JP6962235B2 - Manufacturing method of positive electrode for lithium ion secondary battery - Google Patents

Manufacturing method of positive electrode for lithium ion secondary battery Download PDF

Info

Publication number
JP6962235B2
JP6962235B2 JP2018030666A JP2018030666A JP6962235B2 JP 6962235 B2 JP6962235 B2 JP 6962235B2 JP 2018030666 A JP2018030666 A JP 2018030666A JP 2018030666 A JP2018030666 A JP 2018030666A JP 6962235 B2 JP6962235 B2 JP 6962235B2
Authority
JP
Japan
Prior art keywords
positive electrode
porous
base material
rolling
granulated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018030666A
Other languages
Japanese (ja)
Other versions
JP2019145447A (en
Inventor
邦彦 林
峻 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018030666A priority Critical patent/JP6962235B2/en
Publication of JP2019145447A publication Critical patent/JP2019145447A/en
Application granted granted Critical
Publication of JP6962235B2 publication Critical patent/JP6962235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本開示は、リチウムイオン二次電池用正極の製造方法に関する。 The present disclosure relates to a method for manufacturing a positive electrode for a lithium ion secondary battery.

特開平6−196169号公報(特許文献1)は、発泡アルミニウム(Al)にスラリーを含浸することにより、リチウムイオン二次電池用正極(以下単に「正極」と記される場合がある)を製造することを開示している。 Japanese Patent Application Laid-Open No. 6-196169 (Patent Document 1) manufactures a positive electrode for a lithium ion secondary battery (hereinafter, may be simply referred to as “positive electrode”) by impregnating aluminum foam (Al) with a slurry. It discloses what to do.

特開平6−196169号公報Japanese Unexamined Patent Publication No. 6-196169

正極の集電体としてAl箔が普及している。典型的には、Al箔の表面に、正極合材スラリーが塗布され、乾燥されることにより、正極が製造される。正極合材スラリーは、溶媒中に正極合材が分散した粒子分散液である。正極合材スラリーは、正極活物質、導電材、結着材および溶媒等が混合されることにより調製され得る。正極合材は、正極活物質、導電材、および結着材を含む。 Al foil is widely used as a current collector for the positive electrode. Typically, a positive electrode mixture slurry is applied to the surface of the Al foil and dried to produce a positive electrode. The positive electrode mixture slurry is a particle dispersion liquid in which the positive electrode mixture is dispersed in a solvent. The positive electrode mixture slurry can be prepared by mixing a positive electrode active material, a conductive material, a binder, a solvent and the like. The positive electrode mixture includes a positive electrode active material, a conductive material, and a binder.

集電体として、発泡Alのような多孔質Al基材も提案されている(特許文献1)。ただし集電体としての多孔質Al基材の普及は進んでいない。電池のエネルギー密度を高めることが困難なためである。すなわち多孔質Al基材への含浸性を確保するためには、正極合材スラリーの粘度が、ある程度低い必要がある。そのため正極合材スラリーの固形分比率(NV)が必然的に低くなる。本明細書において「正極合材スラリーのNV」とは、正極合材スラリーにおいて溶媒以外の成分である正極活物質、導電材、および結着材(すなわち正極合材)が占める質量比率(質量%)を示す。正極合材スラリーのNVが低い場合、多孔質Al基材に正極合材を密に充填することが困難となると考えられる。 As a current collector, a porous Al base material such as foamed Al has also been proposed (Patent Document 1). However, the spread of porous Al base materials as current collectors has not progressed. This is because it is difficult to increase the energy density of the battery. That is, in order to ensure the impregnation property into the porous Al substrate, the viscosity of the positive electrode mixture slurry needs to be low to some extent. Therefore, the solid content ratio (NV) of the positive electrode mixture slurry is inevitably low. In the present specification, the "NV of the positive electrode mixture slurry" is the mass ratio (mass%) of the positive electrode active material, the conductive material, and the binder (that is, the positive electrode mixture) which are components other than the solvent in the positive electrode mixture slurry. ) Is shown. When the NV of the positive electrode mixture slurry is low, it is considered difficult to densely fill the porous Al base material with the positive electrode mixture.

本開示の目的は、多孔質Al基材に正極合材が密に充填されつつ、短絡率を抑制し得る正極を提供することにある。 An object of the present disclosure is to provide a positive electrode capable of suppressing a short circuit rate while densely filling a porous Al base material with a positive electrode mixture.

以下、本開示の技術的構成および作用効果が説明される。ただし、本開示の作用メカニズムは推定を含んでいる。作用メカニズムの正否により、本開示の範囲が限定されるべきではない。 Hereinafter, the technical configuration and the action and effect of the present disclosure will be described. However, the mechanism of action of the present disclosure involves estimation. The correctness of the mechanism of action should not limit the scope of this disclosure.

本開示のリチウムイオン二次電池用正極の製造方法は、以下の(A)〜(F)を含む。
(A)第1正極活物質、第1導電材、第1結着材、および第1溶媒を混合することにより、第1造粒体を調製する(第1造粒体調製工程)。
(B)第2正極活物質、第2導電材、第2結着材、および第2溶媒を混合することにより、第2造粒体を調製する(第2造粒体調製工程)。
(C)第1造粒体を多孔質アルミニウム基材に充填する(充填工程)。
(D)第1造粒体が充填された多孔質アルミニウム基材を圧延する(第1圧延工程)。
(E)第1圧延工程を経た多孔質アルミニウム基材上に第2造粒体を配置する(配置工程)。
(F)配置工程を経た多孔質アルミニウム基材を圧延する(第2圧延工程)。
第1造粒体および第2造粒体は、それぞれ85質量%以上100質量%未満の固形分比率(NV)を有する。第1造粒体は、多孔質アルミニウム基材の平均開気孔径よりも小さいメジアン径を有するように調製される。
The method for producing a positive electrode for a lithium ion secondary battery of the present disclosure includes the following (A) to (F).
(A) A first granulated body is prepared by mixing a first positive electrode active material, a first conductive material, a first binder, and a first solvent (first granulated body preparation step).
(B) A second granulation body is prepared by mixing a second positive electrode active material, a second conductive material, a second binder, and a second solvent (second granulation body preparation step).
(C) The first granulated body is filled in a porous aluminum base material (filling step).
(D) The porous aluminum base material filled with the first granulated body is rolled (first rolling step).
(E) The second granulated body is placed on the porous aluminum base material that has undergone the first rolling step (placement step).
(F) The porous aluminum base material that has undergone the placement step is rolled (second rolling step).
The first granulation body and the second granulation body each have a solid content ratio (NV) of 85% by mass or more and less than 100% by mass. The first granules are prepared to have a median diameter smaller than the average open pore diameter of the porous aluminum substrate.

正極合材スラリーのNVが高くなる(すなわち溶媒が少なくなる)と、正極合材スラリーの粘度が高くなり、含浸性が低下する。多孔質Al基材の内部まで正極合材スラリーが浸透しないため、正極合材の充填量が少なくなり、充填量のばらつきも大きくなると考えられる。 As the NV of the positive electrode mixture slurry increases (that is, the amount of solvent decreases), the viscosity of the positive electrode mixture slurry increases and the impregnation property decreases. Since the positive electrode mixture slurry does not penetrate into the inside of the porous Al base material, it is considered that the filling amount of the positive electrode mixture is reduced and the variation in the filling amount is large.

このような従来知見に対して、本開示の製造方法では、第1造粒体調製工程において加えられる溶媒が大幅に少ない。これにより、第1造粒体調製工において第1正極活物質、第1導電材、第1結着材、および第1溶媒を混合した混合物は、スラリーとはならず、粒の集合体(すなわち、第1造粒体)になると考えられる。なお、第2造粒体調製工程においても同様のことが言える。さらに第1造粒体は、多孔質Al基材の平均開気孔径よりも小さいメジアン径を有するように調製される。そのため、第1造粒体は多孔質Al基材の内部まで入り込むことができる。その結果、正極合材スラリーが使用される場合に比して、正極合材の充填量が増加すると考えられる。 In contrast to such conventional findings, in the production method of the present disclosure, the amount of solvent added in the first granulated body preparation step is significantly reduced. As a result, the mixture obtained by mixing the first positive electrode active material, the first conductive material, the first binder, and the first solvent in the first granulation preparation work does not become a slurry, but an aggregate of grains (that is, that is). , The first granule). The same can be said for the second granulated body preparation step. Further, the first granulated body is prepared so as to have a median diameter smaller than the average open pore diameter of the porous Al substrate. Therefore, the first granulated body can penetrate into the inside of the porous Al base material. As a result, it is considered that the filling amount of the positive electrode mixture increases as compared with the case where the positive electrode mixture slurry is used.

