JP6954824B2 - Hot air furnace equipment and hot air furnace operation method - Google Patents

Hot air furnace equipment and hot air furnace operation method Download PDF

Info

Publication number
JP6954824B2
JP6954824B2 JP2017242038A JP2017242038A JP6954824B2 JP 6954824 B2 JP6954824 B2 JP 6954824B2 JP 2017242038 A JP2017242038 A JP 2017242038A JP 2017242038 A JP2017242038 A JP 2017242038A JP 6954824 B2 JP6954824 B2 JP 6954824B2
Authority
JP
Japan
Prior art keywords
furnace
hot air
combustion
blast
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017242038A
Other languages
Japanese (ja)
Other versions
JP2019108583A (en
Inventor
健吾 薄井
健吾 薄井
昭二 古舘
昭二 古舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017242038A priority Critical patent/JP6954824B2/en
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to KR1020207020460A priority patent/KR102443024B1/en
Priority to CN201880079434.1A priority patent/CN111684083A/en
Priority to PCT/JP2018/032444 priority patent/WO2019123727A1/en
Priority to BR112020012112-6A priority patent/BR112020012112B1/en
Priority to RU2020119665A priority patent/RU2769340C2/en
Priority to EP18892629.9A priority patent/EP3730631B1/en
Publication of JP2019108583A publication Critical patent/JP2019108583A/en
Application granted granted Critical
Publication of JP6954824B2 publication Critical patent/JP6954824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/007Controlling or regulating of the top pressure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/02Brick hot-blast stoves
    • C21B9/04Brick hot-blast stoves with combustion shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/22Arrangements of heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/64Controlling the physical properties of the gas, e.g. pressure or temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Air Supply (AREA)
  • Blast Furnaces (AREA)
  • Vending Machines For Individual Products (AREA)
  • Electric Stoves And Ranges (AREA)
  • Massaging Devices (AREA)

Description

本発明は熱風炉装置および熱風炉運転方法に関する。 The present invention relates to a hot air furnace device and a hot air furnace operating method.

製銑用の高炉に熱風を供給するために、熱風炉が用いられている(特許文献1参照)。
熱風炉においては、燃焼運転と送風運転とが繰り返される。
燃焼運転の際には、外部から燃料ガスおよび空気が供給され、これらを内部で燃焼させることで、熱風炉内の蓄熱煉瓦が高温まで加熱される。
送風運転には、燃焼時とは逆向きに空気が供給され、供給された空気は蓄熱煉瓦で加熱され、高温とされて高炉へと供給される。
A hot air furnace is used to supply hot air to a blast furnace for iron making (see Patent Document 1).
In the hot blast furnace, the combustion operation and the blast operation are repeated.
During the combustion operation, fuel gas and air are supplied from the outside, and by burning these inside, the heat storage brick in the hot air furnace is heated to a high temperature.
In the blast operation, air is supplied in the direction opposite to that at the time of combustion, and the supplied air is heated by the heat storage brick, heated to a high temperature, and supplied to the blast furnace.

熱風炉は複数本が並列に設置され、一つが燃焼運転する間にも他が送風運転を続けることで、高炉への熱風の供給が途絶えないようにしている。
通常、燃焼運転の際には、燃料ガスとして高炉の炉頂ガス(BFG)が利用される。燃焼排気は大気開放されるため、熱風炉内圧力は大気圧よりやや高い程度とされる。
一方、送風運転の際には、高圧の高炉内部に熱風を吹き込むべく、ブロアなどで加圧された空気が熱風炉内に導入されており、熱風炉内圧力は高炉の内部圧力以上とされる。
Multiple hot blast furnaces are installed in parallel, and while one is in combustion operation, the other continues in blast operation so that the supply of hot air to the blast furnace is not interrupted.
Normally, during the combustion operation, the top gas (BFG) of the blast furnace is used as the fuel gas. Since the combustion exhaust is open to the atmosphere, the pressure inside the hot air furnace is considered to be slightly higher than the atmospheric pressure.
On the other hand, during the blowing operation, air pressurized by a blower or the like is introduced into the hot blast furnace in order to blow hot air into the high pressure blast furnace, and the pressure inside the hot blast furnace is considered to be higher than the internal pressure of the blast furnace. ..

熱風炉の運用にあたっては、燃焼運転と送風運転とを所定時間毎に切り替えるとともに、切り替えの際に各々の熱風炉内圧力に応じた圧力調整を行っていた。
燃焼運転から送風運転へ切り換える際には、均圧運転を行い、加圧された空気を熱風炉内へ導入し、熱風炉内の圧力を高めていた。
送風運転から燃焼運転に切り換える際には、排圧運転を行い、熱風炉内から徐々に排気することで、熱風炉内の圧力を下げていた。
In the operation of the hot blast furnace, the combustion operation and the blast operation were switched at predetermined time intervals, and the pressure was adjusted according to the pressure inside each hot blast furnace at the time of switching.
When switching from the combustion operation to the blower operation, the pressure equalizing operation was performed and the pressurized air was introduced into the hot air furnace to increase the pressure in the hot air furnace.
When switching from the blowing operation to the combustion operation, the exhaust pressure operation was performed and the pressure in the hot air furnace was lowered by gradually exhausting the air from the hot air furnace.

ところで、特許文献1の熱風炉装置では、燃焼運転の際に供給される燃料ガスおよび空気の圧力を高めることで、いくつかの改善が図られている。
すなわち、燃焼運転時の熱風炉内圧力を従来の大気圧程度よりも高めることで、燃焼ガスの体積を削減し、炉体および設備の小型化が可能となる。また、燃焼運転時の熱風炉内圧力を送風運転時の熱風炉内圧力に近づけることで、各々の間の圧力差が小さくなり、従来の均圧運転および排圧運転時間を短縮でき、省エネルギーとなる。
燃焼運転時の熱風炉内圧力を高めるための具体的な構成として、特許文献1の熱風炉装置では、燃焼運転に用いるBFGを高炉のBFG回収ラインから取り出す位置を、炉頂圧回収タービン発電設備(TRT)よりも上流側の高圧部分としている。
By the way, in the hot air furnace device of Patent Document 1, some improvements are achieved by increasing the pressures of the fuel gas and the air supplied during the combustion operation.
That is, by increasing the pressure inside the hot air furnace during the combustion operation to a level higher than that of the conventional atmospheric pressure, the volume of the combustion gas can be reduced and the furnace body and equipment can be miniaturized. In addition, by making the pressure inside the hot air furnace during the combustion operation close to the pressure inside the hot air furnace during the blowing operation, the pressure difference between them becomes smaller, and the conventional pressure equalization operation and exhaust pressure operation time can be shortened, resulting in energy saving. Become.
As a specific configuration for increasing the pressure inside the hot blast furnace during combustion operation, in the hot blast furnace device of Patent Document 1, the position where the BFG used for the combustion operation is taken out from the BFG recovery line of the blast furnace is set at the top pressure recovery turbine power generation facility. It is a high-pressure part on the upstream side of (TRT).

特開昭59−143008号公報JP-A-59-143008

前述のように、特許文献1の熱風炉装置では、燃焼運転に用いるBFGを、高炉のBFG回収ラインのTRTよりも上流側の高圧部分から取り出すことで、燃焼運転時の熱風炉内圧力を高めている。
しかし、高炉のBFG回収ラインのTRTよりも上流側から取り出したBFGであっても、その圧力(例えば280KPa)は、燃焼運転時の熱風炉内圧力を送風運転時の熱風炉内圧力(例えば500KPa)にまで高める程度に十分ではなく、均圧運転および排圧運転を解消するまでには至っていない。つまり、特許文献1においては、均圧運転および排圧運転で調整する圧力差が小さくできたとしても、各々の作業自体は解消することができず、作業効率の削減、運転効率の向上に繋がらないという問題があった。
As described above, in the hot air furnace device of Patent Document 1, the BFG used for the combustion operation is taken out from the high pressure portion on the upstream side of the TRT of the BFG recovery line of the blast furnace to increase the pressure inside the hot air furnace during the combustion operation. ing.
However, even if the BFG is taken out from the upstream side of the TRT of the BFG recovery line of the blast furnace, its pressure (for example, 280 KPa) is the pressure inside the hot blast furnace during the combustion operation and the pressure inside the hot blast furnace during the blast operation (for example, 500 KPa). ) Is not enough, and the pressure equalizing operation and the exhaust pressure operation have not been eliminated. That is, in Patent Document 1, even if the pressure difference adjusted in the pressure equalizing operation and the exhaust pressure operation can be reduced, each work itself cannot be eliminated, which leads to reduction of work efficiency and improvement of operation efficiency. There was a problem that there was no.

また、特許文献1のように、高炉のBFG回収ラインのTRTよりも上流側から取り出されたBFGには、次のような問題がある。
BFG回収ラインの高炉に近い部分であるため、高炉の炉頂圧力の変動の影響を受け易く、BFGの圧力が安定しないため、熱風炉における燃焼運転の安定性が低下する。
さらに、高圧であることからBFG中に含まれる水分量が多く、熱風炉に導入された際にミストになって耐火煉瓦を劣化させる原因になる。
Further, as in Patent Document 1, the BFG taken out from the upstream side of the TRT of the BFG recovery line of the blast furnace has the following problems.
Since the part of the BFG recovery line is close to the blast furnace, it is easily affected by fluctuations in the top pressure of the blast furnace, and the pressure of the BFG is not stable, so that the stability of the combustion operation in the hot blast furnace is lowered.
Further, since the pressure is high, the amount of water contained in the BFG is large, and when it is introduced into a hot air furnace, it becomes mist and causes deterioration of refractory bricks.

本発明の目的は、燃焼運転時の熱風炉内圧力を十分に高圧化できる熱風炉装置および熱風炉運転方法を提供することにある。 An object of the present invention is to provide a hot blast furnace device and a hot blast furnace operating method capable of sufficiently increasing the pressure inside the hot blast furnace during combustion operation.

本発明の熱風炉装置は、高炉に熱風を送風する送風運転および熱風炉内で燃料ガスを燃焼させる燃焼運転を行う熱風炉と、前記高炉の炉頂ガスを前記燃料ガスとして前記熱風炉に供給する燃料ガス供給ラインと、前記燃料ガス供給ラインに設置されて前記燃料ガスを昇圧する昇圧機とを有することを特徴とする。 The hot blast furnace device of the present invention supplies a hot blast furnace that blows hot air to the blast furnace and a combustion operation that burns fuel gas in the hot blast furnace, and the top gas of the blast furnace as the fuel gas to the hot blast furnace. It is characterized by having a fuel gas supply line to be used and a booster installed in the fuel gas supply line to boost the fuel gas.

