JP6953997B2 - 充電制御システム及び充電制御方法 - Google Patents

充電制御システム及び充電制御方法 Download PDF

Info

Publication number
JP6953997B2
JP6953997B2 JP2017206446A JP2017206446A JP6953997B2 JP 6953997 B2 JP6953997 B2 JP 6953997B2 JP 2017206446 A JP2017206446 A JP 2017206446A JP 2017206446 A JP2017206446 A JP 2017206446A JP 6953997 B2 JP6953997 B2 JP 6953997B2
Authority
JP
Japan
Prior art keywords
mode
battery
threshold value
solar panel
generated power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017206446A
Other languages
English (en)
Other versions
JP2019050713A (ja
Inventor
孝一 郷
孝一 郷
三好 達也
達也 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US16/101,205 priority Critical patent/US11894715B2/en
Priority to CN201810950500.XA priority patent/CN109474056B/zh
Priority to DE102018120475.2A priority patent/DE102018120475A1/de
Publication of JP2019050713A publication Critical patent/JP2019050713A/ja
Application granted granted Critical
Publication of JP6953997B2 publication Critical patent/JP6953997B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、ソーラーパネルを用いた充電制御システム及び当該システムで実行される充電制御方法に関する。
例えば、特許文献1に、ソーラーパネルの発電電力をまず一時蓄電用バッテリーであるソーラーバッテリーへ充電し、その後ソーラーバッテリーに蓄電した電力を用いてメインバッテリーを充電する処理を行うことによって、充電効率を向上させたシステムが開示されている。
特開2014−007937号公報
上記特許文献1に記載されたシステムでは、ソーラーバッテリーの蓄電量(SOC)の変化に応じて、ソーラーバッテリーへの充電とソーラーバッテリーからの放電とを単純に切り替えている。このため、ソーラーパネルの発電電力が大きいときには、システムにおける発電電力の利用効率が低下してしまう場合がある。
また、ソーラーバッテリーの充電と放電とを交互に行う処理は、ソーラーバッテリー自体やソーラーパネルとメインバッテリーとを接続するリレー回路の耐久性及び寿命に影響を及ぼす。このため、むやみにバッテリーの充電と放電とを交互に行う処理の回数を増加させることは、システム上好ましくない。
本発明は、上記課題を鑑みてなされたものであり、ソーラーパネルの発電電力の利用効率低下を抑制しつつ、バッテリーの充電と放電とを交互に行う処理の回数を低減できる、充電制御システムを提供することを目的とする。
上記課題を解決するために、本発明の一態様は、太陽光で発電するソーラーパネルと、充放電可能な第1バッテリーと、充放電可能な第2バッテリーと、ソーラーパネル、第1バッテリー、及び第2バッテリーと接続され、ソーラーパネルの発電電力を第1バッテリーに充電する処理と第1バッテリーに蓄積された電力を第2バッテリーに間接充電する処理とを第1バッテリーの蓄電量に応じて繰り返し行う第1モード、及びソーラーパネルの発電電力を第2バッテリーに直接充電する第2モードを、少なくともソーラーパネルの発電電力に基づいて切り替える制御部と、を備える、ことを特徴とする。
上記一態様の制御では、少なくともソーラーパネルの発電電力に基づいて、第1モードと第2モードとを切り替える。これにより、発電電力の利用効率が低いままバッテリー充電が行われてしまうことを防ぐことができる。また、第2モードを実行するので、第1モードによる第1バッテリーの充電と放電とを交互に行う処理の回数を減らすことができる。
この一態様において、制御部は、ソーラーパネルの発電電力がその発電電力の利用効率が相対的に高くなるモードが切り替わる第1閾値を跨いで変化したとき、そのときと異なるタイミングでモードを切り替えることができる。
上記制御では、ソーラーパネルの発電電力が第1閾値を跨いで変化しても直ぐにモードを切り替えないので、ソーラーパネルの発電電力の瞬間的な変動によって、第1モードと第2モードとが頻繁に切り替わってしまうこと(制御チャタリング)を回避することができる。
この一態様において、制御部は、第2モードを実行中に、ソーラーパネルの発電電力が第1閾値よりも小さい第2閾値以下になれば、第1モードに切り替えてもよい。