第1造粒体のNVが85質量%未満であると、混合時に第1造粒体の粒成長が進行しやすいため、小さいメジアン径を実現することが困難である。その結果、第1造粒体のメジアン径が、多孔質Al基材の平均開気孔径よりも大きくなり、充填量が減少する可能性がある。さらにNVが低くなると、混合物がスラリー化するため、第1造粒体が調製できない可能性もある。NVが100質量%である(すなわち溶媒が全く存在しない)場合、粒子の凝集が促進されず、第1造粒体を調製することが困難である。 If the NV of the first granulated product is less than 85% by mass, the grain growth of the first granulated product tends to proceed at the time of mixing, and it is difficult to realize a small median diameter. As a result, the median diameter of the first granulated body may be larger than the average open pore diameter of the porous Al substrate, and the filling amount may be reduced. If the NV is further lowered, the mixture becomes a slurry, so that the first granulated product may not be prepared. When the NV is 100% by weight (ie, in the absence of any solvent), the agglutination of the particles is not promoted and it is difficult to prepare the first granulation.

充填工程により第1造粒体が充填され、第1圧延工程を経た多孔質Al基材には、正極合材が密に充填されていると考えられる。なお、本明細書において「多孔質Al基材に正極合材が密に充填された」とは、正極単位面積当りにおける正極合材の充填量が19(mg/cm)以上であることを示す。 It is considered that the first granulated body is filled by the filling step, and the porous Al base material that has undergone the first rolling step is densely filled with the positive electrode mixture. In addition, in this specification, "the porous Al base material is densely filled with the positive electrode mixture" means that the filling amount of the positive electrode mixture per unit area of the positive electrode is 19 (mg / cm 2 ) or more. show.

しかしながら、充填工程により第1造粒体が充填され、第1圧延工程を経た多孔質Al基材を正極として電池を製造した場合、多孔質Al基材の表面で発生したバリが多孔質Al基材に充填された造粒体およびセパレータを貫通し、結果として短絡を発生させる可能性がある。 However, when the first granulated body is filled by the filling step and the battery is manufactured using the porous Al base material that has undergone the first rolling step as the positive electrode, the burrs generated on the surface of the porous Al base material are the porous Al base material. It can penetrate the granules and separators filled in the material and result in short circuits.

本開示の製造方法では、第2造粒体調製工程で調製された第2造粒体が配置工程において第1圧延工程を経た多孔質Al基材上に配置される。配置工程を経た多孔質Al基材は、その後第2圧延工程により圧延される。これにより、多孔質Al基材表面に存在していたバリは、第2造粒体により被覆されると考えられる。 In the production method of the present disclosure, the second granulation body prepared in the second granulation body preparation step is placed on the porous Al substrate that has undergone the first rolling step in the placement step. The porous Al base material that has undergone the placement step is then rolled by the second rolling step. As a result, it is considered that the burrs existing on the surface of the porous Al base material are covered with the second granulated body.

図3は、正極製造装置で製造された正極を示す模式図である。
図3に示されるように、正極100は第1層100aおよび第2層100bを含む。第1層100aは、多孔質Al基材に第1造粒体が充填されたものである。第2層100bは、第2圧延工程により圧延された第2造粒体により形成される層である。すなわち、多孔質Al基材は、第2圧延工程により圧延された第2造粒体により形成される層である第2層100bにより被覆されている。これにより、多孔質Al基材表面に存在していたバリが物理的に抑え込まれるものと考えられる。すなわち、多孔質Al基材に正極合材が密に充填されつつ、短絡率を抑制し得る正極が得られるものと期待される。
FIG. 3 is a schematic view showing a positive electrode manufactured by the positive electrode manufacturing apparatus.
As shown in FIG. 3, the positive electrode 100 includes a first layer 100a and a second layer 100b. The first layer 100a is a porous Al base material filled with the first granulated material. The second layer 100b is a layer formed by the second granulated body rolled by the second rolling step. That is, the porous Al base material is covered with the second layer 100b, which is a layer formed by the second granulated body rolled by the second rolling step. As a result, it is considered that the burrs existing on the surface of the porous Al base material are physically suppressed. That is, it is expected that a positive electrode capable of suppressing the short-circuit rate can be obtained while the porous Al base material is densely filled with the positive electrode mixture.

図1は、本開示の実施形態に係る正極の製造方法の概略を示すフローチャートである。FIG. 1 is a flowchart showing an outline of a method for manufacturing a positive electrode according to the embodiment of the present disclosure. 図2は、正極製造装置の構成の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the positive electrode manufacturing apparatus. 図3は、正極製造装置で製造された正極を示す模式図である。FIG. 3 is a schematic view showing a positive electrode manufactured by the positive electrode manufacturing apparatus.

以下、本開示の実施形態(以下「本実施形態」とも記される)が説明される。ただし以下の説明は本開示の範囲を限定するものではない。 Hereinafter, embodiments of the present disclosure (hereinafter, also referred to as “the present embodiment”) will be described. However, the following description does not limit the scope of this disclosure.

<リチウムイオン二次電池用正極の製造方法>
図1は、本開示の実施形態に係る正極の製造方法の概略を示すフローチャートである。本実施形態の製造方法は、「(A)第1造粒体調製工程」、「(B)第2造粒体調製工程」、「(C)充填工程」、「(D)第1圧延工程」、「(E)配置工程」、および「(F)第2圧延工程」を含む。以下、本実施形態の製造方法が順を追って説明される。
<Manufacturing method of positive electrode for lithium ion secondary battery>
FIG. 1 is a flowchart showing an outline of a method for manufacturing a positive electrode according to the embodiment of the present disclosure. The manufacturing method of this embodiment is "(A) first granulated body preparation step", "(B) second granulated body preparation step", "(C) filling step", "(D) first rolling step". , "(E) Arrangement step", and "(F) Second rolling step". Hereinafter, the manufacturing method of this embodiment will be described step by step.

《(A)第1造粒体調製工程》
本実施形態の製造方法は、第1正極活物質、第1導電材、第1結着材、および第1溶媒を混合することにより、第1造粒体を調製する第1造粒体調製工程を含む。
<< (A) First Granulation Preparation Step >>
The production method of the present embodiment is a first granulation body preparation step of preparing a first granulation body by mixing a first positive electrode active material, a first conductive material, a first binder, and a first solvent. including.

第1造粒体は、たとえば、攪拌造粒により調製される。本工程においては、一般的な攪拌造粒装置が使用され得る。たとえば、攪拌造粒装置の攪拌槽に、第1正極活物質、第1導電材、第1結着材、および第1溶媒が所定の質量比で投入され、攪拌、混合されることにより、第1造粒体が調製される。 The first granulated material is prepared, for example, by stirring granulation. In this step, a general stirring granulator can be used. For example, the first positive electrode active material, the first conductive material, the first binder, and the first solvent are charged into the stirring tank of the stirring granulator at a predetermined mass ratio, and the mixture is stirred and mixed to obtain the first positive electrode active material, the first conductive material, the first binder, and the first solvent. 1 Granulation is prepared.

好ましくは、第1正極活物質と第1導電材とが予め混合される。第1導電材が第1正極活物質に付着することにより、電子伝導性が向上することが期待される。その後、第1正極活物質と第1導電材との混合物に対して、第1結着材および第1溶媒が混合されることにより、第1造粒体が調製され得る。 Preferably, the first positive electrode active material and the first conductive material are mixed in advance. It is expected that the electron conductivity will be improved by adhering the first conductive material to the first positive electrode active material. Then, the first granulated body can be prepared by mixing the first binder and the first solvent with the mixture of the first positive electrode active material and the first conductive material.