本発明の熱風炉運転方法は、高炉に熱風を送風する送風運転および熱風炉内で燃料ガスを燃焼させる燃焼運転を行う熱風炉の運転方法であって、前記高炉の炉頂ガスを前記燃料ガスとして前記熱風炉に供給するとともに、前記熱風炉に供給される前記燃料ガスを昇圧機で昇圧することを特徴とする。 The hot blast furnace operating method of the present invention is a hot blast furnace operating method in which hot air is blown to the blast furnace and combustion operation is performed to burn fuel gas in the hot blast furnace, and the top gas of the blast furnace is used as the fuel gas. The fuel gas supplied to the hot air furnace is boosted by a booster while being supplied to the hot air furnace.

本発明では、熱風炉に供給される燃料ガスを、昇圧機で昇圧することで十分な高圧にすることができる。
このため、熱風炉においては、燃焼運転時の熱風炉内圧力を送風運転時の熱風炉内圧力まで十分に高圧化することができ、燃焼運転時と送風運転時の熱風炉内圧力の差がなくなることで、均圧運転および排圧運転が必要なくなり、各々の作業を解消することができる。
In the present invention, the fuel gas supplied to the hot air furnace can be boosted to a sufficiently high pressure by boosting the pressure with a booster.
Therefore, in the hot blast furnace, the pressure inside the hot blast furnace during the combustion operation can be sufficiently increased to the pressure inside the hot blast furnace during the blast operation, and the difference between the pressure inside the hot blast furnace during the combustion operation and the blast operation is different. By eliminating the need for pressure equalization operation and exhaust pressure operation, each work can be eliminated.

熱風炉の運転において均圧運転および排圧運転が全解消できることで、各々の作業工程を削減でき、作業効率および作業コストを低減できる。また、熱風炉の運転において、均圧運転および排圧運転が占めていた期間を解消でき、運転効率を向上することができる。さらに、熱風炉基数の削減も可能である。加えて、従来の排圧運転時には、熱風炉内に残留していたBFGから、熱風炉内圧力の低下に伴って結露が発生していたが、排圧運転の解消により、このような熱風炉内の結露も防止することができる。 Since the pressure equalizing operation and the exhaust pressure operation can be completely eliminated in the operation of the hot air furnace, each work process can be reduced, and the work efficiency and work cost can be reduced. Further, in the operation of the hot air furnace, the period occupied by the pressure equalizing operation and the exhaust pressure operation can be eliminated, and the operation efficiency can be improved. Furthermore, it is possible to reduce the number of hot air furnaces. In addition, during the conventional exhaust pressure operation, dew condensation was generated from the BFG remaining in the hot air furnace as the pressure inside the hot air furnace decreased. Condensation inside can also be prevented.

さらに、本発明では、熱風炉に導入される燃料ガスを、昇圧機により断熱圧縮することで昇温させることができる。これにより、従来の燃料ガスの予熱装置や、従来の補助燃料ガスの供給も解消でき、設備および運転コストの抑制ができる。 Further, in the present invention, the fuel gas introduced into the hot air furnace can be heated by adiabatic compression by a booster. As a result, the conventional fuel gas preheating device and the conventional auxiliary fuel gas supply can be eliminated, and the equipment and operating costs can be suppressed.

本発明において、燃焼運転時の熱風炉内圧力を高めることで、燃焼運転の時間も短縮できる。従来は、一般に送風運転に対して燃焼運転の時間が長く設定され、かつ前述した均圧運転および排圧運転が必要であった。しかし、本発明では、均圧運転および排圧運転が解消できるとともに、燃焼運転時間を短縮して送風運転と同程度の時間とすることもでき、燃焼運転と送風運転とが繰り返す簡素な運転スケジュールの設定も可能となる。 In the present invention, the time of the combustion operation can be shortened by increasing the pressure in the hot air furnace during the combustion operation. Conventionally, the combustion operation time is generally set longer than that of the blower operation, and the above-mentioned pressure equalization operation and exhaust pressure operation are required. However, in the present invention, the pressure equalizing operation and the exhaust pressure operation can be eliminated, and the combustion operation time can be shortened to the same time as the blast operation, and a simple operation schedule in which the combustion operation and the blast operation are repeated can be eliminated. Can also be set.

上述した作用効果に加え、本発明では、前述した特許文献1における燃料ガスの高圧化による作用効果についても得ることができる。
すなわち、送風運転時の熱風炉内圧力と燃焼運転時の熱風炉内圧力との差が減少し、均圧運転および排圧運転における圧力変動が解消されるため、熱風炉各部の寿命を延長することができる。例えば、鉄皮の疲労破壊の防止、熱風炉内の耐火煉瓦の割れや、煉瓦目地の開きを防止することができ、目地からの熱風炉内ガスの吹き抜けといった問題も解消することができる。
さらに、燃焼運転時の熱風炉内圧力の高圧化により、燃料ガスの体積を抑制でき、熱風炉内断面積を抑制でき、燃焼運転時の燃焼効率も向上でき、炉体および設備を小型化することができる。
In addition to the above-mentioned action and effect, in the present invention, the above-mentioned action and effect by increasing the pressure of the fuel gas in Patent Document 1 can also be obtained.
That is, the difference between the pressure inside the hot blast furnace during the blowing operation and the pressure inside the hot blast furnace during the combustion operation is reduced, and the pressure fluctuations during the pressure equalization operation and the exhaust pressure operation are eliminated, so that the life of each part of the hot blast furnace is extended. be able to. For example, it is possible to prevent fatigue destruction of the iron skin, cracking of refractory bricks in the hot air furnace, opening of brick joints, and solving problems such as blow-by of gas in the hot air furnace from the joints.
Furthermore, by increasing the pressure inside the hot air furnace during combustion operation, the volume of fuel gas can be suppressed, the cross-sectional area inside the hot air furnace can be suppressed, the combustion efficiency during combustion operation can be improved, and the furnace body and equipment can be miniaturized. be able to.

本発明の熱風炉装置において、前記燃料ガス供給ラインは、前記高炉の炉頂から前記炉頂ガスを取り出す炉頂ガス回収ラインの炉頂圧回収設備よりも下流側から前記炉頂ガスを取り出すことが好ましい。 In the hot blast furnace apparatus of the present invention, the fuel gas supply line takes out the top gas from the downstream side of the top pressure recovery facility of the top gas recovery line that takes out the top gas from the top of the blast furnace. Is preferable.

本発明の熱風炉運転方法において、前記燃料ガスとして、前記高炉の炉頂から取り出されて炉頂圧回収設備で圧力回収された前記炉頂ガスを用いることが好ましい。 In the hot blast furnace operating method of the present invention, it is preferable to use the top gas taken out from the top of the blast furnace and recovered in pressure by the top pressure recovery facility as the fuel gas.

本発明では、燃料ガスとして用いる炉頂ガスが、炉頂圧回収設備で圧力回収された後であるため、高炉の炉頂圧力の変動の影響は炉頂圧回収設備で緩和され、燃料ガスにおける圧力変動を安定化することができる。
本発明では、燃料ガスとして用いる炉頂ガスが、炉頂圧回収設備で圧力回収されて低圧の状態であるため、炉頂ガス中の水分量を低い状態とすることができ、燃料ガスとして導入された際に熱風炉内のミスト発生による耐火煉瓦の劣化などを防止することができる。
本発明では、昇圧機による昇圧ができるため、このような低圧の炉頂ガスを用いても、熱風炉に導入される燃料ガスを十分な高圧とすることができる。
In the present invention, since the top gas used as the fuel gas is pressure-recovered by the top pressure recovery facility, the influence of the fluctuation of the top pressure of the blast furnace is mitigated by the top pressure recovery facility, and the fuel gas is affected. The pressure fluctuation can be stabilized.
In the present invention, since the furnace top gas used as the fuel gas is pressure-recovered by the furnace top pressure recovery facility and is in a low pressure state, the water content in the furnace top gas can be kept low and introduced as a fuel gas. It is possible to prevent the refractory bricks from deteriorating due to the generation of mist in the hot air furnace.
In the present invention, since the pressure can be increased by the booster, the fuel gas introduced into the hot air furnace can be made sufficiently high pressure even if such a low pressure furnace top gas is used.

本発明の熱風炉装置において、前記燃焼運転時の前記熱風炉の排ガスから排圧および排熱を回収する排熱回収設備を有し、前記昇圧機は前記排熱回収設備で回収した排圧および排熱を動力に用いることが好ましい。 The hot air furnace device of the present invention has an exhaust heat recovery facility for recovering exhaust pressure and exhaust heat from the exhaust gas of the hot air furnace during the combustion operation, and the booster has exhaust pressure and exhaust heat recovered by the exhaust heat recovery facility. It is preferable to use waste heat as power.

本発明の熱風炉運転方法において、前記燃焼運転時の前記熱風炉の排ガスから排圧および排熱を回収し、回収した排圧および排熱を前記昇圧機の動力に用いることが好ましい。 In the hot air furnace operating method of the present invention, it is preferable to recover the exhaust pressure and the exhaust heat from the exhaust gas of the hot air furnace during the combustion operation, and use the recovered exhaust pressure and the exhaust heat for the power of the booster.

本発明では、昇圧機の動力を、熱風炉の燃焼運転時の排ガスから回収した排圧および排熱でまかなうことができ、運転コストを抑制することができる。本発明における昇圧機の効果は、前述した通りであるが、その動力についても熱風炉の燃焼運転時の排エネルギーを利用することで、本発明の実施に必要なコストを最小限にすることができる。 In the present invention, the power of the booster can be supplied by the exhaust pressure and the exhaust heat recovered from the exhaust gas during the combustion operation of the hot air furnace, and the operating cost can be suppressed. The effect of the booster in the present invention is as described above, but the cost required for carrying out the present invention can be minimized by utilizing the exhaust energy during the combustion operation of the hot air furnace for its power. can.

本発明の熱風炉運転方法において、前記送風運転と、前記熱風炉を前記送風運転から前記燃焼運転に切り替える燃焼切替作業と、前記燃焼運転と、前記熱風炉を前記燃焼運転から前記送風運転に切り替える送風切替作業と、を繰り返すとともに、前記燃焼切替作業、前記燃焼運転および前記送風切替作業の合計時間を、前記送風運転を行う時間以下とすることが好ましい。 In the hot blast furnace operation method of the present invention, the blast operation, the combustion switching operation of switching the hot blast furnace from the blast operation to the combustion operation, the combustion operation, and switching the hot blast furnace from the combustion operation to the blast operation. It is preferable that the blast switching work is repeated and the total time of the combustion switching work, the combustion operation and the blast switching work is set to be equal to or less than the time for performing the blast operation.

