JP6966315B2 - Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel - Google Patents

Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel Download PDF

Info

Publication number
JP6966315B2
JP6966315B2 JP2017242482A JP2017242482A JP6966315B2 JP 6966315 B2 JP6966315 B2 JP 6966315B2 JP 2017242482 A JP2017242482 A JP 2017242482A JP 2017242482 A JP2017242482 A JP 2017242482A JP 6966315 B2 JP6966315 B2 JP 6966315B2
Authority
JP
Japan
Prior art keywords
optical compensation
film
compensation layer
layer
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017242482A
Other languages
Japanese (ja)
Other versions
JP2019109377A (en
Inventor
秀行 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017242482A priority Critical patent/JP6966315B2/en
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to KR1020207017452A priority patent/KR20200100067A/en
Priority to SG11202005240WA priority patent/SG11202005240WA/en
Priority to PCT/JP2018/042821 priority patent/WO2019123947A1/en
Priority to CN201880081765.9A priority patent/CN111542770B/en
Priority to TW107145659A priority patent/TWI770333B/en
Publication of JP2019109377A publication Critical patent/JP2019109377A/en
Priority to JP2021172340A priority patent/JP2022023892A/en
Application granted granted Critical
Publication of JP6966315B2 publication Critical patent/JP6966315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、位相差フィルム、光学補償層付偏光板、画像表示装置、およびタッチパネル付き画像表示装置に関する。 The present invention relates to a retardation film, a polarizing plate with an optical compensation layer, an image display device, and an image display device with a touch panel.

近年、薄型ディスプレイの普及と共に、有機ELパネルを搭載した画像表示装置(有機EL表示装置)が提案されている。有機ELパネルは反射性の高い金属層を有しており、外光反射や背景の映り込み等の問題を生じやすい。そこで、光学補償層付偏光板(円偏光板)を視認側に設けることにより、これらの問題を防ぐことが知られている。また、液晶表示パネルの視認側に光学補償層付偏光板を設けることで、視野角を改善することが知られている。一般的な光学補償層付偏光板として、位相差フィルムと偏光子とを、その遅相軸と吸収軸とが用途に応じた所定の角度(例えば、45°)をなすように積層したものが知られている。しかし、従来の位相差フィルムは、光学補償層付偏光板に用いた場合に、斜め方向の色相に所望でない色付きが生じ得るという問題がある。 In recent years, with the spread of thin displays, an image display device (organic EL display device) equipped with an organic EL panel has been proposed. The organic EL panel has a highly reflective metal layer, and tends to cause problems such as external light reflection and background reflection. Therefore, it is known to prevent these problems by providing a polarizing plate with an optical compensation layer (circular polarizing plate) on the visual recognition side. Further, it is known that the viewing angle is improved by providing a polarizing plate with an optical compensation layer on the visual recognition side of the liquid crystal display panel. As a general polarizing plate with an optical compensation layer, a retardation film and a polarizing element are laminated so that their slow-phase axis and absorption axis form a predetermined angle (for example, 45 °) according to the application. Are known. However, the conventional retardation film has a problem that when it is used for a polarizing plate with an optical compensation layer, undesired coloring may occur in the hue in the oblique direction.

特許第3325560号公報Japanese Patent No. 3325560

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、斜め方向の色相がニュートラルである画像表示装置を実現し得る位相差フィルム、並びに、そのような位相差フィルムを有する光学補償層付偏光板、画像表示装置、およびタッチパネル付き画像表示装置を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is a retardation film capable of realizing an image display device having a neutral hue in an oblique direction, and such a retardation film. It is an object of the present invention to provide a polarizing plate with an optical compensation layer, an image display device, and an image display device with a touch panel.

本発明の位相差フィルムは、面内位相差が、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、Nz係数が、0.4<Nz(550)<0.6、0≦|Nz(450)−Nz(550)|≦0.1、および、0≦|Nz(650)−Nz(550)|≦0.1を満たし、光弾性係数が14×10−12Pa−1以下である。
1つの実施形態においては、上記位相差フィルムはポリカーボネート樹脂を含む。
本発明の別の局面によれば、光学補償層付偏光板が提供される。この光学補償層付偏光板は、上記位相差フィルムにより構成される光学補償層と、偏光子とを有し、上記光学補償層の遅相軸と上記偏光子の吸収軸とのなす角度が35°〜55°である。
1つの実施形態においては、上記光学補償層付偏光板は上記偏光子とは反対側に導電層を有する。
本発明のさらに別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記光学補償層付偏光板を有する。
本発明のさらに別の局面によれば、タッチパネル付き画像表示装置が提供される。このタッチパネル付き画像表示装置は、上記光学補償層付偏光板を有し、上記導電層がタッチパネルセンサーとして機能する。
The retardation film of the present invention satisfies the in-plane retardation of 100 nm ≤ Re (550) ≤ 160 nm, Re (450) / Re (550) ≤ 1, and Re (650) / Re (550) ≥ 1. , Nz coefficients are 0.4 <Nz (550) <0.6, 0 ≦ | Nz (450) -Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) -Nz (550). | ≤0.1 is satisfied, and the photoelastic coefficient is 14 × 10 -12 Pa -1 or less.
In one embodiment, the retardation film comprises a polycarbonate resin.
According to another aspect of the present invention, a polarizing plate with an optical compensation layer is provided. This polarizing plate with an optical compensation layer has an optical compensation layer made of the retardation film and a polarizing element, and the angle formed by the slow axis of the optical compensation layer and the absorption axis of the polarizing element is 35. ° to 55 °.
In one embodiment, the polarizing plate with an optical compensation layer has a conductive layer on the opposite side of the polarizing element.
According to yet another aspect of the present invention, an image display device is provided. This image display device has the above-mentioned polarizing plate with an optical compensation layer.
According to yet another aspect of the present invention, an image display device with a touch panel is provided. This image display device with a touch panel has the polarizing plate with the optical compensation layer, and the conductive layer functions as a touch panel sensor.

本発明によれば、位相差フィルムの面内位相差が、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、Nz係数が、0.4<Nz(550)<0.6、0≦|Nz(450)−Nz(550)|≦0.1、および、0≦|Nz(650)−Nz(550)|≦0.1を満たすことにより、光学補償層付偏光板に用いた場合に斜め方向の色相がニュートラルである光学補償層付偏光板を実現し得る。 According to the present invention, the in-plane retardation of the retardation film is 100 nm ≤ Re (550) ≤ 160 nm, Re (450) / Re (550) ≤ 1, and Re (650) / Re (550) ≥ 1. , And the Nz coefficient is 0.4 <Nz (550) <0.6, 0 ≦ | Nz (450) -Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) -Nz ( By satisfying 550) | ≦ 0.1, a polarizing plate with an optical compensation layer having a neutral hue in the oblique direction when used for a polarizing plate with an optical compensation layer can be realized.

本発明の1つの実施形態による光学補償層付偏光板の概略断面図である。It is schematic cross-sectional view of the polarizing plate with an optical compensation layer according to one Embodiment of this invention.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re=(nx−ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth=(nx−nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(Definition of terms and symbols)
Definitions of terms and symbols herein are as follows.
(1) Refractive index (nx, ny, nz)
"Nx" is the refractive index in the direction in which the refractive index in the plane is maximized (that is, the slow-phase axis direction), and "ny" is the direction orthogonal to the slow-phase axis in the plane (that is, the phase-advancing axis direction). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is obtained by the formula: Re = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth = (nx-nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.

A.位相差フィルム
本発明の位相差フィルムは、面内位相差が、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、Nz係数が、0.4<Nz(550)<0.6、0≦|Nz(450)−Nz(550)|≦0.1、および、0≦|Nz(650)−Nz(550)|≦0.1を満たす。すなわち、上記位相差フィルムは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示し、かつ、Nz係数の波長依存性が小さく、広い波長域の測定光に対して屈折率特性がnx>nz>nyの関係を示す。これにより、上記位相差フィルムは、光学補償層付偏光板に用いた場合に斜め方向の色相がニュートラルである光学補償層付偏光板を実現し得る。さらに、上記位相差フィルムは、光弾性係数が14×10−12Pa−1以下である。これにより、応力による位相差値の変化率が小さく、例えば、高温環境下における信頼性が高い。代表的には、位相差フィルムは、単層構造を有し、1枚のフィルムで構成されている。1つの実施形態においては、位相差フィルムは、ポリカーボネート樹脂を含む。位相差フィルムは、枚葉状であってもよいし、長尺状であってもよい。
A. Phase difference film The retardation film of the present invention has in-plane retardation of 100 nm ≤ Re (550) ≤ 160 nm, Re (450) / Re (550) ≤ 1, and Re (650) / Re (550) ≥. 1 is satisfied and the Nz coefficient is 0.4 <Nz (550) <0.6, 0 ≦ | Nz (450) -Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) -Nz. (550) | ≦ 0.1 is satisfied. That is, the retardation film exhibits a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, the wavelength dependence of the Nz coefficient is small, and the refractive index with respect to the measurement light in a wide wavelength range. The characteristic shows the relationship of nx>nz> ny. As a result, the retardation film can realize a polarizing plate with an optical compensation layer in which the hue in the diagonal direction is neutral when used as a polarizing plate with an optical compensation layer. Further, the retardation film has a photoelastic coefficient of 14 × 10 -12 Pa -1 or less. As a result, the rate of change of the phase difference value due to stress is small, and for example, reliability is high in a high temperature environment. Typically, the retardation film has a single layer structure and is composed of one film. In one embodiment, the retardation film comprises a polycarbonate resin. The retardation film may be single-wafer-shaped or may be long-shaped.