本実施形態の第1造粒体は、85質量%以上100質量%未満のNVを有するように調製される。第1造粒体のNVが85質量%未満であると、第1造粒体の粒成長が進行しやすいため、小さいメジアン径を実現することが困難である。その結果、第1造粒体のメジアン径が、多孔質Al基材の平均開気孔径よりも大きくなり、充填量が減少する可能性がある。さらにNVが低くなると、混合物がスラリー化するため、第1造粒体が調製できない可能性もある。NVが100質量%である場合、粒子の凝集が促進されず、第1造粒体を調製することが困難である。第1造粒体は、好ましくは85質量%以上95質量%以下のNVを有するように調製される。 The first granulated product of the present embodiment is prepared so as to have an NV of 85% by mass or more and less than 100% by mass. If the NV of the first granulated body is less than 85% by mass, the grain growth of the first granulated body tends to proceed, so that it is difficult to realize a small median diameter. As a result, the median diameter of the first granulated body may be larger than the average open pore diameter of the porous Al substrate, and the filling amount may be reduced. If the NV is further lowered, the mixture becomes a slurry, so that the first granulated product may not be prepared. When the NV is 100% by mass, the agglutination of the particles is not promoted, and it is difficult to prepare the first granulated product. The first granulated body is preferably prepared to have an NV of 85% by mass or more and 95% by mass or less.

さらに第1造粒体は、後述の多孔質Al基材の平均開気孔径よりも小さいメジアン径を有するように調製される。これにより第1造粒体が多孔質Al基材の内部まで入り込むことができ、充填量が増加すると考えられる。本明細書の「メジアン径」は、レーザ回折散乱法によって測定される体積基準の粒度分布において微粒側から累積50%の粒径を示す。以下、メジアン径は「D50」とも記される。第1造粒体のD50は、NV、攪拌羽根の回転数、解砕羽根の回転数、攪拌時間等により調整され得る。攪拌羽根の回転数は、たとえば、3000〜6000rpm(典型的には4000〜5000rpm)であってもよい。攪拌時間は、たとえば、20〜60秒であってもよい。 Further, the first granulated body is prepared so as to have a median diameter smaller than the average open pore diameter of the porous Al substrate described later. As a result, it is considered that the first granulated body can penetrate into the inside of the porous Al base material, and the filling amount increases. The "median diameter" in the present specification indicates a cumulative 50% particle size from the fine particle side in a volume-based particle size distribution measured by a laser diffraction / scattering method. Hereinafter, the median diameter is also referred to as "D50". The D50 of the first granulated material can be adjusted by NV, the rotation speed of the stirring blade, the rotation speed of the crushing blade, the stirring time, and the like. The rotation speed of the stirring blade may be, for example, 3000 to 6000 rpm (typically 4000 to 5000 rpm). The stirring time may be, for example, 20 to 60 seconds.

第1造粒体は、好ましくは多孔質Al基材の平均開気孔径の1/2(2分の1)未満、より好ましくは多孔質Al基材の平均開気孔径の1/3(3分の1)未満、最も好ましくは多孔質Al基材の平均開気孔径の1/4(4分の1)未満のD50を有するように調製される。多孔質Al基材の平均開気孔径が、たとえば600μmのとき、第1造粒体は、たとえば97μm以上121μm以下のD50を有するように調製されてもよい。 The first granule is preferably less than 1/2 (1/2) of the average open pore diameter of the porous Al substrate, and more preferably 1/3 (3) of the average open pore diameter of the porous Al substrate. It is prepared to have a D50 of less than 1), most preferably less than 1/4 (1/4) of the average open pore size of the porous Al substrate. When the average open pore diameter of the porous Al substrate is, for example, 600 μm, the first granulated body may be prepared to have a D50 of, for example, 97 μm or more and 121 μm or less.

(第1正極活物質)
第1造粒体は、たとえば80〜98.5質量%の第1正極活物質を含むように調製されてもよい。第1正極活物質は特に限定されるべきではない。第1正極活物質は、たとえば、LiCoO、LiNiO、LiMnO、LiMn、LiNiCoMn(式中、x、y、zは、0<x<1、0<y<1、0<z<1、x+y+z=1を満たす)、LiFePO等であってもよい。1種の第1正極活物質が単独で使用されてもよいし、2種以上の第1正極活物質が組み合わされて使用されてもよい。第1正極活物質は、たとえば1〜30μmのD50を有してもよい。
(1st positive electrode active material)
The first granulated body may be prepared to contain, for example, 80 to 98.5% by mass of the first positive electrode active material. The first positive electrode active material should not be particularly limited. The first positive electrode active material, for example, LiCoO 2, LiNiO 2, LiMnO 2, LiMn 2 O 4, LiNi x Co y Mn z O 2 ( wherein, x, y, z are, 0 <x <1,0 < It may satisfy y <1, 0 <z <1, x + y + z = 1), LiFePO 4, and the like. One kind of first positive electrode active material may be used alone, or two or more kinds of first positive electrode active materials may be used in combination. The first positive electrode active material may have, for example, a D50 of 1 to 30 μm.

(第1導電材)
第1造粒体は、たとえば1〜15質量%の第1導電材を含むように調製されてもよい。第1導電材は特に限定されるべきではない。第1導電材は、たとえば、アセチレンブラック、サーマルブラック、ファーネスブラック、気相成長炭素繊維(VGCF)、黒鉛等であってもよい。1種の第1導電材が単独で使用されてもよいし、2種以上の第1導電材が組み合わされて使用されてもよい。
(1st conductive material)
The first granulated body may be prepared to contain, for example, 1 to 15% by mass of the first conductive material. The first conductive material should not be particularly limited. The first conductive material may be, for example, acetylene black, thermal black, furnace black, vapor-grown carbon fiber (VGCF), graphite or the like. One kind of first conductive material may be used alone, or two or more kinds of first conductive materials may be used in combination.

(第1結着材)
第1造粒体は、たとえば0.5〜5質量%の第1結着材を含むように調製されてもよい。結着材は特に限定されるべきではない。第1結着材は、たとえば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸(PAA)、カルボキシメチルセルロース(CMC)等であってもよい。1種の第1結着材が単独で使用されてもよいし、2種以上の第1結着材が組み合わされて使用されてもよい。
(1st binder)
The first granules may be prepared to contain, for example, 0.5-5% by weight of the first binder. The binder should not be particularly limited. The first binder may be, for example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylic acid (PAA), carboxymethyl cellulose (CMC) or the like. One kind of first binder may be used alone, or two or more kinds of first binders may be used in combination.

(第1溶媒)
第1溶媒は、第1結着材の分散性または溶解性が考慮され、適切なものが選択されるべきである。たとえば、第1結着材がPVdFである場合、N−メチル−2−ピロリドン(NMP)等の有機溶媒が第1溶媒として使用され得る。たとえば、第1結着材がPAA、CMC等である場合、水(純水)が第1溶媒として使用され得る。
(First solvent)
As the first solvent, an appropriate one should be selected in consideration of the dispersibility or solubility of the first binder. For example, when the first binder is PVdF, an organic solvent such as N-methyl-2-pyrrolidone (NMP) can be used as the first solvent. For example, when the first binder is PAA, CMC or the like, water (pure water) can be used as the first solvent.