本発明では、例えば熱風炉2本運転を行う場合、2本の熱風炉を交互に、一方を送風運転とし、その間に他方で燃焼切替作業、燃焼運転および送風切替作業を実行することができる。
本発明では、燃焼切替作業および送風切替作業に圧力調整(均圧および排圧)を含まないので、燃焼切替作業および送風切替作業は燃焼ガスあるいは送風用の空気の切り替えだけでよく、ごく短時間で実行することができる。
そして、本発明では、燃焼運転が高圧で行われるため、送風運転と同程度の時間で十分な蓄熱が得られる。
In the present invention, for example, when two hot blast furnaces are operated, the two hot blast furnaces can be alternately operated, one of which is a blast operation, and the other of which is capable of performing combustion switching operation, combustion operation, and blast switching operation.
In the present invention, since the combustion switching work and the blower switching work do not include pressure adjustment (pressure equalization and exhaust pressure), the combustion switching work and the blower switching work need only be switched between the combustion gas and the air for blowing, and the time is very short. Can be executed with.
Further, in the present invention, since the combustion operation is performed at a high pressure, sufficient heat storage can be obtained in the same time as the ventilation operation.

その結果、2本の熱風炉の一方が送風運転する間に、他方を前後に燃焼切替作業および送風切替作業を伴う燃焼運転とすることができ、2本の熱風炉で従来の3本熱風炉運転と同条件の送風運転させることができる。この際、送風運転は、2本の熱風炉で交互に行われるので、高炉に対する送風が途切れることはない。
なお、偶数本の熱風炉を有する熱風炉装置であれば、2本ずつの熱風炉に対して本発明を適用することができる。
As a result, while one of the two hot blast furnaces is in the blast operation, the other can be in the combustion operation with the combustion switching work and the blast switching work in the front-rear direction. It can be operated by blowing air under the same conditions as the operation. At this time, since the blast operation is alternately performed by the two hot blast furnaces, the blast furnace is not interrupted.
The present invention can be applied to two hot blast furnaces as long as it is a hot blast furnace apparatus having an even number of hot blast furnaces.

本発明の熱風炉運転方法において、前記送風運転と、前記熱風炉を前記送風運転から前記燃焼運転に切り替える燃焼切替作業と、前記燃焼運転と、前記熱風炉を前記燃焼運転から前記送風運転に切り替える送風切替作業と、を繰り返すとともに、前記燃焼切替作業、前記燃焼運転および前記送風切替作業の合計時間を、前記送風運転を行う時間の2倍以下とすることが好ましい。 In the hot blast furnace operation method of the present invention, the blast operation, the combustion switching operation of switching the hot blast furnace from the blast operation to the combustion operation, the combustion operation, and switching the hot blast furnace from the combustion operation to the blast operation. It is preferable that the blast switching work is repeated and the total time of the combustion switching work, the combustion operation and the blast switching work is twice or less the time for performing the blast operation.

本発明では、例えば熱風炉3本運転を行う場合、3本の熱風炉のうち1本を送風運転とし、その間に他の2本で燃焼切替作業、燃焼運転および送風切替作業を実行することができる。
すなわち、送風運転していた熱風炉を燃焼運転に切り換えて2本目の熱風炉で送風運転を行い、所定の送風運転時間が経過したら2本目の熱風炉を送風運転から燃焼運転に切り換えて3本目の熱風炉で送風運転を行う。このとき、1本目の熱風炉は燃焼運転の半分が経過した状態であり、所定の送風運転時間が経過したら3本目の熱風炉を送風運転から燃焼運転に切り換えるとともに、1本目の熱風炉で送風運転を行う。
その結果、3本の熱風炉のうち1本が送風運転する間に、他の2本を前後に燃焼切替作業および送風切替作業を伴う燃焼運転とすることができ、3本の熱風炉を効率的に運転させることができる。この際、送風運転は、3本の熱風炉のいずれかで交互に行われるので、高炉に対する送風が途切れることはない。
さらに、本発明では、送風運転に対して燃焼運転がほぼ2倍の時間となるため、送風運転の時間を短くして蓄熱温度の低下を小さくすることができる。また、燃焼が行われる燃焼室のサイズを小さくすることもできる。
In the present invention, for example, when three hot air furnaces are operated, one of the three hot air furnaces is set to blow air, and the other two perform combustion switching work, combustion operation, and blow air switching work in the meantime. can.
That is, the hot blast furnace that had been in the blast operation is switched to the combustion operation and the blast operation is performed in the second hot blast furnace. Blow operation is performed in the hot air furnace of. At this time, half of the combustion operation of the first hot blast furnace has passed, and when the predetermined blasting operation time has elapsed, the third hot blast furnace is switched from the blasting operation to the combustion operation, and the first hot blast furnace blows air. Drive.
As a result, while one of the three hot blast furnaces is in the blast operation, the other two can be in the combustion operation with the combustion switching work and the blast switching work back and forth, and the three hot blast furnaces can be efficiently operated. Can be operated as a target. At this time, since the blast operation is alternately performed in any of the three hot blast furnaces, the blast furnace is not interrupted.
Further, in the present invention, since the combustion operation takes almost twice as long as the blower operation, the blower operation time can be shortened to reduce the decrease in the heat storage temperature. It is also possible to reduce the size of the combustion chamber in which combustion takes place.

なお、3の倍数本の熱風炉を有する熱風炉装置であれば、3本ずつの熱風炉に対して本発明を適用することができる。
また、熱風炉3本運転の場合で、1本で燃焼運転を実行する間に、2本で送風運転を行うとしてもよく、送風運転を行う2本の熱風炉については、先ず1本目の熱風炉だけで送風運転を行い、1本目の送風運転が半分経過した段階で2本目の熱風炉が送風運転を開始することで、高炉への送風温度を前述した熱風炉2本ないし偶数本の交互運転に比べ高くできる。
The present invention can be applied to three hot blast furnaces as long as it is a hot blast furnace apparatus having three hot blast furnaces.
Further, in the case of the operation of three hot blast furnaces, the blast operation may be performed by two while the combustion operation is performed by one. For the two blast furnaces that perform the blast operation, first, the first hot air The blast operation is performed only by the furnace, and when the first blast operation has passed halfway, the second hot blast furnace starts the blast operation, so that the blast temperature to the blast furnace is alternately set to the above-mentioned two or even number of hot blast furnaces. It can be higher than driving.

本発明によれば、燃焼運転時の熱風炉内圧力を十分に高圧化できる熱風炉装置および熱風炉運転方法を提供することができる。 According to the present invention, it is possible to provide a hot blast furnace device and a hot blast furnace operating method capable of sufficiently increasing the pressure inside the hot blast furnace during combustion operation.

本発明の熱風炉装置の一実施形態を示す模式図。The schematic diagram which shows one Embodiment of the hot air furnace apparatus of this invention. 前記実施形態での送風運転および燃焼運転を示す模式図。The schematic diagram which shows the blowing operation and combustion operation in the said embodiment. 従来の送風運転および燃焼運転を示す模式図。The schematic diagram which shows the conventional blowing operation and combustion operation. 前記実施形態での他の送風運転および燃焼運転を示す模式図。The schematic diagram which shows the other blowing operation and combustion operation in the said embodiment.

図1において、熱風炉装置1は、高炉2に熱風を供給するものである。
高炉2には、炉頂21に装入装置22が設置され、鉄鉱石およびコークスを主体とする装入物が挿入される。高炉2には、複数の羽口23が炉体の周方向に配列され、各々には環状管24を介して熱風炉装置1が接続されている。
熱風炉装置1から熱風が供給されると、熱風は環状管24で分配されて羽口23から高炉内へ均等に吹き込まれる。高炉内に吹き込まれた熱風は、装入物を加熱して鉄分の還元反応に寄与したのち、炉頂ガス(BFG)として炉頂21から取り出される。
In FIG. 1, the hot air furnace device 1 supplies hot air to the blast furnace 2.
In the blast furnace 2, a charging device 22 is installed at the top 21 of the furnace, and charged materials mainly composed of iron ore and coke are inserted. A plurality of tuyere 23 are arranged in the circumferential direction of the furnace body in the blast furnace 2, and a hot air furnace device 1 is connected to each of them via an annular pipe 24.
When hot air is supplied from the hot air furnace device 1, the hot air is distributed by the annular pipe 24 and evenly blown into the blast furnace from the tuyere 23. The hot air blown into the blast furnace heats the charge and contributes to the iron reduction reaction, and then is taken out from the furnace top 21 as the furnace top gas (BFG).

高炉2には、炉頂ガスを回収する炉頂ガス回収ライン3が接続されている。
炉頂ガス回収ライン3は、炉頂21に接続された炉頂配管31によりBFGを取り出し、ダストキャッチャ32、第1ベンチュリスクラバ33、第2ベンチュリスクラバ34を順次通過させることでBFGを除塵する。
除塵されたBFGは、炉頂圧回収設備35(TRT)により圧力および熱などの残留エネルギーを回収され、電力などに変換して再利用される。
エネルギー回収されたBFGは、ガスホルダ36に貯蔵され、他の設備の燃料などに利用される。
A top gas recovery line 3 for recovering top gas is connected to the blast furnace 2.
The furnace top gas recovery line 3 takes out the BFG through the furnace top pipe 31 connected to the furnace top 21, and removes the BFG by sequentially passing through the dust catcher 32, the first Venturi scrubber 33, and the second Venturi scrubber 34.
The dust-removed BFG is recovered from residual energy such as pressure and heat by the furnace top pressure recovery facility 35 (TRT), converted into electric power, and reused.
The energy-recovered BFG is stored in the gas holder 36 and used as fuel for other equipment.

熱風炉装置1は、3本の熱風炉4(4A〜4C)を備えている。熱風炉4A〜4Cは、それぞれ蓄熱室41および燃焼室42を有する外燃式である。
蓄熱室41は、内部に蓄熱用のチェッカー煉瓦が積まれ、炉頂部が燃焼室42と連通されるとともに、炉底部に送風本管43および煙道本管44が接続されている。
燃焼室42は、中間部に環状管24に至る熱風本管45が接続され、炉底のバーナ部分に空気供給管46および燃料ガス供給管47が接続されている。
熱風炉4A〜4Cは、それぞれ送風本管43、煙道本管44および熱風本管45との接続部分に図示しない開閉弁を有し、動作状態に応じて各々との接続が断続される。
The hot air furnace device 1 includes three hot air furnaces 4 (4A to 4C). The hot air furnaces 4A to 4C are external combustion type having a heat storage chamber 41 and a combustion chamber 42, respectively.
The heat storage chamber 41 is loaded with checker bricks for heat storage, the top of the furnace is communicated with the combustion chamber 42, and the blower main 43 and the flue main 44 are connected to the bottom of the furnace.
In the combustion chamber 42, the hot air main pipe 45 leading to the annular pipe 24 is connected to the intermediate portion, and the air supply pipe 46 and the fuel gas supply pipe 47 are connected to the burner portion of the furnace bottom.
The hot air furnaces 4A to 4C each have an on-off valve (not shown) at a connection portion with the blower main 43, the flue main main 44, and the hot air main 45, and the connection with each is interrupted according to the operating state.