位相差フィルムの面内位相差Re(550)は、好ましくは120nm〜150nmであり、より好ましくは130nm〜145nmである。位相差フィルムの面内位相差が上記の範囲内であれば、位相差フィルムと偏光子とを、位相差フィルムの遅相軸方向と偏光子の吸収軸方向とのなす角度が約45°または約135°となるように積層して得られる光学補償層付偏光板は、優れた反射防止特性を実現し得る円偏光板として用いられ得る。 The in-plane retardation Re (550) of the retardation film is preferably 120 nm to 150 nm, more preferably 130 nm to 145 nm. If the in-plane retardation of the retardation film is within the above range, the angle between the retardation film and the polarizing element between the slow axis direction of the retardation film and the absorption axis direction of the polarizing element is about 45 ° or The polarizing plate with an optical compensation layer obtained by laminating so as to be about 135 ° can be used as a circular polarizing plate capable of realizing excellent antireflection characteristics.

位相差フィルムの面内位相差に関して、Re(450)/Re(550)の値は、好ましくは0.80〜0.90であり、より好ましくは0.80〜0.88であり、さらに好ましくは0.80〜0.86である。Re(650)/Re(550)の値は、好ましくは1.01〜1.20であり、より好ましくは1.02〜1.15であり、さらに好ましくは1.03〜1.10である。これにより、位相差板は、より優れた反射色相を達成することができる。これにより、位相差フィルムは、より優れた反射色相を達成することができる。 With respect to the in-plane retardation of the retardation film, the value of Re (450) / Re (550) is preferably 0.80 to 0.90, more preferably 0.80 to 0.88, still more preferable. Is 0.80 to 0.86. The value of Re (650) / Re (550) is preferably 1.01 to 1.20, more preferably 1.02 to 1.15, and even more preferably 1.03 to 1.10. .. Thereby, the retardation plate can achieve a better reflected hue. Thereby, the retardation film can achieve a better reflected hue.

位相差フィルムのNz係数は、上記のとおり、0.4<Nz(550)<0.6、0≦|Nz(450)−Nz(550)|≦0.1、および、0≦|Nz(650)−Nz(550)|≦0.1を満たす。Nz(550)は、好ましくは0.42〜0.58であり、より好ましくは0.45〜0.55であり、特に好ましくは約0.5である。Nz係数がこのような範囲であれば、広い波長域の測定光に対して屈折率特性がnx>nz>nyの関係を示し、これにより、斜め方向の色相がニュートラルであり、かつ、優れた視野角特性を有する光学補償層付偏光板を実現し得る。 As described above, the Nz coefficients of the retardation film are 0.4 <Nz (550) <0.6, 0 ≦ | Nz (450) -Nz (550) | ≦ 0.1, and 0 ≦ | Nz ( 650) −Nz (550) | ≦ 0.1 is satisfied. Nz (550) is preferably 0.42 to 0.58, more preferably 0.45 to 0.55, and particularly preferably about 0.5. When the Nz coefficient is in such a range, the refractive index characteristic shows the relationship of nx> nz> ny with respect to the measured light in a wide wavelength range, whereby the hue in the oblique direction is neutral and excellent. A polarizing plate with an optical compensation layer having a viewing angle characteristic can be realized.

位相差フィルムの光弾性係数(の絶対値)は、上記のとおり、14×10−12Pa−1以下である。位相差フィルムの光弾性係数は、好ましくは1×10−12Pa−1〜14×10−12Pa−1であり、より好ましくは2×10−12Pa−1〜12×10−12Pa−1である。光弾性係数の絶対値がこのような範囲であれば、高温高湿環境下においても位相差値の変化を抑制することができ、優れた信頼性を実現することができる。また、小さい厚みでも十分な位相差を確保しつつ画像表示装置(特に、有機ELパネル)の屈曲性を維持することができ、さらに、屈曲時の応力による位相差変化(結果として、有機ELパネルの色変化)をより抑制することができる。 As described above, the photoelastic coefficient (absolute value) of the retardation film is 14 × 10 -12 Pa -1 or less. The photoelastic coefficient of the retardation film is preferably 1 × 10 -12 Pa -1 to 14 × 10 -12 Pa -1 , and more preferably 2 × 10 -12 Pa -1 to 12 × 10 -12 Pa −. It is 1. When the absolute value of the photoelastic coefficient is in such a range, the change in the phase difference value can be suppressed even in a high temperature and high humidity environment, and excellent reliability can be realized. Further, it is possible to maintain the flexibility of the image display device (particularly, the organic EL panel) while ensuring a sufficient phase difference even with a small thickness, and further, the phase difference change due to the stress at the time of bending (as a result, the organic EL panel). Color change) can be further suppressed.

位相差フィルムは、その吸水率が好ましくは3%以下であり、より好ましくは2.5%以下、さらに好ましくは2%以下である。このような吸水率を満足することにより、表示特性の経時変化を抑制することができる。なお、吸水率は、JIS K 7209に準拠して求めることができる。 The water absorption rate of the retardation film is preferably 3% or less, more preferably 2.5% or less, still more preferably 2% or less. By satisfying such a water absorption rate, it is possible to suppress changes in display characteristics over time. The water absorption rate can be obtained in accordance with JIS K 7209.

位相差フィルムは、好ましくは、水分およびガス(例えば酸素)に対するバリア性を有する。位相差フィルムの40℃、90%RH条件下での水蒸気透過率(透湿度)は、好ましくは1.0×10−1g/m/24hr未満である。バリア性の観点からは、透湿度の下限は低いほど好ましい。位相差フィルムの60℃、90%RH条件下でのガスバリア性は、好ましくは1.0×10−7g/m/24hr〜0.5g/m/24hrであり、より好ましくは1.0×10−7g/m/24hr〜0.1g/m/24hrである。透湿度およびガスバリア性がこのような範囲であれば、光学補償層付偏光板を有機ELパネルに貼り合わせた場合に、当該有機ELパネルを空気中の水分および酸素から良好に保護し得る。なお、透湿度およびガスバリア性はいずれも、JIS K 7126−1に準じて測定され得る。 The retardation film preferably has a barrier property against moisture and gas (eg oxygen). 40 ° C. of the phase difference film, water vapor transmission rate of at 90% RH conditions (moisture permeability) is preferably 1.0 × 10 -1 g / m less than 2/24 hr or. From the viewpoint of barrier property, it is preferable that the lower limit of the moisture permeability is lower. 60 ° C. of the phase difference film, the gas barrier properties 90% RH conditions, and preferably 1.0 × 10 -7 g / m 2 /24hr~0.5g/m 2 / 24hr, more preferably 1. 0 × a 10 -7 g / m 2 /24hr~0.1g/m 2 / 24hr. When the water permeability and the gas barrier property are within such a range, the organic EL panel can be satisfactorily protected from moisture and oxygen in the air when the polarizing plate with an optical compensation layer is attached to the organic EL panel. Both the moisture permeability and the gas barrier property can be measured according to JIS K 7126-1.

位相差フィルムの厚みは、好ましくは10μm〜150μmであり、より好ましくは10μm〜100μmであり、さらに好ましくは10μm〜70μmである。このような厚みであれば、上記所望の面内位相差およびNz係数が得られ得る。 The thickness of the retardation film is preferably 10 μm to 150 μm, more preferably 10 μm to 100 μm, and further preferably 10 μm to 70 μm. With such a thickness, the desired in-plane phase difference and Nz coefficient can be obtained.

B.位相差フィルムの製造方法
上記位相差フィルムは、上記特性を実現し得る任意の適切な樹脂で形成される。上記位相差フィルムは、例えば、上記樹脂を任意の適切な溶媒に溶解または分散した塗布液を収縮性フィルムに塗布して塗膜を形成し、当該塗膜を収縮させることにより形成され得る。代表的には、塗膜の収縮は、収縮性フィルムと塗膜との積層体を加熱して収縮性フィルムを収縮させ、このような収縮性フィルムの収縮により塗膜を収縮させる。塗膜の収縮率は、好ましくは0.50〜0.99であり、より好ましくは0.60〜0.98であり、さらに好ましくは、0.70〜0.95である。加熱温度は、好ましくは130℃〜170℃であり、より好ましくは150℃〜160℃である。1つの実施形態においては、塗膜を収縮させる際に、当該収縮方向と直交する方向に積層体を延伸してもよい。この場合、積層体の延伸倍率は、好ましくは1.01倍〜3.0倍であり、より好ましくは1.05倍〜2.0倍であり、さらに好ましくは1.10倍〜1.50倍である。延伸に用いる延伸機としては、ロール延伸機、テンター延伸機、および二軸延伸機等の任意の適切な延伸機が採用され得る。以上のようにして、収縮性フィルム上に、複屈折層を形成することができる。得られた複屈折層を収縮性フィルムから剥離し、本発明の位相差フィルムとして用いてもよいし、複屈折層を収縮性フィルムから剥離することなく複屈折層(位相差フィルム)と収縮性フィルムとの積層体をそのまま用いてもよい。
B. Method for manufacturing a retardation film The retardation film is formed of any suitable resin capable of realizing the above characteristics. The retardation film can be formed, for example, by applying a coating liquid in which the resin is dissolved or dispersed in an arbitrary suitable solvent to a shrinkable film to form a coating film, and then shrinking the coating film. Typically, the shrinkage of the coating film heats the laminate of the shrinkable film and the coating film to shrink the shrinkable film, and the shrinkage of the shrinkable film causes the coating film to shrink. The shrinkage ratio of the coating film is preferably 0.50 to 0.99, more preferably 0.60 to 0.98, and further preferably 0.70 to 0.95. The heating temperature is preferably 130 ° C to 170 ° C, more preferably 150 ° C to 160 ° C. In one embodiment, when shrinking the coating film, the laminate may be stretched in a direction orthogonal to the shrinkage direction. In this case, the draw ratio of the laminated body is preferably 1.01 times to 3.0 times, more preferably 1.05 times to 2.0 times, and further preferably 1.10 times to 1.50 times. It is double. As the stretching machine used for stretching, any suitable stretching machine such as a roll stretching machine, a tenter stretching machine, and a biaxial stretching machine can be adopted. As described above, the birefringent layer can be formed on the shrinkable film. The obtained birefringent layer may be peeled from the shrinkable film and used as the retardation film of the present invention, or the birefringence layer may be shrunk with the birefringence layer (phase difference film) without peeling from the shrinkable film. The laminate with the film may be used as it is.

