JP6962538B2 - Coating liquid, laminate and its use - Google Patents

Coating liquid, laminate and its use Download PDF

Info

Publication number
JP6962538B2
JP6962538B2 JP2017013480A JP2017013480A JP6962538B2 JP 6962538 B2 JP6962538 B2 JP 6962538B2 JP 2017013480 A JP2017013480 A JP 2017013480A JP 2017013480 A JP2017013480 A JP 2017013480A JP 6962538 B2 JP6962538 B2 JP 6962538B2
Authority
JP
Japan
Prior art keywords
solvent
porous
mass
coating liquid
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017013480A
Other languages
Japanese (ja)
Other versions
JP2018120832A (en
Inventor
宗紀 山田
朗 繁田
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2017013480A priority Critical patent/JP6962538B2/en
Publication of JP2018120832A publication Critical patent/JP2018120832A/en
Application granted granted Critical
Publication of JP6962538B2 publication Critical patent/JP6962538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Laminated Bodies (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Description

本発明は、例えば、リチウム二次電池、リチウムイオンキャパシタ、キャパシタ、コンデンサ等の蓄電素子セパレータ製造に有用な塗液、およびこの塗液を用いて得られる積層体、ならびにこの積層体の使用に関する。 The present invention relates to, for example, a coating liquid useful for manufacturing a power storage element separator such as a lithium secondary battery, a lithium ion capacitor, a capacitor, and a capacitor, a laminate obtained by using this coating liquid, and the use of this laminate.

リチウム二次電池等の蓄電素子は、電池の破損等により内部短絡または外部短絡が生じた場合には、大電流が流れて異常発熱することがある。そのため、一定以上の発熱を防止し、高い安全性を確保することが重要である。この安全性確保手段として、異常発熱の際に、セパレータに、電極間のイオンの通過を遮断して、発熱を防止するシャットダウン機能を持たせる方法が広く実用化されている。 When an internal short circuit or an external short circuit occurs in a power storage element such as a lithium secondary battery due to damage to the battery or the like, a large current may flow and abnormal heat generation may occur. Therefore, it is important to prevent heat generation above a certain level and ensure high safety. As a means for ensuring safety, a method of providing a separator with a shutdown function of blocking the passage of ions between electrodes to prevent heat generation during abnormal heat generation has been widely put into practical use.

このシャットダウン機能を有するセパレータとしては例えば、ポリエチレン、ポリプロピレン等のポリオレフィン(PO)からなる多孔質フィルムが用いられている。多孔質POフィルムからなるセパレータは、電池の異常発熱時には、110〜160℃でPOが溶融して無孔化するためイオンの通過をシャットダウンすることができる。しかしながら、多孔質POフィルムは、高温になると収縮や破断が起こりやすいので、場合によっては、正極と負極が直接接触して、短絡を起こすおそれがあり、短絡による異常発熱を抑制できないことがある。 As the separator having this shutdown function, for example, a porous film made of polyolefin (PO) such as polyethylene or polypropylene is used. A separator made of a porous PO film can shut down the passage of ions because PO melts and becomes non-porous at 110 to 160 ° C. when the battery generates abnormal heat. However, since the porous PO film is liable to shrink or break at a high temperature, in some cases, the positive electrode and the negative electrode may come into direct contact with each other to cause a short circuit, and abnormal heat generation due to the short circuit may not be suppressed.

このような問題を解決する方法として、例えば、特許文献1〜3には、ポリイミド(PI)、アラミド等の耐熱性高分子溶液にフィラを配合した塗液を、多孔質POフィルムに塗布、乾燥することにより、多孔質POフィルム表面に多孔質の耐熱性高分子層を形成せしめる方法が提案されている。このような耐熱性高分子層を積層することにより、セパレータのシャットダウン特性を維持しつつ、その耐熱性を高めることができる。 As a method for solving such a problem, for example, in Patent Documents 1 to 3, a coating liquid in which a filler is mixed with a heat-resistant polymer solution such as polyimide (PI) or aramid is applied to a porous PO film and dried. By doing so, a method of forming a porous heat-resistant polymer layer on the surface of the porous PO film has been proposed. By laminating such a heat-resistant polymer layer, it is possible to improve the heat resistance while maintaining the shutdown characteristics of the separator.

従来のPI等の耐熱性高分子は、溶媒に対する溶解性が低いために、溶液とするための溶媒としては、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)等、高沸点のアミド系溶媒が用いられてきた。 これらアミド系溶媒は、溶質であるPI等の耐熱性高分子と、強く溶媒和している。そのため、これらの溶液にフィラを配合して塗液とした後、これを多孔質POフィルム等に塗布、乾燥してPI等の耐熱性多孔質被膜を形成させて積層体とする際、乾燥条件を強化しても、高沸点のアミド系溶媒が、多孔質PI被膜中や多孔質POフィルム中に残留してしまうという問題があった。このような問題を回避するため、特許文献4には、この積層体を水洗してアミド系溶媒を除去し、その後、乾燥して耐熱性多孔質被膜を形成させる方法が開示されている。しかしながら、この方法では、水洗により、アミド系溶媒を含む多量の廃液が発生するため、環境適合性に問題があった。
また、これらPI等の耐熱性高分子は、分子鎖が剛直で、靭性に欠けるため、例えば、蓄電素子セパレータとして用いる場合、基材として用いられる多孔質POフィルム等との接着性が充分ではなかった。そのため、セパレータしてのイオン伝導性が低下し、セパレータの電気抵抗が上昇するという問題があった。
Since conventional heat-resistant polymers such as PI have low solubility in a solvent, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), and N are used as solvents for making a solution. High boiling point amide solvents such as -methyl-2-pyrrolidone (NMP) have been used. These amide-based solvents are strongly solvated with a heat-resistant polymer such as PI, which is a solute. Therefore, when a filler is mixed with these solutions to prepare a coating liquid, which is then applied to a porous PO film or the like and dried to form a heat-resistant porous film such as PI to form a laminate, drying conditions are used. However, there is a problem that the amide-based solvent having a high boiling point remains in the porous PI film or the porous PO film. In order to avoid such a problem, Patent Document 4 discloses a method in which the laminate is washed with water to remove the amide-based solvent, and then dried to form a heat-resistant porous film. However, in this method, a large amount of waste liquid containing an amide-based solvent is generated by washing with water, so that there is a problem in environmental compatibility.
Further, since the heat-resistant polymer such as PI has a rigid molecular chain and lacks toughness, for example, when it is used as a power storage element separator, its adhesiveness to a porous PO film used as a base material is not sufficient. rice field. Therefore, there is a problem that the ionic conductivity of the separator decreases and the electrical resistance of the separator increases.

特許第3175730号公報Japanese Patent No. 3175730 特開2010−146839号公報Japanese Unexamined Patent Publication No. 2010-146839 特開2010−254731号公報JP-A-2010-254731 特開2017−4931号公報Japanese Unexamined Patent Publication No. 2017-4931

そこで本発明は、前記課題を解決するものであって、アミド系溶媒が残留することなく、イオン伝導性が良好な多孔質PI被膜が形成できる塗液、およびこの被膜が多孔質基材表面に形成された積層体の提供を目的とする。 本発明は、さらに、この積層体の蓄電素子セパレータへの使用を目的とする。 Therefore, the present invention solves the above-mentioned problems, and is a coating liquid capable of forming a porous PI film having good ionic conductivity without residual amide solvent, and this film is applied to the surface of the porous substrate. An object of the present invention is to provide a formed laminate. Another object of the present invention is to use this laminated body as a power storage element separator.