熱風炉4A〜4Cにおいては、それぞれ高炉2に熱風を供給する送風運転と、蓄熱するための蓄熱運転とが交互に行われる。
送風運転時には、送風本管43から空気が導入され、蓄熱室41を通る間に加熱されて熱風が生成され、熱風が燃焼室42から熱風本管45を経て環状管24へと供給される。
燃焼運転時には、バーナ部分で空気供給管46からの空気および燃料ガス供給管47からの燃料ガスによる燃焼が燃焼室42内で行われ、高温の燃焼ガスが蓄熱室41に通されてチェッカー煉瓦に蓄熱が行われる。蓄熱室41を通った燃焼ガスは、煙道本管44から排出される。
これらの送風運転および燃焼運転に関して、3本の熱風炉4A〜4Cの相互の連携については後に詳述する。
In the hot blast furnaces 4A to 4C, the blast operation for supplying hot air to the blast furnace 2 and the heat storage operation for storing heat are alternately performed.
During the blowing operation, air is introduced from the blowing main 43, heated while passing through the heat storage chamber 41 to generate hot air, and the hot air is supplied from the combustion chamber 42 to the annular pipe 24 via the hot air main 45.
During the combustion operation, the air from the air supply pipe 46 and the fuel gas from the fuel gas supply pipe 47 are burned in the combustion chamber 42 at the burner portion, and the high temperature combustion gas is passed through the heat storage chamber 41 to the checker brick. Heat is stored. The combustion gas that has passed through the heat storage chamber 41 is discharged from the flue main 44.
Regarding these ventilation operations and combustion operations, the mutual cooperation of the three hot air furnaces 4A to 4C will be described in detail later.

送風本管43には送風用のブロア431が設置され、吸入した空気を所定圧力まで昇圧して蓄熱室41ないし熱風本管45に送ることができる。ブロア431により送風運転時の蓄熱室41および燃焼室42の熱風炉内圧力が所定の高圧に維持され、高炉2の内部が高圧であっても羽口23から熱風を吹き込むことができる。
煙道本管44にはタービン発電機などの排気圧回収設備441が設置され、煙道本管44を通して排出される燃焼ガスの圧力および熱などの残留エネルギーが回収される。
A blower 431 for blowing air is installed in the blowing main 43, and the sucked air can be boosted to a predetermined pressure and sent to the heat storage chamber 41 or the hot air main 45. The blower 431 maintains the pressure inside the hot air furnace of the heat storage chamber 41 and the combustion chamber 42 during the blowing operation at a predetermined high pressure, and hot air can be blown from the tuyere 23 even if the inside of the blast furnace 2 is high pressure.
Exhaust pressure recovery equipment 441 such as a turbine generator is installed in the flue main 44, and residual energy such as pressure and heat of combustion gas discharged through the flue main 44 is recovered.

空気供給管46には空気供給用のブロア461が設置され、燃焼運転時に外気を燃焼室42へと圧送することができる。
燃料ガス供給管47は、燃料ガス供給ライン5を介して炉頂ガス回収ライン3に接続され、高炉2から回収されたBFGを燃焼室42の燃料ガスとして用いることができる。
A blower 461 for supplying air is installed in the air supply pipe 46, and outside air can be pumped to the combustion chamber 42 during the combustion operation.
The fuel gas supply pipe 47 is connected to the furnace top gas recovery line 3 via the fuel gas supply line 5, and the BFG recovered from the blast furnace 2 can be used as the fuel gas in the combustion chamber 42.

燃料ガス供給ライン5は、分岐配管51が炉頂ガス回収ライン3の炉頂圧回収設備35の下流側に接続され、当該部分から取り出したBFGを熱風炉4に供給することができる。
燃料ガス供給ライン5の途中には、本発明の昇圧機としてのブロア52が設置されている。燃料ガス供給ライン5を通して燃焼室42へ送られるBFGは、ブロア52により所定圧力まで昇圧され、燃焼運転時の燃焼室42および蓄熱室41の熱風炉内圧力を所定の高圧に維持することができる。
In the fuel gas supply line 5, the branch pipe 51 is connected to the downstream side of the furnace top pressure recovery facility 35 of the furnace top gas recovery line 3, and the BFG taken out from the portion can be supplied to the hot air furnace 4.
A blower 52 as a booster of the present invention is installed in the middle of the fuel gas supply line 5. The BFG sent to the combustion chamber 42 through the fuel gas supply line 5 is boosted to a predetermined pressure by the blower 52, and the pressure in the hot air furnace of the combustion chamber 42 and the heat storage chamber 41 during the combustion operation can be maintained at a predetermined high pressure. ..

昇圧機としてのブロア52は、その動力として、煙道本管44に設置された排気圧回収設備441による回収エネルギーを用いる。例えば、熱風炉4A〜4Cのいずれかで燃焼運転を行う際には、ブロア52により燃料ガスであるBFGを昇圧するが、その動力は現在燃焼運転中の熱風炉4A〜4Cのいずれかからの回収エネルギーとすることができる。 The blower 52 as a booster uses the energy recovered by the exhaust pressure recovery equipment 441 installed in the flue main 44 as its power. For example, when the combustion operation is performed in any of the hot air furnaces 4A to 4C, the blower 52 boosts the BFG which is the fuel gas, but the power is from any of the hot air furnaces 4A to 4C currently in the combustion operation. It can be used as recovered energy.

ブロア52により昇圧を行い、燃料ガス供給管47から燃焼室42へ供給される燃料ガス(BFG)の圧力を高めた場合、燃焼バランスをとるために、空気供給管46から燃焼室42に供給される空気の圧力を高める必要がある。そのための昇圧は、ブロア461により行うことができる。なお、ブロア461の動力も、排気圧回収設備441による回収エネルギーとすることができる。また、空気供給用のブロア461は、送風用のブロア431の風量に余裕があれば、これで代用してもよい。 When the pressure is increased by the blower 52 and the pressure of the fuel gas (BFG) supplied from the fuel gas supply pipe 47 to the combustion chamber 42 is increased, the fuel gas (BFG) is supplied from the air supply pipe 46 to the combustion chamber 42 in order to balance the combustion. It is necessary to increase the pressure of the air. The boosting for that purpose can be performed by the blower 461. The power of the blower 461 can also be used as the energy recovered by the exhaust pressure recovery equipment 441. Further, the blower 461 for air supply may be substituted with the blower 461 for blowing air if the air volume of the blower 431 is sufficient.

本実施形態の熱風炉装置1においては、3本の熱風炉4A〜4Cのうち2本を用い、各々に送風運転および燃焼運転を交互に実行させる。
図2に示すように、熱風炉4A,4Bの2本を用いる場合、例えば基準時点0分から45分サイクルで、送風運転および燃焼運転を交互に実行させる。
In the hot blast furnace device 1 of the present embodiment, two of the three hot blast furnaces 4A to 4C are used, and the blast operation and the combustion operation are alternately executed in each of them.
As shown in FIG. 2, when two hot air furnaces 4A and 4B are used, for example, the blowing operation and the combustion operation are alternately executed in a cycle of 0 to 45 minutes at the reference time.

熱風炉4Aでは、基準時点0分から、送風運転を45分行い、0.5分で送風運転から燃焼運転への切り替え(燃焼切替作業)を行い、燃焼運転を44分行い、0.5分で燃焼運転から送風運転への切り替え(送風切替作業)を行い、以降これらの4つの工程を繰り返す。
送風運転は45分であるから、1サイクル分となる。燃焼運転44分と燃焼および送風の切替作業0.5分が2回で合計45分となり、1サイクル分に相当する。
In the hot air furnace 4A, the blowing operation is performed for 45 minutes from 0 minutes at the reference time, the switching from the blowing operation to the combustion operation (combustion switching work) is performed in 0.5 minutes, the combustion operation is performed for 44 minutes, and the combustion operation is performed in 0.5 minutes. Switching from the combustion operation to the blower operation (blower switching work) is performed, and then these four steps are repeated.
Since the ventilation operation is 45 minutes, it is for one cycle. The combustion operation of 44 minutes and the combustion and ventilation switching work of 0.5 minutes are performed twice, for a total of 45 minutes, which is equivalent to one cycle.

熱風炉4Aの熱風炉内圧力は、送風運転時には、送風本管43のブロア431により送風用の空気の昇圧が行われ、所定の熱風炉内圧力が維持される。一方、燃焼運転時には、燃料ガス供給ライン5のブロア52により燃料ガスであるBFGの昇圧が行われ、送風運転時と同じ熱風炉内圧力が維持される。
燃焼切替作業および送風切替作業では、空気の流通方向の反転のために、熱風炉4A〜4Cの送風本管43、煙道本管44および熱風本管45との接続部分にそれぞれ設置される図示しない開閉弁を駆動させるための切替時間が発生する。
The pressure inside the hot blast furnace 4A is maintained at a predetermined pressure inside the hot blast furnace by boosting the air for blowing by the blower 431 of the blowing main 43 during the blowing operation. On the other hand, during the combustion operation, the blower 52 of the fuel gas supply line 5 boosts the BFG, which is the fuel gas, and maintains the same pressure in the hot air furnace as during the blower operation.
In the combustion switching work and the blower switching work, in order to reverse the air flow direction, they are installed at the connection portions with the blower main 43, the flue main 44, and the hot air main 45 of the hot air furnaces 4A to 4C, respectively. No switching time is required to drive the on-off valve.

熱風炉4Aの熱風炉内温度は、送風運転時に、送風に伴って低下してゆく。一方、燃焼運転時には、燃焼室42での燃焼により、徐々に上昇してゆき、送風運転の当初必要な温度が確保される。
このような短時間の燃焼運転で十分な蓄熱を行うことができるのは、昇圧機であるブロア52により燃料ガスであるBFGを昇圧し、燃焼室42での燃焼運転を高圧で行うことに起因する。
The temperature inside the hot blast furnace 4A decreases with the blast during the blast operation. On the other hand, during the combustion operation, the temperature gradually rises due to the combustion in the combustion chamber 42, and the initially required temperature for the ventilation operation is secured.
Sufficient heat storage can be performed in such a short-time combustion operation because the BFG, which is a fuel gas, is boosted by the blower 52, which is a booster, and the combustion operation in the combustion chamber 42 is performed at high pressure. do.

以上のような熱風炉4Aに対し、熱風炉4Bでは、基準時点0分から、0.5分の燃焼切替作業を行い、燃焼運転を44分行い、0.5分の送風切替作業を行い、送風運転を45分行い、以降これらの4つの工程を繰り返す。
熱風炉4Bにおいても、送風運転45分が1サイクル分、燃焼運転44分と燃焼切替作業0.5分および送風切替作業0.5分とで合計45分が1サイクル分となる。
送風運転時および燃焼運転時の圧力および温度の変化は、熱風炉4Bにおいても熱風炉4Aで説明した通りの挙動を示す。
In contrast to the hot air furnace 4A as described above, in the hot air furnace 4B, the combustion switching work is performed for 0.5 minutes from 0 minutes at the reference time, the combustion operation is performed for 44 minutes, the air blowing switching work is performed for 0.5 minutes, and the air is blown. The operation is performed for 45 minutes, and then these four steps are repeated.
Also in the hot air furnace 4B, 45 minutes of the blast operation is for one cycle, 44 minutes for the combustion operation, 0.5 minutes for the combustion switching work, and 0.5 minutes for the blast switching work, for a total of 45 minutes for one cycle.
The changes in pressure and temperature during the blowing operation and the combustion operation show the behavior as described in the hot air furnace 4A also in the hot air furnace 4B.

