JP6961307B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6961307B2
JP6961307B2 JP2017229888A JP2017229888A JP6961307B2 JP 6961307 B2 JP6961307 B2 JP 6961307B2 JP 2017229888 A JP2017229888 A JP 2017229888A JP 2017229888 A JP2017229888 A JP 2017229888A JP 6961307 B2 JP6961307 B2 JP 6961307B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
target
catalyst
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017229888A
Other languages
English (en)
Other versions
JP2019100221A (ja
Inventor
昌吾 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2017229888A priority Critical patent/JP6961307B2/ja
Publication of JP2019100221A publication Critical patent/JP2019100221A/ja
Application granted granted Critical
Publication of JP6961307B2 publication Critical patent/JP6961307B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関における燃料噴射量を調整して空燃比を制御する制御装置に関する。
一般に、内燃機関の排気通路には、気筒から排出される排気ガス中に含まれる有害物質HC、CO、NOxを酸化/還元して無害化する三元触媒が装着されている。HC、CO、NOxの全てを効率よく浄化するには、混合気の空燃比をウィンドウと称する理論空燃比近傍の一定範囲に収める必要がある。そのために、従来より、触媒の上流及び下流にそれぞれO2センサを配し、それらO2センサの出力信号を用いる二重のフィードバックループを構築して、空燃比をフィードバック制御している。
内燃機関の運転制御を司るECU(Electronic Control Unit)は、気筒に吸入される空気(新気)の量に比例する基本噴射量に、触媒に流入するガスの空燃比に応じて変動するフィードバック補正係数を乗じることで、インジェクタからの燃料噴射量を決定する。
図2に示すように、ECUは、触媒の上流側のガスの空燃比を検出するフロントO2センサの出力電圧を、理論空燃比またはその近傍の空燃比に相当する判定電圧値と比較し、出力電圧が判定電圧値よりも高ければ空燃比リッチ、判定電圧値よりも低ければ空燃比リーンと判定する。但し、フロントO2センサの出力電圧が判定電圧値を跨ぐように変動したときには、即時に空燃比の判定結果を反転させるのではなく、遅延時間の経過を待ってから判定結果を反転させる。つまり、フロントO2センサの出力電圧がリーンからリッチに切り替わった(判定電圧値を上回った)際には、リッチ判定遅延時間TDRの経過の後、空燃比がリーンからリッチに反転したと判断する。並びに、フロントO2センサの出力電圧がリッチからリーンに切り替わった(判定電圧値を下回った)際には、リーン判定遅延時間TDLの経過の後、空燃比がリッチからリーンに反転したと判断する。
ECUは、触媒の上流側のガスの空燃比の判定結果に基づき、フィードバック補正係数FAFを増減調整する。具体的には、空燃比がリッチであると判定している間、フィードバック補正係数FAFをリーン積分値KIMずつ逓減させる一方、空燃比がリーンであると判定している間は、フィードバック補正係数FAFをリッチ積分値KIPずつ逓増させる。
リッチ判定遅延時間TDR及びリーン判定遅延時間TDLについては、触媒の下流側のガスの空燃比に応じて設定する。図3及び図4に示すように、ECUは、触媒の下流側のガスの空燃比を検出するリアO2センサの出力電圧を判定電圧値と比較し、出力電圧が判定電圧値よりも高ければ空燃比リッチ、判定電圧値よりも低ければ空燃比リーンと判定する。そして、触媒の下流側のガスの空燃比がリーンである期間が長いほど、リッチ判定遅延時間TDRを延長する。逆に、触媒の下流側のガスの空燃比がリッチである期間が長いほど、リーン判定遅延時間TDLを延長する。これにより、フロントO2センサの出力電圧を参照する空燃比フィードバック制御の制御中心、即ちフィードバック制御によりガスの空燃比を収束させるべき目標が変化することになる(以上、下記特許文献を参照)。