本発明者らは、特定の化学構造としたPIと特定の溶媒を含む新規な多孔質被膜形成用塗液を見出した。さらに、この塗液を多孔質POフィルム表面に、塗布、乾燥して多孔質PI被膜を形成させた積層体を、蓄電素子セパレータとして用いることにより、前記課題が解決されることを見出し、本発明の完成に至った。 The present inventors have found a novel coating liquid for forming a porous film containing a PI having a specific chemical structure and a specific solvent. Furthermore, they have found that the above problems can be solved by using a laminate obtained by applying and drying this coating liquid on the surface of a porous PO film to form a porous PI film as a power storage element separator, and the present invention has been made. Has been completed.

本発明は下記を趣旨とするものである。 The present invention has the following object.

<1> 多孔質被膜形成用の塗液であって、ポリイミドとフィラと溶媒とからなり、ポリイミドは、芳香族テトラカルボン酸二無水物と脂肪族ジアミンとを反応させて得られるものであり、溶媒中のアミド系溶媒含有量が、全溶媒質量に対し、30質量%以下であることを特徴とする多孔質被膜形成用塗液。
<2> 前記塗液を、多孔質基材表面に塗布、乾燥して得られる、多孔質PI被膜が多孔質基材表面に形成された積層体。
<3> 前記積層体の蓄電素子セパレータへの使用。
<1> A coating liquid for forming a porous film, which is composed of a polyimide, a filler, and a solvent. The polyimide is obtained by reacting an aromatic tetracarboxylic acid dianhydride with an aliphatic diamine. A coating liquid for forming a porous film, wherein the content of the amide solvent in the solvent is 30% by mass or less with respect to the total amount of the solvent.
<2> A laminate obtained by applying the coating liquid to the surface of a porous base material and drying it, in which a porous PI film is formed on the surface of the porous base material.
<3> Use of the laminated body as a power storage element separator.

本発明の塗液は、芳香族テトラカルボン酸二無水物と脂肪族ジアミンとを反応させて得られるPIを用いているので、多孔質POフィルムとの密着性が良好である。このPIは、汎用溶媒に対する溶解性が高いので、塗液におけるアミド系溶媒含有量を低減させることができる。さらに、これを用いて得られる、多孔質基材表面に多孔質PI被膜が形成された積層体は、イオン透過性に優れるので、安全性に優れた蓄電素子セパレータとして好適に用いることができる。 Since the coating liquid of the present invention uses PI obtained by reacting an aromatic tetracarboxylic dianhydride with an aliphatic diamine, the adhesion to the porous PO film is good. Since this PI has high solubility in a general-purpose solvent, the content of the amide-based solvent in the coating solution can be reduced. Further, the laminate obtained by using this in which the porous PI film is formed on the surface of the porous base material is excellent in ion permeability, and therefore can be suitably used as a power storage element separator having excellent safety.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の塗液はPIを含有する。PIは、主鎖にイミド結合を有する耐熱性高分子であり、通常、テトラカルボン酸二無水物とジアミンとを反応させて得ることができる。
本発明の塗液を構成するPIは、テトラカルボン酸二無水物として芳香族テトラカルボン酸二無水物、ジアミンとして脂肪族ジアミンを用いる。このようにすることにより、例えば、蓄電素子セパレータ用の塗液として用いた場合、形成される多孔質PI被膜と多孔質POフィルムとの良好な接着性を確保することができる。
The coating liquid of the present invention contains PI. PI is a heat-resistant polymer having an imide bond in the main chain, and can usually be obtained by reacting tetracarboxylic dianhydride with diamine.
The PI constituting the coating liquid of the present invention uses aromatic tetracarboxylic dianhydride as the tetracarboxylic dianhydride and aliphatic diamine as the diamine. By doing so, for example, when used as a coating liquid for a power storage element separator, good adhesion between the formed porous PI film and the porous PO film can be ensured.

脂肪族ジアミンの具体例としては、例えば、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、2−メチル−1,5−ジアミノペンタン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカン、4,4’−メチレンビスシクロヘキシルアミン、ダイマジアミン(炭素数24〜48のダイマ酸から誘導される脂肪族ジアミンであり、「DDA」と略記することがある)等を挙げることがでる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、DDAが好ましい。なお、DDAは、商品名「プリアミン1074、同1075」(クローダジャパン社製)、「バーサミン551、同552」(コグニスジャパン社製の商品名)等の市販品を用いることができる。 Specific examples of the aliphatic diamine include 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 2-methyl-1,5-diaminopentane, 1,7-diaminoheptane, and the like. 1,8-Diaminooctane, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1 , 12-Diaminododecane, 4,4'-methylenebiscyclohexylamine, dimadiamine (aliphatic diamine derived from dimaic acid having 24-48 carbon atoms, sometimes abbreviated as "DDA") and the like. I can get it. These may be used alone or in combination of two or more. Of these, DDA is preferred. As the DDA, commercially available products such as trade names "Priamine 1074, 1075" (manufactured by Croda Japan) and "Versamine 551, 552" (trade name manufactured by Cognis Japan) can be used.

脂肪族ジアミンは、芳香族ジアミン(複素環式ジアミンを含む)と混合して用いることもできる。芳香族ジアミンの具体例としては、4,4’−ジアミノジフェニルエーテル、2’−メトキシ−4,4’−ジアミノベンズアニリド、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル、4,4’−ジアミノベンズアニリド、ビスアニリンフルオレン、2,2−ビス−[4−(3−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)]ビフェニル、ビス[4−(3−アミノフェノキシ)ビフェニル、ビス[1−(4−アミノフェノキシ)]ビフェニル、ビス[1−(3−アミノフェノキシ)]ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]メタン、ビス[4−(3−アミノフェノキシ)フェニル]メタン、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)]ベンゾフェノン、ビス[4−(3−アミノフェノキシ)]ベンゾフェノン、ビス[4,4’−(4−アミノフェノキシ)]ベンズアニリド、ビス[4,4’−(3−アミノフェノキシ)]ベンズアニリド、9,9−ビス[4−(4−アミノフェノキシ)フェニル]フルオレン、9,9−ビス[4−(3−アミノフェノキシ)フェニル]フルオレン、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス−[4−(3−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’−メチレンジ−o−トルイジン、4,4’−メチレンジ−2,6−キシリジン、4,4’−メチレン−2,6−ジエチルアニリン、4,4’−ジアミノジフェニルプロパン、3,3’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエタン、3,3’−ジアミノジフェニルエタン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、3,3−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、ベンジジン、3,3’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメトキシベンジジン、4,4’’−ジアミノ−p−テルフェニル、3,3’’−ジアミノ−p−テルフェニル、m−フェニレンジアミン、p−フェニレンジアミン、2,6−ジアミノピリジン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリン、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、ビス(p−アミノシクロヘキシル)メタン、ビス(p−β−アミノ−t−ブチルフェニル)エーテル、ビス(p−β−メチル−δ−アミノペンチル)ベンゼン、p−ビス(2−メチル−4−アミノペンチル)ベンゼン、p−ビス(1,1−ジメチル−5−アミノペンチル)ベンゼン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン、2,4−ビス(β−アミノ−t−ブチル)トルエン、2,4−ジアミノトルエン、m−キシレン−2,5−ジアミン、p−キシレン−2,5−ジアミン、m−キシリレンジアミン、p−キシリレンジアミン、2,6−ジアミノピリジン、2,5−ジアミノピリジン、2,5−ジアミノ−1,3,4−オキサジアゾール等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The aliphatic diamine can also be used in combination with an aromatic diamine (including a heterocyclic diamine). Specific examples of the aromatic diamine include 4,4'-diaminodiphenyl ether, 2'-methoxy-4,4'-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, and 1,3-bis ( 4-Aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4, 4'-diaminobiphenyl, 4,4'-diaminobenzanilide, bisaniline fluorene, 2,2-bis- [4- (3-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] Sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy)] biphenyl, bis [4- (3-aminophenoxy) biphenyl, bis [1- (4-aminophenoxy)] )] Biphenyl, bis [1- (3-aminophenoxy)] biphenyl, bis [4- (4-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] methane, bis [4- ( 4-Aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy)] benzophenone, bis [4- (3-aminophenoxy)] benzophenone, bis [4,4'-(4-aminophenoxy)] benzanilide, bis [4,4'-(3-aminophenoxy)] benzanilide, 9,9-bis [4- (4-aminophenoxy) phenyl] fluorene, 9 , 9-Bis [4- (3-aminophenoxy) phenyl] fluorene, 2,2-bis- [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis- [4- (3- (3-) Aminophenoxy) phenyl] hexafluoropropane, 4,4'-methylenedi-o-toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 4,4 '-Diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4 , 4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodi Phenylsulfone, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, benzidine, 3,3'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxybenzidine , 4,4''-diamino-p-terphenyl, 3,3''-diamino-p-terphenyl, m-phenylenediamine, p-phenylenediamine, 2,6-diaminopyridine, 1,4-bis ( 4-Aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4'-[1,4-phenylenebis (1-methylethylidene)] bisaniline, 4,4'-[1,3 -Phenylene bis (1-methylethylidene)] bisaniline, bis (p-aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene , P-bis (2-methyl-4-aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4 -Bis (β-amino-t-butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylene diamine, p-xylylene Amine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole and the like can be mentioned. These may be used alone or in combination of two or more.

テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、4,4’−オキシジフタル酸無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、PMDA、BPDA、BTDAが好ましい。 Specific examples of tetracarboxylic acid dianhydrides include pyromellitic acid dianhydrides (PMDA), 3,3', 4,4'-biphenyltetracarboxylic acid dianhydrides (BPDA), 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA), 4,4'-oxydiphthalic acid anhydride, 3,3', 4,4 '-Diphenylsulfone tetracarboxylic acid dianhydride and the like can be mentioned. These may be used alone or in combination of two or more. Of these, PMDA, BPDA, and BTDA are preferred.

本発明の塗液を構成する溶媒中のアミド系溶媒含有量は、全溶媒質量に対し、30質量%以下であり、10質量%以下であることが好ましく、1質量%以下とすることがより好ましい。すなわち、アミド系以外の溶媒の含有量は、全溶媒質量に対し、70質量%以上であり、90質量%以上であることが好ましく、99質量%以上とすることがより好ましい。このようにすることにより、多孔質PI被膜を形成した際、被膜中の溶媒残留量を低減させることができる。 The content of the amide-based solvent in the solvent constituting the coating liquid of the present invention is 30% by mass or less, preferably 10% by mass or less, and more preferably 1% by mass or less, based on the total mass of the solvent. preferable. That is, the content of the solvent other than the amide-based solvent is 70% by mass or more, preferably 90% by mass or more, and more preferably 99% by mass or more, based on the total mass of the solvent. By doing so, when the porous PI film is formed, the amount of solvent remaining in the film can be reduced.

アミド系以外の溶媒については、その種類に制限はないが、例えば、エーテル系溶媒、炭化水素系溶媒、ケトン系溶媒、アルコール系溶媒、エステル系溶媒、水等を用いることができる。 エーテル系溶媒の具体例としては、ジエチルエーテル、テトラヒドロフラン(THF)、グライム、ジオキサン、ジグライム、トリグライム等を挙げることができる。炭化水素系溶媒の具体例としては、n―ヘキサン、シクロヘキサン、n―ヘプタン、石油エーテル、ベンゼン、トルエン、キシレン(o−キシレン、m−キシレン、p−キシレン)等を挙げることができる。ケトン系溶媒の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等を挙げることができる。アルコール系溶媒の具体例としては、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール等を挙げることができる。エステル系溶媒の具体例としては、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、γ―ブチロラクトン等を挙げることができる。これらの中では、THF、DME、シクロヘキサン、石油エーテル、トルエン、メタノール、エタノール、アセトン、酢酸エチル、トルエン、水が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合は、エーテル系溶媒と炭化水素系溶媒との組み合わせが好ましい。 The type of solvent other than the amide solvent is not limited, and for example, an ether solvent, a hydrocarbon solvent, a ketone solvent, an alcohol solvent, an ester solvent, water and the like can be used. Specific examples of the ether solvent include diethyl ether, tetrahydrofuran (THF), grime, dioxane, diglyme, triglyme and the like. Specific examples of the hydrocarbon solvent include n-hexane, cyclohexane, n-heptane, petroleum ether, benzene, toluene, xylene (o-xylene, m-xylene, p-xylene) and the like. Specific examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like. Specific examples of the alcohol solvent include methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol and the like. Specific examples of the ester solvent include methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, γ-butyrolactone and the like. Among these, THF, DME, cyclohexane, petroleum ether, toluene, methanol, ethanol, acetone, ethyl acetate, toluene and water are preferable. These may be used alone or in combination of two or more. When two or more kinds are used in combination, a combination of an ether solvent and a hydrocarbon solvent is preferable.

PI溶液を得るには、公知の方法を用いることができる。すなわち、溶媒中で、0℃〜50℃の温度で、略当モルのテトラカルボン酸二無水物とジアミンとを反応させて、ポリアミック酸を得た後、これを50℃〜200℃の温度で、脱水閉環することにより得ることができる。用いる溶媒に制限はないが、キシレン(o−キシレン、m−キシレン、p−キシレン)、メシチレン、エチルベンゼン等の炭化水素系溶媒、DMF、DMAc、NMP等のアミド系溶媒、炭化水素系溶媒とアミド系溶媒との混合溶媒等が好ましく、炭化水素系溶媒とアミド系溶媒との混合溶媒が特に好ましい。脱水閉環する際は、イミド化による生成する水を、共沸等により反応系外に除去してもよい。また、脱水閉環する際は、無水酢酸、ジシクロヘキシルカルボジイミド等公知の脱水剤を用いてもよい。 A known method can be used to obtain the PI solution. That is, in a solvent, approximately equimolar amounts of tetracarboxylic dianhydride and diamine are reacted at a temperature of 0 ° C. to 50 ° C. to obtain a polyamic acid, which is then subjected to a temperature of 50 ° C. to 200 ° C. , Can be obtained by dehydration and ring closure. The solvent used is not limited, but is a hydrocarbon solvent such as xylene (o-xylene, m-xylene, p-xylene), mecitylene, ethylbenzene, an amide solvent such as DMF, DMAc, NMP, a hydrocarbon solvent and an amide. A mixed solvent with a system solvent is preferable, and a mixed solvent of a hydrocarbon solvent and an amide solvent is particularly preferable. When dehydrating and ring-closing, water generated by imidization may be removed from the reaction system by azeotropic or the like. Further, when dehydrating and ring-closing, a known dehydrating agent such as acetic anhydride or dicyclohexylcarbodiimide may be used.