この位相差フィルムを形成する上記樹脂としては、例えば、ポリアリレート、ポリイミド、ポリアミド、ポリエステル、ポリビニルアルコール、ポリフマル酸エステル、ノルボルネン樹脂、ポリカーボネート樹脂、セルロース樹脂およびポリウレタンが挙げられる。これらの樹脂は、単独で用いてもよく組み合わせて用いてもよい。好ましくは、ポリカーボネート樹脂である。上記樹脂の具体例は、例えば特開2015−212828号公報に熱可塑性樹脂として記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 Examples of the resin forming the retardation film include polyarylate, polyimide, polyamide, polyester, polyvinyl alcohol, polyfumaric acid ester, norbornene resin, polycarbonate resin, cellulose resin and polyurethane. These resins may be used alone or in combination. A polycarbonate resin is preferable. Specific examples of the above resin are described as thermoplastic resins in, for example, Japanese Patent Application Laid-Open No. 2015-21428. The entire description of the publication is incorporated herein by reference.

上記ポリカーボネート樹脂のガラス転移温度は、110℃以上180℃以下であることが好ましく、より好ましくは120℃以上165℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性があり、又、得られる有機ELパネルの画像品質を下げる場合がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。 The glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 180 ° C. or lower, more preferably 120 ° C. or higher and 165 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, dimensional changes may occur after film molding, and the image quality of the obtained organic EL panel may be deteriorated. If the glass transition temperature is excessively high, the molding stability during film molding may be deteriorated, and the transparency of the film may be impaired. The glass transition temperature is determined according to JIS K 7121 (1987).

上記樹脂を溶解または分散する溶媒としては、上記樹脂組成物の種類に応じて、適宜決定することができ、クロロホルム、ジクロロメタン、トルエン、塩化メチレン、キシレン、シクロヘキサノン、シクロペンタノン等があげられる。溶媒は、一種類を単独で用いてもよいし、二種類以上を併用してもよい。 The solvent for dissolving or dispersing the resin can be appropriately determined depending on the type of the resin composition, and examples thereof include chloroform, dichloromethane, toluene, methylene chloride, xylene, cyclohexanone, and cyclopentanone. One type of solvent may be used alone, or two or more types may be used in combination.

収縮性フィルムの形成材料としては、特に制限されないが、後述の延伸処理に適していることから、熱可塑性樹脂が好ましい。具体的には、例えば、アクリル樹脂、ポリエチレンやポリプロピレン(PP)等のポリオレフィン樹脂、ポリエチレンテレフタレート(PET)等のポリエステル樹脂、ポリアミド、ポリカーボネート樹脂、ノルボルネン樹脂、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、トリアセチルセルロース等のセルロース樹脂、ポリエーテルスルホン、ポリスルホン、ポリイミド、ポリアクリル、アセテート樹脂、ポリアリレート、ポリビニルアルコール、およびこれらの混合物等があげられる。また、液晶ポリマー等も使用できる。収縮性フィルムは、好ましくは、1種または2種以上の上記形成材料から形成された一軸または二軸の延伸フィルムである。収縮性フィルムは、例えば、市販品を用いてもよい。市販品としては、例えば、東洋紡績(株)製の「スペースクリーン」、グンゼ(株)製の「ファンシーラップ」、東レ(株)製の「トレファン」、東レ(株)製の「ルミラー」、JSR(株)製の「アートン」、日本ゼオン(株)製の「ゼオノア」、旭化成(株)製の「サンテック」等があげられる。 The material for forming the shrinkable film is not particularly limited, but a thermoplastic resin is preferable because it is suitable for the stretching treatment described later. Specifically, for example, acrylic resin, polyolefin resin such as polyethylene and polypropylene (PP), polyester resin such as polyethylene terephthalate (PET), polyamide, polycarbonate resin, norbornene resin, polystyrene, polyvinyl chloride, polyvinylidene chloride, and bird. Examples thereof include cellulose resins such as acetylcellulose, polyethersulfones, polysulfones, polyimides, polyacrylics, acetate resins, polyarylates, polyvinyl alcohols, and mixtures thereof. Further, a liquid crystal polymer or the like can also be used. The shrinkable film is preferably a uniaxial or biaxial stretched film formed from one or more of the above forming materials. As the shrinkable film, for example, a commercially available product may be used. Commercially available products include, for example, "Space Clean" manufactured by Toyo Spinning Co., Ltd., "Fancy Wrap" manufactured by Gunze Corporation, "Trefan" manufactured by Toray Industries, Inc., and "Lumirror" manufactured by Toray Industries, Inc. , "Arton" manufactured by JSR Corporation, "Zeonoa" manufactured by Nippon Zeon Co., Ltd., "Suntech" manufactured by Asahi Kasei Corporation, etc.

収縮性フィルムの厚みは、特に制限されないが、例えば、10μm〜300μmの範囲であり、好ましくは、20μm〜200μmの範囲であり、より好ましくは、40μm〜150μmの範囲である。収縮性フィルムの表面には、複屈折層との密着性向上等を目的に、表面処理を施してもよい。表面処理としては、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等の化学的または物理的処理があげられる。また、収縮性フィルム表面には、下塗り剤(例えば、粘着物質)の塗布によるプライマー層が形成されていてもよい。 The thickness of the shrinkable film is not particularly limited, but is, for example, in the range of 10 μm to 300 μm, preferably in the range of 20 μm to 200 μm, and more preferably in the range of 40 μm to 150 μm. The surface of the shrinkable film may be surface-treated for the purpose of improving the adhesion to the birefringent layer. Examples of the surface treatment include chemical or physical treatments such as chromic acid treatment, ozone exposure, flame exposure, high-voltage impact exposure, and ionizing radiation treatment. Further, a primer layer may be formed on the surface of the shrinkable film by applying an undercoating agent (for example, an adhesive substance).

上記収縮性フィルム上に上記塗布液を塗布する方法としては、任意の適切な塗布方法が採用され得る。上記塗布方法としては、例えば、スピンコート法、ロールコート法、フローコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法があげられる。また、塗布に際しては、必要に応じて、多層コーティングを採用することもできる。塗布液の厚みは、得られる位相差フィルムが所望の厚みとなるように適切に設定され得る。 As a method of applying the coating liquid on the shrinkable film, any appropriate coating method can be adopted. Examples of the coating method include a spin coating method, a roll coating method, a flow coating method, a printing method, a dip coating method, a cast film forming method, a bar coating method, and a gravure printing method. Further, at the time of coating, a multilayer coating may be adopted if necessary. The thickness of the coating liquid can be appropriately set so that the obtained retardation film has a desired thickness.

塗布後の塗布液を乾燥する方法としては、塗布液に応じて任意の適切な乾燥方法が採用され得る。乾燥方法は、例えば、自然乾燥、風を吹き付けての風乾、低温乾燥、加熱乾燥が挙げられ、これらを組み合わせた方法であってもよい。乾燥方法は、後述の延伸工程前の収縮性フィルムの収縮を抑制する観点から、好ましくは低温乾燥である。低温乾燥の乾燥温度は、好ましくは20℃〜100℃である。 As a method for drying the coating liquid after coating, any appropriate drying method may be adopted depending on the coating liquid. Examples of the drying method include natural drying, air drying by blowing wind, low temperature drying, and heat drying, and a method combining these may be used. The drying method is preferably low temperature drying from the viewpoint of suppressing the shrinkage of the shrinkable film before the stretching step described later. The drying temperature for low temperature drying is preferably 20 ° C to 100 ° C.

