阻止される(図3)。このように、本実施の形態では、リブ7eが第二部材8の第一部材7に対する上方(上室r1側)への移動を制限する上室側ストッパとして機能する。 Further, a groove 8c is formed from the upper end of the second member 8 to the middle of the slide portion 8b, and the lower portion of the rib 7e is inserted into the groove 8c. Then, when the second member 8 moves upward (upper chamber side) with respect to the first member 7, the lower end of the rib 7e abuts on the bottom of the groove 8c, and the second member 8 moves further upward. Is blocked (Fig. 3). As described above, in the present embodiment, the rib 7e functions as an upper chamber side stopper that restricts the upward movement (upper chamber r1 side) of the second member 8 with respect to the first member 7.

上記したように、第二部材8がリブ(上室側ストッパ)7eに突き当たり、それ以上の上側への移動が阻止された位置を上限位置とする。すると、第二部材8がその上限位置にある場合、シャッタ部8aの先端が通孔7dの下端よりも高い位置にあり、シャッタ部8aが通孔7dの一部に被さって、通孔7dの開口面積を狭めるようになっている(図3(a))。 As described above, the upper limit position is the position where the second member 8 hits the rib (upper chamber side stopper) 7e and the further upward movement is prevented. Then, when the second member 8 is in the upper limit position, the tip of the shutter portion 8a is at a position higher than the lower end of the through hole 7d, the shutter portion 8a covers a part of the through hole 7d, and the through hole 7d The opening area is narrowed (FIG. 3 (a)).

なお、本実施の形態では、リブ7eの下端が通孔7dの下端よりも低い位置にあるので、第二部材8の上端が通孔7dの下端を超えて上方へ移動できるように、第二部材8に溝8cを形成している。しかし、リブ7eの下端が通孔7dの下端よりも高い位置にある場合等には、溝8cを廃して第二部材8の上端をリブ7eの下端に突き当てて、その位置を第二部材8の上限位置にしてもよい。 In the present embodiment, since the lower end of the rib 7e is lower than the lower end of the through hole 7d, the upper end of the second member 8 can move upward beyond the lower end of the through hole 7d. A groove 8c is formed in the member 8. However, when the lower end of the rib 7e is higher than the lower end of the through hole 7d, the groove 8c is abolished, the upper end of the second member 8 is abutted against the lower end of the rib 7e, and the position is set to the second member. It may be the upper limit position of 8.

その一方、第二部材8が第一部材7に対して下方(下室r2側)へ移動していくと、スライド部8bの下端がばねシート9に突き当たり、第二部材8のそれ以上の下方への移動が阻止される(図2(b))。このように、本実施の形態では、ばねシート9が第二部材8の第一部材7に対する下方(下室r2側)への移動を制限する下室側ストッパとして機能する。 On the other hand, when the second member 8 moves downward with respect to the first member 7 (lower chamber r2 side), the lower end of the slide portion 8b abuts on the spring sheet 9 and further below the second member 8. Movement to is blocked (FIG. 2 (b)). As described above, in the present embodiment, the spring seat 9 functions as a lower chamber side stopper that restricts the downward movement of the second member 8 with respect to the first member 7 (lower chamber r2 side).

上記したように、第二部材8がばねシート(下室側ストッパ)9に突き当たり、それ以上の下側への移動が阻止された位置を下限位置とする。すると、第二部材8がその下限位置にある場合、シャッタ部8aの先端が通孔7dの下端よりも低い位置にあり、通孔7dを全開にするようになっている(図2(a))。なお、第二部材8が下限位置にある場合に、必ずしも通孔7dを全開にしなくてもよい。 As described above, the lower limit position is the position where the second member 8 abuts on the spring seat (lower chamber side stopper) 9 and is prevented from further moving downward. Then, when the second member 8 is at the lower limit position, the tip of the shutter portion 8a is at a position lower than the lower end of the through hole 7d, and the through hole 7d is fully opened (FIG. 2A). ). When the second member 8 is in the lower limit position, the through hole 7d does not necessarily have to be fully opened.

以下、本実施の形態の緩衝器Aの作動について説明する。 Hereinafter, the operation of the shock absorber A of the present embodiment will be described.

図1に示す緩衝器Aが収縮してシリンダ2がインナーチューブ11内へ侵入すると、隔壁部材Pがシリンダ2とともにインナーチューブ11内を移動して液溜室Rの液面Rsに接近する。そして、シリンダ2のインナーチューブ11内への侵入量がさらに大きくなると、シリンダ2が液溜室Rの液中に入って液面Rsが上昇し、隔壁部材Pが液中に浸かる。このように、本実施の形態では、緩衝器Aの収縮量(ストローク量)が所定以上となると、隔壁部材Pが浸漬された状態で液中を移動するようになる。 When the shock absorber A shown in FIG. 1 contracts and the cylinder 2 enters the inner tube 11, the partition wall member P moves in the inner tube 11 together with the cylinder 2 and approaches the liquid level Rs of the liquid storage chamber R. Then, when the amount of penetration of the cylinder 2 into the inner tube 11 becomes larger, the cylinder 2 enters the liquid of the liquid storage chamber R, the liquid level Rs rises, and the partition wall member P is immersed in the liquid. As described above, in the present embodiment, when the shrinkage amount (stroke amount) of the shock absorber A becomes a predetermined amount or more, the partition wall member P moves in the liquid in a state of being immersed.

そして、隔壁部材Pが浸漬された状態で緩衝器Aが収縮作動を呈する場合、下室r2内の液体が第一部材7の大径部7cの内周側から胴部7bの内周側へ移動し、通孔7dを通って上室r1へと移動するとともに、液面Rsが上昇する。このとき、第二部材8が下室r2の圧力、及び、通孔7dを通って下室r2から上室r1へと向かう液体の流体力を受けて第一部材7内を上側へ移動して通孔7dの開口面積を狭める。 When the shock absorber A exhibits a contraction operation while the partition wall member P is immersed, the liquid in the lower chamber r2 moves from the inner peripheral side of the large diameter portion 7c of the first member 7 to the inner peripheral side of the body portion 7b. It moves and moves to the upper chamber r1 through the through hole 7d, and the liquid level Rs rises. At this time, the second member 8 receives the pressure of the lower chamber r2 and the fluid force of the liquid from the lower chamber r2 to the upper chamber r1 through the through hole 7d, and moves upward in the first member 7. The opening area of the through hole 7d is narrowed.

このため、緩衝器Aの収縮量が所定以上となる所定のストローク範囲で緩衝器Aが収縮する場合には、通孔7dによって下室r2から上室r1へ向かう液体の流れに大きな抵抗が付与される。これにより、減衰バルブ(圧側減衰要素)V4の抵抗に起因するメインの圧側減衰力に加えて、通孔7dの抵抗に起因する大きな二次的な減衰力が発生する。 Therefore, when the shock absorber A contracts within a predetermined stroke range in which the shrinkage amount of the shock absorber A is equal to or greater than a predetermined value, a large resistance is imparted to the flow of the liquid from the lower chamber r2 to the upper chamber r1 by the through hole 7d. Will be done. As a result, in addition to the main compression side damping force due to the resistance of the damping valve (compression side damping element) V4, a large secondary damping force due to the resistance of the through hole 7d is generated.