上記制御では、第2閾値を、充電制御システムにおけるソーラーパネルの発電電力利用効率の低下が許容される下限の電力値に設定しておくことで、第2モードを継続して実行することができる。これにより、第1モードによる第1バッテリーの充電と放電とを交互に行う処理の回数を減らすことができる。
このとき、制御部は、ソーラーパネルの発電電力が第1閾値から第2閾値の間にあって第2モードを実行中に、所定の期間における第1閾値を超えた累積発電電力量が、第1閾値を超えない累積発電電力量よりも低下すれば、第1モードに切り替えるようにしてもよい。
上記制御では、ソーラーパネルの発電電力が下限の電力値に達しなくても、累積発電電力量に基づいてソーラーパネルの発電電力利用効率が著しく低下したと判断されれば、第2モードから第1モードへ充電モードを切り替えることができる。これにより、第1モードによる第1バッテリーの充電と放電とを交互に行う処理の回数を減らすことができると共に、発電電力利用効率が低いまま第2モードによる充電処理が行われることを防止できる。
また、上記一態様において、制御部は、第1モードを実行中にソーラーパネルの発電電力が第1閾値を超えた場合、モードを切り替えてから所定時間が経過すれば第2モードに切り替えるようにしてもよい。
上記制御によれば、ソーラーパネルの発電電力が、第1閾値を超えても所定時間が経過するまでは、第1モードを継続して実行することができる。これにより、ソーラーパネルの発電電力の瞬間的な変動によって、第1モードと第2モードとが頻繁に切り替わってしまうことを回避することができる。
また、上記一態様において、制御部は、第2モードに切り替えた場合、ソーラーパネルの発電電力が第1閾値よりも大きい第3閾値を超えていれば、ソーラーパネルの発電電力のうち少なくとも第3閾値の電力分を第2バッテリーに直接充電し、かつ、直接充電しない残りの余剰電力を第1バッテリーに充電してもよい。
上記制御によれば、例えば、第2バッテリーが充電のために最低限必要とする所定の電力値を設定しているような場合、ソーラーパネルの発電電力が所定の電力値(=第3閾値)を上回るときには、第2モードを実行しつつ所定の電力値(第3閾値)を超えた余剰電力分を第1バッテリーに充電する。これにより、余剰電力を廃棄するなど、発電電力の無駄が生じなくなる。
このとき、制御部は、ソーラーパネルの発電電力が第3閾値を超えていても第1バッテリーの蓄電量が所定の上限値まで上昇した場合には、余剰電力による第1バッテリーの充電を行わないようにすることができる。この制御によって、第1バッテリーが上限値を超えて充電され、過充電状態になってしまうことを回避できる。
また、上記一態様において、制御部は、第2モードに切り替えた場合、ソーラーパネルの発電電力が第3閾値を超えていなければ、ソーラーパネルの発電電力の全てを第2バッテリーに直接充電し、かつ、第3閾値に満たない不足している電力分を第1バッテリーから第2バッテリーへ充電してもよい。
上記制御によれば、例えば、第2バッテリーが充電のために最低限必要とする所定の電力値を設定しているような場合、ソーラーパネルの発電電力が所定の電力値(=第3閾値)を下回るときには、この所定の電力値(第3閾値)に満たない不足電力分を第1バッテリーから持ち出して第2バッテリーに充電することで、第2モードの実行を継続する。これにより、第2モードから直ぐに第1モードに切り替えられしまうことを防ぐことができ、第1モードと第2モードとが頻繁に切り替わってしまうことを回避することができる。
このとき、制御部は、ソーラーパネルの発電電力が第3閾値を超えていなくても第1バッテリーの蓄電量が所定の下限値まで低下した場合には、第1モードに切り替えることができる。この制御によって、第1バッテリーが下限値を下回って放電され、過放電状態になってしまうことを回避できる。
また、上述した充電制御システムの制御部が行うそれぞれの処理は、一連の処理手順を与える充電制御方法として捉えることができる。この方法は、一連の処理手順をコンピュータに実行させるためのプログラムの形式で提供される。このプログラムは、コンピュータ読み取り可能な記録媒体に記録された形態でコンピュータに導入されてもよい。
以上述べたように、本発明の充電制御システムによれば、ソーラーパネルの発電電力の利用効率低下を抑制しつつ、バッテリーの充電と放電とを交互に行う処理の回数を低減することができる。
本発明の一実施形態に係る充電制御システムの構成例を示す図 ソーラーパネルの発電電力とシステムの利用効率との関係を示す図 充電制御部が実行する第1の充電制御の処理手順を説明するフローチャート 第1の充電制御におけるモード切り替えタイミングを示す図 第2モードの充電処理における発電電力の変動例を示す図 充電制御部が実行する第2の充電制御の処理手順を説明するフローチャート 第2の充電制御におけるモード切り替えタイミングを示す図 第2モードの充電処理における発電電力の変動例を示す図
[概要]
本発明のソーラーパネルを用いた充電制御システム及び充電制御方法は、ソーラーパネルの発電電力の大きさに基づいて、システムにおける発電電力の利用効率が相対的に高くなる方の充電モードに切り替えてバッテリーへの充電を実施する。これにより、発電電力の利用効率が低いままバッテリー充電が行われてしまうことを防ぐことができる。
[システムの構成]
図1は、本発明の一実施形態に係る充電制御システム1の構成例を示す図である。図1に例示した本充電制御システム1は、ソーラーパネル11と、ソーラーバッテリー12と、駆動用バッテリー13と、充電制御部14と、バッテリー監視部15とを、備えている。図1においては、電力が流れる配線を実線で示し、電力以外の制御信号などが流れる配線を破線で示している。