C.光学補償層付偏光板
図1は、本発明の1つの実施形態による光学補償層付偏光板の概略断面図である。本実施形態の光学補償層付偏光板100は、偏光子10と光学補償層30とを備える。光学補償層30は、上記A項に記載の位相差フィルムからなる。1つの実施形態においては、光学補償層の遅相軸と偏光子の吸収軸とのなす角度が35°〜55°である。実用的には、図示例のように、偏光子10の光学補償層30と反対側に保護層20が設けられ得る。また、光学補償層付偏光板は、偏光子10と光学補償層30との間に別の保護層(内側保護層とも称する)を備えてもよい。図示例においては、内側保護層は省略されている。この場合、光学補償層30が内側保護層としても機能し得る。このような構成であれば、光学補償層付偏光板のさらなる薄型化が実現され得る。さらに、必要に応じて、光学補償層30の偏光子10と反対側(すなわち、光学補償層30の外側)に導電層および基材をこの順に設けてもよい(いずれも図示せず)。基材は、導電層に密着積層されている。本明細書において「密着積層」とは、2つの層が接着層(例えば、接着剤層、粘着剤層)を介在することなく直接かつ固着して積層されていることをいう。導電層および基材は、代表的には、基材と導電層との積層体として光学補償層付偏光板100に導入され得る。導電層および基材をさらに設けることにより、光学補償層付偏光板100は、インナータッチパネル付き画像表示装置に好適に用いられ得る。
C. A polarizing plate with an optical compensation layer FIG. 1 is a schematic cross-sectional view of a polarizing plate with an optical compensation layer according to one embodiment of the present invention. The polarizing plate 100 with an optical compensation layer of the present embodiment includes a polarizing element 10 and an optical compensation layer 30. The optical compensation layer 30 is made of the retardation film according to the above item A. In one embodiment, the angle formed by the slow axis of the optical compensation layer and the absorption axis of the polarizing element is 35 ° to 55 °. Practically, as shown in the illustrated example, the protective layer 20 may be provided on the side opposite to the optical compensation layer 30 of the polarizing element 10. Further, the polarizing plate with an optical compensation layer may be provided with another protective layer (also referred to as an inner protective layer) between the polarizing element 10 and the optical compensation layer 30. In the illustrated example, the inner protective layer is omitted. In this case, the optical compensation layer 30 can also function as an inner protective layer. With such a configuration, further reduction in thickness of the polarizing plate with an optical compensation layer can be realized. Further, if necessary, the conductive layer and the base material may be provided in this order on the opposite side of the optical compensation layer 30 from the polarizing element 10 (that is, the outside of the optical compensation layer 30) (neither is shown). The base material is closely laminated to the conductive layer. As used herein, the term "adhesive lamination" means that two layers are directly and fixedly laminated without intervening an adhesive layer (for example, an adhesive layer and an adhesive layer). The conductive layer and the base material can be typically introduced into the polarizing plate 100 with an optical compensation layer as a laminate of the base material and the conductive layer. By further providing a conductive layer and a base material, the polarizing plate 100 with an optical compensation layer can be suitably used for an image display device with an inner touch panel.

C−1.偏光子
偏光子10としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体を用いて作製されてもよい。
C-1. Polarizer As the polarizing element 10, any suitable polarizing element may be adopted. For example, the resin film forming the polarizing element may be a single-layer resin film, or may be produced by using a laminated body having two or more layers.

単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizing element composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film. Examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine and a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride. Preferably, since the PVA-based film is excellent in optical properties, a polarizing element obtained by dyeing a PVA-based film with iodine and uniaxially stretching the film is used.

上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3〜7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Further, it may be dyed after being stretched. If necessary, the PVA-based film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt and blocking inhibitor on the surface of the PVA-based film, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.

積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012−73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizing element obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizing element obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. The polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it. It is produced by forming a PVA-based resin layer on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer a stator. obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further comprise, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. The obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), and the resin base material is peeled off from the resin base material / polarizing element laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface and used. Details of the method for producing such a polarizing element are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference.

偏光子の厚みは、好ましくは25μm以下であり、より好ましくは1μm〜12μmであり、さらに好ましくは3μm〜12μmであり、特に好ましくは3μm〜8μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。 The thickness of the polarizing element is preferably 25 μm or less, more preferably 1 μm to 12 μm, still more preferably 3 μm to 12 μm, and particularly preferably 3 μm to 8 μm. When the thickness of the polarizing element is within such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.

偏光子は、好ましくは、波長380nm〜780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、上記のとおり43.0%〜46.0%であり、好ましくは44.5%〜46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizing element preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizing element is 43.0% to 46.0%, preferably 44.5% to 46.0%, as described above. The degree of polarization of the polarizing element is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.

C−2.保護層
保護層20は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001−343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN−メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
C-2. Protective layer The protective layer 20 is made of any suitable film that can be used as a protective layer for the polarizing element. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based. , Polyester-based, polynorbornene-based, polyimide-based, (meth) acrylic-based, acetate-based transparent resins and the like. Further, thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned. In addition to this, for example, glassy polymers such as siloxane-based polymers can also be mentioned. Further, the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the above resin composition.

保護層20には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、保護層20には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、光学補償層付偏光板は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 The protective layer 20 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary. Further / or, if necessary, the protective layer 20 is provided with a process for improving visibility when visually recognizing through polarized sunglasses (typically, a (elliptical) circularly polarized light function is provided, and an ultra-high phase difference is provided. May be given). By performing such processing, excellent visibility can be realized even when the display screen is visually recognized through a polarizing lens such as polarized sunglasses. Therefore, the polarizing plate with an optical compensation layer can be suitably applied to an image display device that can be used outdoors.

保護層20の厚みは、代表的には5mm以下であり、好ましくは1mm以下、より好ましくは1μm〜500μm、さらに好ましくは5μm〜150μmである。なお、表面処理が施されている場合、保護層の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the protective layer 20 is typically 5 mm or less, preferably 1 mm or less, more preferably 1 μm to 500 μm, and even more preferably 5 μm to 150 μm. When the surface treatment is applied, the thickness of the protective layer is the thickness including the thickness of the surface treatment layer.

偏光子10と光学補償層30との間に内側保護層が設けられる場合、当該内側保護層は、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm〜10nmであり、厚み方向の位相差Rth(550)が−10nm〜+10nmであることをいう。内側保護層は、光学的に等方性である限り、任意の適切な材料で構成され得る。当該材料は、例えば、保護層20に関して上記した材料から適切に選択され得る。 When an inner protective layer is provided between the polarizing element 10 and the optical compensation layer 30, it is preferable that the inner protective layer is optically isotropic. As used herein, "optically isotropic" means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm. say. The inner protective layer may be constructed of any suitable material as long as it is optically isotropic. The material may be appropriately selected from the materials described above with respect to the protective layer 20, for example.

内側保護層の厚みは、好ましくは5μm〜200μm、より好ましくは10μm〜100μm、さらに好ましくは15μm〜95μmである。 The thickness of the inner protective layer is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and even more preferably 15 μm to 95 μm.

C−3.導電層または基材付導電層
導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサー電極として機能し得る。パターンの形状はタッチパネル(例えば、静電容量方式タッチパネル)として良好に動作するパターンが好ましい。具体例としては、特表2011−511357号公報、特開2010−164938号公報、特開2008−310550号公報、特表2003−511799号公報、特表2010−541109号公報に記載のパターンが挙げられる。
C-3. Conductive layer or conductive layer with substrate The conductive layer can be patterned as needed. By patterning, a conductive portion and an insulating portion can be formed. As a result, electrodes can be formed. The electrode can function as a touch sensor electrode that senses contact with the touch panel. The shape of the pattern is preferably a pattern that operates well as a touch panel (for example, a capacitive touch panel). Specific examples include the patterns described in JP-A-2011-511357, JP-A-2010-164938, JP-A-2008-310550, JP-A-2003-511799, and JP-A-2010-541109. Will be.

導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。成膜後、必要に応じて加熱処理(例えば、100℃〜200℃)を行ってもよい。加熱処理を行うことにより、非晶質膜が結晶化し得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム−スズ複合酸化物、スズ−アンチモン複合酸化物、亜鉛−アルミニウム複合酸化物、インジウム−亜鉛複合酸化物が挙げられる。インジウム酸化物には2価金属イオンまたは4価金属イオンがドープされていてもよい。好ましくはインジウム系複合酸化物であり、より好ましくはインジウム−スズ複合酸化物(ITO)である。インジウム系複合酸化物は、可視光領域(380nm〜780nm)で高い透過率(例えば、80%以上)を有し、かつ、単位面積当たりの表面抵抗値が低いという特徴を有している。 The conductive layer forms a metal oxide film on any suitable substrate by any suitable film forming method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It can be formed as a film. After the film formation, heat treatment (for example, 100 ° C. to 200 ° C.) may be performed if necessary. The amorphous film can be crystallized by performing the heat treatment. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimon composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. The indium oxide may be doped with divalent metal ions or tetravalent metal ions. It is preferably an indium-based composite oxide, and more preferably an indium-tin composite oxide (ITO). The indium-based composite oxide has a high transmittance (for example, 80% or more) in the visible light region (380 nm to 780 nm), and has a feature that the surface resistance value per unit area is low.

導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みの下限は、好ましくは10nmである。 When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less. The lower limit of the thickness of the conductive layer is preferably 10 nm.

導電層の表面抵抗値は、好ましくは300Ω/□以下であり、より好ましくは150Ω/□以下であり、さらに好ましくは100Ω/□以下である。 The surface resistance value of the conductive layer is preferably 300 Ω / □ or less, more preferably 150 Ω / □ or less, and further preferably 100 Ω / □ or less.

導電層は、上記基材から光学補償層に転写されて導電層単独で光学補償層付偏光板の構成層とされてもよく、基材との積層体(基材付導電層)として光学補償層に積層されてもよい。代表的には、上記のとおり、導電層および基材は、基材付導電層として光学補償層付偏光板に導入され得る。 The conductive layer may be transferred from the base material to the optical compensation layer to form a constituent layer of a polarizing plate with an optical compensation layer by itself, and may be optically compensated as a laminate with the base material (conductive layer with a base material). It may be laminated in a layer. Typically, as described above, the conductive layer and the base material can be introduced into the polarizing plate with an optical compensation layer as the conductive layer with the base material.

基材を構成する材料としては、任意の適切な樹脂が挙げられる。好ましくは、透明性に優れた樹脂である。具体例としては、環状オレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂、アクリル系樹脂が挙げられる。 Examples of the material constituting the base material include any suitable resin. A resin having excellent transparency is preferable. Specific examples include cyclic olefin resins, polycarbonate resins, cellulosic resins, polyester resins, and acrylic resins.