反対に、隔壁部材Pが浸漬された状態で緩衝器Aが伸長作動を呈する場合、上室r1内の液体が胴部7bの外周側から通孔7dを通って下室r2へと移動するとともに、液面Rsが下降する。このとき、第二部材8が上室r1の圧力、及び、通孔7dを通って上室r1から下室r2へと向かう液体の流体力を受けて第一部材7内を下側へ移動して通孔7dの開口面積を広げる。 On the contrary, when the shock absorber A exhibits an extension operation while the partition wall member P is immersed, the liquid in the upper chamber r1 moves from the outer peripheral side of the body portion 7b to the lower chamber r2 through the through hole 7d. , The liquid level Rs drops. At this time, the second member 8 receives the pressure of the upper chamber r1 and the fluid force of the liquid from the upper chamber r1 to the lower chamber r2 through the through hole 7d, and moves downward in the first member 7. The opening area of the through hole 7d is widened.

このため、緩衝器Aの収縮量が所定量以上となる所定のストローク範囲で緩衝器Aが伸長する場合には、通孔7dによって上室r1から下室r2へ向かう液体の流れに抵抗が付与されるものの、その抵抗は収縮時よりも小さくなる。これにより、伸側バルブ(伸側減衰要素)V1の抵抗に起因するメインの伸側減衰力に加えて生じる通孔7dの抵抗に起因する二次的な減衰力は小さくなる。 Therefore, when the shock absorber A expands in a predetermined stroke range in which the shrinkage amount of the shock absorber A is equal to or larger than a predetermined amount, resistance is imparted to the flow of the liquid from the upper chamber r1 to the lower chamber r2 by the through hole 7d. However, its resistance is smaller than that during contraction. As a result, the secondary damping force caused by the resistance of the through hole 7d generated in addition to the main stretching damping force caused by the resistance of the extension valve (extension damping element) V1 becomes small.

また、隔壁部材Pが液溜室Rの液面Rsより上側に位置する場合には、気体が通孔7dを通って上室r1と下室r2との間を自由に行き来する。このため、緩衝器Aの収縮量が所定量に満たないストローク範囲では、二次的な減衰力が発生せず、緩衝器Aの発生する減衰力はメインの減衰力のみとなる。 Further, when the partition wall member P is located above the liquid level Rs of the liquid storage chamber R, the gas freely moves back and forth between the upper chamber r1 and the lower chamber r2 through the through hole 7d. Therefore, in the stroke range where the shrinkage amount of the shock absorber A is less than a predetermined amount, no secondary damping force is generated, and the damping force generated by the shock absorber A is only the main damping force.

このように、本実施の形態では、緩衝器Aの収縮量が所定以上となった場合であって緩衝器Aが収縮する場合にのみ、発生する二次的な減衰力を大きくして緩衝器A全体としての減衰力を大きくできる。このため、緩衝器Aの収縮量がそれほど大きくならない通常のストローク範囲での減衰力を小さくした場合に大きな突き上げ入力が作用した場合であっても、緩衝器Aの最収縮時の衝撃を充分に緩和できる。 As described above, in the present embodiment, only when the shrinkage amount of the shock absorber A becomes equal to or more than a predetermined value and the shock absorber A contracts, the secondary damping force generated is increased to increase the shock absorber. A The damping force as a whole can be increased. Therefore, even when a large push-up input is applied when the damping force in the normal stroke range in which the contraction amount of the shock absorber A is not so large is reduced, the impact at the time of maximum contraction of the shock absorber A is sufficient. Can be relaxed.

以下、本実施の形態に係る緩衝器Aの作用効果について説明する。 Hereinafter, the action and effect of the shock absorber A according to the present embodiment will be described.

本実施の形態に係る緩衝器Aは、シリンダ2と、このシリンダ2内に軸方向へ移動可能に挿入されるピストンロッド4とを有して伸縮する緩衝器本体Dと、この緩衝器本体Dの外周に設けられて緩衝器本体Dとの間に液溜室Rを形成するチューブ部材1と、その液溜室Rを上室r1と下室r2に仕切るとともに上室r1と下室r2とを連通する通孔7dを有する隔壁部材Pとを備える。このように、本実施の形態では通孔7dが上室r1と下室r2とを連通する通路となっている。 The shock absorber A according to the present embodiment has a cylinder 2 and a shock absorber main body D having a cylinder 2 and a piston rod 4 movably inserted into the cylinder 2 so as to expand and contract, and the shock absorber main body D. The tube member 1 which is provided on the outer periphery of the cylinder and forms a liquid storage chamber R between the shock absorber main body D, and the liquid storage chamber R is divided into an upper chamber r1 and a lower chamber r2, and the upper chamber r1 and the lower chamber r2. A partition member P having a through hole 7d for communicating with the partition member P is provided. As described above, in the present embodiment, the through hole 7d is a passage that communicates the upper chamber r1 and the lower chamber r2.

また、本実施の形態では、緩衝器本体Dの伸縮時に液溜室Rの液面Rsに対して隔壁部材Pが移動するようになっており、その隔壁部材Pは、第一部材7と、この第一部材7との相対移動により通孔(通路)7dの開口面積(流路面積)を変更する第二部材8とを有する。そして、液体が通孔(通路)7dを流れる方向に応じて第一部材7と第二部材8の相対移動の方向が切替わる。 Further, in the present embodiment, the partition wall member P moves with respect to the liquid level Rs of the liquid storage chamber R when the shock absorber main body D expands and contracts, and the partition wall member P includes the first member 7 and the partition wall member P. It has a second member 8 that changes the opening area (flow path area) of the through hole (passage) 7d by relative movement with the first member 7. Then, the direction of relative movement of the first member 7 and the second member 8 is switched according to the direction in which the liquid flows through the through hole (passage) 7d.

このため、本実施の形態のように、緩衝器Aの伸長時に発生する二次的な減衰力を小さく、収縮時に発生する二次的な減衰力を大きくしたい場合には、例えば、図1のように隔壁部材Pを配置して、緩衝器本体Dの収縮時に通孔(通路)7dを液体が流れるときにその通孔(通路)7dの開口面積(流路面積)を小さくする方向へ第一部材7と第二部材8が相対移動させればよい。反対に、緩衝器Aの伸長時に発生する二次的な減衰力を大きく、収縮時に発生する二次的な減衰力を小さくしたい場合には、例えば、図1中上下逆向きに隔壁部材Pを配置すればよい。 Therefore, as in the present embodiment, when it is desired to reduce the secondary damping force generated when the shock absorber A is extended and to increase the secondary damping force generated when the shock absorber A is contracted, for example, FIG. 1 shows. The partition member P is arranged so as to reduce the opening area (passage area) of the through hole (passage) 7d when the liquid flows through the through hole (passage) 7d when the shock absorber main body D contracts. The one member 7 and the second member 8 may be relatively moved. On the contrary, when it is desired to increase the secondary damping force generated when the shock absorber A is extended and decrease the secondary damping force generated when the shock absorber A is contracted, for example, the partition wall member P is placed upside down in FIG. Just place it.