このように、本実施形態では、図2に示すように、熱風炉4A,4Bが45分サイクルで交互に送風運転と燃焼運転とを行うことができる。
熱風炉4A,4Bにおいて、送風運転は45分サイクルの全体にわたるため、高炉2への送風が途絶えることはない。一方、燃焼運転は、高圧での燃焼とすることで、44分で所定の蓄熱を行うことができる。これにより、燃焼切替作業および送風切替作業を含めて燃焼運転を45分サイクルに収めることができ、熱風炉4A,4Bの2本での45分サイクルでの送風および燃焼の交互運転を実現することができる。
図2の運転を行う際には、熱風炉4A,4Bの組み合わせではなく、熱風炉4A,4Cの組み合わせ、あるいは、熱風炉4B,4Cの組み合わせを用いてもよい。
As described above, in the present embodiment, as shown in FIG. 2, the hot air furnaces 4A and 4B can alternately perform the blowing operation and the combustion operation in a 45-minute cycle.
In the hot blast furnaces 4A and 4B, the blast operation extends over the entire 45-minute cycle, so that the blast furnace 2 is not interrupted. On the other hand, in the combustion operation, by performing combustion at a high pressure, a predetermined heat storage can be performed in 44 minutes. As a result, the combustion operation including the combustion switching work and the ventilation switching work can be contained in the 45-minute cycle, and the alternating operation of the ventilation and the combustion in the 45-minute cycle with the two hot air furnaces 4A and 4B can be realized. Can be done.
When performing the operation of FIG. 2, instead of the combination of the hot air furnaces 4A and 4B, the combination of the hot air furnaces 4A and 4C or the combination of the hot air furnaces 4B and 4C may be used.

本実施形態の熱風炉装置1においては、3本の熱風炉4A〜4Cの3本を用いるとともに、昇圧機であるブロア52を用いず、燃焼運転を常圧で行うことで、従来通りの送風運転および燃焼運転を行うこともできる。
図3に示すように、熱風炉4A〜4Cの3本を用い、燃焼運転を常圧で行う場合、例えば基準時点0分から45分サイクルで、送風運転および燃焼運転を交互に実行させる。
ただし、送風運転は45分の1サイクルであるが、燃焼運転は昇温に時間がかかるため、2サイクル90分を用いる。さらに、2サイクル90分においては、燃焼運転75分の前後には、送風運転時の高圧を燃焼運転時の常圧まで下げる排圧運転7.5分と、燃焼運転時の常圧を送風運転時の高圧まで高める均圧運転7.5分とが設定される。
In the hot air furnace device 1 of the present embodiment, three hot air furnaces 4A to 4C are used, and the combustion operation is performed at normal pressure without using the blower 52 which is a booster, so that the air is blown as before. It is also possible to perform operation and combustion operation.
As shown in FIG. 3, when the combustion operation is performed at normal pressure using three hot air furnaces 4A to 4C, the ventilation operation and the combustion operation are alternately executed, for example, in a cycle of 0 to 45 minutes at the reference time.
However, although the ventilation operation is 1/45 cycle, the combustion operation takes time to raise the temperature, so 2 cycles of 90 minutes are used. Further, in 90 minutes of the two cycle, around 75 minutes of the combustion operation, 7.5 minutes of the exhaust pressure operation for lowering the high pressure during the ventilation operation to the normal pressure during the combustion operation and 7.5 minutes for the normal pressure during the combustion operation are blown. A pressure equalizing operation of 7.5 minutes is set to increase the pressure to the current high pressure.

図3において、熱風炉4A〜4Cの各々では、前述した送風運転45分(1サイクル分)に続いて、排圧運転7.5分、燃焼運転75分および均圧運転7.5分の計90分(2サイクル分)が実行され、以降これらの工程が繰り返される。
この際、熱風炉4A〜4Cの各々では、互いに1サイクル分ずつ工程がずらされ、高炉2への熱風の供給が途絶えることがない。すなわち、熱風炉4Aの送風運転に続いて熱風炉4Bの送風運転が行われ、さらに熱風炉4Cの送風運転が続き、再び熱風炉4Aの送風運転が行われ、このような繰り返しにより常にいずれかの熱風炉4A〜4Cが送風運転を行っている。
In FIG. 3, in each of the hot air furnaces 4A to 4C, following the above-mentioned blowing operation of 45 minutes (for one cycle), the exhaust pressure operation is 7.5 minutes, the combustion operation is 75 minutes, and the pressure equalizing operation is 7.5 minutes. 90 minutes (2 cycles) are executed, and these steps are repeated thereafter.
At this time, in each of the hot air furnaces 4A to 4C, the steps are shifted by one cycle from each other, and the supply of hot air to the blast furnace 2 is not interrupted. That is, the blowing operation of the hot air furnace 4A is followed by the blowing operation of the hot air furnace 4B, the blowing operation of the hot air furnace 4C is continued, and the blowing operation of the hot air furnace 4A is performed again. Hot air furnaces 4A to 4C are operating to blow air.

このように、図3に示す従来通りの送風運転および燃焼運転では、熱風炉4A〜4Cが常圧での燃焼運転を行うため、所期の蓄熱を確保するためには燃焼運転に時間が必要であり、熱風炉4A〜4Cの3本運用が必須となる。また、燃焼運転と送風運転との熱風炉内圧力の差を確保するために均圧運転および排圧運転が必要であり、運転作業の繁雑さが避けられない。 As described above, in the conventional ventilation operation and combustion operation shown in FIG. 3, since the hot air furnaces 4A to 4C perform the combustion operation at normal pressure, it takes time for the combustion operation to secure the desired heat storage. Therefore, it is essential to operate three hot air furnaces 4A to 4C. In addition, pressure equalization operation and exhaust pressure operation are required to secure the difference in pressure in the hot air furnace between the combustion operation and the blower operation, and the complexity of the operation work is unavoidable.

以上に説明した通り、本実施形態の熱風炉装置1によれば、とくに図2のような運転を行うことで、以下の効果を得ることができる。
本実施形態では、熱風炉4(4A〜4C)に供給される燃料ガス(BFG)を、昇圧機であるブロア52で昇圧することで、十分な高圧にすることができる。
このため、熱風炉4においては、燃焼運転時の熱風炉内圧力を送風運転時の熱風炉内圧力まで十分に高圧化することができ(図2参照)、燃焼運転時と送風運転時の熱風炉内圧力の差がなくなることで、均圧運転および排圧運転(図3参照)が必要なくなり、各々の作業を解消することができる。
As described above, according to the hot air furnace device 1 of the present embodiment, the following effects can be obtained particularly by performing the operation as shown in FIG.
In the present embodiment, the fuel gas (BFG) supplied to the hot air furnaces 4 (4A to 4C) can be boosted by a blower 52, which is a booster, to obtain a sufficiently high pressure.
Therefore, in the hot air furnace 4, the pressure inside the hot air furnace during the combustion operation can be sufficiently increased to the pressure inside the hot air furnace during the blowing operation (see FIG. 2), and the hot air during the combustion operation and the blowing operation can be sufficiently increased. By eliminating the difference in the pressure inside the furnace, the pressure equalizing operation and the exhaust pressure operation (see FIG. 3) are not required, and each operation can be eliminated.

本実施形態では、熱風炉4の送風運転および燃焼運転を図2のように行うことで、図3のような均圧運転および排圧運転が全解消することができ、各々の作業工程を削減でき、作業効率および作業コストを低減できる。
また、図2に示す熱風炉4の運転によれば、図3の均圧運転および排圧運転が占めていた期間を解消でき、運転効率を向上することができる。
さらに、図2に示す熱風炉4の運転は、熱風炉4A〜4Cのうち2本を用いればよく、1本を休止させ、あるいは保守点検に当てることもできる。
図2のような運転のみを行うのであれば、熱風炉装置1に設置する熱風炉4は2本だけでもよく、基数の削減も可能である。
In the present embodiment, by performing the blowing operation and the combustion operation of the hot air furnace 4 as shown in FIG. 2, the pressure equalizing operation and the exhaust pressure operation as shown in FIG. 3 can be completely eliminated, and the respective work processes are reduced. It is possible to reduce work efficiency and work cost.
Further, according to the operation of the hot air furnace 4 shown in FIG. 2, the period occupied by the pressure equalizing operation and the exhaust pressure operation in FIG. 3 can be eliminated, and the operating efficiency can be improved.
Further, for the operation of the hot air furnace 4 shown in FIG. 2, two of the hot air furnaces 4A to 4C may be used, and one of them may be suspended or used for maintenance and inspection.
If only the operation as shown in FIG. 2 is performed, only two hot air furnaces 4 are installed in the hot air furnace device 1, and the number of units can be reduced.

図3に示す従来通りの運転を行う場合、均圧運転時に熱風炉4の内部に残留していたBFGから、熱風炉内圧力の上昇に伴って結露が発生していた。しかし、図2の運転を行うのであれば、均圧運転の解消により、このような熱風炉内の結露も防止することができる。 When the conventional operation shown in FIG. 3 was performed, dew condensation was generated from the BFG remaining inside the hot air furnace 4 during the pressure equalization operation as the pressure inside the hot air furnace increased. However, if the operation shown in FIG. 2 is performed, such dew condensation in the hot air furnace can be prevented by eliminating the pressure equalizing operation.

さらに、本実施形態では、熱風炉4に導入される燃料ガスを、本発明の昇圧機であるブロア52、および、空気を昇圧する空気供給用のブロア461より、それぞれ断熱圧縮することで昇温させることができる。これにより、従来の熱風炉装置で用いられていた燃料ガスの予熱装置や、従来の補助燃料ガスの供給も解消でき、設備および運転コストの抑制ができる。 Further, in the present embodiment, the fuel gas introduced into the hot air furnace 4 is heated by adiabatic compression from the blower 52 which is the booster of the present invention and the blower 461 for air supply which boosts the air. Can be made to. As a result, the supply of the fuel gas preheating device and the conventional auxiliary fuel gas used in the conventional hot air furnace device can be eliminated, and the equipment and operating costs can be suppressed.