リアO2センサの出力電圧がリッチからリーンに切り替わるのは、触媒の最大酸素吸蔵能力の近くまで酸素が吸蔵されて、触媒内で酸素が過剰となった後である。触媒内に酸素が充満すると、NOxの還元が難しくなり、NOxが排出されやすくなる。翻って、リアO2センサの出力電圧がリーンからリッチに切り替わるのは、触媒に吸蔵されていた酸素の大半が消費され、触媒内の酸素が欠乏した後である。触媒内で酸素が不足すると、HCやCOの酸化が困難となり、これらが排出されやすくなる。
要するに、リアO2センサの出力信号を参照するフィードバックには遅れが存在し、その遅れにより有害物質の排出の抑止に限界が生じていた。
特開2010−138791号公報
本発明は、内燃機関からの有害物質の排出量をより一層削減することを所期の目的としている。
上述の課題を解決するべく、本発明では、内燃機関の排気通路に装着した排気浄化用の触媒に流入するガスの空燃比をフィードバック制御する制御装置であって、気筒に吸入された空気の量、及び前記排気通路における触媒の上流に設置されている空燃比センサの出力信号を基に、触媒に吸蔵されている酸素量とその目標吸蔵量との偏差を推算した前記ガスの空燃比の目標である第1目標を設定し前記排気通路における前記触媒の下流に設置されている空燃比センサの出力信号を基に、前記ガスの空燃比の目標である第2目標を別途設定し、前記第1目標と、前記第2目標と、を比較して、前記フィードバック制御により収束させるべき前記ガスの空燃比の目標を変化させる内燃機関の制御装置を構成した。
さらに、前記第1目標と、前記第2目標との乖離が一定以上に広がった場合には、前記第1目標ではなく前記第2目標前記ガスの空燃比を収束させるようフィードバック制御を実施することも好ましい。
前記第2目標に空燃比を収束させるようフィードバック制御を実施しているときに、前記気筒に対する燃料噴射を所定時間以上中断する燃料カットが発生した場合には、以後前記第1目標に空燃比を収束させるようフィードバック制御を実施することができる。
本発明によれば、内燃機関からの有害物質の排出量をより一層削減することができる。
本発明の一実施形態における車両用内燃機関及び制御装置の概略構成を示す図。 触媒の上流側の空燃比センサの出力信号を参照した空燃比フィードバック制御の模様を示すタイミング図。 制御中心補正量FACFと遅延時間TDR、TDLとの関係を例示するグラフ。 触媒の下流側の空燃比センサの出力信号を参照した空燃比フィードバック制御の模様を示すタイミング図。 同実施形態の制御装置が制御中心補正量FACFを演算する手順を示すフロー図。
本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。
吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。
排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気ガスを各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。
排気通路4における触媒41の上流及び下流には、排気通路4を流通するガスの空燃比を検出するための空燃比センサ43、44を設置する。空燃比センサ43、44はそれぞれ、排気ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよく、排気ガスの空燃比に比例した出力特性を有するリニアA/Fセンサであってもよい。本実施形態では、触媒41の上流側及び下流側の各空燃比センサ43、44について、排気ガス中の酸素濃度に応じた電圧信号を出力するO2センサを想定している。O2センサ43、44の出力電圧f、gの特性は、理論空燃比近傍の一定範囲(ウィンドウ)では空燃比に対する出力の変化率が大きく急峻な傾きを示し、それよりも空燃比が大きいリーン領域では低位飽和値に漸近し、空燃比が小さいリッチ領域では高位飽和値に漸近する、いわゆるZ特性曲線を描く。
外部EGR(Exhaust Gas Recirculation)装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通するEGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、具体的にはサージタンク33に接続している。