このように、上記構成によれば、通孔(通路)7dを液体が流れる場合に緩衝器本体Dの伸縮方向に応じて通孔(通路)7dの開口面積(流路面積)を変更できる。よって、緩衝器Aの伸長時に発生する二次的な減衰力と、緩衝器Aの収縮時に発生する二次的な減衰力を個別に容易に調整できる。 As described above, according to the above configuration, when the liquid flows through the through hole (passage) 7d, the opening area (flow path area) of the through hole (passage) 7d can be changed according to the expansion / contraction direction of the shock absorber main body D. Therefore, the secondary damping force generated when the shock absorber A is extended and the secondary damping force generated when the shock absorber A is contracted can be easily adjusted individually.

また、本実施の形態では、第一部材7と第二部材8がともに筒状である。そして、第一部材7の内周側に緩衝器本体Dが挿通されていて、上室r1と下室r2とを連通する通路がその第一部材7の肉厚を貫通する通孔7dを有して形成されている。さらに、第二部材8が第一部材7の内周側に軸方向へ移動可能に挿入されていて、第二部材8が第一部材7に対して軸方向へ移動すると、その通孔7dの開口面積が変更される。 Further, in the present embodiment, both the first member 7 and the second member 8 are cylindrical. The shock absorber main body D is inserted through the inner peripheral side of the first member 7, and the passage connecting the upper chamber r1 and the lower chamber r2 has a through hole 7d penetrating the wall thickness of the first member 7. Is formed. Further, when the second member 8 is movably inserted into the inner peripheral side of the first member 7 in the axial direction and the second member 8 moves in the axial direction with respect to the first member 7, the through hole 7d thereof. The opening area is changed.

上記構成によれば、液体が通孔(通路)7dを流れる方向に応じて第一部材7と第二部材8の相対移動の方向を切替えるのが容易である。さらに、上記構成によれば、筒状の第一部材7にその肉厚を貫通するように通孔7dが形成されていて、その通孔7dを大きくできる。加えて、その通孔7dを有して上室r1と下室r2とを連通する通路が形成されていて、通孔7dの開口面積の変更によりその通路の流路面積を変更できる。 According to the above configuration, it is easy to switch the relative movement direction of the first member 7 and the second member 8 according to the direction in which the liquid flows through the through hole (passage) 7d. Further, according to the above configuration, the through hole 7d is formed in the cylindrical first member 7 so as to penetrate the wall thickness thereof, and the through hole 7d can be enlarged. In addition, a passage having the through hole 7d and communicating the upper chamber r1 and the lower chamber r2 is formed, and the flow path area of the passage can be changed by changing the opening area of the through hole 7d.

このため、上記構成によれば、通孔(通路)7dの最大開口時の開口面積を大きくできて、その時に発生する二次的な減衰力を小さくできる。つまり、上記構成によれば、二次的な減衰力を小さくする方向の調整幅を大きくできるので、ひいては二次的な減衰力の調整幅を大きくできる。 Therefore, according to the above configuration, the opening area of the through hole (passage) 7d at the time of maximum opening can be increased, and the secondary damping force generated at that time can be reduced. That is, according to the above configuration, the adjustment range in the direction of reducing the secondary damping force can be increased, and thus the adjustment range of the secondary damping force can be increased.

また、本実施の形態の第一部材7は、内周が緩衝器本体Dの外周に接する環状の小径部7aと、この小径部7aの一端に連なり小径部7aから離れるに従って内径及び外径が徐々に拡径される円錐台筒状の胴部7bと、この胴部7bの小径部7aとは反対側の端(反小径部側端)に連なり外周がチューブ部材1の内周に接する環状の大径部7cとを含む。 Further, the first member 7 of the present embodiment has an annular small diameter portion 7a whose inner circumference is in contact with the outer periphery of the shock absorber main body D, and the inner diameter and outer diameter of the first member 7 which are connected to one end of the small diameter portion 7a and are separated from the small diameter portion 7a. An annular shape that is connected to a truncated cone-shaped body portion 7b that is gradually expanded in diameter and an end (anti-small diameter portion side end) of the body portion 7b that is opposite to the small diameter portion 7a and whose outer circumference is in contact with the inner circumference of the tube member 1. Includes the large diameter portion 7c of.

このため、第一部材7で液溜室Rを上下に仕切りつつ、第一部材7の内周側に第二部材8を装着するスペースを確保するのが容易である。なお、第一部材7の外周側に第二部材8を装着してもよく、このような場合にも、上記構成によれば第二部材8を装着するスペースを容易に確保できる。 Therefore, it is easy to secure a space for mounting the second member 8 on the inner peripheral side of the first member 7 while partitioning the liquid storage chamber R vertically by the first member 7. The second member 8 may be mounted on the outer peripheral side of the first member 7, and even in such a case, a space for mounting the second member 8 can be easily secured according to the above configuration.

また、本実施の形態の第二部材8は、通孔7dを開閉するシャッタ部8aを含み、このシャッタ部8aが円錐台筒状で先端へ向かうに従って内径及び外径が徐々に縮径される。ここでいう通孔7dを開閉するとは、通孔7dの開口面積を大きくしたり小さくしたりすることである。 Further, the second member 8 of the present embodiment includes a shutter portion 8a that opens and closes the through hole 7d, and the shutter portion 8a has a truncated cone shape, and the inner and outer diameters are gradually reduced as the shutter portion 8a is directed toward the tip. .. Opening and closing the through hole 7d here means increasing or decreasing the opening area of the through hole 7d.

上記構成によれば、上記シャッタ部8aの外周面と内周面のそれぞれを、上室r1又は下室r2の圧力と、通孔7dを通って上室r1又は下室r2の何れか一方の室から他方の室へ向けて流れる液体の流体力を受ける受圧面にできる。このため、上記構成によれば、液体が通孔(通路)7dを流れる方向に応じて第一部材7と第二部材8の相対移動の方向を切替えるのが容易である。 According to the above configuration, each of the outer peripheral surface and the inner peripheral surface of the shutter portion 8a is subjected to the pressure of the upper chamber r1 or the lower chamber r2 and either the upper chamber r1 or the lower chamber r2 through the through hole 7d. It can be a pressure receiving surface that receives the fluid force of the liquid flowing from one chamber to the other. Therefore, according to the above configuration, it is easy to switch the relative movement direction of the first member 7 and the second member 8 according to the direction in which the liquid flows through the through hole (passage) 7d.