ソーラーパネル11は、太陽光の照射を受けて発電を行う、例えば太陽電池モジュールである。ソーラーパネル11で発電される電力の量は、日射強度に依存する。ソーラーパネル11で発電された電力は、充電制御部14に出力される。このソーラーパネル11は、例えば車両のルーフなどに設置することができる。
ソーラーバッテリー12は、例えば鉛蓄電池やニッケル水素電池などの、充放電可能に構成された電力貯蔵要素である。このソーラーバッテリー12は、ソーラーパネル11の発電電力によって充電可能に、また自らが蓄えている電力を駆動用バッテリー13へ放電可能に、充電制御部14と接続されている。ソーラーバッテリー12は、請求項における「第1バッテリー」に相当する。
駆動用バッテリー13は、例えば鉛蓄電池やニッケル水素電池などの、充放電可能に構成された電力貯蔵要素である。この駆動用バッテリー13は、ソーラーパネル11の発電電力によって充電可能に、またソーラーバッテリー12の蓄電電力によって充電可能に、充電制御部14と接続されている。駆動用バッテリー13は、図示しない車両を駆動させるための所定の機器と接続されており、当該機器の動作に必要な電源電力を供給する。駆動用バッテリー13は、請求項における「第2バッテリー」に相当する。
バッテリー監視部15は、駆動用バッテリー13の蓄電量(SOC)を監視できるように構成されており、監視の結果を充電制御部14などに通知することを行う。このバッテリー監視部15は、後述する充電制御部14の制御によって駆動用バッテリー13への充電が行われている間だけ、所定のバッテリーから電源が供給され、駆動用バッテリー13の蓄電量(SOC)を監視することができる。
充電制御部14は、ソーラーパネル11、ソーラーバッテリー12、駆動用バッテリー13、及びバッテリー監視部15と、接続されている。この充電制御部14は、ソーラーバッテリー12の蓄電量(SOC)を監視しており、ソーラーパネル11から入力される発電電力Xの大きさ及びソーラーバッテリー12の蓄電量に基づいて、その発電電力Xを用いた各バッテリーへの充電を制御できるように構成されている。具体的には、少なくともソーラーパネル11の発電電力Xに基づいて、その発電電力Xの利用効率が向上するように第1モードと第2モードとを切り替える。
第1モードによる充電処理とは、ソーラーパネル11の発電電力Xをソーラーバッテリー12に充電する処理Aと、ソーラーパネル11の発電電力Xとソーラーバッテリー12に蓄積された電力とを駆動用バッテリー13に充電する処理Bとを、ソーラーバッテリー12の蓄電量に応じて繰り返し行う処理である。具体的には、ソーラーバッテリー12の蓄電量が所定の上限値に達するまで処理Aが行われ、その後ソーラーバッテリー12の蓄電量が所定の下限値に達するまで処理Bが行われることが、繰り返し実行される。すなわち、この第1モードによる充電処理は、ソーラーパネル11の発電電力Xを、ソーラーバッテリー12を介して駆動用バッテリー13へ間接的に充電する処理である。
一方、第2モードによる充電処理とは、ソーラーパネル11の発電電力Xの全部又は一部を駆動用バッテリー13に直接的に充電する処理である。
充電制御システム1におけるソーラーパネル11の発電電力Xの利用効率は、図2に示すように、所定の閾値α(請求項における「第1閾値」に対応)のポイントにおいて、第1モードによる充電処理と第2モードによる充電処理とで高低関係が切り替わる。従って、ソーラーパネル11の発電電力Xが閾値α以下であれば、第2モードよりも第1モードで充電処理した方が相対的に発電電力利用効率は高くなり、ソーラーパネル11の発電電力Xが閾値αを超えれば、第1モードよりも第2モードで充電処理した方が相対的に発電電力利用効率は高くなる。
なお、この閾値αは、充電制御システム1に用いられるDCDCコンバータ(図示せず)による電力消費、充電制御部14とソーラーバッテリー12とを接続する配線による電力損失(配線損失)、ソーラーバッテリー12の充放電効率に基づく電力損失(充放電損失)、及びバッテリー監視部15を作動させるための電源供給による電力損失(電源損失)などに基づいて、求めることが可能である。
この充電制御部14は、例えば、ソーラーECU(Electronic Control Unit)14a及びリレー回路14bを含んで構成される。ソーラーECU14aは、所定の電力変換機能を有しており、ソーラーパネル11の発電電力を所定の電圧に変換(昇圧/降圧)してソーラーバッテリー12の蓄電することが可能であり、またソーラーバッテリー12に蓄電された電力を所定の電圧に変換(昇圧/降圧)して駆動用バッテリー13に放出することが可能である。また、ソーラーECU14aは、第1モードにおける処理Aを行っている間は、リレー回路14bを作動させて、充電制御部14と駆動用バッテリー13との接続を遮断する。なお、リレー回路14bが作動している間は、バッテリー監視部15への電源供給が停止される。
[システムが実行する制御]
次に、図3乃至図8をさらに参照して、本発明の一実施形態に係る充電制御システム1が実行する充電制御を説明する。
<第1の充電制御>
図3は、充電制御システム1の充電制御部14が実行する第1の充電制御の処理手順を説明するフローチャートである。図4は、第1の充電制御における第1モードと第2モードとの間の切り替えタイミングを示す図である。図5は、第2モードの充電処理における発電電力Xの変動例を示す図である。