本実施形態においては、図2の説明で述べた通り、燃焼運転時の熱風炉内圧力を高めることで、燃焼運転の時間も短縮できる。従来は、一般に送風運転に対して燃焼運転の時間が長く設定され、かつ前述した均圧運転および排圧運転が必要であった。しかし、本実施形態では、均圧運転および排圧運転が解消できるとともに、燃焼運転を短縮して送風運転と同程度の時間とすることもでき、燃焼運転と送風運転とが繰り返す簡素な運転スケジュールの設定も可能となる。 In the present embodiment, as described in the explanation of FIG. 2, the time of the combustion operation can be shortened by increasing the pressure in the hot air furnace during the combustion operation. Conventionally, the combustion operation time is generally set longer than that of the blower operation, and the above-mentioned pressure equalization operation and exhaust pressure operation are required. However, in the present embodiment, the pressure equalizing operation and the exhaust pressure operation can be eliminated, and the combustion operation can be shortened to the same time as the blower operation, and the combustion operation and the blower operation are repeated in a simple operation schedule. Can also be set.

さらに、本実施形態においては、送風運転時の熱風炉内圧力と燃焼運転時の熱風炉内圧力との差をなくすことができ、均圧運転および排圧運転における圧力変動(図3参照)が解消されるため、熱風炉4の各部の寿命を延長することができる。例えば、鉄皮の疲労破壊の防止、熱風炉内の耐火煉瓦の割れや、煉瓦目地の開きを防止することができ、目地からの熱風炉内ガスの吹き抜けといった問題も解消することができる。
さらに、燃焼運転時の熱風炉内圧力の高圧化により、燃料ガスの体積を抑制でき、熱風炉内断面積を抑制でき、燃焼運転時の燃焼効率も向上でき、炉体および設備を小型化することができる。
Further, in the present embodiment, it is possible to eliminate the difference between the pressure in the hot air furnace during the blowing operation and the pressure in the hot air furnace during the combustion operation, and the pressure fluctuation in the pressure equalizing operation and the exhaust pressure operation (see FIG. 3). Since this is eliminated, the life of each part of the hot air furnace 4 can be extended. For example, it is possible to prevent fatigue destruction of the iron skin, cracking of refractory bricks in the hot air furnace, opening of brick joints, and solving problems such as blow-by of gas in the hot air furnace from the joints.
Furthermore, by increasing the pressure inside the hot air furnace during combustion operation, the volume of fuel gas can be suppressed, the cross-sectional area inside the hot air furnace can be suppressed, the combustion efficiency during combustion operation can be improved, and the furnace body and equipment can be miniaturized. be able to.

本実施形態では、熱風炉4に燃料ガスとして炉頂ガス回収ライン3に回収された高炉2の炉頂21からの炉頂ガス(BFG)を用いるとともに、燃料ガス供給ライン5は、分岐配管51により、炉頂ガス回収ライン3の炉頂圧回収設備35よりも下流側からBFGを取り出すようにした。
このため、燃料ガスとして用いるBFGが、炉頂圧回収設備35で圧力回収された後のものになり、高炉2の炉頂21の圧力変動の影響は炉頂圧回収設備35で緩和され、熱風炉4のバーナ部分に供給されるBFGにおける圧力変動を安定化することができる。
さらに、燃料ガスとして用いるBFGが、炉頂圧回収設備35で圧力回収されて低圧の状態であるため、BFG中の水分量を低い状態とすることができ、熱風炉4のバーナ部分に導入された際に、熱風炉4の内部でミスト発生による耐火煉瓦の劣化などを防止することができる。
In the present embodiment, the top gas (BFG) from the top 21 of the blast furnace 2 recovered in the top gas recovery line 3 is used as the fuel gas in the hot air furnace 4, and the fuel gas supply line 5 is the branch pipe 51. Therefore, the BFG was taken out from the downstream side of the furnace top pressure recovery facility 35 of the furnace top gas recovery line 3.
Therefore, the BFG used as the fuel gas is after the pressure is recovered by the furnace top pressure recovery facility 35, and the influence of the pressure fluctuation of the furnace top 21 of the blast furnace 2 is mitigated by the furnace top pressure recovery facility 35, and hot air is used. It is possible to stabilize the pressure fluctuation in the BFG supplied to the burner portion of the furnace 4.
Further, since the BFG used as the fuel gas is pressure-recovered by the furnace top pressure recovery facility 35 and is in a low pressure state, the water content in the BFG can be kept low, and the BFG is introduced into the burner portion of the hot air furnace 4. At that time, deterioration of refractory bricks due to mist generation inside the hot air furnace 4 can be prevented.

比較として、前述した特許文献1のように、炉頂ガス回収ライン3の炉頂圧回収設備35よりも上流側からBFGを取り出す場合(図1の分岐配管51P参照)、熱風炉4の燃焼運転に供給されるBFGに、高炉2の炉頂21の圧力変動の影響を受ける可能性があるとともに、より高圧であるためBFG中の水分量が高く、熱風炉4のバーナ部分に導入された際に、熱風炉4の内部にミストを発生させ、耐火煉瓦の劣化などを招く可能性もある。
しかし、本実施形態では、炉頂ガス回収ライン3の炉頂圧回収設備35よりも下流側からBFGを取り出すようにしたので、これらの不都合を解消することができる。
For comparison, as in Patent Document 1 described above, when the BFG is taken out from the upstream side of the furnace top pressure recovery facility 35 of the furnace top gas recovery line 3 (see the branch pipe 51P in FIG. 1), the combustion operation of the hot air furnace 4 is performed. When the BFG supplied to the BFG is affected by the pressure fluctuation of the furnace top 21 of the blast furnace 2 and the water content in the BFG is high due to the higher pressure, it is introduced into the burner portion of the hot blast furnace 4. In addition, mist may be generated inside the hot air furnace 4 to cause deterioration of refractory bricks.
However, in the present embodiment, since the BFG is taken out from the downstream side of the furnace top pressure recovery facility 35 of the furnace top gas recovery line 3, these inconveniences can be solved.

本実施形態では、燃料ガス供給ライン5に昇圧機としてブロア52を設置し、熱風炉4に供給されるBFGを昇圧することができる。
このため、炉頂圧回収設備35で圧力回収された後の低圧のBFGを用いても、熱風炉4に導入されるBFGを十分な高圧とすることができる。
In the present embodiment, the blower 52 can be installed as a booster in the fuel gas supply line 5 to boost the BFG supplied to the hot air furnace 4.
Therefore, even if the low pressure BFG after the pressure is recovered by the furnace top pressure recovery facility 35 is used, the BFG introduced into the hot air furnace 4 can be made sufficiently high pressure.

本実施形態では、煙道本管44に設置された排気圧回収設備441により、熱風炉4の排ガスから排圧および排熱を回収し、回収した排圧および排熱のエネルギーを、昇圧機であるブロア52および空気供給管46のブロア461の動力に用いている。このため、熱風炉4の燃焼運転時のブロア52,461の動力を、熱風炉4の燃焼運転時の排ガスからの回収エネルギーでまかなうことができ、運転コストを抑制することができる。
従って、本実施形態におけるブロア52により実現される燃焼運転時の昇圧の効果は、前述した通りであるが、その動力についても熱風炉4の燃焼運転時の排エネルギーを利用することができ、運転に必要なコストを最小限にすることができる。
In the present embodiment, the exhaust pressure recovery equipment 441 installed in the flue main 44 recovers the exhaust pressure and the exhaust heat from the exhaust gas of the hot air furnace 4, and the recovered exhaust pressure and the exhaust heat energy are collected by the booster. It is used to power a blower 52 and a blower 461 of an air supply pipe 46. Therefore, the power of the blowers 52 and 461 during the combustion operation of the hot air furnace 4 can be supplied by the recovered energy from the exhaust gas during the combustion operation of the hot air furnace 4, and the operating cost can be suppressed.
Therefore, the effect of boosting during the combustion operation realized by the blower 52 in the present embodiment is as described above, but the exhaust energy during the combustion operation of the hot air furnace 4 can be used for the power thereof, and the operation can be performed. The cost required for this can be minimized.

前述した図2では、本実施形態の熱風炉装置1において、2本の熱風炉4を45分サイクルで交替させる運転について説明した。これに対し、同じ熱風炉装置1において、3本の熱風炉4を30分サイクルで運転してもよい。
図4において、熱風炉4A〜4Cの3本は、それぞれ基準時点0分から30分サイクルで、送風運転および燃焼運転を交互に実行させる。
In FIG. 2 described above, in the hot air furnace device 1 of the present embodiment, the operation of alternating the two hot air furnaces 4 in a 45-minute cycle has been described. On the other hand, in the same hot air furnace device 1, three hot air furnaces 4 may be operated in a 30-minute cycle.
In FIG. 4, each of the three hot air furnaces 4A to 4C alternately executes the blowing operation and the combustion operation in a cycle of 0 to 30 minutes at the reference time point.

熱風炉4Aでは、基準時点0分から、送風運転を30分行い、0.5分で送風運転から燃焼運転への切り替え(燃焼切替作業)を行い、燃焼運転を59分行い、0.5分で燃焼運転から送風運転への切り替え(送風切替作業)を行い、以降これらの4つの工程を繰り返す。
送風運転は30分で1サイクル分となる。燃焼運転59分と燃焼および送風の切替作業0.5分が2回で合計60分となり、2サイクル分に相当する。
In the hot air furnace 4A, the blowing operation is performed for 30 minutes from 0 minutes at the reference time, the switching from the blowing operation to the combustion operation (combustion switching work) is performed in 0.5 minutes, the combustion operation is performed for 59 minutes, and the combustion operation is performed in 0.5 minutes. Switching from the combustion operation to the blower operation (blower switching work) is performed, and then these four steps are repeated.
The ventilation operation takes 30 minutes for one cycle. The combustion operation of 59 minutes and the combustion and ventilation switching work of 0.5 minutes are performed twice, for a total of 60 minutes, which is equivalent to two cycles.

熱風炉4Aの熱風炉内圧力については、前述した図2と同様である。
すなわち、送風運転時には、送風本管43のブロア431により送風用の空気の昇圧が行われ、所定の熱風炉内圧力が維持される。一方、燃焼運転時には、燃料ガス供給ライン5のブロア52により燃料ガスであるBFGの昇圧が行われ、送風運転時と同じ熱風炉内圧力が維持される。
燃焼切替作業および送風切替作業では、空気の流通方向の反転のために、熱風炉4A〜4Cの送風本管43、煙道本管44および熱風本管45との接続部分にそれぞれ設置される図示しない開閉弁を駆動させるための切替時間が発生する。
The pressure inside the hot blast furnace 4A is the same as in FIG. 2 described above.
That is, during the blowing operation, the blower 431 of the blowing main 43 boosts the blowing air, and the predetermined hot air furnace pressure is maintained. On the other hand, during the combustion operation, the blower 52 of the fuel gas supply line 5 boosts the BFG, which is the fuel gas, and maintains the same pressure in the hot air furnace as during the blower operation.
In the combustion switching work and the blower switching work, in order to reverse the air flow direction, they are installed at the connection portions with the blower main 43, the flue main 44, and the hot air main 45 of the hot air furnaces 4A to 4C, respectively. No switching time is required to drive the on-off valve.