《(B)第2造粒体調製工程》
本実施形態の製造方法は、第2正極活物質と第2導電材と第2結着材と第2溶媒とを混合することにより、第2造粒体を調製する第2造粒体調製工程を含む。第2造粒体は、第1造粒体調製工程と同様の工程により製造し得る。第2正極活物質としては、第1正極活物質で例示された活物質を用い得る。第2導電材としては、第1導電材で例示された導電材を用い得る。第2結着材としては、第1結着材で例示された結着材を用い得る。第2溶媒としては、第1溶媒で例示された溶媒を用い得る。第1造粒体調製工程の詳細は、前述のとおりである。ここでは同じ説明が繰り返されない。第2造粒体は、85質量%以上100質量%未満のNVを有するように調製される。第2造粒体は、好ましくは第1造粒体が有するNV以上のNVを有し、かつ、90質量%以上95質量%以下のNVを有するように調製される。第2造粒体のNVをこのような値とすることにより、後述する第2圧延工程において溶媒(第1溶媒および/または第2溶媒)が第2造粒体から滲み出すことが抑制されるものと期待される。溶媒の滲み出しが発生した場合、搬送路、ロール等の清掃が必要になる場合もある。すなわち、生産性が低減する場合もある。そのため、溶媒の滲み出しは抑制されることが望ましい。
<< (B) Second granulation preparation step >>
The production method of the present embodiment is a second granulation body preparation step of preparing a second granulation body by mixing a second positive electrode active material, a second conductive material, a second binder, and a second solvent. including. The second granulation body can be produced by the same process as the first granulation body preparation step. As the second positive electrode active material, the active material exemplified in the first positive electrode active material can be used. As the second conductive material, the conductive material exemplified in the first conductive material can be used. As the second binder, the binder exemplified in the first binder can be used. As the second solvent, the solvent exemplified in the first solvent can be used. The details of the first granulated body preparation step are as described above. The same description is not repeated here. The second granulated body is prepared to have an NV of 85% by mass or more and less than 100% by mass. The second granulation body is preferably prepared so as to have an NV of 90% by mass or more and 95% by mass or less of the NV of the first granulation body. By setting the NV of the second granulation body to such a value, it is possible to prevent the solvent (first solvent and / or second solvent) from seeping out from the second granulation body in the second rolling step described later. Expected to be. If the solvent seeps out, it may be necessary to clean the transport path, rolls, etc. That is, productivity may be reduced. Therefore, it is desirable that the exudation of the solvent is suppressed.

《(C)充填工程》
本実施形態の製造方法は、第1造粒体を多孔質Al基材に充填する充填工程を含む。
<< (C) Filling process >>
The production method of the present embodiment includes a filling step of filling the porous Al substrate with the first granulated product.

(多孔質アルミニウム基材)
多孔質Al基材はシート状でよい。多孔質Al基材は、たとえば、0.1〜1mm(典型的には0.2〜0.5mm)の厚さを有してもよい。多孔質Al基材は、たとえば、Al溶湯を発泡させ、その後凝固させることにより製造され得る。あるいは多孔質Al基材は、発泡樹脂にAlメッキを施し、その後発泡樹脂を熱処理により除去することによっても製造され得る。多孔質Al基材は、純アルミニウムによって構成されていてもよいし、アルミニウム合金によって構成されていてもよい。
(Porous aluminum base material)
The porous Al base material may be in the form of a sheet. The porous Al substrate may have, for example, a thickness of 0.1 to 1 mm (typically 0.2 to 0.5 mm). The porous Al substrate can be produced, for example, by foaming a molten Al and then coagulating it. Alternatively, the porous Al base material can also be produced by subjecting the foamed resin to Al plating and then removing the foamed resin by heat treatment. The porous Al base material may be made of pure aluminum or an aluminum alloy.

多孔質Al基材は、三次元網目構造を有し得る。多孔質Al基材が集電体として使用されることにより、Al箔が集電体である場合に比して、正極の厚さ方向の電子伝導性が向上することが期待される。 The porous Al substrate may have a three-dimensional network structure. By using the porous Al base material as the current collector, it is expected that the electron conductivity in the thickness direction of the positive electrode will be improved as compared with the case where the Al foil is the current collector.

多孔質Al基材は、複数の開気孔を含む。多孔質Al基材の平均開気孔径(「呼び孔径」と称される場合もある)は、次のようにして測定される。すなわち、多孔質Al基材の表面が電子顕微鏡(SEM)等によって観察される。無作為に20個の開気孔が抽出される。各開気孔のフェレー径が測定される。20個のフェレー径の算術平均が、平均開気孔径とされる。多孔質Al基材は、たとえば、150〜1000μmの平均開気孔径を有してもよい。電子伝導性および強度等の観点から、多孔質Al基材は、好ましくは300μm以上900μm以下の平均開気孔径を有し、より好ましくは450μm以上750μm以下の平均開気孔径を有し、最も好ましくは550μm以上650μm以下の平均開気孔径を有する。 The porous Al substrate contains a plurality of open pores. The average open pore diameter (sometimes referred to as "nominal pore diameter") of the porous Al substrate is measured as follows. That is, the surface of the porous Al substrate is observed by an electron microscope (SEM) or the like. Twenty open pores are randomly extracted. The ferret diameter of each open pore is measured. The arithmetic mean of the 20 ferret diameters is taken as the average open pore diameter. The porous Al substrate may have, for example, an average open pore diameter of 150 to 1000 μm. From the viewpoint of electron conductivity and strength, the porous Al substrate preferably has an average open pore diameter of 300 μm or more and 900 μm or less, more preferably 450 μm or more and 750 μm or less, and is most preferable. Has an average open pore diameter of 550 μm or more and 650 μm or less.

エネルギー密度の観点から、多孔質Al基材は高い空隙率を有することが望ましい。
空隙率は、下記式:
空隙率(%)=(1−多孔質Alの見かけ比重)÷Alの真比重×100%
により算出される。多孔質Al基材の見かけ比重は、多孔質Al基材の質量が多孔質Al基材の見かけ体積(=面積×厚さ)で除されることにより算出される。多孔質Al基材は、好ましくは75%以上の空隙率を有し、より好ましくは80%以上の空隙率を有し、最も好ましくは85%以上の空隙率を有する。機械的強度の観点から、多孔質Al基材は、たとえば、90%以下の空隙率を有してもよい。
From the viewpoint of energy density, it is desirable that the porous Al substrate has a high porosity.
The porosity is calculated by the following formula:
Porosity (%) = (1-apparent specific density of porous Al) ÷ true specific density of Al x 100%
Is calculated by. The apparent specific gravity of the porous Al base material is calculated by dividing the mass of the porous Al base material by the apparent volume (= area x thickness) of the porous Al base material. The porous Al substrate preferably has a porosity of 75% or more, more preferably a porosity of 80% or more, and most preferably a porosity of 85% or more. From the viewpoint of mechanical strength, the porous Al substrate may have, for example, a porosity of 90% or less.

多孔質Al基材は、集電リードとの接続部を有していてもよい。たとえば、多孔質Al基材において接続部となるべき部分を予め圧延により潰しておくことが考えられる。これにより当該部分には、第1造粒体が侵入できないため、集電リードを溶接することができる。 The porous Al base material may have a connection portion with a current collector lead. For example, in the porous Al base material, it is conceivable that the portion to be the connecting portion is crushed in advance by rolling. As a result, since the first granulated body cannot penetrate into the portion, the current collecting lead can be welded.

(製造装置)
図2は、正極製造装置の構成の一例を示す概略断面図である。正極製造装置1000は、第1充填槽10、第1充填ロール20、第1圧延ロール30、第2充填槽40、配置ロール50、および第2圧延ロール60を備える。第1充填槽10および第2充填槽40には、入口および出口が設けられている。第1充填槽10内には、第1充填ロール20が複数配置されている。第1充填槽10の出口には、第1圧延ロール30が配置されている。さらにその後には、第2充填槽40が配置されている。第2充填槽40内には、配置ロール50が複数配置されている。第2充填槽40の出口には、第2圧延ロール60が配置されている。各ロールに描かれた曲線矢印は、各ロールの回転方向を示している。
(manufacturing device)
FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the positive electrode manufacturing apparatus. The positive electrode manufacturing apparatus 1000 includes a first filling tank 10, a first filling roll 20, a first rolling roll 30, a second filling tank 40, an arrangement roll 50, and a second rolling roll 60. The first filling tank 10 and the second filling tank 40 are provided with an inlet and an outlet. A plurality of first filling rolls 20 are arranged in the first filling tank 10. A first rolling roll 30 is arranged at the outlet of the first filling tank 10. Further after that, a second filling tank 40 is arranged. A plurality of arrangement rolls 50 are arranged in the second filling tank 40. A second rolling roll 60 is arranged at the outlet of the second filling tank 40. The curved arrows drawn on each roll indicate the direction of rotation of each roll.

第1充填槽10には、第1造粒体1が充填されている。多孔質Al基材2は、入口から第1充填槽10に供給される。第1充填ロール20が回転することにより、第1造粒体1が流動し、第1造粒体1が多孔質Al基材2内に入り込む。すなわち、第1造粒体1が多孔質Al基材2に充填される。 The first filling tank 10 is filled with the first granulated body 1. The porous Al base material 2 is supplied to the first filling tank 10 from the inlet. As the first filling roll 20 rotates, the first granulated body 1 flows, and the first granulated body 1 enters the porous Al base material 2. That is, the first granulated body 1 is filled in the porous Al base material 2.