図3に示した第1の充電制御は、例えば電源オンなどによって充電制御システム1が稼働すると開始され、例えば電源オフなどによって充電制御システム1が停止するまで繰り返し実行される。
ステップS301:今実行されている充電モードが、第1モードであるのか第2モードであるのかが判断される。なお、充電制御システム1が稼働した直後の充電モードは、例えば、第1モード及び第2モードのいずれかを予めデフォルトとして設定しておいてもよいし、稼働直後のソーラーパネル11の発電電力Xに基づいて決定されてもよい。充電モードが第1モードである場合、ステップS302に処理が進む。充電モードが第2モードである場合、ステップS306に処理が進む。
ステップS302:ソーラーパネル11の発電電力Xが、その利用効率が第1モードよりも第2モードの方が相対的に高くなる閾値αを越えたか否かが判断される。発電電力Xが閾値αを超えた場合(S302、Yes)、ステップS303に処理が進む。一方、発電電力Xが閾値αを超えない場合(S302、No)、ステップS302の処理が再び判断される。
ステップS303:前回に第1モードから第2モードへ切り替えてから経過した時間T2が所定時間T1に達したか否かが判断される。この判断は、ソーラーパネル11の発電電力Xが閾値αを跨いで変化したとき、そのときと異なるタイミング(T2≧T1)でモードを切り替えるために行われる。所定時間T1は、例えば、ソーラーパネル11の発電電力Xに基づいて決定される、第1モードで実行される発電電力Xをソーラーバッテリー12に充電する処理とソーラーバッテリー12に蓄積された電力を駆動用バッテリー13に充電する処理とに必要な時間に設定することができる。
経過時間T2が所定時間T1に達した場合(S303、Yes)、ステップS304に処理が進む(図4の処理(1))。一方、経過時間T2が所定時間T1に達していない場合(S303、No)、ステップS302に処理が戻る。
ステップS304:充電モードが第1モードから第2モードへ切り替えられる。これにより、第2モードによる充電処理が実行される。第1の充電制御では、ソーラーパネル11の発電電力Xの全部が駆動用バッテリー13に直接的に充電される。充電モードが切り替えられると、ステップS305に処理が進む。
ステップS305:これまでの経過時間T2がリセットされて、経過時間T2の計時が新たに開始される。計時が新たに開始されると、充電モードを判断するステップS301に処理が戻る。
ステップS306:累積発電電力量S1及びS2の累積が開始される。この累積発電電力量S1は、図5に示すように、ソーラーパネル11の発電電力Xのうち、閾値αを超えた電力分を所定の期間だけ累積的に積分した量である。また、累積発電電力量S2は、図5に示すように、ソーラーパネル11の発電電力Xのうち、閾値α以下の電力分を所定の期間だけ累積的に積分した量である。累積発電電力量の累積が開始されると、ステップS307に処理が進む。
ステップS307:ソーラーパネル11の発電電力Xが、その利用効率が第2モードよりも第1モードの方が相対的に高くなる閾値α以下になったか否かが判断される。発電電力Xが閾値α以下になった場合(S307、Yes)、ステップS308に処理が進む。一方、発電電力Xが閾値α以下になっていない場合(S307、No)、ステップS307の処理が再び判断される。
ステップS308:ソーラーパネル11の発電電力Xが、閾値αよりも小さい所定の閾値β(請求項における「第2閾値」に対応)を超えているか否かが判断される。この判断は、ソーラーパネル11の発電電力Xが閾値αを跨いで変化したとき、そのときと異なるタイミング(X≦β)でモードを切り替えるために行われる。閾値βは、充電制御システム1においてソーラーパネル11の発電電力Xを利用する効率が著しく低下すると判断されるポイントに設定することができる。例えば、ソーラーパネル11の発電電力Xよりもバッテリー監視部15で消費される電力の方が多ければ、発電電力Xを駆動用バッテリー13に充電する利点がないため、このバッテリー監視部15で消費される電力を閾値βと設定してもよい。
発電電力Xが閾値βを超えている場合(S308、Yes)、ステップS309に処理が進む(図4の処理(2))。一方、発電電力Xが閾値βを超えていない場合(S308、No)、ステップS310に処理が進む。
ステップS309:累積発電電力量S2が累積発電電力量S1を越えたか否かが判断される。この判断も、ソーラーパネル11の発電電力Xが閾値αを跨いで変化したとき、そのときと異なるタイミング(S2>S1)でモードを切り替えるために行われる。この累積発電電力量S1と累積発電電力量S2とを比較することで、第2モードによる充電処理において利用効率が低下したことを検出することが可能となる。
累積発電電力量S2が累積発電電力量S1を越えた場合(S309、Yes)、ステップS310に処理が進む(図4の処理(3))。一方、累積発電電力量S2が累積発電電力量S1を越えていない場合(S309、No)、ステップS307に処理が戻る。
ステップS310:充電モードが第2モードから第1モードへ切り替えられる。これにより、第1モードによる充電処理が実行される。第1の充電制御では、ソーラーパネル11の発電電力Xをソーラーバッテリー12に充電する処理Aと、ソーラーパネル11の発電電力Xとソーラーバッテリー12に蓄積された電力とを駆動用バッテリー13に充電する処理Bとが、ソーラーバッテリー12の蓄電量に応じて繰り返し行われる。充電モードが切り替えられると、ステップS311に処理が進む。