さらに、図4に示すように、シャッタ部8aの先端部に傾斜角度の緩やかな(底角の小さい)受圧部8dを設けてもよく、この場合には受圧面積を大きくできる。しかし、第二部材8の受圧面は、シャッタ部8a以外に形成されていてもよく、この場合には、シャッタ部8aの外径又は内径を一定にしてもよい。 Further, as shown in FIG. 4, a pressure receiving portion 8d having a gentle inclination angle (small bottom angle) may be provided at the tip portion of the shutter portion 8a, and in this case, the pressure receiving area can be increased. However, the pressure receiving surface of the second member 8 may be formed in addition to the shutter portion 8a, and in this case, the outer diameter or inner diameter of the shutter portion 8a may be constant.

また、本実施の形態では、第一部材7の内周に軸方向に沿ってリブ7eが形成されていて、第二部材8の上室r1側への移動がそのリブ7eで制限される。当該構成によれば、第一部材7をリブ7eで補強できるのは勿論、第二部材8の形状を変更しやすく、二次的な減衰力のチューニングを容易にできる。 Further, in the present embodiment, the rib 7e is formed on the inner circumference of the first member 7 along the axial direction, and the movement of the second member 8 to the upper chamber r1 side is restricted by the rib 7e. According to this configuration, not only the first member 7 can be reinforced by the rib 7e, but also the shape of the second member 8 can be easily changed, and the tuning of the secondary damping force can be easily performed.

なぜなら、例えば、第一部材7の内周のリブ7e以外の部分に第二部材8の先端(溝8c以外の部分の上端)を突き当てて第二部材8の上室r1側への移動を制限してもよいが、この場合、図4に示すように受圧部8dを設ける等して第二部材8の先端部の形状を変更すると、第二部材8の上限位置がずれてその上限位置の調整まで必要になる。このため、単純には第二部材8の形状を変えられない場合がある。 This is because, for example, the tip of the second member 8 (the upper end of the portion other than the groove 8c) is abutted against the portion other than the rib 7e on the inner circumference of the first member 7 to move the second member 8 to the upper chamber r1 side. Although it may be limited, in this case, if the shape of the tip portion of the second member 8 is changed by providing a pressure receiving portion 8d as shown in FIG. 4, the upper limit position of the second member 8 shifts and the upper limit position thereof. It is necessary to adjust. Therefore, it may not be possible to simply change the shape of the second member 8.

これに対して、上記構成によれば、第二部材8のリブ7eに突き当たる部分(突当部)の位置を変えれば上限位置を調整できるのは勿論、その突当部(本実施の形態では、溝8cの底)を変えなければ、それ以外の部分の形状を変えたとしても上限位置は変わらない。このため、第二部材8の形状を変更したとしても上限位置の調整を不要にできるので、受圧部8dを設ける等の第二部材8の形状変更をしやすく、二次的な減衰力のチューニングを容易にできる。 On the other hand, according to the above configuration, the upper limit position can be adjusted by changing the position of the portion (butting portion) that abuts on the rib 7e of the second member 8, and of course, the abutting portion (in the present embodiment). , The bottom of the groove 8c), the upper limit position does not change even if the shape of the other parts is changed. Therefore, even if the shape of the second member 8 is changed, it is not necessary to adjust the upper limit position, so that it is easy to change the shape of the second member 8 such as providing a pressure receiving portion 8d, and tuning of the secondary damping force is performed. Can be easily done.

なお、このような効果は、第一部材7の外周に第二部材8を軸方向へ移動可能に装着した場合であって、第一部材7の外周に形成されたリブで第二部材8の上室r1側への移動を制限する場合にも、隔壁部材Pを上下逆向きに取り付けて第二部材8の下室r2側への移動をリブ7eで制限する場合にも同様に得られるので、このようにしてもよい。 It should be noted that such an effect is obtained when the second member 8 is mounted on the outer periphery of the first member 7 so as to be movable in the axial direction, and the rib formed on the outer periphery of the first member 7 is a rib of the second member 8. The same can be obtained both when the movement to the upper chamber r1 side is restricted and when the partition wall member P is attached upside down and the movement to the lower chamber r2 side of the second member 8 is restricted by the rib 7e. , You may do this.

さらには、図5,6に示す隔壁部材P1のように、第一部材7Aの内周に第二部材8Aの上端(先端)を突き当てて第二部材8Aの図中上側への移動を制限してもよい(図5(b))。この場合、リブ7eを省略できるのは勿論、第一部材7Aにリブを設けた場合には、そのリブの長さ及び配置を自由に変更できる。例えば、内周側に第二部材8Aを挿入した第一部材7Aの外周にリブを設けてもよい。 Further, as in the partition wall member P1 shown in FIGS. 5 and 6, the upper end (tip) of the second member 8A is abutted against the inner circumference of the first member 7A to limit the movement of the second member 8A to the upper side in the drawing. It may be done (FIG. 5 (b)). In this case, of course, the rib 7e can be omitted, and when the rib is provided on the first member 7A, the length and arrangement of the rib can be freely changed. For example, a rib may be provided on the outer periphery of the first member 7A in which the second member 8A is inserted on the inner peripheral side.

また、図5,6に示す隔壁部材P1では、図2,3に示す隔壁部材Pと同様に、第一部材7Aが大径部7cを下室r2側へ向けて配置されている。さらに、第二部材8Aのスライド部8bの外周形状が、図7に示すように、軸方向視で角丸四角形状とされるとともに、第二部材8Aの下端(軸方向の下室r2側の端部)に端部溝8eが形成されている。そして、スライド部8bの外周形成が湾曲形状となる湾曲部8fを第一部材7Aの大径部7cの内周に摺接させている。 Further, in the partition wall member P1 shown in FIGS. 5 and 6, the first member 7A is arranged with the large diameter portion 7c facing the lower chamber r2 side, similarly to the partition wall member P shown in FIGS. Further, as shown in FIG. 7, the outer peripheral shape of the slide portion 8b of the second member 8A is a square shape with rounded corners in the axial direction, and the lower end of the second member 8A (on the lower chamber r2 side in the axial direction). An end groove 8e is formed at the end). Then, the curved portion 8f having a curved outer peripheral shape of the slide portion 8b is slidably contacted with the inner circumference of the large diameter portion 7c of the first member 7A.

このように、図5,6に示す隔壁部材P1では、スライド部8bの外周形状が、環状部材の外周の一部を軸方向に切欠いた形状となっており、その切欠かれた部分(切欠き部8g)と第一部材7Aとの間に軸方向に沿って隙間ができる。 As described above, in the partition wall member P1 shown in FIGS. A gap is formed along the axial direction between the portion 8g) and the first member 7A.