《(D)第1圧延工程》
本実施形態の製造方法は、第1造粒体1が充填された多孔質Al基材2を圧延する第1圧延工程を含む。第1圧延ロール30による圧延により、多孔質Al基材2内に第1造粒体1が固定される。圧延は1回だけ実施されてもよいし、2回以上に分けて実施されてもよい。たとえば、第1造粒体1の充填直後に第1圧延が実施されることにより、第1造粒体1が多孔質Al基材2内に仮固定される。
<< (D) First rolling process >>
The manufacturing method of the present embodiment includes a first rolling step of rolling a porous Al base material 2 filled with the first granulated body 1. By rolling with the first rolling roll 30, the first granulated body 1 is fixed in the porous Al base material 2. The rolling may be carried out only once, or may be carried out in two or more times. For example, by performing the first rolling immediately after filling the first granulated body 1, the first granulated body 1 is temporarily fixed in the porous Al base material 2.

図2では、第1充填槽10の出口に第1圧延ロール30が配置されている。第1造粒体1が充填された多孔質Al基材2は、第1充填槽10から出た直後に第1圧延されることが望ましい。これにより第1造粒体1の脱落が抑制される。第1圧延工程における圧縮率は、50%以上である。圧縮率は、下記式:
圧縮率(%)=(圧縮前の厚さ−圧縮後の厚さ)÷圧縮前の厚さ×100%
により算出される。第1圧延工程における圧縮率を50%以上とすることにより、多孔質Al基材2の表面におけるバリの発生が抑制されると期待される。第1圧延工程における圧縮率は、60%以下であることが望ましい。第1圧延工程における圧縮率が60%を超えると、溶媒が滲み出すことがある。
In FIG. 2, the first rolling roll 30 is arranged at the outlet of the first filling tank 10. It is desirable that the porous Al base material 2 filled with the first granulated body 1 is first rolled immediately after being discharged from the first filling tank 10. As a result, the first granulation body 1 is suppressed from falling off. The compressibility in the first rolling step is 50% or more. The compression ratio is the following formula:
Compressibility (%) = (Thickness before compression-Thickness after compression) ÷ Thickness before compression x 100%
Is calculated by. By setting the compression ratio in the first rolling step to 50% or more, it is expected that the generation of burrs on the surface of the porous Al base material 2 is suppressed. The compressibility in the first rolling step is preferably 60% or less. If the compressibility in the first rolling step exceeds 60%, the solvent may seep out.

《(E)配置工程》
本実施形態の製造方法は、第1圧延工程を経た多孔質Al基材2上に第2造粒体3を配置する配置工程を含む。
<< (E) placement process >>
The manufacturing method of the present embodiment includes an arrangement step of arranging the second granulated body 3 on the porous Al base material 2 that has undergone the first rolling step.

第2充填槽40には、第2造粒体3が充填されている。第1圧延工程を経た多孔質Al基材2は、入口から第2充填槽40に供給される。配置ロール50が回転することにより、第2造粒体3が流動し、第2造粒体3が第1圧延工程を経た多孔質Al基材2上に配置される。 The second filling tank 40 is filled with the second granulated body 3. The porous Al base material 2 that has undergone the first rolling step is supplied to the second filling tank 40 from the inlet. As the arrangement roll 50 rotates, the second granulation body 3 flows, and the second granulation body 3 is arranged on the porous Al base material 2 that has undergone the first rolling step.

《(F)第2圧延工程》
本実施形態の製造方法は、第2造粒体3が配置された多孔質Al基材2を圧延する第2圧延工程を含む。多孔質Al基材2には、第1造粒体1が充填されている。図3に示されるように、第2圧延ロール60によって圧延された第2造粒体3により形成される層である第2層100bが、第1造粒体1が充填された多孔質Al基材2(すなわち、第1層100a)を被覆する。これにより、多孔質Al基材2表面に存在しているバリが第2層100bにより物理的に抑え込まれるものと考えられる。
<< (F) Second rolling process >>
The manufacturing method of the present embodiment includes a second rolling step of rolling the porous Al base material 2 on which the second granulated body 3 is arranged. The porous Al base material 2 is filled with the first granulated body 1. As shown in FIG. 3, the second layer 100b, which is a layer formed by the second granulation body 3 rolled by the second rolling roll 60, is a porous Al group filled with the first granulation body 1. The material 2 (that is, the first layer 100a) is coated. As a result, it is considered that the burrs existing on the surface of the porous Al base material 2 are physically suppressed by the second layer 100b.

図2では、第2充填槽40の出口に第2圧延ロール60が配置されている。第2造粒体3が配置された多孔質Al基材2は、第2充填槽40から出た直後に第2圧延されることが望ましい。これにより第2造粒体3の脱落が抑制される。第2圧延工程における圧縮率は、55%以上である。圧縮率は、下記式:
圧縮率(%)=(圧縮前の厚さ−圧縮後の厚さ)÷圧縮前の厚さ×100%
により算出される。第2圧延工程における圧縮率を55%以上とすることで、多孔質Al基材2表面に存在しているバリが第2層100b(図3)により物理的に抑え込まれるものと期待される。第2圧延工程における圧縮率は、70%以下であることが望ましい。第2圧延工程における圧縮率が70%を超えると、溶媒が滲み出すことがある。
In FIG. 2, the second rolling roll 60 is arranged at the outlet of the second filling tank 40. It is desirable that the porous Al base material 2 on which the second granulated body 3 is arranged is second-rolled immediately after it comes out of the second filling tank 40. As a result, the dropout of the second granulated body 3 is suppressed. The compressibility in the second rolling step is 55% or more. The compression ratio is the following formula:
Compressibility (%) = (Thickness before compression-Thickness after compression) ÷ Thickness before compression x 100%
Is calculated by. By setting the compression ratio in the second rolling step to 55% or more, it is expected that the burrs existing on the surface of the porous Al base material 2 are physically suppressed by the second layer 100b (FIG. 3). .. The compressibility in the second rolling step is preferably 70% or less. If the compressibility in the second rolling step exceeds 70%, the solvent may seep out.

図3には、第2圧延工程を経た正極100が示されている。正極100は、第1層100aおよび第2層100bを含む。第1層100aは、多孔質Al基材2を含む。多孔質Al基材2には、第1造粒体1が充填されている。第2層100bは、第2造粒体3が圧延されることにより形成された層である。第1層100aにおける正極合材層の密度(正極合材密度)は、第2層100bにおける正極合材密度よりも高いと考えられる。第1層100aは、第1圧延工程および第2圧延工程において圧延されるのに対して、第2層100bは第1圧延工程を経ないためである。 FIG. 3 shows the positive electrode 100 that has undergone the second rolling step. The positive electrode 100 includes a first layer 100a and a second layer 100b. The first layer 100a contains the porous Al base material 2. The porous Al base material 2 is filled with the first granulated body 1. The second layer 100b is a layer formed by rolling the second granulated body 3. It is considered that the density of the positive electrode mixture layer in the first layer 100a (positive electrode mixture density) is higher than the density of the positive electrode mixture in the second layer 100b. This is because the first layer 100a is rolled in the first rolling step and the second rolling step, whereas the second layer 100b does not go through the first rolling step.

《(G)乾燥工程》
本実施形態の製造方法は、正極100を乾燥する乾燥工程を更に含んでもよい。乾燥は、たとえば、熱風式乾燥炉、赤外線式乾燥炉等により行い得る。熱風式の場合、熱風温度は、たとえば、100〜160℃程度でよい。本実施形態では、第1造粒体1および第2造粒体3のNVが非常に高いため、乾燥の時間を短縮できる。これにより乾燥コストの低減が期待される。さらに本実施形態では、自然乾燥で足りる場合、あるいは乾燥が実質的に不要な場合もあり得る。
<< (G) drying process >>
The production method of the present embodiment may further include a drying step of drying the positive electrode 100. Drying can be performed by, for example, a hot air drying oven, an infrared drying oven, or the like. In the case of the hot air type, the hot air temperature may be, for example, about 100 to 160 ° C. In the present embodiment, since the NV of the first granulation body 1 and the second granulation body 3 is very high, the drying time can be shortened. This is expected to reduce the drying cost. Further, in the present embodiment, there may be cases where natural drying is sufficient, or drying is substantially unnecessary.