ステップS311:累積発電電力量S1及びS2がリセットされる。累積発電電力量がリセットされると、充電モードを判断するステップS301に処理が戻る。
<第2の充電制御>
図6は、充電制御システム1の充電制御部14が実行する第2の充電制御の処理手順を説明するフローチャートである。図7は、第2の充電制御における第1モードと第2モードとの間の切り替えタイミングを示す図である。図8は、第2モードの充電処理における発電電力Xの変動例を示す図である。
図6に示す第2の充電制御は、上述した図3に示す第1の充電制御と比べて、ステップS601〜S607の処理が異なる。以下、この異なる処理を中心に、第2の充電制御を説明する。
ステップS301:今実行されている充電モードが、第1モードであるのか第2モードであるのかが判断される。充電モードが第1モードである場合、ステップS601に処理が進む。充電モードが第2モードである場合、ステップS306に処理が進む。
ステップS601:ソーラーパネル11の発電電力Xが、閾値αよりも大きい所定の閾値γ(請求項における「第3閾値」に対応)を超えているか否かが判断される。この判断は、ソーラーパネル11の発電電力Xが、駆動用バッテリー13において予め設定されている充電に最低限必要な電力値である充電許可電力値を満足するか否かを判断するために行われる。よって、閾値γは、この充電許可電力値に設定することができる。
発電電力Xが閾値γを超えた場合(S601、Yes)、ステップS303に処理が進む。一方、発電電力Xが閾値γを超えない場合(S601、No)、ステップS601の処理が再び判断される。
ステップS303:前回に第1モードから第2モードへ切り替えてから経過した時間T2が所定時間T1に達したか否かが判断される。経過時間T2が所定時間T1に達した場合(S303、Yes)、ステップS602に処理が進む。一方、経過時間T2が所定時間T1に達していない場合(S303、No)、ステップS601に処理が戻る。
ステップS602:充電モードが第1モードから第2モードへ切り替えられる。これにより、第2モードによる充電処理が実行される。第2の充電制御では、ソーラーパネル11の発電電力Xの一部である閾値γまでの電力分が、駆動用バッテリー13に直接的に充電される。充電モードが切り替えられると、ステップS305に処理が進む。
ステップS306:累積発電電力量S1及びS2の累積が開始される。累積発電電力量の累積が開始されると、ステップS603に処理が進む。
ステップS603:ソーラーパネル11の発電電力Xが、閾値γ以下か否かが判断される。この判断も、ソーラーパネル11の発電電力Xが、駆動用バッテリー13において予め設定されている充電に最低限必要な充電許可電力値を満足するか否かを判断するために行われる。発電電力Xが閾値γ以下である場合(S603、Yes)、ステップS604に処理が進む(図7の範囲(4))。一方、発電電力Xが閾値γを超える場合(S603、No)、ステップS605に処理が進む(図7の範囲(5))。
ステップS604:ソーラーバッテリー12の蓄電量SBSOCが、所定の下限値Lを超えるか否かが判断される。この判断は、ソーラーバッテリー12の蓄電量SBSOCが過放電状態に至ってしまうことを回避するために行われる。よって、下限値Lは、過放電状態となる蓄電量に基づいて設定される。蓄電量SBSOCが下限値Lを超える場合(S604、Yes)、ステップS307に処理が進む。一方、蓄電量SBSOCが下限値L以下である場合(S604、No)、ステップS310に処理が進む。
ステップS307:ソーラーパネル11の発電電力Xが、閾値α以下になったか否かが判断される。発電電力Xが閾値α以下になった場合(S307、Yes)、ステップS308に処理が進む。一方、発電電力Xが閾値αを超えている場合(S307、No)、ステップS607に処理が進む。
ステップS605:ソーラーバッテリー12の蓄電量SBSOCが、所定の上限値H未満か否かが判断される。この判断は、ソーラーバッテリー12の蓄電量SBSOCが過充電状態に至ってしまうことを回避するために行われる。よって、上限値Hは、過充電状態となる蓄電量に基づいて設定される。蓄電量SBSOCが上限値H未満である場合(S605、Yes)、ステップS606に処理が進む。一方、蓄電量SBSOCが上限値H以上である場合(S605、No)、ステップS603に処理が戻る。
ステップS606:ソーラーパネル11の発電電力Xのうち、閾値γを超える電力分、すなわち駆動用バッテリー13に直接充電されない残りの余剰電力を、ソーラーバッテリー12に蓄電する処理(余剰分蓄電)が実施される。図8に示すように、発電電力Xが閾値γを超えている「余剰」期間は、余剰電力がソーラーバッテリー12に蓄電されて蓄電量SBSOCが上昇する。余剰分蓄電が実施されると、ステップS603に処理が戻る。
ステップS607:閾値γの電力分を満足するために、ソーラーパネル11の発電電力Xで不足している電力分を、ソーラーバッテリー12から放電して駆動用バッテリー13へ充電する処理(不足分充電)が実施される。図8に示すように、発電電力Xが閾値γを下回っている「不足」期間は、ソーラーバッテリー12から駆動用バッテリー13へ電力が持ち出されて蓄電量SBSOCが下降する。不足分充電が実施されると、ステップS603に処理が戻る。
<充電制御の変形例>
なお、上記ステップS307、S308、S309、及びS603においては、瞬間的な発電電力Xの変動に伴って充電モードの瞬間的な切り替えが生じないように、所定時間(例えば1分間)の経過を待ってから判断を行うようにしてもよい。