さらに、端部溝8eは、湾曲部8fと切欠き部8gのそれぞれに形成されている。このため、図5(b)に示すように、第二部材8Aがばねシート9に着座した状態(第二部材8Aの下室r2側への移動が制限された状態)であっても、第二部材8Aとばねシート9との間に端部溝8eにより隙間ができるとともに、切欠き部8gと第一部材7Aとの間にできる隙間と下室r2とが切欠き部8gの端部溝8eにより連通される。 Further, the end groove 8e is formed in each of the curved portion 8f and the notch portion 8g. Therefore, as shown in FIG. 5B, even when the second member 8A is seated on the spring seat 9 (the movement of the second member 8A to the lower chamber r2 side is restricted), the second member 8A is the first. A gap is created between the two members 8A and the spring sheet 9 by the end groove 8e, and the gap formed between the notch 8g and the first member 7A and the lower chamber r2 are the end grooves of the notch 8g. Communicated by 8e.

上記構成によれば、第二部材8Aがばねシート(下室側ストッパ)9に張り付くのを防止できるとともに、第一部材7Aと第二部材8Aとの間に液体が閉じ込められるのを防止できる。これにより、第一部材7Aと第二部材8Aの相対移動による通孔(通路)7dの開閉作動(通路の流路面積を大きく、又は小さくする作動)を保障できる。 According to the above configuration, it is possible to prevent the second member 8A from sticking to the spring seat (lower chamber side stopper) 9, and it is possible to prevent the liquid from being trapped between the first member 7A and the second member 8A. Thereby, it is possible to guarantee the opening / closing operation of the through hole (passage) 7d (the operation of increasing or decreasing the flow path area of the passage) by the relative movement of the first member 7A and the second member 8A.

そして、このような作動保障のための構成は、図2,3に記載の第二部材8に適用してもよいのは勿論である。また、図5,6に示す隔壁部材P1を上下逆向きに取り付けて、第一部材7Aの大径部7cを上室r1側へ向けて配置するとともに、第二部材8Aの上室r1側への移動が制限された状態で、切欠き部8gと第一部材7Aとの間の隙間と上室r1を端部溝8eにより連通してもよい。 And, of course, such a configuration for guaranteeing operation may be applied to the second member 8 shown in FIGS. 2 and 3. Further, the partition wall member P1 shown in FIGS. 5 and 6 is attached upside down, the large diameter portion 7c of the first member 7A is arranged toward the upper chamber r1, and the second member 8A is arranged toward the upper chamber r1 side. The gap between the notch 8g and the first member 7A and the upper chamber r1 may be communicated with each other by the end groove 8e in a state where the movement of the is restricted.

また、切欠き部8gの数及び形状は、適宜変更できる。例えば、本実施の形態のように、切欠き部8gにより第二部材8Aの外周に平坦面を形成する場合、スライド部8bが一つの切欠き部8gを有し、そのスライド部8bの外周形状が軸方向視でD字状になっていてもよく、スライド部8bが三又は五以上の切欠き部8gを有し、そのスライド部8bの外周形状が軸方向視で角丸多角形状になっていてもよい。さらに、スライド部8bの外周に軸方向に沿って断面U字状又はU字状の溝を設け、その溝が形成された部分を切欠き部8gとしてもよい。 Further, the number and shape of the notch portion 8g can be changed as appropriate. For example, when a flat surface is formed on the outer periphery of the second member 8A by the notch portion 8g as in the present embodiment, the slide portion 8b has one notch portion 8g, and the outer peripheral shape of the slide portion 8b is formed. May be D-shaped in the axial direction, the slide portion 8b has three or five or more notches 8g, and the outer peripheral shape of the slide portion 8b is a polygonal shape with rounded corners in the axial direction. You may be. Further, a groove having a U-shaped or U-shaped cross section may be provided on the outer periphery of the slide portion 8b along the axial direction, and the portion where the groove is formed may be used as the cutout portion 8g.

また、図5,6に示す隔壁部材P1では、第一部材7Aの内周であって胴部7bと大径部7cとの境界部に環状の段差7fが形成されている。さらに、第二部材8Aの外周であってシャッタ部8aとスライド部8bとの境界部には、第一部材7Aの段差7fと向い合う環状の段差8hが形成されている。このような場合には、第二部材8Aの段差8hを第一部材の段差7fに突き当てて、第二部材8Aの図中上側への移動を制限してもよい。 Further, in the partition wall member P1 shown in FIGS. 5 and 6, an annular step 7f is formed on the inner circumference of the first member 7A at the boundary between the body portion 7b and the large diameter portion 7c. Further, an annular step 8h facing the step 7f of the first member 7A is formed on the outer periphery of the second member 8A at the boundary between the shutter portion 8a and the slide portion 8b. In such a case, the step 8h of the second member 8A may be abutted against the step 7f of the first member to limit the movement of the second member 8A to the upper side in the drawing.

上記構成によれば、リブ7eで第二部材8の移動を制限する場合と同様に、第二部材8Aの形状変更をしやすく、二次的な減衰力のチューニングを容易にできる。加えて、上記構成によれば、リブ7eを省略できるのは勿論、第一部材7Aにリブを設けた場合には、そのリブの長さ及び配置を自由に変更できる。 According to the above configuration, the shape of the second member 8A can be easily changed and the tuning of the secondary damping force can be easily performed, as in the case where the movement of the second member 8 is restricted by the rib 7e. In addition, according to the above configuration, the rib 7e can be omitted, and when the rib is provided on the first member 7A, the length and arrangement of the rib can be freely changed.

なお、上記各隔壁部材P,P1では、第一部材7,7Aと第二部材8,8Aがともに筒状であって、これらが上下方向へ相対移動するようになっている。しかし、第一部材7,7Aと第二部材8,8Aの形状は必ずしも筒状でなくてもよく、これらが相対移動する方向も上下には限られない。 In each of the partition wall members P and P1, the first members 7, 7A and the second members 8, 8A are both cylindrical, and they move relative to each other in the vertical direction. However, the shapes of the first member 7, 7A and the second member 8, 8A do not necessarily have to be cylindrical, and the direction in which they move relative to each other is not limited to the vertical direction.

また、本実施の形態では、チューブ部材1がアウターチューブ10と、このアウターチューブ10内に摺動自在に挿入されるインナーチューブ11とを有する。そして、緩衝器本体Dのシリンダ2がアウターチューブ10に連結されるとともに、ピストンロッド4がインナーチューブ11に連結されている。さらに、第一部材7がシリンダ2の外周に装着されてインナーチューブ11の内側に摺動可能に挿入されており、その第一部材7とインナーチューブ11の一端を塞ぐ車輪側ブラケット(蓋部)12との間に懸架ばね(コイルばね)Sが介装されている。 Further, in the present embodiment, the tube member 1 has an outer tube 10 and an inner tube 11 slidably inserted into the outer tube 10. Then, the cylinder 2 of the shock absorber main body D is connected to the outer tube 10, and the piston rod 4 is connected to the inner tube 11. Further, the first member 7 is mounted on the outer periphery of the cylinder 2 and is slidably inserted inside the inner tube 11, and the wheel side bracket (cover portion) that closes one end of the first member 7 and the inner tube 11 is provided. A suspension spring (coil spring) S is interposed between the 12 and the suspension spring (coil spring) S.