《(H)第3圧延工程》
本実施形態の製造方法は、乾燥後の正極100をさらに圧延する第3圧延工程を含んでもよい。第3圧延工程では、正極100が最終的な厚さに調整される。正極100は、最終的に、たとえば50〜150μmの厚さを有するように圧延されてもよい。
<< (H) Third rolling process >>
The manufacturing method of the present embodiment may include a third rolling step of further rolling the dried positive electrode 100. In the third rolling step, the positive electrode 100 is adjusted to the final thickness. The positive electrode 100 may be finally rolled to have a thickness of, for example, 50-150 μm.

以下、実施例が説明される。ただし以下の例は本開示の範囲を限定するものではない。 Hereinafter, examples will be described. However, the following examples do not limit the scope of this disclosure.

<実施例1>
1.《(A)第1造粒体調製の調製(第1造粒体調製工程)》
以下の材料が準備された。
第1正極活物質:ニッケルマンガンコバルト酸リチウム
第1導電材:アセチレンブラック(AB)
第1結着材溶液:PVdFのNMP溶液
第1溶媒:NMP
多孔質Al基材:発泡Al(平均開気孔径600μm、厚さ0.3mm、空隙率85%)
<Example 1>
1. 1. << (A) Preparation of 1st Granulation Preparation (1st Granulation Preparation Step) >>
The following materials were prepared.
First positive electrode active material: Nickel manganese Lithium cobalt oxide First conductive material: Acetylene black (AB)
First binder solution: NMP solution of PVdF First solvent: NMP
Porous Al base material: Foamed Al (average open pore diameter 600 μm, thickness 0.3 mm, porosity 85%)

攪拌造粒装置の攪拌槽に、ニッケルマンガンコバルト酸リチウム、およびABが投入された。ニッケルマンガンコバルト酸リチウムおよびABが乾式で混合された。これにより粉体混合物が得られた。次いで、攪拌槽に、PVdFのNMP溶液およびNMPが投入された。ニッケルマンガンコバルト酸リチウム、AB、PVdFおよびNMPが混合された。これにより第1造粒体1が調製された。第1造粒体1の固形分の配合は、「ニッケルマンガンコバルト酸リチウム:AB:PVdF=91:8:1(質量比)」とされた。第1造粒体1のNVは85質量%とされた。 Lithium nickel manganese cobalt oxide and AB were charged into the stirring tank of the stirring granulator. Lithium nickel manganese cobalt oxide and AB were mixed dry. This gave a powder mixture. Next, the NMP solution of PVdF and NMP were charged into the stirring tank. Lithium nickel manganese cobalt oxide, AB, PVdF and NMP were mixed. As a result, the first granulated body 1 was prepared. The solid content of the first granulated body 1 was set to "lithium nickel manganese cobalt oxide: AB: PVdF = 91: 8: 1 (mass ratio)". The NV of the first granulation body 1 was set to 85% by mass.

2.《(B)第2造粒体の調製(第2造粒体調製工程)》
第1造粒体1の調製方法と同様の調製方法により、第2造粒体3が調製された。第1造粒体1の調製方法の詳細は、前述のとおりである。ここでは同じ説明が繰り返されない。第2造粒体3のNVは、第1造粒体1と同様に85質量%とされた。
2. << (B) Preparation of second granulation body (second granulation body preparation step) >>
The second granulation body 3 was prepared by the same preparation method as the preparation method of the first granulation body 1. The details of the method for preparing the first granulated body 1 are as described above. The same description is not repeated here. The NV of the second granulation body 3 was set to 85% by mass as in the first granulation body 1.

3.《(C)充填工程および(D)第1圧延工程》
図2に示される正極製造装置1000が準備された。正極製造装置1000に、第1造粒体1および多孔質Al基材2が供給された。充填ロール20により、第1造粒体1が多孔質Al基材2に充填された。さらに第1造粒体1が充填された多孔質Al基材2が第1圧延ロール30により圧延された。第1圧延時における圧縮率は、50%とされた。
3. 3. << (C) Filling process and (D) First rolling process >>
The positive electrode manufacturing apparatus 1000 shown in FIG. 2 was prepared. The first granulated body 1 and the porous Al base material 2 were supplied to the positive electrode manufacturing apparatus 1000. The first granulated body 1 was filled in the porous Al base material 2 by the filling roll 20. Further, the porous Al base material 2 filled with the first granulated body 1 was rolled by the first rolling roll 30. The compressibility at the time of the first rolling was set to 50%.

4.《(E)配置工程、(F)第2圧延工程、(G)乾燥工程、および(H)第3圧延工程》
第2充填槽40に、第2造粒体3および第1圧延を経た多孔質Al基材2が供給された。配置ロール50より、第2造粒体3が第1圧延工程を経た多孔質Al基材2上に配置された。さらに第2造粒体3が配置された多孔質Al基材2が、第2圧延ロール60により圧延された。第2圧延時における圧縮率は、55%とされた。第2圧延ロール60により圧延された多孔質Al基材2は、図示しない乾燥器内で乾燥され、更に図示しない第3圧延ロールにより120μmまで圧延された。以上より正極100が準備された。正極100が所定の寸法に裁断された。以上より正極板が製造された。
4. << (E) Arrangement step, (F) Second rolling step, (G) Drying step, and (H) Third rolling step >>
The second granulated body 3 and the porous Al base material 2 that had undergone the first rolling were supplied to the second filling tank 40. From the arrangement roll 50, the second granulated body 3 was arranged on the porous Al base material 2 that had undergone the first rolling step. Further, the porous Al base material 2 on which the second granulated body 3 was arranged was rolled by the second rolling roll 60. The compressibility at the time of the second rolling was 55%. The porous Al base material 2 rolled by the second rolling roll 60 was dried in a dryer (not shown), and further rolled to 120 μm by a third rolling roll (not shown). From the above, the positive electrode 100 was prepared. The positive electrode 100 was cut to a predetermined size. From the above, the positive electrode plate was manufactured.

5.負極の準備
以下の材料が準備された。
負極活物質:グラファイト
結着材:CMCおよびスチレンブタジエンゴム(SBR)
溶媒:イオン交換水
負極集電体:Cu箔(厚さ8μm)
5. Preparation of negative electrode The following materials were prepared.
Negative electrode active material: Graphite Binder: CMC and styrene butadiene rubber (SBR)
Solvent: Ion-exchanged water Negative electrode current collector: Cu foil (thickness 8 μm)

プラネタリミキサにより、グラファイト、CMC、SBR、およびイオン交換水が混合された。これにより負極合材層スラリーが調製された。負極合材層スラリーの固形分組成は、質量比で「グラファイト:CMC:SBR=98.5:0.75:0.75」とされた。負極合材層スラリーのNVは55%とされた。該スラリーがCu箔の表面(表裏両面)に塗布され、乾燥されることにより、負極合材層が形成された。 Graphite, CMC, SBR, and ion-exchanged water were mixed by a planetary mixer. As a result, a negative electrode mixture layer slurry was prepared. The solid content composition of the negative electrode mixture layer slurry was set to "graphite: CMC: SBR = 98.5: 0.75: 0.75" in terms of mass ratio. The NV of the negative electrode mixture layer slurry was 55%. The slurry was applied to the surface (both front and back surfaces) of the Cu foil and dried to form a negative electrode mixture layer.

ロール圧延機により、負極合材層およびCu箔が圧縮された。以上より負極が準備された。負極が所定の寸法に裁断された。以上より負極板が製造された。 The negative electrode mixture layer and the Cu foil were compressed by the roll rolling mill. From the above, the negative electrode was prepared. The negative electrode was cut to a predetermined size. From the above, the negative electrode plate was manufactured.