また、上記ステップS302、S307、S308、S601、及びS603で比較判断するソーラーパネル11の発電電力Xの大きさは、新たに別途設ける日射強度取得手段で取得するソーラーパネル11が受ける日射強度から求めてもよい。また、上記ステップS302で比較判断する閾値αとステップS307で比較判断する閾値αとを、異なる値に設定してもよい。
また、上記ステップS305で行う経過時間T2のリセット及び再計時の開始は、上記ステップS310で第1モードに切り替えた後に実施してもよい。また、上記ステップS303で行う比較判断では、充電モードの切り替えが経過した時間T2に代えて、充電モードを切り替えた回数を判断基準に用いてもよい。
また、上記ステップS308で行う比較判断では、閾値βに代えて、ソーラーパネル11の発電電力Xのある一定時間内の変動量を判断基準に用いてもよい。また、上記ステップS308で行う比較判断では、閾値βに代えて、新たに別途設ける補機バッテリー入出力電流取得手段で取得する補機バッテリーの入出力電流(電力)を判断基準に用いてもよい。
また、上記ステップS306及びS309で行う比較判断では、ソーラーパネル11の発電電力Xのうち閾値αを超えた又は以下の電力分を所定の期間だけ累積的に積分した量に代えて、閾値αを超えた又は以下となった期間を累積的に加算した時間を判断基準に用いてもよい。
さらには、上記ステップS303、S308、及びS309での比較判断を行わずに、上記ステップS302又はS307で閾値αを超えた又は以下となったことを判断した時点で、あるいは、上記ステップS601で閾値γを超えたことを判断した時点で、直ちに充電モードを切り替えてもよい(上記ステップS304、S602、又はS310)。
[本実施形態における作用・効果]
以上のように、本発明の一実施形態に係る充電制御システム1及びその充電制御方法によれば、少なくともソーラーパネル11の発電電力Xの大きさに基づいて、例えばその発電電力Xの利用効率が向上するように第1モードと第2モードとを切り替える。これにより、発電電力Xの利用効率が低いまま駆動用バッテリー13への充電が行われてしまうことを防ぐことができる。また、第2モードを実行するので、第1モードによるソーラーバッテリー12の充電と放電とを交互に行う処理の回数を減らすことができる。
また、ソーラーパネル11の発電電力Xが閾値αを跨いで変化しても直ぐにモードを切り替えないので、ソーラーパネル11の発電電力Xの瞬間的な変動によって、第1モードと第2モードとが頻繁に切り替わってしまうこと(制御チャタリング)を回避することができる。
また、閾値βとして充電制御システム1におけるソーラーパネル11の発電電力利用効率の低下が許容される下限の電力値を設定しておけば、利用効率の低下が許される範囲で第2モードを継続して実行することができる。これにより、第1モードによるソーラーバッテリー12の充電と放電とを交互に行う処理の回数を減らすことができる。
また、ソーラーパネル11の発電電力Xが閾値βに達しなくても、累積発電電力量S1及びS2に基づいてソーラーパネル11の発電電力利用効率が著しく低下したと判断されれば、第2モードから第1モードへ充電モードを切り替えることができる。これにより、第1モードによるソーラーバッテリー12の充電と放電とを交互に行う処理の回数を減らすことができると共に、発電電力Xの利用効率が低いまま第2モードによる充電処理が行われることを防止できる。
また、ソーラーパネル11の発電電力Xが、閾値αを超えても所定時間T2が経過するまでは、第1モードを継続して実行することができる。これにより、ソーラーパネル11の発電電力Xの瞬間的な変動によって、第1モードと第2モードとが頻繁に切り替わってしまうことを回避することができる。
また、第2モードに切り替えた場合、ソーラーパネル11の発電電力Xが閾値γを超えていれば、発電電力Xのうち少なくとも閾値γの電力分を駆動用バッテリー13に直接充電し、かつ、直接充電しない残りの余剰電力をソーラーバッテリー12に充電することができる。これにより、例えば、駆動用バッテリー13が充電のために最低限必要とする充電許可電力値(閾値γ)を予め設定しているような場合において、ソーラーパネル11の発電電力Xのうち閾値γを上回る余剰電力分を、廃棄などすることなくソーラーバッテリー12に無駄なく充電することができる。
このとき、ソーラーバッテリー12が過充電状態になってしまうことを回避するため、ソーラーバッテリー12の蓄電量SBSOCが所定の上限値Hまで上昇した場合には、余剰電力の充電を行わないようにすることが好ましい。
また、第2モードに切り替えた場合、ソーラーパネル11の発電電力Xが閾値γを超えていなければ、発電電力Xの全部を駆動用バッテリー13に直接充電し、かつ、閾値γに満たない不足電力分をソーラーバッテリー12から駆動用バッテリー13へ充電することができる。これにより、例えば、駆動用バッテリー13が充電許可電力値(閾値γ)を予め設定しているような場合において、ソーラーパネル11の発電電力Xが閾値γに満たない不足電力分をソーラーバッテリー12から持ち出して駆動用バッテリー13に充電することで第2モードを継続して実行できるので、第1モードと第2モードとが頻繁に切り替わってしまうことを回避することができる。
このとき、ソーラーバッテリー12が過放電状態になってしまうことを回避するため、ソーラーバッテリー12の蓄電量SBSOCが所定の下限値Lまで低下した場合には、第1モードに切り替えることが好ましい。