熱風炉4Aの熱風炉内温度は、送風運転時に、送風に伴って低下してゆく。ただし、送風運転の時間が短いため、送風運転の終了時の温度は、前述した図2の送風運転よりも高い温度に保たれている。
一方、燃焼運転時には、燃焼室42での燃焼により、徐々に上昇してゆき、送風運転の当初必要な温度が確保される。ただし、前述した送風運転時の温度低下の縮小に加え、燃焼運転の時間としてほぼ2サイクル分の時間(59分)が確保されているため、図2の燃焼運転(29分)よりも緩やかな上昇特性とすることができ、燃焼温度が低い燃焼運転または燃料ガスの消費が少ない燃焼運転とすることができる。また、燃焼が行われる燃焼室42のサイズを小さくできる。
The temperature inside the hot blast furnace 4A decreases with the blast during the blast operation. However, since the blowing operation time is short, the temperature at the end of the blowing operation is maintained at a temperature higher than that of the blowing operation of FIG. 2 described above.
On the other hand, during the combustion operation, the temperature gradually rises due to the combustion in the combustion chamber 42, and the initially required temperature for the ventilation operation is secured. However, in addition to the reduction of the temperature drop during the ventilation operation described above, the combustion operation time is about 2 cycles (59 minutes), which is slower than the combustion operation (29 minutes) shown in FIG. It can be an ascending characteristic, and can be a combustion operation in which the combustion temperature is low or a combustion operation in which the consumption of fuel gas is small. Further, the size of the combustion chamber 42 in which combustion is performed can be reduced.

以上のような熱風炉4Aに対し、熱風炉4Bでは、基準時点0分から、燃焼運転の後半および0.5分の送風切替作業に続いて、送風運転30分、燃焼切替作業0.5分、燃焼運転59分、送風切替作業0.5分の繰り返しが行われる。
また、熱風炉4Cでは、基準時点0分から、燃焼切替作業0.5分、燃焼運転59分、送風切替作業0.5分、送風運転30分が繰り返し行われる。
In contrast to the hot air furnace 4A as described above, in the hot air furnace 4B, from 0 minutes at the reference time, after the second half of the combustion operation and 0.5 minutes of the air blowing switching work, the air blowing operation is 30 minutes and the combustion switching work is 0.5 minutes. The combustion operation is repeated for 59 minutes and the ventilation switching work is repeated for 0.5 minutes.
Further, in the hot air furnace 4C, the combustion switching work 0.5 minutes, the combustion operation 59 minutes, the blower switching work 0.5 minutes, and the blower operation 30 minutes are repeatedly performed from 0 minutes at the reference time.

このように、図4の運転では、熱風炉4A〜4Cが30分サイクルで順次、送風運転と燃焼運転とを行うことができる。そして、熱風炉4A〜4Cのいずれかが送風運転30分を交替で行うことで、高炉2への熱風の供給を絶え間なく行うことができる。
また、均圧運転および排圧運転(図3参照)が不要であるため、各々の作業を解消することができるとともに、前述した均圧運転および排圧運転における圧力変動による機器の影響、結露の発生などの不都合を解消することができる。また、2本での送風運転を実施すれば、1本での送風運転に比べて送風温度を上げることができる。
As described above, in the operation of FIG. 4, the hot air furnaces 4A to 4C can sequentially perform the blowing operation and the combustion operation in a 30-minute cycle. Then, when any of the hot air furnaces 4A to 4C alternately performs the blowing operation for 30 minutes, the hot air can be continuously supplied to the blast furnace 2.
Further, since the pressure equalizing operation and the exhaust pressure operation (see FIG. 3) are not required, each operation can be eliminated, and the influence of the equipment due to the pressure fluctuation in the pressure equalization operation and the exhaust pressure operation described above and the dew condensation. Inconveniences such as occurrence can be eliminated. Further, if the blowing operation with two lines is carried out, the blowing temperature can be raised as compared with the blowing operation with one line.

なお、本発明は前述した実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形などは本発明に含まれる。
例えば、熱風炉装置1に設置される熱風炉4は3本に限らず、2本(図2の運転が可能)、4本以上(図2の運転または図4の運転が可能)であってもよい。例えば、熱風炉4が4本の場合、その2本ずつを前述した図2の運転とすることができるほか、1本を休止し、3本で図4の運転を行うようにしてもよい。もしくは、4本の熱風炉4のうち、2本を休止し、2本を運転してもよい。
The present invention is not limited to the above-described embodiment, and modifications within the range in which the object of the present invention can be achieved are included in the present invention.
For example, the number of hot air furnaces 4 installed in the hot air furnace device 1 is not limited to three, but two (the operation of FIG. 2 is possible) and four or more (the operation of FIG. 2 or the operation of FIG. 4 is possible). May be good. For example, when there are four hot air furnaces 4, each of the two may be operated in FIG. 2 described above, or one may be suspended and three may be operated in FIG. Alternatively, two of the four hot air furnaces 4 may be suspended and two may be operated.

前記実施形態では、図2のような45分サイクルでの運転、あるいは、図4のような30分サイクルの運転について説明したが、運転のサイクルタイムは適宜設定すればよく、例えば20分サイクルと短くしてもよく、あるいは60分サイクルと長くしてもよい。ただし、サイクルタイムが短いと、工程の切り替えが頻繁となって効率的でない場合もある。一方、サイクルタイムを長くするためには、熱風炉4の容量の大きさが必要となるほか、送風運転および燃焼運転での熱風炉内温度の変化幅が制限される場合もある。従って、熱風炉装置1としての要求条件に応じてサイクルタイムを適宜設定することが望ましい。 In the above embodiment, the operation in the 45-minute cycle as shown in FIG. 2 or the operation in the 30-minute cycle as shown in FIG. 4 has been described, but the cycle time of the operation may be appropriately set, for example, a 20-minute cycle. It may be shortened, or it may be as long as a 60-minute cycle. However, if the cycle time is short, the process may be switched frequently, which may not be efficient. On the other hand, in order to lengthen the cycle time, the capacity of the hot air furnace 4 needs to be large, and the range of change in the temperature inside the hot air furnace during the blowing operation and the combustion operation may be limited. Therefore, it is desirable to appropriately set the cycle time according to the requirements of the hot air furnace device 1.

前記実施形態では、熱風炉4は外燃式としたが、内燃式あるいは炉頂燃焼式などであってもよく、その形式は限定されない。
また、昇圧機としてブロア52を用いたが、燃料ガス供給ライン5を通る燃料ガスを昇圧できる装置であれば、他の構成の昇圧機であってもよい。
また、各々の熱風炉4の煙道本管44に至る排ガスラインに、流量計および流量調整装置を設け、燃料ガスと空気量に見合った排ガス量になるように流量調整することで、燃焼運転と送風運転との切替時の弁の切替動作を不要としてもよい。
In the above embodiment, the hot air furnace 4 is an external combustion type, but it may be an internal combustion type, a furnace top combustion type, or the like, and the type is not limited.
Further, although the blower 52 is used as the booster, a booster having another configuration may be used as long as it is a device capable of boosting the fuel gas passing through the fuel gas supply line 5.
Further, a flow meter and a flow rate adjusting device are provided in the exhaust gas line leading to the flue main 44 of each hot air furnace 4, and the flow rate is adjusted so as to match the amount of fuel gas and air, thereby performing combustion operation. It is also possible to eliminate the need for the valve switching operation when switching between the air and the blower operation.

本発明は熱風炉装置および熱風炉運転方法に利用できる。 The present invention can be used for a hot air furnace device and a hot air furnace operating method.

1…熱風炉装置、2…高炉、21…炉頂、22…装入装置、23…羽口、24…環状管、3…炉頂ガス回収ライン、31…炉頂配管、32…ダストキャッチャ、33…第1ベンチュリスクラバ、34…第2ベンチュリスクラバ、35…炉頂圧回収設備、36…ガスホルダ、4,4A,4B,4C…熱風炉、41…蓄熱室、42…燃焼室、43…送風本管、431…送風用のブロア、44…煙道本管、441…排気圧回収設備、45…熱風本管、46…空気供給管、461…燃焼用空気加圧用のブロア、47…燃料ガス供給管、5…燃料ガス供給ライン、51,51P…分岐配管、52…昇圧機であるブロア。 1 ... hot air furnace device, 2 ... blast furnace, 21 ... furnace top, 22 ... charging device, 23 ... tuyere, 24 ... annular pipe, 3 ... furnace top gas recovery line, 31 ... furnace top piping, 32 ... dust catcher, 33 ... 1st Venturi Slava, 34 ... 2nd Venturi Slava, 35 ... Furnace top pressure recovery equipment, 36 ... Gas holder, 4, 4A, 4B, 4C ... Hot air furnace, 41 ... Heat storage chamber, 42 ... Combustion chamber, 43 ... Blower Main pipe, 431 ... Blower for ventilation, 44 ... Smoke main, 441 ... Exhaust pressure recovery equipment, 45 ... Hot air main, 46 ... Air supply pipe, 461 ... Blower for combustion air pressurization, 47 ... Fuel gas Supply pipe, 5 ... Fuel gas supply line, 51, 51P ... Branch pipe, 52 ... Blower which is a booster.