6.電池の製造
セパレータとしてポリエチレン多孔質膜(厚さ16μm)が準備された。セパレータを挟んで、正極板と負極板とが対向するように、正極板と負極板とが積層された。これにより電極群が構成された。電極群に外部端子が溶接された。外装体としてアルミラミネート製の袋が準備された。外装体に電極群が挿入された。外装体に電解液が注入された。電解液は以下の成分を含む。外装体が密閉された。これにより電池が製造された。
6. Manufacture of battery A polyethylene porous membrane (thickness 16 μm) was prepared as a separator. The positive electrode plate and the negative electrode plate were laminated so that the positive electrode plate and the negative electrode plate faced each other with the separator interposed therebetween. This formed a group of electrodes. External terminals were welded to the electrode group. A bag made of aluminum laminate was prepared as an exterior body. A group of electrodes was inserted into the exterior body. The electrolytic solution was injected into the exterior body. The electrolytic solution contains the following components. The exterior was sealed. This produced a battery.

溶媒:[EC:DMC:EMC=3:4:3(体積比)]
支持電解質:LiPF(1mоl/l)
なお、ECはエチレンカーボネートであり、DMCはジメチルカーボネートであり、EMCはエチルメチルカーボネートであり、LiPFはヘキサフルオロ燐酸リチウムである。
Solvent: [EC: DMC: EMC = 3: 4: 3 (volume ratio)]
Supporting electrolyte: LiPF 6 (1 mol / l)
EC is ethylene carbonate, DMC is dimethyl carbonate, EMC is ethyl methyl carbonate, and LiPF 6 is lithium hexafluorophosphate.

<実施例2〜実施例9>
下記表1に示されるように、第1造粒体1のNVおよび第2造粒体3のNVが変更されたことを除いては、実施例1と同様に正極100および電池が製造された。
<Examples 2 to 9>
As shown in Table 1 below, the positive electrode 100 and the battery were manufactured in the same manner as in Example 1 except that the NV of the first granulation body 1 and the NV of the second granulation body 3 were changed. ..

<比較例1〜比較例6>
下記表1に示されるように、第1造粒体1のNVおよび第1圧延時における圧縮率が変更されたこと、ならびに、第2造粒体調製工程(B)、配置工程(E)、および第2圧延工程(F)が省略されたことを除いては、実施例1と同様に正極100および電池が製造された。比較例1〜比較例6に係る正極100は、図3に示されるような2層100bは有さず、第1層100aからなる構成を有する。
<Comparative Examples 1 to 6>
As shown in Table 1 below, the NV of the first granulation body 1 and the compression ratio at the time of the first rolling were changed, and the second granulation body preparation step (B), the placement step (E), The positive electrode 100 and the battery were manufactured in the same manner as in Example 1 except that the second rolling step (F) was omitted. The positive electrode 100 according to Comparative Examples 1 to 6 does not have the two layers 100b as shown in FIG. 3, but has a configuration composed of the first layer 100a.

<比較例7〜比較例15>
下記表1に示されるように、第1造粒体1のNV、第1圧延時における圧縮率、および第2造粒体3のNVが変更されたことを除いては、実施例1と同様に正極100および電池が製造された。
<Comparative Example 7 to Comparative Example 15>
As shown in Table 1 below, the same as in Example 1 except that the NV of the first granulated body 1 and the compressibility at the time of the first rolling and the NV of the second granulated body 3 were changed. A positive electrode 100 and a battery were manufactured.

<評価>
(正極単位面積当りにおける正極合材の充填量)
打ち抜きポンチにより、多孔質Al基材2から20個の円板試料(直径2cm)が打ち抜かれた。精密天秤により、20個の円板試料の質量が測定された。20個の算術平均値が算出された。以下、この算術平均値はブランク値と称される。
<Evaluation>
(Filling amount of positive electrode mixture per unit area of positive electrode)
Twenty disk samples (2 cm in diameter) were punched from the porous Al substrate 2 by the punching punch. The mass of 20 disc samples was measured by a precision balance. Twenty arithmetic mean values were calculated. Hereinafter, this arithmetic mean value is referred to as a blank value.

同様に正極100から、20個の円板試料が打ち抜かれた。精密天秤により円板試料の質量が測定された。円板試料の質量からブランク値が差し引かれることにより、正極合材の充填量が算出された。充填量の算術平均値が算出された。結果は下記表1に示されている。下記表1の「充填量試験」の欄に示される「A」および「B」は、以下の内容を示している。結果が「A」であれば、多孔質Al基材2に正極合材が密に充填されていると考えられる。 Similarly, 20 disk samples were punched out from the positive electrode 100. The mass of the disk sample was measured with a precision balance. The filling amount of the positive electrode mixture was calculated by subtracting the blank value from the mass of the disk sample. The arithmetic mean of the filling amount was calculated. The results are shown in Table 1 below. “A” and “B” shown in the “Filling amount test” column of Table 1 below indicate the following contents. If the result is "A", it is considered that the porous Al base material 2 is densely filled with the positive electrode mixture.

A:正極単位面積当りにおける正極合材の充填量(算術平均値)が、19(mg/cm)以上である。
B:正極単位面積当りにおける正極合材の充填量(算術平均値)が、19(mg/cm)未満である。
A: The filling amount (arithmetic mean value) of the positive electrode mixture per unit area of the positive electrode is 19 (mg / cm 2 ) or more.
B: The filling amount (arithmetic mean value) of the positive electrode mixture per unit area of the positive electrode is less than 19 (mg / cm 2).

(短絡率の調査)
実施例および比較例に係る電池が、それぞれ100個用意された。電池が2枚の板材の間に挟み込まれた。板材により、500kgfの力で電池が押圧された。その後、4.1V〜3.0V間で1Cの充放電が5サイクル行われた。各電池の総数に対する「短絡が発生した電池の数」の割合(百分率)が調査された。結果は下記表1の「短絡率」の欄に示されている。値が低いほど、短絡の発生が抑制されていることを示す。
(Investigation of short circuit rate)
100 batteries according to Examples and Comparative Examples were prepared. The battery was sandwiched between the two plates. The plate material pressed the battery with a force of 500 kgf. After that, charging and discharging of 1C was performed for 5 cycles between 4.1V and 3.0V. The ratio (percentage) of "the number of batteries with short circuits" to the total number of each battery was investigated. The results are shown in the "Short circuit rate" column of Table 1 below. The lower the value, the more the occurrence of short circuit is suppressed.

(滲み出し調査)
実施例および比較例に係る電池において、溶媒の染み出しが発生しているかを調査した。結果は下記表1の「滲み出し調査」の欄に示されている。下記表1における「○」およびは、それぞれ以下の内容を示す。
「○」は、電池中に溶媒が滲み出さなかったことを示す。
「×」は、僅かであっても電池中に溶媒が滲み出したことを示す。
(Exudation survey)
It was investigated whether the solvent exuded in the batteries according to the examples and the comparative examples. The results are shown in the "Exudation Survey" column of Table 1 below. “○” in Table 1 below indicates the following contents, respectively.
“○” indicates that the solvent did not seep into the battery.
An "x" indicates that the solvent has exuded into the battery, even if only slightly.

Figure 0006962235
Figure 0006962235

<結果>
上記表1に示されるように、実施例では、比較例に比して短絡率が抑制されていた。また、全ての実施例において、正極単位面積当りにおける正極合材の充填量(算術平均値)は、19(mg/cm)以上であった。すなわち、多孔質Al基材2に正極合材が密に充填されつつ、短絡率を抑制し得る正極100が提供されることが示された。
<Result>
As shown in Table 1 above, in the examples, the short-circuit rate was suppressed as compared with the comparative example. Further, in all the examples, the filling amount (arithmetic mean value) of the positive electrode mixture per unit area of the positive electrode was 19 (mg / cm 2 ) or more. That is, it was shown that the porous Al base material 2 is densely filled with the positive electrode mixture, and the positive electrode 100 capable of suppressing the short circuit rate is provided.

第2造粒体調製工程(B)、配置工程(E)、および第2圧延工程(F)が省略された比較例1〜比較例6は、短絡率が特に高かった。多孔質Al基材2の表面で発生したバリが該多孔質Al基材2に充填された第1造粒体1およびセパレータを貫通し、短絡を発生させたものと考えられる。 In Comparative Examples 1 to 6 in which the second granulated body preparation step (B), the placement step (E), and the second rolling step (F) were omitted, the short-circuit rate was particularly high. It is probable that the burrs generated on the surface of the porous Al base material 2 penetrated the first granulated body 1 and the separator filled in the porous Al base material 2 and caused a short circuit.