本実施形態の内燃機関の制御装置たるECU0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。
ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するクランク角センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、内燃機関に要求されるエンジン負荷率)として検出するセンサから出力されるアクセル開度信号c、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号d、内燃機関の温度を示唆する冷却水温を検出する水温センサから出力される冷却水温信号e、触媒41の上流側における排気ガスの空燃比を検出する空燃比センサ43から出力される空燃比信号f、触媒41の下流側における排気ガスの空燃比を検出する空燃比センサ44から出力される空燃比信号g、大気圧を検出する大気圧センサから出力される大気圧信号h等が入力される。
ECU0の出力インタフェースからは、点火プラグ12のイグナイタ13に対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l等を出力する。
ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に吸入される空気(新気)量を推算する。そして、それらエンジン回転数及び空気量等に基づき、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、要求EGR率、点火タイミング等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、lを出力インタフェースを介して印加する。
燃料噴射量を決定するにあたり、ECU0は、まず、気筒1に吸入される空気の量Gaを求め、その吸入空気量Gaに比例する(吸入空気量Gaに応じて理論空燃比またはその近傍の空燃比を実現できような)燃料噴射量の基本量TPを決定する。吸入空気量Gaは、エンジン回転数及びサージタンク33内吸気圧を基に推算する。必要であれば、その推算値に、吸気温や大気圧等に応じた補正を加えることができる。なお、吸気通路3にエアフローメータが設置されているならば、エアフローメータを介して吸入空気量Gaを直接計測することが可能である。
次いで、この基本噴射量TPを、触媒41の上流側の空燃比センサ43の出力信号fに応じて定まるフィードバック補正係数FAFで補正する。フィードバック補正係数FAFは、1を中心に増減する正数である。さらに、状況に応じて定まる各種補正係数Kや、インジェクタ11の無効噴射時間TAUVをも加味して、最終的な燃料噴射時間(インジェクタ11に対する通電時間)Tを算定する。燃料噴射時間Tは、
T=TP×FAF×K+TAUV
となる。そして、燃料噴射時間Tだけインジェクタ11に信号jを入力、インジェクタ11を開弁して燃料を噴射させる。
また、ECU0は、運転状況に応じて、気筒1への燃料供給を一時中断する燃料カットを実行する。ECU0は、所定の燃料カット条件が成立したときに、燃料カット即ちインジェクタ11からの燃料噴射を停止する。ECU0は、少なくとも、アクセルペダルの踏込量が0または0に近い閾値以下となり、かつエンジン回転数が燃料カット許可回転数以上あることを以て、燃料カット条件が成立したものと判断する。
燃料カット中は、スロットルバルブ32をアクセルペダルの踏込量(0または0に近い)に依拠しない開度に開いておく。この操作は、燃料カット中の内燃機関のポンピングロスを低減してエンジン回転の減速を遅らせるために行う。このときのスロットルバルブ32の開度は、一定値としてもよいし、車速等に応じて増減させてもよいが、何れにせよ比較的大きな開度とする。
そして、ECU0は、所定の燃料カット終了条件が成立したときに、燃料カットを終了することとし、燃料噴射(及び、点火)を再開する。ECU0は、アクセルペダルの踏込量が閾値を上回った、エンジン回転数が燃料カット復帰回転数まで低下した等のうち何れかを以て、燃料カット終了条件が成立したものと判断する。
燃料カット終了条件の成立後は、スロットルバルブ32をアクセルペダルの踏込量に応じた開度に操作することは言うまでもない。
以降、ECU0が実施する空燃比フィードバック制御に関して詳述する。空燃比フィードバック制御は、気筒1に充填される混合気の空燃比、ひいては気筒1から排出され触媒41へと導かれる排気ガスの空燃比を所望の目標空燃比に収束させ、以て触媒41における有害物質の浄化能率を最大化するものである。