本発明は、例えば車両などの、ソーラーパネルの発電電力を利用する充電制御システムに利用可能である。
1 充電制御システム
11 ソーラーパネル
12 ソーラーバッテリー
13 駆動用バッテリー
14 充電制御部
14a ソーラーECU
14b リレー回路
15 バッテリー監視部

Claims (7)

  1. 太陽光で発電するソーラーパネルと、
    充放電可能な第1バッテリーと、
    充放電可能な第2バッテリーと、
    前記ソーラーパネル、前記第1バッテリー、及び前記第2バッテリーと接続され、前記ソーラーパネルの発電電力を前記第1バッテリーに充電する処理と前記第1バッテリーに蓄積された電力を前記第2バッテリーに間接充電する処理とを前記第1バッテリーの蓄電量に応じて繰り返し行う第1モード、及び前記ソーラーパネルの発電電力を前記第2バッテリーに直接充電する第2モードを、少なくとも前記ソーラーパネルの発電電力に基づいて切り替える制御部と、を備え
    前記制御部は、
    前記ソーラーパネルの発電電力が当該発電電力の利用効率が相対的に高くなるモードが切り替わる第1閾値を跨いで変化したとき、そのときと異なるタイミングでモードを切り替えることができ、
    前記第2モードを実行中に、前記ソーラーパネルの発電電力が前記第1閾値よりも小さい第2閾値以下になれば、前記第1モードに切り替え、
    前記ソーラーパネルの発電電力が前記第1閾値から前記第2閾値の間にあって前記第2モードを実行中に、所定の期間における前記第1閾値を超えた累積発電電力量が前記第1閾値を超えない累積発電電力量よりも低下すれば、前記第1モードに切り替える、
    充電制御システム。
  2. 前記制御部は、前記第1モードを実行中に、前記ソーラーパネルの発電電力が前記第1閾値を超えた場合、モードを切り替えてから所定時間が経過すれば前記第2モードに切り替える、
    請求項に記載の充電制御システム。
  3. 前記制御部は、前記第2モードに切り替えた場合、前記ソーラーパネルの発電電力が前記第1閾値よりも大きい第3閾値を超えていれば、前記ソーラーパネルの発電電力のうち少なくとも当該第3閾値の電力分を前記第2バッテリーに直接充電し、かつ、当該直接充電しない残りの余剰電力を前記第1バッテリーに充電する、
    請求項に記載の充電制御システム。
  4. 前記制御部は、前記ソーラーパネルの発電電力が前記第3閾値を超えていても前記第1バッテリーの蓄電量が所定の上限値まで上昇すれば、前記余剰電力による前記第1バッテリーの充電を行わない、
    請求項に記載の充電制御システム。
  5. 前記制御部は、前記第2モードに切り替えた場合、前記ソーラーパネルの発電電力が前記第1閾値よりも大きい第3閾値を超えていなければ、前記ソーラーパネルの発電電力の全部を前記第2バッテリーに直接充電し、かつ、前記第3閾値に満たない不足している電力分を前記第1バッテリーから前記第2バッテリーへ充電する、
    請求項に記載の充電制御システム。
  6. 前記制御部は、前記ソーラーパネルの発電電力が前記第3閾値を超えていなくても前記第1バッテリーの蓄電量が所定の下限値まで低下すれば、前記第1モードに切り替える、
    請求項に記載の充電制御システム。
  7. 太陽光で発電するソーラーパネルの発電電力に基づいてバッテリーへの充電を制御する制御装置が実行する充電制御方法であって、
    前記ソーラーパネルの発電電力を充放電可能な第1バッテリーに充電する処理と、前記第1バッテリーに蓄積された電力を充放電可能な第2バッテリーに間接充電する処理とを、前記第1バッテリーの蓄電量に応じて繰り返し行う第1モード、及び前記ソーラーパネルの発電電力を前記第2バッテリーに直接充電する第2モードを有し、
    少なくとも前記ソーラーパネルの発電電力に基づいて前記第1モードと前記第2モードとを切り替えるステップを備え
    前記ステップでは、
    前記ソーラーパネルの発電電力が当該発電電力の利用効率が相対的に高くなるモードが切り替わる第1閾値を跨いで変化したとき、そのときと異なるタイミングでモードを切り替えることができ、
    前記第2モードを実行中に、前記ソーラーパネルの発電電力が前記第1閾値よりも小さい第2閾値以下になれば、前記第1モードに切り替え、
    前記ソーラーパネルの発電電力が前記第1閾値から前記第2閾値の間にあって前記第2モードを実行中に、所定の期間における前記第1閾値を超えた累積発電電力量が前記第1閾値を超えない累積発電電力量よりも低下すれば、前記第1モードに切り替える、
    充電制御方法。
JP2017206446A 2017-09-07 2017-10-25 充電制御システム及び充電制御方法 Active JP6953997B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/101,205 US11894715B2 (en) 2017-09-07 2018-08-10 Charge control system and charge control method
CN201810950500.XA CN109474056B (zh) 2017-09-07 2018-08-20 充电控制***和充电控制方法