好ましくは、上記基材は光学的に等方性であり、したがって、導電層は等方性基材付導電層として光学補償層付偏光板に用いられ得る。光学的に等方性の基材(等方性基材)を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。 Preferably, the substrate is optically isotropic, and therefore the conductive layer can be used as a conductive layer with an isotropic substrate in a polarizing plate with an optical compensation layer. Materials constituting an optically isotropic base material (isotropic base material) include, for example, a material whose main skeleton is a resin having no conjugate system such as a norbornene-based resin and an olefin-based resin, a lactone ring, and a glutar. Examples thereof include a material having a cyclic structure such as an imide ring in the main chain of an acrylic resin. When such a material is used, when an isotropic substrate is formed, the development of the phase difference due to the orientation of the molecular chains can be suppressed to a small value.

基材の厚みは、好ましくは10μm〜200μmであり、より好ましくは20μm〜60μmである。 The thickness of the base material is preferably 10 μm to 200 μm, and more preferably 20 μm to 60 μm.

C−4.その他
本発明の光学補償層付偏光板を構成する各層の積層には、任意の適切な粘着剤層または接着剤層が用いられる。粘着剤層は、代表的にはアクリル系粘着剤で形成される。接着剤層は、代表的にはポリビニルアルコール系接着剤で形成される。
C-4. Others Any suitable adhesive layer or adhesive layer is used for laminating each layer constituting the polarizing plate with an optical compensation layer of the present invention. The pressure-sensitive adhesive layer is typically formed of an acrylic pressure-sensitive adhesive. The adhesive layer is typically formed of a polyvinyl alcohol-based adhesive.

図示しないが、光学補償層付偏光板100の光学補償層30側には、粘着剤層が設けられていてもよい。粘着剤層が予め設けられていることにより、他の光学部材(例えば、有機ELセル)へ容易に貼り合わせることができる。なお、この粘着剤層の表面には、使用に供されるまで、剥離フィルムが貼り合わされていることが好ましい。 Although not shown, an adhesive layer may be provided on the optical compensation layer 30 side of the polarizing plate 100 with an optical compensation layer. Since the pressure-sensitive adhesive layer is provided in advance, it can be easily attached to another optical member (for example, an organic EL cell). It is preferable that a release film is bonded to the surface of the pressure-sensitive adhesive layer until it is used.

D.画像表示装置
本発明の画像表示装置は、表示セルと、該表示セルの視認側に上記C項に記載の光学補償層付偏光板と、を備える。光学補償層付偏光板は、光学補償層が表示セル側となるように(偏光子が視認側となるように)積層されている。導電層を有する光学補償層付偏光板を備える画像表示装置は、導電層がタッチパネルセンサーとして機能することにより、表示セル(例えば、液晶セル、有機ELセル)と偏光子との間にタッチセンサーが組み込まれた、いわゆるインナータッチパネル付き画像表示装置を構成し得る。
D. Image Display Device The image display device of the present invention includes a display cell and a polarizing plate with an optical compensation layer according to the above item C on the visual recognition side of the display cell. The polarizing plate with an optical compensation layer is laminated so that the optical compensation layer is on the display cell side (the polarizing element is on the visual recognition side). In an image display device including a polarizing plate with an optical compensation layer having a conductive layer, the conductive layer functions as a touch panel sensor, so that a touch sensor is placed between a display cell (for example, a liquid crystal cell or an organic EL cell) and a polarizing element. A built-in so-called image display device with an inner touch panel may be configured.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
ダイヤルゲージ(PEACOCK社製、製品名「DG−205 type pds−2」)を用いて測定した。
(2)位相差
各位相差フィルムから50mm×50mmのサンプルを切り出して測定サンプルとし、Axometrics社製のAxoscanを用いて測定した。測定波長は450nm、550nm、650nm、測定温度は23℃であった。
また、アタゴ社製のアッベ屈折率計を用いて平均屈折率を測定し、得られた位相差値から屈折率nx、ny、nz、およびNz係数を算出した。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
(1) Thickness Measured using a dial gauge (manufactured by PEACOCK, product name "DG-205 type pds-2").
(2) Phase difference A sample of 50 mm × 50 mm was cut out from each retardation film and used as a measurement sample, and the measurement was performed using Axoscan manufactured by Axometrics. The measurement wavelengths were 450 nm, 550 nm and 650 nm, and the measurement temperature was 23 ° C.
Further, the average refractive index was measured using an Abbe refractive index meter manufactured by Atago Co., Ltd., and the refractive indexes nx, ny, nz, and Nz coefficients were calculated from the obtained phase difference values.

[実施例1]
1.ポリカーボネート樹脂の作製
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物3)29.60質量部(0.046mol)、ISB 29.21質量部(0.200mol)、SPG 42.28質量部(0.139mol)、DPC 63.77質量部(0.298mol)、酢酸カルシウム1水和物1.19×10−2質量部(6.78×10−5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネートを水中に押し出し、ストランドをカッティングしてペレットを得た。
得られたポリカーボネート樹脂のガラス転移温度は130℃であった。
2.位相差フィルムの作製
得られたポリカーボネート樹脂を塩化メチレンに溶解させ、25重量%の樹脂溶液を得た。収縮性フィルム(PPの二軸延伸フィルム、400mm×300mm、厚み60μm)上に、上記樹脂溶液を、乾燥後の厚みが60μmとなるようにコーターにより塗工し、30℃で5分間、80℃で5分間乾燥することにより、収縮性フィルムと塗膜との積層体を作製した。
得られた積層体を、長さ150mm、幅120mmに切り出し、ラボストレッチャーKARO IV(Bruckner社製)を用いて、温度134℃で幅方向に収縮率0.78倍で収縮し、長手方向に延伸倍率1.3倍で延伸することにより、位相差フィルム(厚み:60μm)を得た。
得られた位相差フィルムのRe(450)は116nm、Re(550)は136nm、Re(650)は144nmであり、Nz(450)は0.54、Nz(550)は0.59、Nz(650)は0.62であった。
3.導電層の作製
上記位相差フィルム表面に、インジウム−スズ複合酸化物からなる透明導電層(厚み20nm)をスパッタリングにより形成し、位相差フィルム/導電層の積層体を作製した。具体的な手順は以下のとおりである:ArおよびO(流量比はAr:O=99.9:0.1)を導入した真空雰囲気下(0.40Pa)で、10重量%の酸化スズと90重量%の酸化インジウムとの焼結体をターゲットとして用いて、フィルム温度を130℃とし、水平磁場を100mTとするRF重畳DCマグネトロンスパッタリング法(放電電圧150V、RF周波数13.56MHz、DC電力に対するRF電力の比(RF電力/DC電力)は0.8)を用いた。得られた透明導電層を150℃温風オーブンにて加熱して結晶転化処理を行った。
4.偏光子の作製
厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子を作製した。
具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光子の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて偏光子を得た。
5.光学補償層付偏光板の作製
上記偏光子の片側に、ポリビニルアルコール系接着剤を介してトリアセチルセルロースフィルム(厚み40μm、コニカミノルタ社製、商品名「KC4UYW」)を貼り合わせた。偏光子のもう片側に、ポリビニルアルコール系接着剤を介して上記位相差フィルムを貼り合わせた。ここで、位相差フィルムの遅相軸が偏光子の吸収軸に対して反時計回りに45°となるように貼り合わせた。
このようにして、保護層/偏光子/位相差フィルム(光学補償層)/導電層の積層構造を有する光学補償層付偏光板を得た。
6.画像表示装置代替品の作製
有機EL表示装置の代替品を以下のようにして作製した。ガラス板に、アルミ蒸着フィルム(東レフィルム加工社製、商品名「DMS蒸着X−42」、厚み50μm)を粘着剤で貼り合せ、有機EL表示装置の代替品とした。得られた光学補償層付偏光板の導電層側にアクリル系粘着剤で粘着剤層を形成し、寸法50mm×50mmに切り出し、有機EL表示装置代替品に実装した。
[Example 1]
1. 1. Preparation of Polycarbonate Resin Polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100 ° C. Bis [9- (2-phenoxycarbonylethyl) fluoren-9-yl] methane (Compound 3) 29.60 parts by mass (0.046 mol), ISB 29.21 parts by mass (0.200 mol), SPG 42.28 parts by mass part (0.139mol), DPC 63.77 parts by weight (0.298 mol), were charged monohydrate 1.19 × 10 -2 parts by weight of calcium acetate (6.78 × 10 -5 mol). After the inside of the reactor was replaced with nitrogen under reduced pressure, heating was performed with a heat medium, and stirring was started when the internal temperature reached 100 ° C. The internal temperature was brought to 220 ° C. 40 minutes after the start of the temperature rise, and the depressurization was started at the same time as controlling to maintain this temperature, and the temperature was 13.3 kPa 90 minutes after reaching 220 ° C. The phenol vapor produced by the polymerization reaction was guided to a reflux condenser at 100 ° C., the monomer component contained in a small amount in the phenol vapor was returned to the reactor, and the non-condensed phenol vapor was guided to a condenser at 45 ° C. for recovery. Nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, and then the oligomerized reaction solution in the first reactor was transferred to the second reactor. Then, the temperature rise and depressurization in the second reactor were started, and the internal temperature was 240 ° C. and the pressure was 0.2 kPa in 50 minutes. Then, the polymerization was allowed to proceed until the stirring power became a predetermined value. When the predetermined power was reached, nitrogen was introduced into the reactor to repressurize, the produced polyester carbonate was extruded into water, and the strands were cut to obtain pellets.
The glass transition temperature of the obtained polycarbonate resin was 130 ° C.
2. 2. Preparation of Phase Difference Film The obtained polycarbonate resin was dissolved in methylene chloride to obtain a resin solution of 25% by weight. The above resin solution is coated on a shrinkable film (PP biaxially stretched film, 400 mm × 300 mm, thickness 60 μm) with a coater so that the thickness after drying becomes 60 μm, and the temperature is 30 ° C. for 5 minutes at 80 ° C. A laminate of the shrinkable film and the coating film was prepared by drying in 5 minutes.
The obtained laminate was cut into a length of 150 mm and a width of 120 mm, and was shrunk in the width direction at a temperature of 134 ° C. with a shrinkage rate of 0.78 times in the longitudinal direction using a lab stretcher KARO IV (manufactured by Bruckner). By stretching at a stretching ratio of 1.3 times, a retardation film (thickness: 60 μm) was obtained.
The obtained retardation film has Re (450) of 116 nm, Re (550) of 136 nm, Re (650) of 144 nm, Nz (450) of 0.54, Nz (550) of 0.59, and Nz ( 650) was 0.62.
3. 3. Preparation of Conductive Layer A transparent conductive layer (thickness 20 nm) made of indium-tin composite oxide was formed on the surface of the retardation film by sputtering to prepare a laminate of retardation film / conductive layer. The specific procedure is as follows: 10 wt% oxidation under vacuum atmosphere (0.40 Pa) with Ar and O 2 (flow ratio Ar: O 2 = 99.9: 0.1) introduced. RF superimposition DC magnetron sputtering method (discharge voltage 150V, RF frequency 13.56MHz, DC) with a film temperature of 130 ° C and a horizontal magnetic field of 100mT using a sintered body of tin and 90% by weight of indium oxide as a target. The ratio of RF power to power (RF power / DC power) was 0.8). The obtained transparent conductive layer was heated in a warm air oven at 150 ° C. for crystal conversion treatment.
4. Fabrication of Polarizer A long roll of polyvinyl alcohol (PVA) resin film (manufactured by Kuraray, product name "PE3000") with a thickness of 30 μm is uniaxially oriented in the longitudinal direction so as to be 5.9 times in the longitudinal direction by a roll stretching machine. While being stretched, it was simultaneously swollen, stained, crosslinked, and washed, and finally dried to prepare a polarizing element having a thickness of 12 μm.
Specifically, the swelling treatment was carried out by stretching 2.2 times while treating with pure water at 20 ° C. Next, the dyeing treatment was carried out in an aqueous solution at 30 ° C. in which the weight ratio of iodine and potassium iodide was adjusted so that the simple substance transmittance of the obtained polarizing element was 45.0% and the weight ratio was 1: 7. However, it was stretched 1.4 times. Further, the cross-linking treatment adopted a two-step cross-linking treatment, and the first-step cross-linking treatment was carried out 1.2 times while being treated with an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C. The boric acid content of the aqueous solution of the first-step crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. The second-step cross-linking treatment was carried out by stretching 1.6 times while treating with an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C. The boric acid content of the aqueous solution of the second step cross-linking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. The washing treatment was carried out with an aqueous potassium iodide solution at 20 ° C. The potassium iodide content of the aqueous solution of the washing treatment was set to 2.6% by weight. Finally, the drying process was carried out at 70 ° C. for 5 minutes to obtain a stator.
5. Fabrication of Polarizing Plate with Optical Compensation Layer A triacetyl cellulose film (thickness 40 μm, manufactured by Konica Minolta, trade name “KC4UYW”) was attached to one side of the above-mentioned polarizing element via a polyvinyl alcohol-based adhesive. The retardation film was attached to the other side of the polarizing element via a polyvinyl alcohol-based adhesive. Here, the retardation film was bonded so that the slow axis of the retardation film was 45 ° counterclockwise with respect to the absorption axis of the polarizing element.
In this way, a polarizing plate with an optical compensation layer having a laminated structure of a protective layer / a polarizing element / a retardation film (optical compensation layer) / a conductive layer was obtained.
6. Preparation of substitute for image display device A substitute for organic EL display device was prepared as follows. An aluminum thin-film film (manufactured by Toray Film Processing Co., Ltd., trade name "DMS thin-film X-42", thickness 50 μm) was attached to a glass plate with an adhesive to use it as a substitute for an organic EL display device. A pressure-sensitive adhesive layer was formed on the conductive layer side of the obtained polarizing plate with an optical compensation layer with an acrylic pressure-sensitive adhesive, cut out to a size of 50 mm × 50 mm, and mounted on an organic EL display device substitute.