ポリアミック酸を脱水閉環する際に用いられる溶媒としては、前記したようなアミド系溶媒を含む溶媒を用いることが好ましいので、アミド系以外の溶媒を含むPI溶液とするには、溶媒置換を行えばよい。そのためには、高沸点溶媒を含むPI溶液を減圧で加熱して、高沸点溶媒を除去した後、アミド系以外の溶媒を加えて、再溶解すればよい。また、高沸点溶媒を含むPI溶液を、攪拌下で、PIに対する貧溶媒中に加えて、PIを沈殿させた後、濾過、乾燥して固体としてPIを採取した後、アミド系以外の溶媒を加えて、再溶解してもよい。
As the solvent used for dehydrating and closing the polyamic acid, it is preferable to use a solvent containing an amide-based solvent as described above. Therefore, in order to obtain a PI solution containing a solvent other than the amide-based solvent, solvent substitution may be performed. good. For that purpose, the PI solution containing the high boiling point solvent may be heated under reduced pressure to remove the high boiling point solvent, and then a solvent other than the amide solvent may be added to redissolve the solution. Further, a PI solution containing a high boiling point solvent is added to a poor solvent for PI under stirring to precipitate PI, which is then filtered and dried to collect PI as a solid, and then a solvent other than the amide solvent is used. In addition, it may be redissolved.

PI溶液の濃度に制限はないが、1〜50質量%とすることが好ましく、5〜30質量%とすることがより好ましい。 The concentration of the PI solution is not limited, but is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.

PIの重量平均分子量(Mw)は、5000以上、100000以下とすることが好ましく、20000以上、80000以下とすることがより好ましい。Mwをこのような範囲とすることにより良好な成形性と接着性を確保することができる。 ここで、Mwは、例えば、下記のような条件で、GPCを測定することにより、確認することができる。
<GPC測定条件>
カラム:昭和電工社製 Shodex(R) GPC KF‐803×1本, GPC KF‐804×2本 (3本連結)
溶離液:THF
温度:40℃
流量:1.0mL/分
検出器:UV検出器
The weight average molecular weight (Mw) of PI is preferably 5000 or more and 100,000 or less, and more preferably 20000 or more and 80,000 or less. By setting Mw in such a range, good moldability and adhesiveness can be ensured. Here, Mw can be confirmed, for example, by measuring GPC under the following conditions.
<GPC measurement conditions>
Column: Showa Denko Shodex (R) GPC KF-803 x 1 piece, GPC KF-804 x 2 pieces (3 pieces connected)
Eluent: THF
Temperature: 40 ° C
Flow rate: 1.0 mL / min Detector: UV detector

PIは、その末端の全部、または一部が、マレイミド基、ナジイミド基、ビニル基、アセチレン基、シラノール基等の架橋性成分で封止されていてもよい。 The PI may be completely or partially sealed with a crosslinkable component such as a maleimide group, a nadiimide group, a vinyl group, an acetylene group, or a silanol group.

前記のようにして得られたアミド系以外の溶媒を含むPI溶液に、フィラを均一に配合して、本発明の塗液とすることができる。用いられるフィラの種類に制限は無く、有機フィラ、無機フィラおよびその混合物等を用いることができ、無機フィラが好ましい。 Fila can be uniformly blended with the PI solution containing a solvent other than the amide-based solvent obtained as described above to obtain the coating liquid of the present invention. The type of filler used is not limited, and organic fillers, inorganic fillers and mixtures thereof and the like can be used, and inorganic fillers are preferable.

有機フィラの具体例としては、例えば、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチル等の単独または2種類以上の共重合体、ポリテトラフルオロエチレン、4フッ化エチレン−6フッ化プロピレン共重合体、4フッ化エチレン−エチレン共重合体、ポリビニリデンフルオライド等のフッ素系樹脂等の重合体からなる粉体を挙げることができる。有機フィラは、単独または2種以上を混合して用いることができる。 Specific examples of the organic filler include styrene, vinyl ketone, acrylonitrile, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, glycidyl acrylate, methyl acrylate and the like alone or two or more copolymers, polytetrafluoroethylene, and the like. Examples thereof include powders made of a polymer such as a tetrafluorinated ethylene-6 fluoride propylene copolymer, a tetrafluorinated ethylene-ethylene copolymer, and a fluororesin such as polyvinylidene fluoride. The organic filler can be used alone or in combination of two or more.

無機フィラとしては、例えば、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭酸塩、硫酸塩等の無機物からなる粉体を挙げることができる。具体例としては、アルミナ、シリカ、二酸化チタン、硫酸バリウムまたは炭酸カルシウム等からなる粉体を挙げることができる。無機フィラは、単独または2種以上を混合して用いることができる。これらの無機フィラの中でも、化学的安定性の観点から、アルミナ粉体が好ましい。 Examples of the inorganic filler include powders made of inorganic substances such as metal oxides, metal nitrides, metal carbides, metal hydroxides, carbonates, and sulfates. Specific examples include powders made of alumina, silica, titanium dioxide, barium sulfate, calcium carbonate and the like. The inorganic filler can be used alone or in combination of two or more. Among these inorganic fillers, alumina powder is preferable from the viewpoint of chemical stability.

フィラの形状に制限はなく、略球状、板状、柱状、針状、ウィスカー状、繊維状等の粒子を用いることができ、略球状粒子が好ましい。略球状粒子のアスペクト比(粒子の長径/粒子の短径)は1以上、1.5以下とすることが好ましい。 The shape of the filler is not limited, and particles such as substantially spherical, plate-shaped, columnar, needle-shaped, whisker-shaped, and fibrous can be used, and substantially spherical particles are preferable. The aspect ratio of the substantially spherical particles (major axis of the particles / minor axis of the particles) is preferably 1 or more and 1.5 or less.

フィラのサイズは、得られる被膜の用途にもよるが、PI多孔質被膜を、蓄電素子用セパレータに用いる場合には、フィラを構成する粒子の平均粒子径は、0.01μm以上、2μm以下であることが好ましい。平均粒子径はレーザ回折散乱法に基づく測定装置により測定することができる。 The size of the filler depends on the application of the obtained coating, but when the PI porous coating is used as a separator for a power storage element, the average particle size of the particles constituting the filler is 0.01 μm or more and 2 μm or less. It is preferable to have. The average particle size can be measured by a measuring device based on the laser diffraction / scattering method.

フィラは、その表面が、界面活性剤やシランカップラのような表面処理剤で処理されていてもよい。 The surface of the filler may be treated with a surface treatment agent such as a surfactant or a silane coupler.

塗液中のフィラ配合量としては、PI質量に対し、50質量%以上、600質量%以下とすることが好ましく、100質量%以上、500質量%以下とすることがより好ましい。 The amount of the filler compounded in the coating liquid is preferably 50% by mass or more and 600% by mass or less, and more preferably 100% by mass or more and 500% by mass or less with respect to the PI mass.

PI溶液にフィラを均一に分散させる方法としては、公知の攪拌機、分散機、粉砕機等を用いることができる。 As a method for uniformly dispersing the filler in the PI solution, a known stirrer, disperser, crusher or the like can be used.

このようにして得られた塗液には、本発明の効果を損なわない範囲で、界面活性剤、シランカップラ等の添加剤や他の重合体等が配合されていてもよい。 The coating liquid thus obtained may contain additives such as a surfactant, a silane coupler, and other polymers as long as the effects of the present invention are not impaired.