図2に示すように、ECU0は、触媒41の上流側のガスの空燃比を検出するセンサであるフロントO2センサ43の出力電圧fを、理論空燃比またはその近傍の空燃比に相当する判定電圧値(一点鎖線で表す)と比較して、その判定電圧値よりも高ければリッチ、判定電圧値よりも低ければリーンと判定する。そして、ECU0は、触媒41の上流側のガスの空燃比の判定結果に基づき、フィードバック補正係数FAFを増減調整する。
具体的には、空燃比の判定結果がリーンからリッチに反転した(下記の遅延時間TDRが経過した)時点で、フィードバック補正係数FAFをスキップ値RSMだけ減少させる。加えて、空燃比がリッチであると判定している間、フィードバック補正係数FAFを演算サイクル(制御サイクル)あたりリーン積分値KIMだけ逓減させる。演算サイクルの周期は、内燃機関が備える個々の気筒1が新たなサイクル(吸気行程−圧縮行程−膨脹行程−排気行程の一連)を迎える周期に等しい。
他方、空燃比の判定結果がリッチからリーンに反転した(下記の遅延時間TDLが経過した)時点で、フィードバック補正係数FAFをスキップ値RSPだけ増加させる。加えて、空燃比がリーンであると判定している間、フィードバック補正係数FAFを演算サイクルあたりリッチ積分値KIPだけ逓増させる。
基本噴射量TPに乗ずるフィードバック補正量FAFが減少すると、インジェクタ11による燃料噴射量が絞られて、混合気の空燃比がリーンへと向かう。逆に、フィードバック補正量FAFが増加すると、インジェクタ11による燃料噴射量が上積みされて、混合気の空燃比がリッチへと向かう。
但し、フロントO2センサ43の出力電圧fが目標電圧値を跨ぐように変動したときには、即時に触媒41の上流側のガスの空燃比の判定結果を反転させるのではなく、遅延時間TDL、TDRの経過を待ってから判定結果を反転させる。即ち、フロントO2センサ43の出力電圧fがリッチからリーンに切り替わった(目標電圧値を下回った)ときには、リーン判定遅延時間TDLの経過の後、空燃比がリッチからリーンに反転したと判断する。並びに、フロントO2センサ43の出力電圧fがリーンからリッチに切り替わった(目標電圧値を上回った)ときには、リッチ判定遅延時間TDRの経過の後、空燃比がリーンからリッチに反転したと判断する。
リーン判定遅延時間TDL及びリッチ判定遅延時間TDRを設けているのは、O2センサ43の出力信号fにノイズが混入した場合に、空燃比のリーン/リッチの判定結果が短期間に複数回反転して燃料噴射量が振動するように増減するチャタリングを起こすことを予防する意図である。
遅延時間TDL、TDRは、制御中心補正量FACFに応じて増減する。図3に、制御中心補正量FACFと遅延時間TDL、TDRとの関係を例示する。制御中心補正量FACFが大きくなるほど、リーン判定遅延時間TDL(破線で表す)は短縮され、リッチ判定遅延時間TDR(実線で表す)は延長される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が遅れ、減少から増加に転じる時期が早まる。結果、燃料噴射量が平均的に増すこととなり、空燃比フィードバック制御の制御中心、換言すればフィードバック制御により収束させるべきガスの空燃比の目標がリッチ側に変位する。
翻って、制御中心補正量FACFが小さくなるほど、リーン判定遅延時間TDLは延長され、リッチ判定遅延時間TDRは短縮される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が早まり、減少から増加に転じる時期が遅れる。結果、燃料噴射量が平均的に減ることとなり、空燃比フィードバック制御の制御中心がリーン側に変位する。
ECU0は、空燃比フィードバック制御中、上記の制御中心補正量FACFをも算出する。図5に示すように、ECU0は、まず、今回の演算サイクルにおいて算出したフィードバック補正係数FAFnから、前回の演算サイクルにおいて算出したフィードバック補正係数FAFn-1を減算して、両者の差分ΔFAFnを求める(ステップS1)。nは、演算サイクルを表す添字である。
次に、ECU0は、連続する過去の複数回の演算サイクルにおいて算出したΔFAFnを積算した値Σ(ΔFAFn)を求める(ステップS2)。
そして、ECU0は、今回の演算サイクルにおいて算出した、気筒1に吸入される空気量Ganと、ΔFAFnの積算値Σ(ΔFAFn)とから、下式に示すΔOSnを求める(ステップS3)。
ΔOSn=−Gan×Σ(ΔFAFn)/{1+Σ(ΔFAFn)}
このΔOSnは、気筒1から排出されるガスが触媒41に流入することによって増減する、触媒41内の酸素吸蔵量の変化量(増加量または減少量)の近似値である。