[実施例2]
位相差フィルムの作製工程において、幅方向の収縮率を0.75倍とし、長手方向の延伸倍率を1.35倍としたこと以外は実施例1の方法と同様に位相差フィルム(厚み:60μm)を得た。
得られた位相差フィルムのRe(450)は119nm、Re(550)は139nm、Re(650)は147nmであり、Nz(450)は0.47、Nz(550)は0.52、Nz(650)は0.54であった。
上記位相差フィルムを用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
[Example 2]
In the process of producing the retardation film, the retardation film (thickness: 60 μm) is the same as that of the method of Example 1 except that the shrinkage ratio in the width direction is 0.75 times and the draw ratio in the longitudinal direction is 1.35 times. ) Was obtained.
The obtained retardation film has Re (450) of 119 nm, Re (550) of 139 nm, Re (650) of 147 nm, Nz (450) of 0.47, Nz (550) of 0.52, and Nz ( 650) was 0.54.
A polarizing plate with an optical compensation layer and a substitute for an organic EL display device were obtained in the same manner as in Example 1 except that the above retardation film was used.

[実施例3]
位相差フィルムの作製工程において、幅方向の収縮率を0.72倍とし、長手方向の延伸倍率を1.40倍としたこと以外は実施例1の方法と同様に位相差フィルム(厚み:60μm)を得た。
得られた位相差フィルムのRe(450)は120nm、Re(550)は141nm、Re(650)は150nmであり、Nz(450)は0.37、Nz(550)は0.42、Nz(650)は0.44であった。
上記位相差フィルムを用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
[Example 3]
In the process of producing the retardation film, the retardation film (thickness: 60 μm) is the same as that of the method of Example 1 except that the shrinkage ratio in the width direction is 0.72 times and the draw ratio in the longitudinal direction is 1.40 times. ) Was obtained.
The obtained retardation film has Re (450) of 120 nm, Re (550) of 141 nm, Re (650) of 150 nm, Nz (450) of 0.37, Nz (550) of 0.42, and Nz ( 650) was 0.44.
A polarizing plate with an optical compensation layer and a substitute for an organic EL display device were obtained in the same manner as in Example 1 except that the above retardation film was used.

[比較例1]
ポリカーボネート樹脂の作製工程において、9,9−[4−(2−ヒドロキシエトキシ)フェニル]フルオレン(BHEPF)、イソソルビド(ISB)、ジエチレングリコール(DEG)、ジフェニルカーボネート(DPC)、および酢酸マグネシウム4水和物を、BHEPF/ISB/DEG/DPC/酢酸マグネシウム=0.348/0.490/0.162/1.005/1.00×10−5のモル比率で用いたこと、および、位相差フィルムの作製工程において、延伸温度を155℃とし、幅方向の収縮率を0.8倍とし、長手方向の延伸倍率を1.3倍としたこと以外は実施例1の方法と同様に位相差フィルム(厚み:60μm)を得た。
得られた位相差フィルムのRe(450)は125nm、Re(550)は140nm、Re(650)は146nmであり、Nz(450)は0.47、Nz(550)は0.50、Nz(650)は0.52であった。
上記位相差フィルムを用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
[Comparative Example 1]
9,9- [4- (2-Hydroxyethoxy) phenyl] fluorene (BHEPF), isosorbide (ISB), diethylene glycol (DEG), diphenyl carbonate (DPC), and magnesium acetate tetrahydrate in the process of preparing the polycarbonate resin. Was used in a molar ratio of BHEPF / ISB / DEG / DPC / magnesium acetate = 0.348 / 0.490 / 0.162 / 1.005 / 1.00 × 10-5 , and of the retardation film. In the fabrication step, the retardation film (similar to the method of Example 1) except that the stretching temperature was 155 ° C., the shrinkage rate in the width direction was 0.8 times, and the stretching ratio in the longitudinal direction was 1.3 times. Thickness: 60 μm) was obtained.
The obtained retardation film has Re (450) of 125 nm, Re (550) of 140 nm, Re (650) of 146 nm, Nz (450) of 0.47, Nz (550) of 0.50, and Nz ( 650) was 0.52.
A polarizing plate with an optical compensation layer and a substitute for an organic EL display device were obtained in the same manner as in Example 1 except that the above retardation film was used.