このため、懸架ばねS、又は、懸架ばねSの上端が当接するばねシート9を第二部材8の下室r2側への移動を制限する下室側ストッパとして利用できる。さらに、第一部材7が懸架ばねSの上端を支えるばね受け部材としても機能するので、そのばね受け部材と隔壁部材Pとを個別に設ける場合と比較して緩衝器Aの部品数を少なくできる。 Therefore, the suspension spring S or the spring sheet 9 with which the upper end of the suspension spring S abuts can be used as a lower chamber side stopper that restricts the movement of the second member 8 to the lower chamber r2 side. Further, since the first member 7 also functions as a spring receiving member that supports the upper end of the suspension spring S, the number of parts of the shock absorber A can be reduced as compared with the case where the spring receiving member and the partition wall member P are individually provided. ..

また、本実施の形態では、第一部材7に装着したばねシート9を第二部材8の第一部材7に対する下室r2側への移動を制限する下室側ストッパとして利用している。このため、内側に第二部材8を挿入した第一部材7にばねシート9を装着しておけば、第一部材7に第二部材8を取り付けた状態で緩衝器本体Dに組み付けられるので、緩衝器Aの組立作業を容易にできる。 Further, in the present embodiment, the spring seat 9 attached to the first member 7 is used as a lower chamber side stopper that restricts the movement of the second member 8 to the lower chamber r2 side with respect to the first member 7. Therefore, if the spring seat 9 is attached to the first member 7 in which the second member 8 is inserted inside, the spring seat 9 can be assembled to the shock absorber main body D with the second member 8 attached to the first member 7. The assembly work of the shock absorber A can be facilitated.

しかし、ばねシート9を廃し、懸架ばねSの上端を第一部材7の下端に直接突き当てもよく、この場合には、その懸架ばねSを下室側ストッパとして利用してもよい。さらには、液溜室Rの液面Rs上方に圧縮ガスを封入し、その液溜室R内の気室を有して構成されるエアばねを懸架ばねとして利用してもよい。つまり、隔壁部材Pは、必ずしもばね受け部材としての機能を有していなくてもよく、この場合には、ばねシート9を下室側ストッパとしてのみ利用してもよい。 However, the spring sheet 9 may be eliminated and the upper end of the suspension spring S may be directly abutted against the lower end of the first member 7. In this case, the suspension spring S may be used as the lower chamber side stopper. Further, an air spring configured by enclosing a compressed gas above the liquid level Rs of the liquid storage chamber R and having an air chamber in the liquid storage chamber R may be used as a suspension spring. That is, the partition wall member P does not necessarily have to have a function as a spring receiving member, and in this case, the spring sheet 9 may be used only as a lower chamber side stopper.

また、本実施の形態の緩衝器Aは鞍乗型車両の前輪を懸架するフロントフォークに利用されていて、チューブ部材1がアウターチューブ10とインナーチューブ11とを有するテレスコピック型の部材となっている。さらに、本実施の形態では、チューブ部材1が倒立型となっていて、アウターチューブ10が車体側チューブ、インナーチューブ11が車輪側チューブとなっている。 Further, the shock absorber A of the present embodiment is used for a front fork that suspends the front wheels of a saddle-mounted vehicle, and the tube member 1 is a telescopic member having an outer tube 10 and an inner tube 11. .. Further, in the present embodiment, the tube member 1 is an inverted type, the outer tube 10 is a vehicle body side tube, and the inner tube 11 is a wheel side tube.

しかし、チューブ部材1を正立型にして、アウターチューブ10を車輪側チューブ、インナーチューブ11を車体側チューブとしてもよいのは勿論、緩衝器Aの利用目的もフロントフォークに限られない。例えば、本発明に係る緩衝器を鞍乗型車両の後輪を懸架するリアクッションユニット、又は車室を備えた自動車の懸架装置に利用してもよい。そして、これらの場合には、図8に示す緩衝器A1のように、チューブ部材1をシリンダ2の外周に配置される一本のアウターシェル15に替えてもよい。 However, the tube member 1 may be made upright, the outer tube 10 may be a wheel-side tube, and the inner tube 11 may be a vehicle body-side tube, and the purpose of using the shock absorber A is not limited to the front fork. For example, the shock absorber according to the present invention may be used for a rear cushion unit for suspending the rear wheels of a saddle-type vehicle, or for a suspension device for an automobile provided with a passenger compartment. Then, in these cases, the tube member 1 may be replaced with a single outer shell 15 arranged on the outer periphery of the cylinder 2, as in the shock absorber A1 shown in FIG.

さらに、図1に示す緩衝器Aでは、緩衝器本体Dのシリンダ2が車体に連結されるとともにピストンロッド4が車軸に連結されている。そして、緩衝器本体Dが伸縮すると、シリンダ2の外周に装着された隔壁部材Pが液面Rsに対して上下に移動するとともに、緩衝器本体Dが収縮してシリンダ2が液中に浸かると液面Rsが上昇するようになっている。 Further, in the shock absorber A shown in FIG. 1, the cylinder 2 of the shock absorber body D is connected to the vehicle body and the piston rod 4 is connected to the axle. When the shock absorber body D expands and contracts, the partition wall member P mounted on the outer periphery of the cylinder 2 moves up and down with respect to the liquid level Rs, and the shock absorber body D contracts and the cylinder 2 is immersed in the liquid. The liquid level Rs is increased.

しかし、図8に示す緩衝器A1のように、シリンダ2とアウターシェル15を車軸に連結するとともにピストンロッド4を車体に連結し、バルブケース5に形成された吸込通路5aと排出通路5bで圧側室L2と液溜室Rを連通してもよい。この場合には、緩衝器本体D1の伸縮時にシリンダ2に出入りするピストンロッド4体積分の液体が圧側室L2と液溜室Rとの間を行き来して、液溜室Rの液面Rsが上下に移動する。 However, as in the shock absorber A1 shown in FIG. 8, the cylinder 2 and the outer shell 15 are connected to the axle and the piston rod 4 is connected to the vehicle body, and the suction passage 5a and the discharge passage 5b formed in the valve case 5 are on the compression side. The chamber L2 and the liquid storage chamber R may be communicated with each other. In this case, the liquid corresponding to 4 volumes of the piston rod that goes in and out of the cylinder 2 when the shock absorber main body D1 expands and contracts moves back and forth between the compression side chamber L2 and the liquid reservoir R, and the liquid level Rs of the liquid reservoir R becomes. Move up and down.

そして、図8に示す緩衝器A1では、シリンダ2の外周に隔壁部材Pが固定されており、緩衝器本体D1の伸縮時に液面Rsが上下に動くと、その液面Rsと隔壁部材Pとが上下に相対移動する。このように、上記緩衝器A1においても、緩衝器本体D1の伸縮時に隔壁部材Pが液溜室Rの液面Rsに対して移動する。 In the shock absorber A1 shown in FIG. 8, the partition wall member P is fixed to the outer periphery of the cylinder 2, and when the liquid level Rs moves up and down when the shock absorber main body D1 expands and contracts, the liquid level Rs and the partition wall member P become Moves up and down relative to each other. As described above, also in the shock absorber A1, the partition wall member P moves with respect to the liquid level Rs of the liquid storage chamber R when the shock absorber main body D1 expands and contracts.