さらに、連続する過去の複数回の演算サイクルにおいて算出したΔOSnを積算した値Σ(ΔOSn)を求める(ステップS4)。この積算値Σ(ΔOSn)は、現在触媒41が吸蔵している酸素の量が、あるべき目標吸蔵量からどれくらいの量乖離しているかを示す偏差となる。現在の触媒41内の酸素吸蔵量が目標吸蔵量に一致している場合、偏差Σ(ΔOSn)は0となる。偏差Σ(ΔOSn)が正値であることは、触媒41内の酸素吸蔵量があるべき目標吸蔵量よりも増えていることを意味する。逆に、偏差Σ(ΔOSn)が負値であることは、触媒41内の酸素吸蔵量があるべき目標吸蔵量よりも減っていることを意味する。
目標吸蔵量は、触媒41における有害物質HC、COの酸化反応及びNOxの還元反応が最も能率よく起こるような大きさに設定することが望ましい。例えば、触媒41の最大酸素吸蔵能力に、1よりも小さい一定の比率(0.5ないし0.6程度の値)を乗算することで、目標吸蔵量を得る。触媒41の最大酸素吸蔵能力は経年劣化により徐々に減退してゆくが、その最大酸素吸蔵能力を推算する具体的な方法は触媒41のダイアグノーシス(自己診断)機能として公知(例えば、特開2016−070156号公報等を参照)であるため、ここではその説明を割愛する。
しかして、ECU0は、偏差Σ(ΔOSn)の正負に応じて(ステップS5、S6)制御中心補正量FACFを調整する。偏差Σ(ΔOSn)が正値である場合には、制御中心補正量FACFをより大きくして(ステップS7)、空燃比フィードバック制御の制御中心をよりリッチ側に変化させる。偏差Σ(ΔOSn)が負値である場合には、制御中心補正量FACFをより小さくして(ステップS8)、空燃比フィードバック制御の制御中心をよりリーン側に変化させる。
ステップS5ないしS8では、偏差Σ(ΔOSn)が負値である間、制御中心補正量FACFを演算サイクルあたりリーン積分値FACFKIMだけ逓減させる一方、偏差Σ(ΔOSn)が正値である間は、制御中心補正量FACFを演算サイクルあたりリッチ積分値FACFKIPだけ逓増させるようにすることができる。あるいは、より単純に、偏差Σ(ΔOSn)が正値である場合の制御中心補正量FACFを、偏差Σ(ΔOSn)が0の場合のそれよりも大きな値に設定し、偏差Σ(ΔOSn)が負値である場合の制御中心補正量FACFを、偏差Σ(ΔOSn)が0の場合のそれよりも小さな値に設定するようにしてもよい。
ECU0は、ステップS1ないしS8を、演算サイクルが訪れる都度(何れかの気筒1が新たなサイクルを迎える都度)反復する。
因みに、従来の空燃比フィードバック制御では、制御中心補正量FACFを、触媒41の下流側の空燃比センサ44の出力信号gに応じて定めていた。即ち、図4に示すように、触媒41の下流側のガスの空燃比を検出するセンサであるリアO2センサ44の出力電圧gを判定電圧値(鎖線で表す)と比較し、その判定電圧値よりも高ければリッチ、判定電圧値よりも低ければリーンと判定する。なお、この判定電圧値は、フロントO2センサ43の出力信号fと比較される判定電圧値とは一致しないことがある。
その上で、触媒41の下流側のガスの空燃比の判定結果に基づき、制御中心補正量FACFを増減調整する。具体的には、空燃比がリッチであると判定している間、制御中心補正量FACFを演算サイクルあたりリーン積分値FACFKIMだけ逓減させる一方、空燃比がリーンであると判定している間は、制御中心補正量FACFを演算サイクルあたりリッチ積分値FACFKIPだけ逓増させる。既に述べた通り、制御中心補正量FACFが減少すると、空燃比制御中心はリーンへと向かい、制御中心補正量FACFが増加すると、空燃比制御中心はリッチへと向かう。
本実施形態では、内燃機関の排気通路4に装着した排気浄化用の触媒41に流入するガスの空燃比をフィードバック制御する制御装置0であって、気筒1に吸入された空気の量Gan、及び排気通路4における触媒41の上流に設置されている空燃比センサ43の出力信号fを基に、触媒41に吸蔵されている酸素量とその目標吸蔵量との偏差Σ(ΔOSn)を推算し、前記偏差Σ(ΔOSn)に応じて、フィードバック制御により収束させるべき空燃比の目標を変化させる内燃機関の制御装置0を構成した。
本実施形態によれば、現在触媒41に吸蔵している酸素の量をあるべき目標吸蔵量に収束させることが可能となる。従って、触媒41内に酸素が充満してNOxが排出されたり、触媒41内で酸素が欠乏してHCやCOが排出されたりすることを予防できるので、エミッションの良化に奏功する。リニアA/Fセンサよりも安価なO2センサ43を使用して有害物質の排出量をより一層削減でき、コスト面でも有利である。