第1圧延工程(C)における圧縮率が20%である比較例7〜比較例15は、実施例に比して短絡率が高かった。第1圧延工程(C)における圧縮率が50%未満であったため、多孔質Al基材2におけるバリの発生が抑制されなかった可能性がある、加えて、第1圧延工程(C)における圧縮率が不足していたため、第1層100a(図3)の表面が粗かった可能性がある。そのため、配置工程(E)において第2層100b(図3)が第1層100a(図3)の表面に安定して配置されなかった可能性がある。 Comparative Examples 7 to 15 in which the compressibility in the first rolling step (C) was 20% had a higher short-circuit rate than the examples. Since the compressibility in the first rolling step (C) was less than 50%, it is possible that the generation of burrs in the porous Al substrate 2 was not suppressed. In addition, the compression in the first rolling step (C) It is possible that the surface of the first layer 100a (FIG. 3) was rough because the rate was insufficient. Therefore, it is possible that the second layer 100b (FIG. 3) was not stably arranged on the surface of the first layer 100a (FIG. 3) in the arrangement step (E).

実施例の結果から、第2造粒体3が第1造粒体1が有するNV以上のNVを有し、かつ、90質量%以上95質量%以下のNVを有するように調製された場合、溶媒の滲み出しが抑制される傾向を示すことが確認された。第1造粒体1は2回圧延される。そのため、第1造粒体1から溶媒が滲み出す可能性がある。第2造粒体3のNVを上記のように調製することにより、1造粒体1から滲み出した溶媒が第2造粒体3により吸収されたものと考えられる。 From the results of the examples, when the second granulated body 3 is prepared to have an NV equal to or higher than the NV possessed by the first granulated body 1 and to have an NV of 90% by mass or more and 95% by mass or less. It was confirmed that the exudation of the solvent tended to be suppressed. The first granulated body 1 is rolled twice. Therefore, there is a possibility that the solvent may seep out from the first granulated body 1. It is considered that the solvent exuded from the 1 granulation body 1 was absorbed by the 2nd granulation body 3 by preparing the NV of the 2nd granulation body 3 as described above.

上記の実施形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は上記の説明ではなくて、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the above embodiments and examples are exemplary in all respects and are not restrictive. The scope of the present disclosure is shown by the scope of claims, not the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1 第1造粒体、2 基材、3 第2造粒体、10 充填槽、20 充填ロール、30 第1圧延ロール、40 第2充填槽、50 配置ロール、60 第2圧延ロール、100 正極、100a 第1層、100b 第2層、1000 正極製造装置。 1 1st granulation body, 2 base material, 3rd granulation body, 10 filling tank, 20 filling roll, 30 first rolling roll, 40 second filling tank, 50 placement roll, 60 second rolling roll, 100 positive electrode , 100a 1st layer, 100b 2nd layer, 1000 positive electrode manufacturing equipment.

Claims (1)

第1正極活物質、第1導電材、第1結着材、および第1溶媒を混合することにより、第1造粒体を調製する第1造粒体調製工程と、
第2正極活物質、第2導電材、第2結着材、および第2溶媒を混合することにより、第2造粒体を調製する第2造粒体調製工程と、
前記第1造粒体を多孔質アルミニウム基材に充填する充填工程と、
前記第1造粒体が充填された前記多孔質アルミニウム基材を圧延する第1圧延工程と、
前記第1圧延工程を経た前記多孔質アルミニウム基材上に前記第2造粒体を配置する配置工程と、
前記配置工程を経た前記多孔質アルミニウム基材を圧延する第2圧延工程とを含み、
前記第1造粒体および前記第2造粒体は、それぞれ85質量%以上100質量%未満の固形分比率を有し、
前記第1圧延工程における圧縮率は、50%以上であり、
前記第2圧延工程における圧縮率は、55%以上であり、
前記第1造粒体は、前記多孔質アルミニウム基材の平均開気孔径よりも小さいメジアン径を有するように調製される、
リチウムイオン二次電池用正極の製造方法。
A first granulation body preparation step of preparing a first granulation body by mixing a first positive electrode active material, a first conductive material, a first binder, and a first solvent.
A second granulation body preparation step of preparing a second granulation body by mixing a second positive electrode active material, a second conductive material, a second binder, and a second solvent.
A filling step of filling the porous aluminum base material with the first granulated body, and
The first rolling step of rolling the porous aluminum base material filled with the first granulated body, and
An arrangement step of arranging the second granulated body on the porous aluminum base material that has undergone the first rolling step, and an arrangement step.
Including a second rolling step of rolling the porous aluminum base material that has undergone the placement step.
The first granulated body and the second granulated body each have a solid content ratio of 85% by mass or more and less than 100% by mass.
The compressibility in the first rolling step is 50% or more.
The compressibility in the second rolling step is 55% or more.
The first granules are prepared to have a median diameter smaller than the average open pore diameter of the porous aluminum substrate.
A method for manufacturing a positive electrode for a lithium ion secondary battery.
JP2018030666A 2018-02-23 2018-02-23 Manufacturing method of positive electrode for lithium ion secondary battery Active JP6962235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018030666A JP6962235B2 (en) 2018-02-23 2018-02-23 Manufacturing method of positive electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018030666A JP6962235B2 (en) 2018-02-23 2018-02-23 Manufacturing method of positive electrode for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2019145447A JP2019145447A (en) 2019-08-29
JP6962235B2 true JP6962235B2 (en) 2021-11-05

Family

ID=67771284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018030666A Active JP6962235B2 (en) 2018-02-23 2018-02-23 Manufacturing method of positive electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6962235B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3218397A1 (en) 2021-05-12 2022-11-17 Sakata Seed Corporation Spinach plant having novel downy mildew resistance gene
CN116706074B (en) * 2023-08-02 2023-10-20 中创新航科技集团股份有限公司 Dry electrode preparation method, battery and dry electrode preparation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911155B2 (en) * 2008-10-08 2012-04-04 トヨタ自動車株式会社 Battery electrode manufacturing method
JP2012186143A (en) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd Electrode for electrochemical element, and method for manufacturing the same
JP2013045984A (en) * 2011-08-26 2013-03-04 Nippon Zeon Co Ltd Electrode for power storage device, power storage device, and manufacturing method of electrode for power storage device
JP6269369B2 (en) * 2014-07-24 2018-01-31 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2019145447A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US9515313B2 (en) Nonaqueous electrolyte secondary battery and method of producing same
CN113871566B (en) Dry electrode film, preparation method and application thereof
JP6183360B2 (en) Electrode of lithium ion secondary battery and lithium ion secondary battery using the same
WO2009119582A1 (en) Electrode for lead acid storage battery and use thereof
WO2005117169A1 (en) Wound nonaqueous secondary battery and electrode plate used therein
WO2005078828A1 (en) Secondary battery
JP2005276609A (en) Composite particle for electrode, electrode, electrochemical element, and manufacturing methods for them
JP6327178B2 (en) Electrode manufacturing method
JP4204407B2 (en) Electrode, electrochemical element, electrode manufacturing method, and electrochemical element manufacturing method
JP2007273355A (en) Negative electrode for lithium secondary battery, and its manufacturing method
JP6380808B2 (en) Method for manufacturing electrode for secondary battery
CN107819112A (en) Method for manufacturing single-sized material composition
KR20200030518A (en) Method for manufacturing battery
JP5527597B2 (en) Method for manufacturing lithium secondary battery
JP2012138217A (en) Battery manufacturing method
JP2018125201A (en) Method for manufacturing electrode
JP6962235B2 (en) Manufacturing method of positive electrode for lithium ion secondary battery
KR102088858B1 (en) Electrode for lithium secondary battery comprising hygroscopic materials and lithium secondary battery comprising the same
JP2023547117A (en) Electrode powder for producing a dry electrode for secondary batteries, a method for producing the same, a method for producing a dry electrode using the same, a dry electrode, a secondary battery including the same, an energy storage device, and an apparatus for producing a dry electrode
JP6361928B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
CN108028365A (en) It is used to prepare the method for lithium ion secondary battery cathode
KR101170172B1 (en) Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries
JP2012033438A (en) Cathode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6790882B2 (en) Manufacturing method of positive electrode for lithium ion secondary battery
JP2013161689A (en) Secondary battery electrode and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R151 Written notification of patent or utility model registration

Ref document number: 6962235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151