さらに、図8に示す緩衝器A1においても、隔壁部材Pが第一部材7と第二部材8を有して構成されており、液体が通孔(通路)7dを流れる方向に応じて第一部材7と第二部材8の相対移動の方向が切替わる。このため、上記緩衝器A1においても、緩衝器A1の伸縮方向に応じて通孔(通路)7dの開口面積(流路面積)を変更し、緩衝器A1の伸長時に発生する二次的な減衰力と、緩衝器A1の収縮時に発生する二次的な減衰力を個別に容易に調整できる。 Further, also in the shock absorber A1 shown in FIG. 8, the partition wall member P is configured to have the first member 7 and the second member 8, and is first depending on the direction in which the liquid flows through the through hole (passage) 7d. The direction of relative movement of the member 7 and the second member 8 is switched. Therefore, also in the shock absorber A1, the opening area (flow path area) of the through hole (passage) 7d is changed according to the expansion / contraction direction of the shock absorber A1, and the secondary attenuation generated when the shock absorber A1 is extended. The force and the secondary damping force generated when the shock absorber A1 contracts can be easily adjusted individually.

なお、図8に示す緩衝器A1では、図2,3に示す隔壁部材Pを採用しているが、当該隔壁部材Pを図5,6に示す隔壁部材P1に変更してもよいのは勿論である。 Although the partition wall member P shown in FIGS. 2 and 3 is adopted in the shock absorber A1 shown in FIG. 8, it is of course possible to change the partition wall member P to the partition wall member P1 shown in FIGS. 5 and 6. Is.

また、図1,8に示す緩衝器A,A1では、ともに、緩衝器A,A1の収縮量が所定以上となる所定のストローク範囲で隔壁部材P,P1が浸漬されて二次的な減衰力が発生する。しかし、二次的な減衰力を発生させるストローク範囲は適宜変更できる。例えば、隔壁部材P,P1が常に浸漬されようにして、最伸長状態から最収縮状態までの全ストローク範囲で緩衝器A,A1の伸縮時に二次的な減衰力が発生するようにしてもよい。 Further, in the shock absorbers A and A1 shown in FIGS. Occurs. However, the stroke range for generating the secondary damping force can be changed as appropriate. For example, the partition wall members P and P1 may be constantly immersed so that a secondary damping force is generated when the shock absorbers A and A1 expand and contract in the entire stroke range from the maximum extension state to the maximum contraction state. ..

さらに、図1,8に示す緩衝器A,A1では、緩衝器本体D,D1が片ロッド型になっていて、ピストンロッド4がピストン3の片側からシリンダ2外へ突出する。しかし、緩衝器本体の伸縮時に隔壁部材P,P1と液溜室Rの液面Rsが相対移動するようになっていれば、緩衝器本体が片ロッド側になっていて、ピストンロッド4がピストン3の両側からシリンダ2外へ突出するとしてもよい。加えて、緩衝器本体において、シリンダ2に出入りするロッドは、必ずしもピストン3に連結されたピストンロッド4でなくてもよい。 Further, in the shock absorbers A and A1 shown in FIGS. 1 and 8, the shock absorber bodies D and D1 are of a single rod type, and the piston rod 4 projects from one side of the piston 3 to the outside of the cylinder 2. However, if the partition members P and P1 and the liquid level Rs of the liquid reservoir R move relative to each other when the shock absorber body expands and contracts, the shock absorber body is on one rod side and the piston rod 4 is a piston. It may protrude from both sides of 3 to the outside of the cylinder 2. In addition, in the shock absorber body, the rod that goes in and out of the cylinder 2 does not necessarily have to be the piston rod 4 connected to the piston 3.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形及び変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, they can be modified, modified and modified as long as they do not deviate from the claims.

A,A1・・・緩衝器、D,D1・・・緩衝器本体、P,P1・・・隔壁部材、R・・・液溜室、Rs・・・液面、r1・・・上室、r2・・・下室、S・・・懸架ばね(コイルばね)、1・・・チューブ部材、2・・・シリンダ、4・・・ピストンロッド(ロッド)、7,7A・・・第一部材、7a・・・小径部、7b・・・胴部、7c・・・大径部、7d・・・通孔(通路)、7e・・・リブ、8,8A・・・第二部材、8a・・・シャッタ部、8b・・・スライド部、8e・・・端部溝、8g・・・切欠き部、10・・・アウターチューブ、11・・・インナーチューブ、12・・・車輪側ブラケット(蓋部)、15・・・アウターシェル(チューブ部材) A, A1 ... shock absorber, D, D1 ... shock absorber body, P, P1 ... partition member, R ... liquid storage chamber, Rs ... liquid level, r1 ... upper chamber, r2 ... lower chamber, S ... suspension spring (coil spring), 1 ... tube member, 2 ... cylinder, 4 ... piston rod (rod), 7,7A ... first member , 7a ... Small diameter part, 7b ... Body part, 7c ... Large diameter part, 7d ... Through hole (passage), 7e ... Rib, 8,8A ... Second member, 8a・ ・ ・ Shutter part, 8b ・ ・ ・ Slide part, 8e・ ・ ・ End groove, 8g・ ・ ・ Notch part, 10 ・ ・ ・ Outer tube, 11 ・ ・ ・ Inner tube, 12 ・ ・ ・ Wheel side bracket (Cover), 15 ... Outer shell (tube member)

Claims (7)