Claims (8)

高炉に熱風を送風する送風運転および熱風炉内で燃料ガスを燃焼させる燃焼運転を行う熱風炉と、前記高炉の炉頂ガスを前記燃料ガスとして前記熱風炉に供給する燃料ガス供給ラインと、前記燃料ガス供給ラインに設置されて前記燃料ガスを昇圧する昇圧機とを有し、前記昇圧機は前記燃料ガスを昇圧し、前記熱風炉の前記燃焼運転時の炉内圧力を前記熱風炉の前記送風運転時と同じ炉内圧力にすることを特徴とする熱風炉装置。 A hot air furnace that blows hot air to the blast furnace and a combustion operation that burns fuel gas in the hot air furnace, a fuel gas supply line that supplies the top gas of the blast furnace as the fuel gas to the hot air furnace, and the above. is installed in the fuel gas supply line possess a booster for boosting the fuel gas, the booster boosts the fuel gas, the said furnace pressure during combustion operation of the hot stove of the hot stove A hot-air furnace device characterized in that the pressure inside the furnace is the same as during the blowing operation. 請求項1に記載された熱風炉装置において、
前記燃料ガス供給ラインは、前記高炉の炉頂から前記炉頂ガスを取り出す炉頂ガス回収ラインの炉頂圧回収設備よりも下流側から前記炉頂ガスを取り出すことを特徴とする熱風炉装置。
In the hot air furnace apparatus according to claim 1,
The fuel gas supply line is a hot blast furnace apparatus characterized in that the top gas is taken out from the downstream side of the top pressure recovery facility of the top gas recovery line for taking out the top gas from the top of the blast furnace.
請求項1または請求項2に記載された熱風炉装置において、
前記燃焼運転時の前記熱風炉の排ガスから排圧および排熱を回収する排熱回収設備を有し、前記昇圧機は前記排熱回収設備で回収した排圧および排熱を動力に用いることを特徴とする熱風炉装置。
In the hot air furnace apparatus according to claim 1 or 2.
It has an exhaust heat recovery facility that recovers exhaust pressure and exhaust heat from the exhaust gas of the hot air furnace during the combustion operation, and the booster uses the exhaust pressure and exhaust heat recovered by the exhaust heat recovery facility as power. A featured hot air furnace device.
高炉に熱風を送風する送風運転および熱風炉内で燃料ガスを燃焼させる燃焼運転を行う熱風炉の運転方法であって、
前記高炉の炉頂ガスを前記燃料ガスとして前記熱風炉に供給するとともに、前記熱風炉に供給される前記燃料ガスを昇圧機で昇圧し、前記熱風炉の前記燃焼運転時の炉内圧力を前記熱風炉の前記送風運転時と同じ炉内圧力にすることを特徴とする熱風炉運転方法。
It is an operation method of a hot blast furnace that performs a blast operation that blows hot air to the blast furnace and a combustion operation that burns fuel gas in the hot blast furnace.
The top gas of the blast furnace is supplied to the hot air furnace as the fuel gas, the fuel gas supplied to the hot air furnace is boosted by a booster, and the pressure inside the hot air furnace during the combustion operation is adjusted. A method for operating a hot blast furnace, characterized in that the pressure inside the hot blast furnace is the same as that during the blowing operation of the hot blast furnace.
請求項4に記載された熱風炉運転方法において、
前記燃料ガスとして、前記高炉の炉頂から取り出されて炉頂圧回収設備で圧力回収された前記炉頂ガスを用いることを特徴とする熱風炉運転方法。
In the hot air furnace operating method according to claim 4,
A hot-air furnace operating method, characterized in that, as the fuel gas, the top gas that is taken out from the top of the blast furnace and whose pressure is recovered by the top pressure recovery facility is used.
請求項4または請求項5に記載された熱風炉運転方法において、
前記燃焼運転時の前記熱風炉の排ガスから排圧および排熱を回収し、回収した排圧および排熱を前記昇圧機の動力に用いることを特徴とする熱風炉運転方法。
In the hot air furnace operating method according to claim 4 or 5.
A method for operating a hot air furnace, characterized in that exhaust pressure and waste heat are recovered from the exhaust gas of the hot air furnace during the combustion operation, and the recovered exhaust pressure and exhaust heat are used as power for the booster.
請求項4から請求項6のいずれか一項に記載された熱風炉運転方法において、
前記送風運転と、前記熱風炉を前記送風運転から前記燃焼運転に切り替える燃焼切替作業と、前記燃焼運転と、前記熱風炉を前記燃焼運転から前記送風運転に切り替える送風切替作業と、を繰り返すとともに、
前記燃焼切替作業、前記燃焼運転および前記送風切替作業の合計時間を、前記送風運転を行う時間以下とすることを特徴とする熱風炉運転方法。
In the hot air furnace operating method according to any one of claims 4 to 6,
The blast operation, the combustion switching operation of switching the hot blast furnace from the blast operation to the combustion operation, the combustion operation, and the blast switching operation of switching the hot blast furnace from the combustion operation to the blast operation are repeated, and the operation is repeated.
A hot air furnace operating method, characterized in that the total time of the combustion switching operation, the combustion operation, and the blower switching work is set to be equal to or less than the time for performing the blower operation.
請求項4から請求項6のいずれか一項に記載された熱風炉運転方法において、
前記送風運転と、前記熱風炉を前記送風運転から前記燃焼運転に切り替える燃焼切替作業と、前記燃焼運転と、前記熱風炉を前記燃焼運転から前記送風運転に切り替える送風切替作業と、を繰り返すとともに、
前記燃焼切替作業、前記燃焼運転および前記送風切替作業の合計時間を、前記送風運転を行う時間の2倍以下とすることを特徴とする熱風炉運転方法。
In the hot air furnace operating method according to any one of claims 4 to 6,
The blast operation, the combustion switching operation of switching the hot blast furnace from the blast operation to the combustion operation, the combustion operation, and the blast switching operation of switching the hot blast furnace from the combustion operation to the blast operation are repeated, and the operation is repeated.
A hot air furnace operating method characterized in that the total time of the combustion switching operation, the combustion operation, and the blower switching work is set to be twice or less the time for performing the blower operation.
JP2017242038A 2017-12-18 2017-12-18 Hot air furnace equipment and hot air furnace operation method Active JP6954824B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017242038A JP6954824B2 (en) 2017-12-18 2017-12-18 Hot air furnace equipment and hot air furnace operation method
CN201880079434.1A CN111684083A (en) 2017-12-18 2018-08-31 Hot-blast stove device and hot-blast stove operation method
PCT/JP2018/032444 WO2019123727A1 (en) 2017-12-18 2018-08-31 Blast furnace stove device and method for operating blast furnace stove device
BR112020012112-6A BR112020012112B1 (en) 2017-12-18 2018-08-31 HOT BLOW REGENERATOR SYSTEM AND HOT BLOW REGENERATOR OPERATION METHOD
KR1020207020460A KR102443024B1 (en) 2017-12-18 2018-08-31 Hot stove device and how to operate a hot stove
RU2020119665A RU2769340C2 (en) 2017-12-18 2018-08-31 Blast heating device for blast furnace and method of operation of blast heating device for blast furnace
EP18892629.9A EP3730631B1 (en) 2017-12-18 2018-08-31 Blast furnace stove device and method for operating blast furnace stove device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242038A JP6954824B2 (en) 2017-12-18 2017-12-18 Hot air furnace equipment and hot air furnace operation method

Publications (2)

Publication Number Publication Date
JP2019108583A JP2019108583A (en) 2019-07-04
JP6954824B2 true JP6954824B2 (en) 2021-10-27

Family

ID=66994010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242038A Active JP6954824B2 (en) 2017-12-18 2017-12-18 Hot air furnace equipment and hot air furnace operation method

Country Status (7)

Country Link
EP (1) EP3730631B1 (en)
JP (1) JP6954824B2 (en)
KR (1) KR102443024B1 (en)
CN (1) CN111684083A (en)
BR (1) BR112020012112B1 (en)
RU (1) RU2769340C2 (en)
WO (1) WO2019123727A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564294B (en) * 2021-07-29 2022-06-28 郑州豫兴热风炉科技有限公司 Efficient conversion device for non-fluctuation furnace change of hot blast stove and control method
CN114752721B (en) * 2022-03-23 2023-08-25 马鞍山钢铁股份有限公司 Single-seat blast furnace fan supply protection system and control method thereof
CN115287386B (en) * 2022-06-30 2023-09-01 山东省冶金设计院股份有限公司 Pressure equalizing system and method for full recovery of waste gas of hot blast stove

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1247417A (en) * 1969-05-22 1971-09-22 Armco Steel Corp Method of blast furnace reduction of iron ores
JPS54161505A (en) * 1978-06-12 1979-12-21 Kawasaki Steel Co Blast gas pressure rizing for hot blast furnace
JPS55122812A (en) * 1979-03-14 1980-09-20 Kawasaki Steel Corp High pressure operating method of hot stove
JPS57126906A (en) * 1981-01-28 1982-08-06 Kawasaki Steel Corp Method of raising pressure of blast furnace gas for hot blast stove
JPS59143008A (en) 1983-02-02 1984-08-16 Nippon Steel Corp Hot stove device performing high pressure combustion
JPS6089258U (en) * 1983-11-26 1985-06-19 新日本製鐵株式会社 Hot air generator for blast furnace
RU2277127C1 (en) * 2005-01-17 2006-05-27 Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет - УПИ" Method of injection of the hot reducing gases in the blast furnace
GB2513185A (en) * 2013-04-19 2014-10-22 Siemens Vai Metals Tech Gmbh Blast furnace plant
JP2016204728A (en) * 2015-04-28 2016-12-08 株式会社Ihi Dust removal mechanism and blast furnace

Also Published As

Publication number Publication date
EP3730631A1 (en) 2020-10-28
EP3730631A4 (en) 2021-09-29
EP3730631B1 (en) 2023-09-27
RU2769340C2 (en) 2022-03-30
BR112020012112B1 (en) 2023-10-31
KR20200096635A (en) 2020-08-12
KR102443024B1 (en) 2022-09-13
RU2020119665A3 (en) 2022-01-20
BR112020012112A2 (en) 2020-11-24
CN111684083A (en) 2020-09-18
JP2019108583A (en) 2019-07-04
RU2020119665A (en) 2022-01-20
WO2019123727A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6954824B2 (en) Hot air furnace equipment and hot air furnace operation method
JP6076977B2 (en) Waste heat recovery power plant for sintering equipment
CN215668074U (en) Hot blast stove system with independent pressurizing device
JP2012031495A (en) Apparatus for generating hot blast
JP6953327B2 (en) How to operate the blast furnace shaft blowing device and the blast furnace shaft blowing device
JP6272900B2 (en) Energy recovery from exhaust from melting furnace with gas turbine and heat exchanger
CN106969638A (en) Rotary hearth furnace fume afterheat gradient utilization system and application method
CN106048118A (en) Blast furnace coal gas recovery and utilization system
CN104154762B (en) Mine heat furnace smelting flue-gas dust removal and purification processing method and mine heat furnace smelting system
CN104197725B (en) The method of comprehensive utilization of mine heat furnace smelting flue-gas dust removal and purification and sensible heat and latent heat
WO2014170086A1 (en) Blast furnace plant and operation method
KR100765855B1 (en) Waste heat recovering apparatus for pdp furnace
TWI497017B (en) Energy recovery from gases in a blast furnace plant
JP5790045B2 (en) Hot air generator
CN105545487A (en) Combined cycle power plant
CN208967785U (en) CFB boiler external bed power loss cools down air feed system
JP2008195902A (en) Method and apparatus for combustion of coke oven
JP3161615B2 (en) Humidifying blast furnace air
JP7254438B2 (en) Operation method of waste disposal facility and waste disposal facility
JPS5928510A (en) Method for charging or discharging air in or from hot blast stove
JP2020085387A (en) Waste treatment facility and operating method for waste treatment facility
JP2005179713A (en) Method and facility for filling up pressure in hot stove in blasting of blast furnace
JPS6222890A (en) Utilization of sensible heat of coke
JPS59143008A (en) Hot stove device performing high pressure combustion
JP2007262516A (en) Method for cooling hot blast stove

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200716

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R150 Certificate of patent or registration of utility model

Ref document number: 6954824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350