本発明の塗液は、基材の表面に塗布、乾燥することによって、基材表面に積層一体化された多孔質PI被膜を形成させることができる。適用される基材の種類に制限はないが、多孔質であることが好ましい。本発明の塗液を、蓄電素子用セパレータに用いる場合には、基材は、フィルム状の多孔質基材であることが特に好ましい。 The coating liquid of the present invention can be applied to the surface of the base material and dried to form a porous PI film laminated and integrated on the surface of the base material. The type of base material to be applied is not limited, but is preferably porous. When the coating liquid of the present invention is used as a separator for a power storage element, the base material is particularly preferably a film-like porous base material.

多孔質フィルムの種類に制限はないが、具体的には、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン(PO)、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリアセタール、ポリアミド、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン等の多孔質フィルムを挙げることができる。これらの中で、良好なシャットダウン特性を有する多孔質POフィルムが好ましい。多孔質POフィルムは、市販品を用いることができる。 The type of porous film is not limited, but specifically, for example, polyolefin (PO) such as polyethylene and polypropylene, polyester such as polyethylene terephthalate and polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyimide, and polyetheretherketone. , Polyethersulfone and other porous films can be mentioned. Among these, a porous PO film having good shutdown characteristics is preferable. As the porous PO film, a commercially available product can be used.

多孔質フィルムの厚みに制限はないが、通常、2〜50μm程度である。また、多孔質フィルムの平均気孔径や気孔率も制限はないが、平均気孔径は0.1〜10μm、気孔率は10%〜90%であることが好ましい。ここで、平均気孔径は水銀圧入式ポロシメータにより測定することができる。気孔率は、多孔質フィルムの真密度(d)、多孔質フィルムの体積(v)および多孔質フィルムの質量(m)から以下の式を用いて算出することができる。
気孔率(%)={1−m/(vd)}×100
The thickness of the porous film is not limited, but is usually about 2 to 50 μm. The average pore diameter and porosity of the porous film are also not limited, but the average pore diameter is preferably 0.1 to 10 μm and the porosity is preferably 10% to 90%. Here, the average pore diameter can be measured by a mercury press-fitting porosimeter. The porosity can be calculated from the true density (d) of the porous film, the volume (v) of the porous film, and the mass (m) of the porous film using the following formula.
Porosity (%) = {1-m / (vd)} x 100

本発明の塗液を多孔質フィルム表面(両面または片面)に塗布する方法としては、公知の塗布法を用いることができる。 具体的には、例えば、グラビアコータ法、リバースロールコータ法、トランスファロールコータ法、キスコータ法、ディップコータ法、ナイフコータ法、エアドクタコータ法、ブレードコータ法、ロッドコータ法、スクイズコータ法、キャストコータ法、ダイコータ法、スクリーン印刷法、スプレ塗布法等の方法を用いることができる。 As a method of applying the coating liquid of the present invention to the surface (both sides or one side) of the porous film, a known coating method can be used. Specifically, for example, the gravure coater method, the reverse roll coater method, the transfer coater method, the kiss coater method, the dip coater method, the knife coater method, the air doctor coater method, the blade coater method, the rod coater method, the squeeze coater method, and the cast coater method. A method such as a method, a die coater method, a screen printing method, or a spray coating method can be used.

本発明の塗液を蓄電素子セパレータとして用いる場合、PI多孔質層は、充分なイオン伝導性の確保と機械的強度を有することが必要である。この観点から、PI多孔質層の平均気孔径は、5nm〜5μmであることが好ましく、10nm〜3μmがより好ましい。また、気孔率は、20〜90%であることが好ましく、20〜70%であることがより好ましい。ここで、平均気孔径は水銀圧入式ポロシメータにより測定できる。また、気孔率は、PIの真密度(d1)、フィラの真密度(d2)、PI多孔質層の体積(v)およびPI多孔質層の質量(m)から、以下の式を用いて算出することができる。
気孔率(%)={1−m/(vd1)−m/(vd2)}×100
なお、PI多孔質層の気孔率や平均気孔径は、フィラの粒子径やフィラ/PIの質量比を選ぶことにより制御することができる
When the coating liquid of the present invention is used as a power storage element separator, the PI porous layer needs to have sufficient ionic conductivity and mechanical strength. From this viewpoint, the average pore diameter of the PI porous layer is preferably 5 nm to 5 μm, more preferably 10 nm to 3 μm. The porosity is preferably 20 to 90%, more preferably 20 to 70%. Here, the average pore diameter can be measured by a mercury press-fitting porosimeter. The porosity is calculated from the true density of PI (d1), the true density of filler (d2), the volume of the PI porous layer (v), and the mass of the PI porous layer (m) using the following formula. can do.
Porosity (%) = {1-m / (vd1) -m / (vd2)} x 100
The porosity and average pore size of the PI porous layer can be controlled by selecting the particle size of the filler and the mass ratio of the filler / PI.

セパレータとして本発明の積層体が用いられた蓄電素子は、正極、負極、前記セパレータおよび電解液を備えてなる。具体的には、正極と負極の間にセパレータを配置し、これに電解液を含浸させることによって蓄電素子とすることができる。PI多孔質層を多孔質基材の片面にのみに備えるセパレータを用いる場合、PI多孔質層が形成された面を、正極側、負極側いずれの位置に配置してもよい。 A power storage element in which the laminate of the present invention is used as a separator includes a positive electrode, a negative electrode, the separator, and an electrolytic solution. Specifically, a separator can be arranged between the positive electrode and the negative electrode, and the separator can be impregnated with an electrolytic solution to form a power storage element. When a separator having the PI porous layer provided only on one side of the porous base material is used, the surface on which the PI porous layer is formed may be arranged at either the positive electrode side or the negative electrode side.

以上、本発明の塗液を蓄電素子セパレータ用の多孔質PI被膜形成用として用いる例について詳しく述べたが、本発明の塗液は、蓄電素子の電極活物質層形成用としても、好適に用いることができる。すなわち、塗液中のフィラを電極活物質粒子とし、これから得られる塗液を集電体上に、塗布、乾燥して、電極活物質層を形成することにより、残留アミド系溶媒の含有量が低減された電極を得ることができる。
なお、特開2002−252038号公報、特開2013−65409号公報等の特許文献に詳しく記載されているように、蓄電素子の電極においても、蓄電素子の特性向上のために残留アミド系溶媒の低減化が必要である。
The example in which the coating liquid of the present invention is used for forming a porous PI film for a power storage element separator has been described in detail above, but the coating liquid of the present invention is also suitably used for forming an electrode active material layer of a power storage element. be able to. That is, the filler in the coating liquid is used as the electrode active material particles, and the coating liquid obtained from this is applied and dried on the current collector to form the electrode active material layer, whereby the content of the residual amide solvent is increased. A reduced electrode can be obtained.
As described in detail in patent documents such as JP-A-2002-252038 and JP-A-2013-65409, even in the electrode of the power storage element, a residual amide solvent is used to improve the characteristics of the power storage element. Reduction is necessary.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例のみに限定されない。 Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited to these examples.