シリンダと、前記シリンダ内に軸方向へ移動可能に挿入されるロッドとを有して伸縮する緩衝器本体と、
前記緩衝器本体の外周に設けられて前記緩衝器本体との間に液溜室を形成するチューブ部材と、
前記液溜室を上室と下室とに仕切るとともに前記上室と前記下室とを連通する通路を有し、前記緩衝器本体の伸縮時に前記液溜室の液面に対して移動する隔壁部材とを備え、
前記隔壁部材は、第一部材と、前記第一部材との相対移動により前記通路の流路面積を変更する第二部材とを有し、
液体が前記通路を流れる方向に応じて前記第一部材と前記第二部材の相対移動の方向が切替わる
ことを特徴とする緩衝器。
A shock absorber body that has a cylinder and a rod that is movably inserted into the cylinder and expands and contracts.
A tube member provided on the outer periphery of the shock absorber body and forming a liquid storage chamber between the shock absorber body and the tube member.
A partition wall that divides the liquid storage chamber into an upper chamber and a lower chamber and has a passage that connects the upper chamber and the lower chamber, and moves with respect to the liquid surface of the liquid reservoir when the shock absorber body expands and contracts. Equipped with parts,
The partition wall member has a first member and a second member that changes the flow path area of the passage by relative movement with the first member.
A shock absorber characterized in that the direction of relative movement of the first member and the second member is switched according to the direction in which the liquid flows through the passage.
前記第一部材と前記第二部材は、ともに筒状であり、
前記第一部材の内周側に前記緩衝器本体が挿通されており、
前記通路は、前記第一部材の肉厚を貫通する通孔を有して形成されており、
前記第二部材は、前記第一部材の内周側又は外周側に軸方向へ移動可能に装着されており、
前記第二部材が前記第一部材に対して軸方向へ移動すると、前記通孔の開口面積が変更される
ことを特徴とする請求項1に記載の緩衝器。
The first member and the second member are both cylindrical and have a cylindrical shape.
The shock absorber body is inserted through the inner peripheral side of the first member.
The passage is formed with a through hole penetrating the wall thickness of the first member.
The second member is mounted on the inner peripheral side or the outer peripheral side of the first member so as to be movable in the axial direction.
The shock absorber according to claim 1, wherein when the second member moves in the axial direction with respect to the first member, the opening area of the through hole is changed.
前記第一部材は、内周が前記緩衝器本体の外周に接する環状の小径部と、前記小径部の一端に連なり前記小径部から離れるに従って内径及び外径が徐々に拡径される円錐台筒状の胴部と、前記胴部の反小径部側端に連なり外周が前記チューブ部材の内周に接する環状の大径部とを含む
ことを特徴とする請求項2に記載の緩衝器。
The first member has an annular small diameter portion whose inner circumference is in contact with the outer periphery of the shock absorber body, and a truncated cone cylinder whose inner diameter and outer diameter are gradually increased as the inner circumference is connected to one end of the small diameter portion and away from the small diameter portion. The shock absorber according to claim 2, further comprising a body having a shape and an annular large diameter portion connected to the anti-small diameter side end of the body and having an outer circumference in contact with the inner circumference of the tube member.
前記第二部材は、前記通孔を開閉するシャッタ部を含み、
前記シャッタ部が円錐台筒状で先端へ向かうに従って内径及び外径が徐々に縮径される
ことを特徴とする請求項2又は3に記載の緩衝器。
The second member includes a shutter portion that opens and closes the through hole.
The shock absorber according to claim 2 or 3, wherein the shutter portion has a truncated cone shape and the inner diameter and the outer diameter are gradually reduced toward the tip.
前記第一部材の内周又は外周には、軸方向に沿ってリブが形成されており、
前記第二部材の上室側又は下室側への移動が前記リブで制限される
ことを特徴とする請求項2から4の何れか一項に記載の緩衝器。
Ribs are formed along the axial direction on the inner circumference or the outer circumference of the first member.
The shock absorber according to any one of claims 2 to 4, wherein the movement of the second member to the upper chamber side or the lower chamber side is restricted by the rib.
前記第一部材は、前記大径部を前記上室又は前記下室の何れか一方の室へ向けて配置されており、
前記第二部材は、前記大径部の内周に摺接する環状のスライド部を含み、
前記スライド部の外周には、前記第一部材との間に軸方向に沿って隙間を形成する切欠き部が形成されており、
前記第二部材の軸方向における前記一方の室側の端部には、前記第二部材の前記一方の室側への移動が制限された状態で前記隙間と前記一方の室とを連通する端部溝が形成されている
ことを特徴とする請求項3、請求項3に従属する請求項4又は5の何れか一項に記載の緩衝器。
The first member is arranged with the large diameter portion facing either the upper chamber or the lower chamber.
The second member includes an annular slide portion that slides into contact with the inner circumference of the large diameter portion.
A notch portion is formed on the outer periphery of the slide portion to form a gap along the axial direction with the first member.
At the end of the one chamber side in the axial direction of the second member, the end communicating the gap and the one chamber with the movement of the second member toward the one chamber side is restricted. The shock absorber according to any one of claims 3 and 4 or 5, which is dependent on claim 3, wherein a groove is formed.
前記チューブ部材は、アウターチューブと、前記アウターチューブ内に摺動自在に挿入されるインナーチューブとを有し、
前記シリンダは、前記アウターチューブに連結され、
前記ロッドは、前記インナーチューブに連結され、
前記第一部材は、前記シリンダの外周に装着されるとともに、前記インナーチューブの内側に摺動可能に挿入されており、
前記第一部材と前記インナーチューブの一端を塞ぐ蓋部との間には、コイルばねが介装されている
ことを特徴とする請求項1から6の何れか一項に記載の緩衝器。
The tube member has an outer tube and an inner tube slidably inserted into the outer tube.
The cylinder is connected to the outer tube and
The rod is connected to the inner tube and
The first member is mounted on the outer periphery of the cylinder and is slidably inserted inside the inner tube.
The shock absorber according to any one of claims 1 to 6, wherein a coil spring is interposed between the first member and the lid portion that closes one end of the inner tube.
JP2018058437A 2018-03-26 2018-03-26 Buffer Active JP6966969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018058437A JP6966969B2 (en) 2018-03-26 2018-03-26 Buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058437A JP6966969B2 (en) 2018-03-26 2018-03-26 Buffer

Publications (2)

Publication Number Publication Date
JP2019168094A JP2019168094A (en) 2019-10-03
JP6966969B2 true JP6966969B2 (en) 2021-11-17

Family

ID=68108088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018058437A Active JP6966969B2 (en) 2018-03-26 2018-03-26 Buffer

Country Status (1)

Country Link
JP (1) JP6966969B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117249279B (en) * 2023-11-06 2024-06-14 浙江同普自控设备股份有限公司 Anti-blocking shunt conversion valve

Also Published As

Publication number Publication date
JP2019168094A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6731537B2 (en) Shock absorber
JP5827871B2 (en) Hydraulic shock absorber
KR101662472B1 (en) Shock absorber
JP6577826B2 (en) Shock absorber
JP6463934B2 (en) Suspension device
CN111108302B (en) Front fork and method for manufacturing front fork
JP6966969B2 (en) Buffer
JP2009156348A (en) Hydraulic shock absorber
US8146721B2 (en) Self leveling shock absorber
JP5015071B2 (en) Shock absorber
JP4965490B2 (en) Hydraulic shock absorber
JP2014208510A (en) Front fork
JP6630201B2 (en) Shock absorber
JP2020026831A (en) Front fork
JP2017166572A (en) Buffer
KR102614825B1 (en) Shock absorber
JP4869718B2 (en) Damping force generator for hydraulic shock absorber
JP6997666B2 (en) Buffer
JP6484088B2 (en) Front fork
JP6329401B2 (en) Front fork
CN112292543B (en) Front fork
JP2019168095A (en) Front fork
JP7492473B2 (en) Shock absorber
JP2019124296A (en) Shock absorber
JP5517337B2 (en) Buffer valve structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211022

R150 Certificate of patent or registration of utility model

Ref document number: 6966969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350