なお、本発明は以上に詳述した実施形態に限られるものではない。上記実施形態では、触媒41に吸蔵されている酸素量とその目標吸蔵量との偏差Σ(ΔOSn)に応じて制御中心補正量FACFを調整することで、フィードバック制御により収束させるべき空燃比の目標を変化させていた。だが、これに代えて、またはこれとともに、触媒41の上流側の空燃比センサ43の出力信号fと比較するべき目標値、換言すればフロントO2センサ43の出力電圧fと比較するべき判定電圧値自体を調整することで、フィードバック制御により収束させるべき空燃比の目標を変化させるようにしても構わない。その際には、偏差Σ(ΔOSn)が正値であるときに判定電圧値を引き上げて目標値をよりリッチ側に変位させ、偏差Σ(ΔOSn)が負値であるときに判定電圧値を引き下げて目標値をよりリーン側に変位させる。
また、内燃機関の制御装置たるECU0が、偏差Σ(ΔOSn)に基づく(触媒41の下流の空燃比センサ44の出力信号gを参照しない)制御中心補正量FACFの演算と並行して、従来の空燃比フィードバック制御と同様の、触媒41の下流の空燃比センサ44の出力信号gを参照した制御中心補正量FACFの演算を実行することもあり得る。これら制御中心補正量は何れも、フィードバック制御により収束させるべきガスの空燃比の目標を指し示す。
そして、前者の制御中心補正量FACFと後者の制御中心補正量FACFとの乖離が一定以上に広がった(両者の差の絶対値が一定以上となった、または両者の比が一定範囲から逸脱した(両者の比が当該範囲の上限を超えて大きくなった、または当該範囲の下限を超えて小さくなった))場合には、前者の制御中心補正量FACFではなく後者の制御中心補正量FACFを用いて空燃比フィードバック制御を遂行する、つまり触媒41の下流の空燃比センサ44の出力信号gを基に設定した目標に空燃比を収束させるフィードバック制御を実施することが考えられる。さすれば、偏差Σ(ΔOSn)に大きな誤差が混入したとしても、有害物質の排出量が増大することを適切に回避できる。
後者の制御中心補正量FACFを用いて空燃比をフィードバック制御しているときに、気筒1に対する燃料噴射を所定時間(例えば、数秒)以上中断する燃料カットが発生した場合には、以後前者の制御中心補正量FACFを用いる、つまりは偏差Σ(ΔOSn)に応じた目標に空燃比を収束させるフィードバック制御に復帰することができる。何故ならば、燃料カットにより触媒41の最大酸素吸蔵能力一杯まで酸素が吸蔵され、演算の誤差がリセット(解消)されるからである。前者の制御中心補正量FACFを用いた空燃比フィードバック制御に復帰するときの偏差Σ(ΔOSn)の初期値は、触媒41の最大酸素吸蔵能力から目標吸蔵量を減算して求めることができる。
その他、各部の具体的な構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
本発明は、車両に搭載された内燃機関の制御に適用することができる。
0…制御装置(ECU)
1…気筒
11…インジェクタ
3…吸気通路
4…排気通路
41…触媒
43…触媒の上流の空燃比センサ(O2センサ)
b…クランク角信号
d…吸気温・吸気圧信号
f…空燃比信号
j…燃料噴射信号

Claims (3)

  1. 内燃機関の排気通路に装着した排気浄化用の触媒に流入するガスの空燃比をフィードバック制御する制御装置であって、
    気筒に吸入された空気の量、及び前記排気通路における前記触媒の上流に設置されている空燃比センサの出力信号を基に、前記触媒に吸蔵されている酸素量とその目標吸蔵量との偏差を推算した前記ガスの空燃比の目標である第1目標を設定し
    前記排気通路における前記触媒の下流に設置されている空燃比センサの出力信号を基に、前記ガスの空燃比の目標である第2目標を別途設定し、
    前記第1目標と、前記第2目標と、を比較して、前記フィードバック制御により収束させるべき前記ガスの空燃比の目標を変化させる内燃機関の制御装置。
  2. 前記第1目標と、前記第2目標との乖離が一定以上に広がった場合には、前記第1目標ではなく前記第2目標前記ガスの空燃比を収束させるようフィードバック制御を実施する請求項1記載の内燃機関の制御装置。
  3. 前記第2目標に空燃比を収束させるようフィードバック制御を実施しているときに、前記気筒に対する燃料噴射を所定時間以上中断する燃料カットが発生した場合には、以後前記第1目標に空燃比を収束させるようフィードバック制御を実施する請求項2記載の内燃機関の制御装置。