<実施例1>
ディーンスタークトラップとコンデンサとを取り付けた反応容器に、0.60モル(177g)のBPDA、0.59モルのDDA(プリアミン1075:325g)、400gのNMP、800gのp−キシレンを投入し、40℃で1時間攪拌して、ポリアミック酸溶液を得た。この溶液を昇温し、還流下で20時間加熱、攪拌して、イミド化による発生する水を共沸除去することにより反応を進め、イミド化を完結した。冷却後、この溶液を、攪拌下で、大量のメタノール中に投入して、PIを再沈殿し、これを、濾過、洗浄、乾燥することにより、固体状のPIを得た。これを、THFとシクロヘキサンとからなる混合溶媒(THF/シクロヘキサン質量比:60/40)に再溶解して、濃度が15質量%のPI溶液(P−1)を得た。このPIの重量平均分子量(Mw)は、58600であった。次に、P−1に、平均粒子径が0.3μmの略球状アルミナ粉体と、前記混合溶媒を加え、ボールミルを用いて混合し、塗液(C−1)を得た。 C−1のPI濃度は、塗液質量に対し5質量%、アルミナ濃度は塗液質量に対し20質量%、NMP濃度は、全溶媒質量に対し0.2質量%であった。なお、NMP濃度は、ガスクロマトグラフ法で確認した。
<Example 1>
In a reaction vessel equipped with a Dean Stark trap and a condenser, 0.60 mol (177 g) of BPDA, 0.59 mol of DDA (priamine 1075: 325 g), 400 g of NMP, and 800 g of p-xylene were charged, and 40. Stirring at ° C. for 1 hour gave a polyamic acid solution. The temperature of this solution was raised, heated and stirred under reflux for 20 hours, and the water generated by imidization was azeotropically removed to advance the reaction and complete imidization. After cooling, the solution was poured into a large amount of methanol under stirring to reprecipitate the PI, which was filtered, washed and dried to give a solid PI. This was redissolved in a mixed solvent consisting of THF and cyclohexane (THF / cyclohexane mass ratio: 60/40) to obtain a PI solution (P-1) having a concentration of 15% by mass. The weight average molecular weight (Mw) of this PI was 58600. Next, substantially spherical alumina powder having an average particle size of 0.3 μm and the mixed solvent were added to P-1 and mixed using a ball mill to obtain a coating liquid (C-1). The PI concentration of C-1 was 5% by mass with respect to the mass of the coating liquid, the alumina concentration was 20% by mass with respect to the mass of the coating liquid, and the NMP concentration was 0.2% by mass with respect to the total mass of the solvent. The NMP concentration was confirmed by gas chromatography.

<実施例2>
BPDAをPMDAとしたこと以外は、実施例1と同様にして、PI溶液(P−2)を得た。このPIの重量平均分子量(Mw)は、62100であった。P−2に、実施例1と同様にしてアルミナ粉体を配合して、塗液(C−2)を得た。C−2中のNMP濃度は、全溶媒質量に対し0.2質量%であった。
<Example 2>
A PI solution (P-2) was obtained in the same manner as in Example 1 except that BPDA was used as PMDA. The weight average molecular weight (Mw) of this PI was 62100. Alumina powder was blended with P-2 in the same manner as in Example 1 to obtain a coating liquid (C-2). The NMP concentration in C-2 was 0.2% by mass with respect to the total solvent mass.

<実施例3>
BPDAをBTDAとしたこと以外は、実施例1と同様にして、PI溶液(P−3)を得た。このPIの重量平均分子量(Mw)は、62100であった。P−3に、実施例1と同様にしてアルミナ粉体を配合して、塗液(C−3)を得た。C−3中のNMP濃度は、全溶媒質量に対し0.2質量%であった。
<Example 3>
A PI solution (P-3) was obtained in the same manner as in Example 1 except that BPDA was BTDA. The weight average molecular weight (Mw) of this PI was 62100. Alumina powder was blended with P-3 in the same manner as in Example 1 to obtain a coating liquid (C-3). The NMP concentration in C-3 was 0.2% by mass with respect to the total solvent mass.

<実施例4>
固体状のPIを再溶解するための溶媒を、ジグライム/石油エーテル(質量比:70/30)からなる混合溶媒としたこと以外は、実施例2と同様にして、塗液(C−4)を得た。C−4中のNMP濃度は、全溶媒質量に対し0.2質量%であった。
<Example 4>
The coating liquid (C-4) is the same as in Example 2 except that the solvent for redissolving the solid PI is a mixed solvent composed of diglyme / petroleum ether (mass ratio: 70/30). Got The NMP concentration in C-4 was 0.2% by mass with respect to the total solvent mass.

<実施例5>
固体状のPIを再溶解するための溶媒を、THF/トルエン(質量比:70/30)からなる混合溶媒としたこと以外は、実施例2と同様にして、塗液(C−5)を得た。C−5中のNMP濃度は、全溶媒質量に対し0.2質量%であった。
<Example 5>
The coating liquid (C-5) was applied in the same manner as in Example 2 except that the solvent for redissolving the solid PI was a mixed solvent composed of THF / toluene (mass ratio: 70/30). Obtained. The NMP concentration in C-5 was 0.2% by mass with respect to the total solvent mass.

<実施例6>
固体状のPIを再溶解するための溶媒を、トルエン/p−キシレン(質量比:70/30)からなる混合溶媒としたこと以外は、実施例1と同様にして、塗液(C−6)を得た。C−6中のNMP濃度は、全溶媒質量に対し0.2質量%であった。
<Example 6>
The coating liquid (C-6) was the same as in Example 1 except that the solvent for redissolving the solid PI was a mixed solvent composed of toluene / p-xylene (mass ratio: 70/30). ) Was obtained. The NMP concentration in C-6 was 0.2% by mass with respect to the total solvent mass.

<実施例7>
固体状のPIを再溶解するための溶媒を、トルエンのみとしたこと以外は、実施例1と同様にして、塗液(C−7)を得た。C−7中のNMP濃度は、全溶媒質量に対し0.2質量%であった。
<Example 7>
A coating liquid (C-7) was obtained in the same manner as in Example 1 except that toluene was the only solvent for redissolving the solid PI. The NMP concentration in C-7 was 0.2% by mass with respect to the total solvent mass.

<実施例8>
固体状のPIを再溶解するための溶媒を、THFのみとしたこと以外は、実施例1と同様にして、塗液(C−8)を得た。C−8中のNMP濃度は、全溶媒質量に対し0.2質量%であった。
<Example 8>
A coating liquid (C-8) was obtained in the same manner as in Example 1 except that the solvent for redissolving the solid PI was only THF. The NMP concentration in C-8 was 0.2% by mass with respect to the total solvent mass.

<実施例9>
固体状のPIを再溶解するための溶媒を、トルエンとNMPとからなる混合溶媒(トルエン/NMP質量比:95/5)としたこと以外は、実施例1と同様にして、塗液(C−9)を得た。C−9中のNMP濃度は、全溶媒質量に対し5.2質量%であった。
<Example 9>
The coating liquid (C) was the same as in Example 1 except that the solvent for redissolving the solid PI was a mixed solvent composed of toluene and NMP (toluene / NMP mass ratio: 95/5). -9) was obtained. The NMP concentration in C-9 was 5.2% by mass with respect to the total solvent mass.

<実施例10>
固体状のPIを再溶解するための溶媒を、トルエンとDMAcとからなる混合溶媒(トルエン/DMAc質量比:80/20)としたこと以外は、実施例1と同様にして、塗液(C−10)を得た。C−10中のNMP濃度は、全溶媒質量に対し0.2質量%、DMAc濃度は、全溶媒質量に対し20質量%であった。 従い、アミド系溶媒の濃度は、全溶媒質量に対し20.2質量%であった。
<Example 10>
The coating liquid (C) was the same as in Example 1 except that the solvent for redissolving the solid PI was a mixed solvent composed of toluene and DMAc (toluene / DMAc mass ratio: 80/20). -10) was obtained. The NMP concentration in C-10 was 0.2% by mass with respect to the total solvent mass, and the DMAc concentration was 20% by mass with respect to the total solvent mass. Therefore, the concentration of the amide solvent was 20.2% by mass with respect to the total mass of the solvent.