[比較例2]
1.位相差フィルムの作製
実施例1と同様にして作製したポリカーボネート樹脂を、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅300mm、設定温度:220℃)、チルロール(設定温度:120〜130℃)および巻取機を備えたフィルム製膜装置を用いて、長さ3m、幅300mm、厚み120μmのポリカーボネート樹脂フィルムを作製した。このポリカーボネート樹脂フィルムを長さ150mm、幅120mmに切り出し、ラボストレッチャーKARO IV(Bruckner社製)を用いて、温度134℃、倍率2.8倍で固定端一軸延伸を行い、位相差フィルム(厚み:47μm)を得た。
得られた位相差フィルムのRe(450)は119nm、Re(550)は139nm、Re(650)は147nmであり、Nz(450)は1.08、Nz(550)は1.13、Nz(650)は1.15であった。
2.液晶固化層の作製
下記化学式(I)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、基材フィルム(ノルボルネン系樹脂フィルム:日本ゼオン(株)製、商品名「ゼオネックス」)に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、基材上に第2の位相差層となる液晶固化層(厚み:1μm)を形成した。この層のRe(550)は0nm、Rth(550)は−100nmであり(nx:1.5326、ny:1.5326、nz:1.6550)、nz>nx=nyの屈折率特性を示した。

Figure 0006966315
3.光学補償層付偏光板の作製
上記位相差フィルムに、アクリル系粘着剤を介して上記液晶固化層を貼り合わせた後、上記基材フィルムを除去して、位相差フィルムに液晶固化層が転写された積層体(厚み:48μm)を得た。
得られた積層体のRe(450)は119nm、Re(550)は139nm、Re(650)は147nmであり、Nz(450)は0.31、Nz(550)は0.52、Nz(650)は0.60であった。
上記積層体の液晶固化層側の表面に、実施例1と同様にして導電層を形成し、位相差フィルム/液晶固化層/導電層の積層体を作製した。
実施例1と同様にして得られた偏光子に、上記積層体の位相差フィルム側を貼り合わせたこと以外は実施例1と同様にして、保護層/偏光子/位相差フィルム/液晶固化層/導電層の積層構造を有する光学補償層付偏光板を得た。
4.画像表示装置代替品の作製
有機EL表示装置の代替品を以下のようにして作製した。ガラス板に、アルミ蒸着フィルム(東レフィルム加工社製、商品名「DMS蒸着X−42」、厚み50μm)を粘着剤で貼り合せ、有機EL表示装置の代替品とした。得られた光学補償層付偏光板の導電層側にアクリル系粘着剤で粘着剤層を形成し、寸法50mm×50mmに切り出し、有機EL表示装置代替品に実装した。 [Comparative Example 2]
1. 1. Fabrication of Phase Difference Film A polycarbonate resin produced in the same manner as in Example 1 was used in a single-screw extruder (manufactured by Isuzu Kakohki Co., Ltd., screw diameter 25 mm, cylinder set temperature: 220 ° C.), T-die (width 300 mm, set temperature:). A polycarbonate resin film having a length of 3 m, a width of 300 mm, and a thickness of 120 μm was produced using a film-forming device equipped with a chill roll (set temperature: 120 to 130 ° C.) and a winder (220 ° C.). This polycarbonate resin film is cut into a length of 150 mm and a width of 120 mm, and is subjected to fixed-end uniaxial stretching at a temperature of 134 ° C. and a magnification of 2.8 times using a lab stretcher KARO IV (manufactured by Bruckner) to obtain a retardation film (thickness). : 47 μm) was obtained.
The obtained retardation film has Re (450) of 119 nm, Re (550) of 139 nm, Re (650) of 147 nm, Nz (450) of 1.08, Nz (550) of 1.13 and Nz ( 650) was 1.15.
2. 2. Preparation of liquid crystal solidified layer Side chain type liquid crystal represented by the following chemical formula (I) (numbers 65 and 35 in the formula represent mol% of the monomer unit and are conveniently represented by a block polymer: weight average molecular weight 5000). 20 parts by weight of polymer, 80 parts by weight of polymerizable liquid crystal (BASF: trade name Palocolor LC242) showing a nematic liquid crystal phase, and 5 parts by weight of photopolymerization initiator (Ciba Specialty Chemicals: trade name Irgacure 907) are cyclopentanone. A liquid crystal coating solution was prepared by dissolving in 200 parts by weight. Then, the liquid crystal is formed by applying the coating liquid to a base film (norbornene-based resin film: manufactured by Nippon Zeon Corporation, trade name "Zeonex") with a bar coater, and then heating and drying at 80 ° C. for 4 minutes. Oriented. By irradiating this liquid crystal layer with ultraviolet rays and curing the liquid crystal layer, a liquid crystal solidified layer (thickness: 1 μm) to be a second retardation layer was formed on the base material. Re (550) of this layer is 0 nm, Rth (550) is -100 nm (nx: 1.5326, ny: 1.5326, nz: 1.6550), and shows a refractive index characteristic of nz> nx = ny. rice field.
Figure 0006966315
3. 3. Fabrication of Polarizing Plate with Optical Compensation Layer After bonding the liquid crystal solidifying layer to the retardation film via an acrylic pressure-sensitive adhesive, the base film is removed and the liquid crystal solidifying layer is transferred to the retardation film. A laminated body (thickness: 48 μm) was obtained.
The obtained laminate has Re (450) of 119 nm, Re (550) of 139 nm, Re (650) of 147 nm, Nz (450) of 0.31, Nz (550) of 0.52, and Nz (650). ) Was 0.60.
A conductive layer was formed on the surface of the laminated body on the liquid crystal solidified layer side in the same manner as in Example 1, to prepare a laminated body of a retardation film / liquid crystal solidified layer / conductive layer.
Protective layer / polarizing element / retardation film / liquid crystal solidified layer in the same manner as in Example 1 except that the retardation film side of the laminated body is bonded to the polarizing element obtained in the same manner as in Example 1. / A polarizing plate with an optical compensation layer having a laminated structure of conductive layers was obtained.
4. Preparation of substitute for image display device A substitute for organic EL display device was prepared as follows. An aluminum thin-film film (manufactured by Toray Film Processing Co., Ltd., trade name "DMS thin-film X-42", thickness 50 μm) was attached to a glass plate with an adhesive to use it as a substitute for an organic EL display device. A pressure-sensitive adhesive layer was formed on the conductive layer side of the obtained polarizing plate with an optical compensation layer with an acrylic pressure-sensitive adhesive, cut out to a size of 50 mm × 50 mm, and mounted on a substitute for an organic EL display device.

[比較例3]
比較例2と同様にして作製した位相差フィルムを用いたこと以外は、実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
[Comparative Example 3]
A polarizing plate with an optical compensation layer and a substitute for an organic EL display device were obtained in the same manner as in Example 1 except that the retardation film produced in the same manner as in Comparative Example 2 was used.

<評価>
実施例および比較例の位相差フィルムおよび有機EL表示装置代替品について、下記の評価を行った。評価結果を表1に示す。
(1)位相差フィルムの光弾性係数
収縮性フィルムを剥離して得られた塗膜、または未延伸フィルムを幅20mm、長さ100mmの長方形状に切り出して試料を作製した。この試料を日本分光(株)製エリプソメータM−150により波長550nmの光で測定し、光弾性係数を得た。
(2)位相差変化率
粘着剤を介して位相差フィルムをガラスに貼り合わせることによりサンプルを作製し、前記位相差の測定と同様の方法で位相差を測定した。測定後のサンプルを85℃の加熱オーブンに180時間投入後、サンプルを取り出し、再度位相差を測定し、Re(550)の変化率を求めた。
(3)反射率及び反射色相
有機EL表示装置代替品を試料とし、コニカミノルタ(株)製分光測色計CM−2600dを用いて正面反射率と正面反射色相とを測定した。正面反射率はSCI方式で測定した。正面反射色相は、a色度図上における無彩色からの距離Δaを評価した。
(4)斜め方向の反射率及び反射色相
有機EL表示装置代替品を試料とし、コニカミノルタ(株)製DMS 505を用いて斜め方向の反射率と反射色相を測定した。斜め方向の反射率は極角60°、方位角0°、45°、90°および135°の4点の視感反射率Yの平均値を評価した。斜め方向の反射色相は、a色度図上における、進相軸を基準に60°傾けて測定したときの斜め方向の反射色相と遅相軸を基準に60°傾けて測定したときの反射色相の2点間距離Δaを評価した。
<Evaluation>
The following evaluations were made on the retardation film and the organic EL display device substitute in the examples and comparative examples. The evaluation results are shown in Table 1.
(1) Photoelasticity coefficient of retardation film A coating film obtained by peeling a shrinkable film or an unstretched film was cut into a rectangular shape having a width of 20 mm and a length of 100 mm to prepare a sample. This sample was measured with light having a wavelength of 550 nm using an ellipsometer M-150 manufactured by JASCO Corporation, and a photoelastic coefficient was obtained.
(2) Phase difference change rate A sample was prepared by adhering a retardation film to glass via an adhesive, and the phase difference was measured by the same method as the above phase difference measurement. After putting the measured sample into a heating oven at 85 ° C. for 180 hours, the sample was taken out, the phase difference was measured again, and the rate of change of Re (550) was determined.
(3) Reflectance and Reflected Hue Using a substitute for an organic EL display device as a sample, the front reflectance and the front reflected hue were measured using a spectrophotometer CM-2600d manufactured by Konica Minolta Co., Ltd. The front reflectance was measured by the SCI method. For the specular hue, the distance Δa * b * from the achromatic color on the a * b * chromaticity diagram was evaluated.
(4) Oblique Reflectance and Reflected Hue Using a substitute for an organic EL display device as a sample, the oblique reflectance and reflected hue were measured using DMS 505 manufactured by Konica Minolta Co., Ltd. For the reflectance in the oblique direction, the average value of the visual reflectance Y at four points having a polar angle of 60 °, an azimuth angle of 0 °, 45 °, 90 ° and 135 ° was evaluated. The oblique reflected hue is measured at an angle of 60 ° with respect to the phase-advancing axis and the slow-phase axis on the a * b * chromaticity diagram. The distance between two points Δa * b * of the reflected hue of was evaluated.

Figure 0006966315
Figure 0006966315

実施例の位相差フィルムは位相差変化率が小さく、かつ、実施例の位相差フィルムを用いた有機EL表示装置代替品は反射色相が6.0を下回り良好であった。 The retardation film of the example had a small retardation change rate, and the alternative to the organic EL display device using the retardation film of the example had a reflected hue of less than 6.0 and was good.