JP2017229888A 2017-11-30 2017-11-30 内燃機関の制御装置 Active JP6961307B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017229888A JP6961307B2 (ja) 2017-11-30 2017-11-30 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229888A JP6961307B2 (ja) 2017-11-30 2017-11-30 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2019100221A JP2019100221A (ja) 2019-06-24
JP6961307B2 true JP6961307B2 (ja) 2021-11-05

Family

ID=66976368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229888A Active JP6961307B2 (ja) 2017-11-30 2017-11-30 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP6961307B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113294266B (zh) * 2020-02-21 2022-07-05 中国石油天然气股份有限公司 压缩机的空燃比调控装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664115B2 (ja) * 2001-07-27 2005-06-22 日産自動車株式会社 内燃機関の空燃比制御装置
JP5884701B2 (ja) * 2012-02-01 2016-03-15 株式会社デンソー 内燃機関の排出ガス浄化装置
JP2014066154A (ja) * 2012-09-25 2014-04-17 Daihatsu Motor Co Ltd 内燃機関の制御装置
JP6269367B2 (ja) * 2014-07-23 2018-01-31 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2019100221A (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
US20060059894A1 (en) Air-fuel ratio control system and method
US10550788B2 (en) Controller and control method for internal combustion engine
JP2014066154A (ja) 内燃機関の制御装置
JP6961307B2 (ja) 内燃機関の制御装置
JP2007198210A (ja) エンジンの蒸発燃料制御装置
JP7143032B2 (ja) 内燃機関の制御装置
JP6961308B2 (ja) 内燃機関の制御装置
JP2021131032A (ja) 内燃機関の制御装置
JP2010138791A (ja) 空燃比制御装置
JP6153344B2 (ja) 空燃比制御装置
JP5644342B2 (ja) 多気筒内燃機関の制御装置
JP2021139340A (ja) 内燃機関の制御装置
JP6188364B2 (ja) 空燃比制御装置
JP2018105163A (ja) 内燃機関の制御装置
JP7023129B2 (ja) 内燃機関の制御装置
JP6238729B2 (ja) 内燃機関の制御装置
JP5794788B2 (ja) 空燃比制御装置
JP2023090017A (ja) 内燃機関の制御装置
JP2009024496A (ja) 内燃機関の空燃比制御装置
JP6733399B2 (ja) 内燃機関の制御装置
JP2015218582A (ja) 内燃機関の制御装置
JP2022133865A (ja) 内燃機関の制御装置
JP2022142962A (ja) 内燃機関の制御装置
JP2020084902A (ja) 内燃機関の制御装置
JP2016070156A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211012

R150 Certificate of patent or registration of utility model

Ref document number: 6961307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250