<比較例1>
固体状のPIを再溶解するための溶媒を、NMPとしたこと以外は、実施例1と同様にして、塗液(C−11)を得た。
<Comparative example 1>
A coating liquid (C-11) was obtained in the same manner as in Example 1 except that the solvent for redissolving the solid PI was NMP.

<比較例2>
固体状のPIを再溶解するための溶媒を、DMAcとしたこと以外は、実施例1と同様にして、塗液(C−12)を得た。
<Comparative example 2>
A coating liquid (C-12) was obtained in the same manner as in Example 1 except that the solvent for redissolving the solid PI was DMAc.

<比較例3>
固体状のPIを再溶解するための溶媒を、NMP/トルエン(質量比:50/50)からなる混合溶媒としたこと以外は、実施例1と同様にして、塗液(C−13)を得た。
<Comparative example 3>
The coating liquid (C-13) was applied in the same manner as in Example 1 except that the solvent for redissolving the solid PI was a mixed solvent composed of NMP / toluene (mass ratio: 50/50). Obtained.

<比較例4>
DDAを、4,4’−ジアミノジフェニルエーテルとしたこと以外は、実施例1と同様にして、PI溶液を得ようとしたが、均一な溶液を得ることができなかった。
<Comparative example 4>
An attempt was made to obtain a PI solution in the same manner as in Example 1 except that the DDA was 4,4'-diaminodiphenyl ether, but a uniform solution could not be obtained.

<比較例5>
DDAを、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパンとしたこと以外は、実施例2と同様にして、PI溶液を得ようとしたが、均一な溶液を得ることができなかった。
<Comparative example 5>
An attempt was made to obtain a PI solution in the same manner as in Example 2 except that the DDA was 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, but a uniform solution was obtained. I couldn't.

<実施例11>
実施例1〜10で得られた塗液(C1〜C10)を、グラビアコータ法で多孔質ポリエチレンフィルム(厚み:20μm、気孔率:40%)上に塗布し、風乾後、熱風乾燥器を用い、120℃で10分乾燥して、片面あたり厚み5μmの多孔質PI被膜が多孔質ポリエチレンフィルム両面に形成された積層体(L1〜L10)を得た。いずれのサンプルにおいても、塗工性は、極めて良好であった。PI多孔質層の平均気孔径は、L1〜L10全てのサンプルにおいて、0.6〜0.7μmの範囲であった。 また、PI多孔質層の気孔率は、L1〜L10全てのサンプルにおいて、63〜66%の範囲であった。
L1〜L10の多孔質PI被膜を、過剰のDMFを用いて再分散し、フィラとして用いたアルミナを濾過することにより、PIを再溶解するために用いた溶媒の残留量をガスクロマトグラフ法で確認したところ、L1〜L10のいずれのサンプルにおいても、その残留量は、多孔質PI被膜に対し、1質量%未満であった。
<Example 11>
The coating liquids (C1 to C10) obtained in Examples 1 to 10 are applied onto a porous polyethylene film (thickness: 20 μm, porosity: 40%) by a gravure coater method, air-dried, and then air-dried using a hot air dryer. , 120 ° C. for 10 minutes to obtain a laminate (L1 to L10) in which a porous PI film having a thickness of 5 μm per side was formed on both sides of the porous polyethylene film. The coatability was extremely good in all the samples. The average pore diameter of the PI porous layer was in the range of 0.6 to 0.7 μm in all the samples of L1 to L10. The porosity of the PI porous layer was in the range of 63 to 66% in all the samples of L1 to L10.
The porous PI coatings of L1 to L10 are redispersed using excess DMF, and the alumina used as a filler is filtered to confirm the residual amount of the solvent used for redissolving PI by gas chromatography. As a result, in each of the samples L1 to L10, the residual amount was less than 1% by mass with respect to the porous PI coating.

<比較例6>
比較例1〜3で得られた塗液(C11〜C13)を、実施例5と同様にして片面あたり厚み5μmの多孔質PI被膜がポリエチレン製多孔膜両面に形成された積層体(L11〜L13)を得た。PI多孔質層の平均気孔径は、L11〜L13全てのサンプルにおいて、0.5〜0.6μmの範囲であった。 また、PI多孔質層の平均気孔径は、L11〜L13全てのサンプルにおいて、気孔率は60〜63%の範囲であった。
L11〜L13の多孔質PI被膜の溶媒残留量を、実施例11と同様にしてガスクロマトグラフ法で確認したところ、L11〜L13のいずれのサンプルにおいても、多孔質PI被膜質量に対し、3〜4質量%のアミド系溶媒(NMPまたはDMAc)が残留していた。
<Comparative Example 6>
The coating liquids (C11 to C13) obtained in Comparative Examples 1 to 3 were subjected to a laminate (L11 to L13) in which a porous PI film having a thickness of 5 μm per side was formed on both sides of a polyethylene porous film in the same manner as in Example 5. ) Was obtained. The average pore diameter of the PI porous layer was in the range of 0.5 to 0.6 μm in all the samples of L11 to L13. The average porosity of the PI porous layer was in the range of 60 to 63% in all the samples L11 to L13.
When the solvent residual amount of the porous PI coatings of L11 to L13 was confirmed by the gas chromatograph method in the same manner as in Example 11, all the samples of L11 to L13 had 3 to 4 with respect to the mass of the porous PI coating. A mass% of amide solvent (NMP or DMAc) remained.

<実施例12>
実施例11で得られた積層体(L1〜L10)のイオン抵抗率をJournal of Power Sources 164 (2007) 351-364頁、Chem.Rev.104(2004)4430頁記載の方法に基づき測定した。 すなわち、この積層体に、電解液(溶媒:エチレンカーボネートとジメチルカーボネートとを体積比で1:1の割合で混合した混合溶媒、電解質:1MLiPF)を含浸してセパレータとした後、これを電極として用いたステンレス箔に挟んだブロッキングセルを構成し、このセルを用い、1000KHzでのインピーダンスを測定することにより、イオン抵抗率(Rs)を算出した。その結果、Rsは、L1〜L10全てのサンプルにおいて、3.7〜3.9Ωcmの範囲であった。
<Example 12>
The ionic resistivity of the laminates (L1 to L10) obtained in Example 11 was described in Journal of Power Sources 164 (2007), pp. 351-364, Chem. Rev. Measurements were made according to the method described on page 104 (2004) 4430. That is, this laminate is impregnated with an electrolytic solution (solvent: a mixed solvent in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 1; electrolyte: 1MLiPF 6 ) to form a separator, and then this is used as an electrode. The ion resistance (Rs) was calculated by constructing a blocking cell sandwiched between the stainless foils used as the above and measuring the impedance at 1000 KHz using this cell. As a result, Rs was in the range of 3.7 to 3.9 Ωcm 2 in all the samples of L1 to L10.

<比較例7>
比較例6で得られた積層体(L11〜L13)のRsを、実施例10と同様にして測定した。その結果、Rsは、L11〜L13全てのサンプルにおいて、4.1〜4.5Ωcmの範囲であった。
<Comparative Example 7>
The Rs of the laminates (L11 to L13) obtained in Comparative Example 6 were measured in the same manner as in Example 10. As a result, Rs was in the range of 4.1 to 4.5 Ωcm 2 in all the samples of L11 to L13.