DE102018120475.2A DE102018120475A1 (de) 2017-09-07 2018-08-22 Ladungssteuerungssystem und ladungssteuerungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017172067 2017-09-07
JP2017172067 2017-09-07

Publications (2)

Publication Number Publication Date
JP2019050713A JP2019050713A (ja) 2019-03-28
JP6953997B2 true JP6953997B2 (ja) 2021-10-27

Family

ID=65906015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206446A Active JP6953997B2 (ja) 2017-09-07 2017-10-25 充電制御システム及び充電制御方法

Country Status (1)

Country Link
JP (1) JP6953997B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152553B1 (en) * 2021-07-29 2024-04-24 Contemporary Amperex Technology Co., Limited Charging and discharging apparatus, battery charging method, and charging and discharging system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012133249A1 (ja) * 2011-03-25 2014-07-28 京セラ株式会社 電力管理システム及び電力管理方法
JP5673633B2 (ja) * 2012-06-01 2015-02-18 株式会社デンソー 車載充電制御装置
JP5977658B2 (ja) * 2012-12-06 2016-08-24 株式会社デンソー 充電制御装置
JP6269663B2 (ja) * 2013-05-17 2018-01-31 トヨタ自動車株式会社 車載太陽電池を利用する充電制御装置
JP6427826B2 (ja) * 2015-02-27 2018-11-28 三菱重工業株式会社 制御装置、制御方法およびプログラム
JP6142024B1 (ja) * 2016-02-16 2017-06-07 株式会社フジクラ 蓄電システム及び蓄電方法

Also Published As

Publication number Publication date
JP2019050713A (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
US10464441B2 (en) Charging facility and energy management method for charging facility
JP6007385B2 (ja) 蓄電装置およびその制御方法ならびに電源装置
JP6298634B2 (ja) スイッチング電源装置
JP2011097820A (ja) 二次電池装置および車両
JPWO2012050195A1 (ja) 電力供給システム
CN109474056B (zh) 充电控制***和充电控制方法
US20070092763A1 (en) Fuel cell system
JP2008131710A (ja) 電源システム、電源システムの制御方法、電源システムの制御方法を実行するためのプログラムおよび電源システムの制御方法を実行するためのプログラムを記録した記録媒体
JP6953997B2 (ja) 充電制御システム及び充電制御方法
JP2009071922A (ja) 直流バックアップ電源装置およびその制御方法
JP7172637B2 (ja) 車載ソーラー発電装置
JP2009131060A (ja) 充放電回路の制御システム
JP2013537027A (ja) 電池を充電するための方法
CN115776152A (zh) 一种太阳能板与蓄电池的组合式电源的控制方法、***
JP2002058175A (ja) 独立型電源システム
JP7180295B2 (ja) 車両用充電制御システム
JP2011010448A (ja) 制御ユニット
JP2010259261A (ja) 充電装置および充電方法
JP4933465B2 (ja) 直流電源システムおよびその充電制御方法
JP7006572B2 (ja) 車両用充電制御システム
CN114765377A (zh) 多电池串联的电压平衡***
JP4654262B2 (ja) 直流電源システムおよびその充電方法
WO2018155442A1 (ja) 直流給電システム
KR102618733B1 (ko) 작업차량용 보조 충전시스템
KR101266986B1 (ko) 태양광전지를 이용한 니켈수소충전지의 충전장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R151 Written notification of patent or utility model registration

Ref document number: 6953997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151