本発明の位相差フィルムを有する光学補償層付偏光板は、有機ELパネルなどの画像表示装置に好適に用いられる。 The polarizing plate with an optical compensation layer having the retardation film of the present invention is suitably used for an image display device such as an organic EL panel.

10 偏光子
20 保護層
30 光学補償層(位相差フィルム)
100 光学補償層付偏光板
10 Polarizer 20 Protective layer 30 Optical compensation layer (phase difference film)
100 Polarizing plate with optical compensation layer

Claims (5)

面内位相差が、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、
Nz係数が、0.4<Nz(550)<0.6、0≦|Nz(450)−Nz(550)|≦0.1、および、0≦|Nz(650)−Nz(550)|≦0.1を満たし、
光弾性係数が14×10−12Pa−1以下であり、
単層構造を有し、ポリカーボネート樹脂を含む、位相差フィルム:
ここで、Re(450)、Re(550)、およびRe(650)は、それぞれ、23℃における波長450nm、550nm、および650nmの光で測定した面内位相差を表し、Nz(450)、Nz(550)、およびNz(650)は、それぞれ、23℃における波長450nm、550nm、および650nmの光で測定したNz係数を表す。
The in-plane phase difference satisfies 100 nm ≤ Re (550) ≤ 160 nm, Re (450) / Re (550) ≤ 1, and Re (650) / Re (550) ≥ 1.
The Nz coefficient is 0.4 <Nz (550) <0.6, 0 ≦ | Nz (450) -Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) -Nz (550) | Satisfy ≤0.1,
Photoelastic coefficient Ri der 14 × 10 -12 Pa -1 or less,
A retardation film having a single layer structure and containing a polycarbonate resin:
Here, Re (450), Re (550), and Re (650) represent in-plane phase differences measured with light having wavelengths of 450 nm, 550 nm, and 650 nm at 23 ° C., respectively, and represent Nz (450) and Nz. (550) and Nz (650) represent Nz coefficients measured with light at wavelengths of 450 nm, 550 nm, and 650 nm at 23 ° C., respectively.
請求項1に記載の位相差フィルムにより構成される光学補償層と、偏光子とを有し、
前記光学補償層の遅相軸と前記偏光子の吸収軸とのなす角度が35°〜55°である、光学補償層付偏光板。
It has an optical compensation layer made of the retardation film according to claim 1 and a polarizing element.
A polarizing plate with an optical compensation layer, wherein the angle formed by the slow axis of the optical compensation layer and the absorption axis of the polarizing element is 35 ° to 55 °.
前記光学補償層の前記偏光子とは反対側に導電層を有する、請求項2に記載の光学補償層付偏光板。 The polarizing plate with an optical compensation layer according to claim 2 , which has a conductive layer on the side of the optical compensation layer opposite to the polarizing element. 請求項2に記載の光学補償層付偏光板を有する、画像表示装置。 An image display device having the polarizing plate with an optical compensation layer according to claim 2. 請求項3に記載の光学補償層付偏光板を有し、
前記導電層がタッチパネルセンサーとして機能する、タッチパネル付き画像表示装置。
The polarizing plate with an optical compensation layer according to claim 3 is provided.
An image display device with a touch panel in which the conductive layer functions as a touch panel sensor.
JP2017242482A 2017-12-19 2017-12-19 Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel Active JP6966315B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017242482A JP6966315B2 (en) 2017-12-19 2017-12-19 Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
SG11202005240WA SG11202005240WA (en) 2017-12-19 2018-11-20 Phase difference film, polarizer with optical compensation layer, image display device, and image display device with touch panel
PCT/JP2018/042821 WO2019123947A1 (en) 2017-12-19 2018-11-20 Phase difference film, polarizer with optical compensation layer, image display device, and image display device with touch panel
CN201880081765.9A CN111542770B (en) 2017-12-19 2018-11-20 Retardation film, polarizing plate with optical compensation layer, and image display device
KR1020207017452A KR20200100067A (en) 2017-12-19 2018-11-20 Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
TW107145659A TWI770333B (en) 2017-12-19 2018-12-18 Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP2021172340A JP2022023892A (en) 2017-12-19 2021-10-21 Retardation film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242482A JP6966315B2 (en) 2017-12-19 2017-12-19 Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021172340A Division JP2022023892A (en) 2017-12-19 2021-10-21 Retardation film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel

Publications (2)

Publication Number Publication Date
JP2019109377A JP2019109377A (en) 2019-07-04
JP6966315B2 true JP6966315B2 (en) 2021-11-17

Family

ID=66993359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242482A Active JP6966315B2 (en) 2017-12-19 2017-12-19 Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel

Country Status (6)

Country Link
JP (1) JP6966315B2 (en)
KR (1) KR20200100067A (en)
CN (1) CN111542770B (en)
SG (1) SG11202005240WA (en)
TW (1) TWI770333B (en)
WO (1) WO2019123947A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005996A1 (en) * 2019-07-10 2021-01-14 住友化学株式会社 Circular polarizing plate and image display device
WO2021070467A1 (en) * 2019-10-10 2021-04-15 日東電工株式会社 Phase difference layer-attached polarization plate and organic electro luminescence display device using same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026705A1 (en) 1998-10-30 2000-05-11 Teijin Limited Phase difference film and optical device using it
JP4187593B2 (en) * 2003-06-19 2008-11-26 帝人株式会社 Liquid crystal display
JP3802544B2 (en) * 2004-07-29 2006-07-26 日東電工株式会社 Retardation plate, new polymer, optical film, and image display device
JP4618675B2 (en) * 2005-02-08 2011-01-26 日東電工株式会社 Retardation film, polarizing element, liquid crystal panel, and liquid crystal display device
JP2007121351A (en) * 2005-10-25 2007-05-17 Kaneka Corp Retardation film, method for producing the same and optical compensation polarizing plate
JP2007264403A (en) * 2006-03-29 2007-10-11 Fujifilm Corp Retardation plate, polarizing plate, luminance-improving film and liquid crystal display
JP5230221B2 (en) * 2007-04-20 2013-07-10 富士フイルム株式会社 Thermoplastic film and method for producing the same
CN101311755A (en) * 2007-05-23 2008-11-26 富士胶片株式会社 Optical film, optical compensation film, polarizing plate, and liquid-crystal display device
JP4566275B2 (en) * 2007-06-25 2010-10-20 帝人株式会社 Retardation film, laminated polarizing film, and liquid crystal display device
JP2009226932A (en) * 2008-02-27 2009-10-08 Jsr Corp Conductive laminated film, polarizing plate, and touch panel
KR102057611B1 (en) * 2013-05-27 2019-12-20 삼성전자주식회사 Inverse dispertion phase retardation film and display having the same
JP6276393B2 (en) * 2014-05-01 2018-02-07 富士フイルム株式会社 Organic EL display device
JP2016114874A (en) * 2014-12-17 2016-06-23 コニカミノルタ株式会社 Optical film, circular polarization plate and organic electroluminescence display
JP2017049574A (en) * 2015-09-01 2017-03-09 日東電工株式会社 Optical laminate
WO2017104720A1 (en) * 2015-12-17 2017-06-22 日本ゼオン株式会社 Liquid crystal display device
JP6247373B1 (en) * 2016-06-22 2017-12-13 旭化成株式会社 Methacrylic resin composition, optical film, optical component
KR102468247B1 (en) * 2016-08-08 2022-11-16 니폰 제온 가부시키가이샤 Optical anisotropic laminate, polarizer and image display device
JPWO2018123725A1 (en) * 2016-12-26 2019-10-31 富士フイルム株式会社 Circular polarizing plate, organic electroluminescence display device
JP7165491B2 (en) * 2017-02-23 2022-11-04 住友化学株式会社 Optical film and its manufacturing method
WO2018164126A1 (en) * 2017-03-08 2018-09-13 富士フイルム株式会社 Organic electroluminescence display device, phase difference film, and circularly polarizing plate

Also Published As

Publication number Publication date
KR20200100067A (en) 2020-08-25
TWI770333B (en) 2022-07-11
WO2019123947A1 (en) 2019-06-27
CN111542770B (en) 2022-04-26
JP2019109377A (en) 2019-07-04
TW201928474A (en) 2019-07-16
SG11202005240WA (en) 2020-07-29
CN111542770A (en) 2020-08-14

Similar Documents

Publication Publication Date Title
JP6920047B2 (en) Circularly polarizing plate and flexible image display device using it
JP6512999B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP6712157B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP2022027908A (en) Retardation plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP6512998B2 (en) Long Polarizing Plate with Optical Compensation Layer and Organic EL Panel Using the Same
KR102314543B1 (en) Polarizing plate with optical compensation layer and organic EL panel using same
WO2017154447A1 (en) Polarizing plate with optical compensation layer, and organic el panel using said polarizing plate
JP6301885B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP6966315B2 (en) Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP6712335B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP2019070860A (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP7077372B2 (en) Polarizing plate with optical compensation layer and organic EL panel using it
WO2019021561A1 (en) Retardation film, polarizing plate with optical compensation layer, image display device and method for producing retardation film
JP6712161B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP2022023892A (en) Retardation film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP2023118722A (en) Retardation film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
KR102669108B1 (en) Polarizer with optical compensation layer and organic EL panel using the same
KR102673311B1 (en) Polarizer with optical compensation layer and organic EL panel using the same
CN116529803A (en) Polarizing plate with retardation layer and organic electroluminescent display device using same
JP2019091069A (en) Long Polarizing Plate with Optical Compensation Layer and Organic EL Panel Using the Same
JP2018109778A (en) Polarizing plate with optical compensation layers, and organic el panel having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211021

R150 Certificate of patent or registration of utility model

Ref document number: 6966315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150