実施例、比較例で示したように、本発明の塗液から形成される多孔質PI被膜中には、アミド系溶媒が残留しにくい。このため、多孔質POフィルム表面に形成された多孔質PI被膜は、イオン伝導性が良好となり、電気抵抗の低い被膜が得られる。 As shown in Examples and Comparative Examples, the amide-based solvent is unlikely to remain in the porous PI coating formed from the coating liquid of the present invention. Therefore, the porous PI film formed on the surface of the porous PO film has good ionic conductivity, and a film having low electrical resistance can be obtained.

本発明の塗液は、塗布、乾燥の際、アミド系溶媒が残留しにくい。さらにこれを用いて、多孔質POフィルム表面に形成された多孔質PI被膜は、イオン伝導性が良好なので電気抵抗が低いことが判る。従い、蓄電素子用のセパレータとして好適に用いることができる。
また、本発明の塗液は、蓄電素子用の電極形成用としても用いることができる。
In the coating liquid of the present invention, the amide-based solvent does not easily remain during coating and drying. Further, using this, it can be seen that the porous PI film formed on the surface of the porous PO film has good ionic conductivity and therefore low electrical resistance. Therefore, it can be suitably used as a separator for a power storage element.
The coating liquid of the present invention can also be used for forming electrodes for power storage elements.

Claims (3)

基材表面に塗布、乾燥することにより、フィラを含有する多孔質ポリイミド被膜を形成するために用いられる塗液であって、ポリイミドとフィラと溶媒とからなり、ポリイミドは、芳香族テトラカルボン酸二無水物と脂肪族ジアミンとを反応させて得られるものであり、溶媒中のアミド系溶媒含有量が、全溶媒質量に対し、30質量%以下であることを特徴とする多孔質被膜形成用塗液。 A coating liquid used to form a porous polyimide film containing a filler by applying and drying on the surface of a substrate, which is composed of a polyimide, a filler, and a solvent. The polyimide is an aromatic tetracarboxylic acid diamine. A coating for forming a porous film, which is obtained by reacting an anhydride with an aliphatic diamine and having an amide-based solvent content in the solvent of 30% by mass or less based on the total solvent mass. liquid. 請求項1記載の塗液を、多孔質基材表面に塗布、乾燥して得られる、多孔質ポリイミド被膜が多孔質基材表面に形成された積層体。 A laminate in which a porous polyimide film is formed on the surface of a porous substrate, which is obtained by applying the coating liquid according to claim 1 to the surface of the porous substrate and drying it. 請求項2記載の積層体の蓄電素子セパレータへの使用。
Use of the laminate according to claim 2 for a power storage element separator.
JP2017013480A 2017-01-27 2017-01-27 Coating liquid, laminate and its use Active JP6962538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017013480A JP6962538B2 (en) 2017-01-27 2017-01-27 Coating liquid, laminate and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017013480A JP6962538B2 (en) 2017-01-27 2017-01-27 Coating liquid, laminate and its use

Publications (2)

Publication Number Publication Date
JP2018120832A JP2018120832A (en) 2018-08-02
JP6962538B2 true JP6962538B2 (en) 2021-11-05

Family

ID=63045329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013480A Active JP6962538B2 (en) 2017-01-27 2017-01-27 Coating liquid, laminate and its use

Country Status (1)

Country Link
JP (1) JP6962538B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020150886A1 (en) * 2019-01-22 2020-07-30 东莞东阳光科研发有限公司 Polyimide microsphere slurry, composite separator, and lithium-ion battery
CN111403667B (en) * 2020-04-13 2022-12-30 上海极紫科技有限公司 Composition of high-temperature-resistant lithium battery diaphragm and preparation method thereof
JP6881664B1 (en) * 2020-10-15 2021-06-02 荒川化学工業株式会社 Polyimide resin composition, adhesive composition, film-like adhesive, adhesive sheet, copper foil with resin, copper-clad laminate, printed wiring board and polyimide film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157599A (en) * 1994-10-07 1996-06-18 Unitika Ltd Polyamic acid solution and polyimide film or polyimide-coated article produced therefrom
JP4461606B2 (en) * 2000-10-31 2010-05-12 宇部興産株式会社 Polyimide powder manufacturing method, polyimide powder, polyimide powder molded body and manufacturing method thereof
US20130288120A1 (en) * 2011-07-08 2013-10-31 Mitsui Chemicals Inc. Polyimide resin composition and laminate including polyimide resin composition
EP2790248B1 (en) * 2011-12-09 2017-08-23 Tokyo Metropolitan University Lithium secondary battery separator and method of manufacturing same
JP6701834B2 (en) * 2015-03-26 2020-05-27 富士ゼロックス株式会社 Method for producing resin particle-dispersed polyimide precursor solution, resin particle-dispersed polyimide precursor solution, resin particle-containing polyimide film, method for producing porous polyimide film, and porous polyimide film

Also Published As

Publication number Publication date
JP2018120832A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP5834930B2 (en) Polyimide precursor aqueous solution composition and method for producing polyimide precursor aqueous solution composition
JP6728680B2 (en) Heat-resistant nonwoven fabric and method for producing the same
JP6436370B2 (en) Conductive aromatic polyimide porous membrane and method for producing the same
CN107001681B (en) Porous polyimide film and its manufacturing method
JP6218931B2 (en) Laminated porous film and method for producing the same
JP6780259B2 (en) Polyimide precursor composition and method for producing polyimide precursor composition
JP6962538B2 (en) Coating liquid, laminate and its use
WO2012008543A1 (en) Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
JP7158088B2 (en) Binder solution and coating liquid
EP3534431A1 (en) Separator for nonaqueous-electrolyte cell, and nonaqueous-electrolyte cell
Chisca et al. Effect of the chemical structure of aromatic-cycloaliphatic copolyimide films on their surface morphology, relaxation behavior and dielectric properties
KR20170047281A (en) Varnish for porous polyimide film production and method for producing porous polyimide film using same
WO2017073766A1 (en) Polyimide solution for electricity storage element electrodes, method for producing electricity storage element electrode, and electricity storage element electrode
JP6962548B2 (en) Polyamide-imide solution for power storage element electrodes, manufacturing method of power storage element electrodes, and power storage element electrodes
CN112980186A (en) Polyimide precursor solution and method for producing polyimide film
KR102224504B1 (en) Polyamic acid composition, method for preparing polyamic acid composition and polyimide comprising the same
JP2019131747A (en) Porous polyimide film roll, production method thereof, and composition
JP2023035685A (en) Polyimide precursor solution, porous polyimide film, and insulated wire
JP2014214167A (en) Method for producing unfired composite film, polyimide-fine particle composite film, and porous polyimide film
TWI496816B (en) Polyimide precursor aqueous composition and method for preparing the same
JP2021068847A (en) Circuit board and manufacturing method thereof
JP6860925B2 (en) Non-crosslinked polymaleimide, its manufacturing method, and binder solution for power storage devices
KR102507934B1 (en) Porous composite and method for producing the same
CN115772274A (en) Polyimide precursor solution, porous polyimide film, separator for secondary battery, and secondary battery
JP2023034978A (en) Polyimide precursor solution, porous polyimide film, and insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211007

R150 Certificate of patent or registration of utility model

Ref document number: 6962538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250