JP6952305B2 - Sugar fatty acid ester and oil gelling agent - Google Patents

Sugar fatty acid ester and oil gelling agent Download PDF

Info

Publication number
JP6952305B2
JP6952305B2 JP2017218162A JP2017218162A JP6952305B2 JP 6952305 B2 JP6952305 B2 JP 6952305B2 JP 2017218162 A JP2017218162 A JP 2017218162A JP 2017218162 A JP2017218162 A JP 2017218162A JP 6952305 B2 JP6952305 B2 JP 6952305B2
Authority
JP
Japan
Prior art keywords
mmol
anhydro
acid
fatty acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017218162A
Other languages
Japanese (ja)
Other versions
JP2019089719A (en
Inventor
隆仁 加治木
隆仁 加治木
吉永 一浩
一浩 吉永
司朗 今場
司朗 今場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2017218162A priority Critical patent/JP6952305B2/en
Publication of JP2019089719A publication Critical patent/JP2019089719A/en
Application granted granted Critical
Publication of JP6952305B2 publication Critical patent/JP6952305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Jellies, Jams, And Syrups (AREA)
  • Pyrane Compounds (AREA)
  • Cosmetics (AREA)

Description

本発明は、1,5−アンヒドロ−D−グルシトールまたは1,5−アンヒドロ−D−マンニトールの脂肪酸エステルおよびオイルゲル化剤としてのその使用に関するものである。 The present invention relates to the use of 1,5-anhydro-D-glucitol or 1,5-anhydro-D-mannitol as a fatty acid ester and oil gelling agent.

ゲル化剤とは水やオイルなどの液体に添加され、それを増粘や固化するものである。ゲルには水系をゲル化するハイドロゲルと油系をゲル化するオルガノゲルが存在する。水のゲル化剤としてはペクチン、グアーガムなどの多糖類、ゼラチンなどたんぱく質、カルボキシメチルセルロースなどの半合成高分子あるいはポリビニルアルコールやポリアクリル酸などの合成高分子の如き多種多様なゲル化剤が知られている。しかし、オイルのゲル化剤は水のゲル化剤に比べて種類が少ない。その理由は、ゲル化の対象となる液体が、水は1種類であるが、オイルは様々な種類が存在することがあげられる。そのため、従来、極性の異なる様々なオイルに対して広汎なゲル化能を有するゲル化剤はあまり知られていない(非特許文献1)。 The gelling agent is added to a liquid such as water or oil to thicken or solidify it. There are two types of gels: hydrogels that gel water-based gels and organogels that gel oil-based gels. As water gelling agents, a wide variety of gelling agents such as polysaccharides such as pectin and guar gum, proteins such as gelatin, semi-synthetic polymers such as carboxymethyl cellulose, and synthetic polymers such as polyvinyl alcohol and polyacrylic acid are known. ing. However, there are fewer types of oil gelling agents than water gelling agents. The reason is that the liquid to be gelled is one type of water, but there are various types of oil. Therefore, conventionally, a gelling agent having a wide range of gelling ability for various oils having different polarities is not well known (Non-Patent Document 1).

従来、オイルゲル化剤としては、12−ヒドロキシステアリン酸、アミノ酸誘導体の如き低分子ゲル化剤、ポリアクリル酸誘導体の如き高分子ゲル化剤、デキストリン誘導体の如きエステル化オリゴマー、変性シリコーン、オイルワックスおよび分散により増粘を与える粒子などが知られている。これらはそれぞれの特徴に応じて、化粧料、食品、塗料、潤滑油などの様々な分野で広く利用されている(非特許文献1)。
近年、新たな食品分野として介護食の占める割合が増加し、今までにない介護食のニーズ(嚥下食として水溶性の食品のみならず喉越しを良くするためのゲル状オイルのニーズ)も生まれている。
化粧品分野ではオイルのゲル化剤が、口紅、リップクリームやリップグロスなどの成型、W/Oクリームなどの油相の乳化安定化に多く用いられている。その中で、既存の製品との差別化のために新たなオイルのゲル化剤が化粧品業界で求められている。
また、糖類の脂肪酸エステルをオイルのゲル化剤として用いた例としては、マルトース(特許文献1)、セロビオース(非特許文献2、特許文献2)、ショ糖(特許文献3、非特許文献3 )、デキストリン(特許文献4、5および6)、イヌリン(特許文献7)、トレハロース(非特許文献4および5)、プルラン(特許文献8)が知られている。しかしながら、そのうち、マルトース、セロビオースなどの還元末端をもつ糖を用いた場合には、エステル化反応中に着色して精製負荷が高くなる。
Conventionally, oil gelling agents include 12-hydroxystearic acid, low molecular weight gelling agents such as amino acid derivatives, polymer gelling agents such as polyacrylic acid derivatives, esterified oligomers such as dextrin derivatives, modified silicones, oil waxes and the like. Particles that thicken by dispersion are known. These are widely used in various fields such as cosmetics, foods, paints, and lubricating oils according to their respective characteristics (Non-Patent Document 1).
In recent years, the proportion of long-term care foods has increased as a new food field, and new needs for long-term care foods (needs for not only water-soluble foods as swallowing foods but also gel-like oils to improve the throat) have been created. ing.
In the cosmetics field, oil gelling agents are often used for molding lipsticks, lip balms, lip glosses, etc., and for stabilizing the emulsification of oil phases such as W / O creams. Among them, a new oil gelling agent is required in the cosmetics industry to differentiate it from existing products.
Examples of using the fatty acid ester of the saccharide as the gelling agent for the oil include maltose (Patent Document 1), cellobiose (Non-Patent Document 2 and Patent Document 2), and sucrose (Patent Document 3 and Non-Patent Document 3). , Dextrin (Patent Documents 4, 5 and 6), Inulin (Patent Document 7), Trehalose (Non-Patent Documents 4 and 5), and Pulran (Patent Document 8). However, when a sugar having a reducing end such as maltose or cellobiose is used, it is colored during the esterification reaction and the purification load becomes high.

また、ショ糖脂肪酸エステル(特許文献3)、トレハロース脂肪酸エステル(特許文献9)は、オイルを固化するワックスと併用する結晶調整剤の目的で配合されており固化剤として単独で使用されたものではない。一方、トレハロースにリパーゼを作用させて合成したトレハロースの6,6−ジエステル化合物が低濃度で有機溶媒をゲル化すること、すなわち酢酸エチルを0.04w/v%でゲル化することが記載されている(非特許文献3および4)。しかしながら、このジエステル化合物は、上記の如く酵素反応において製造されるため複数の置換体が生成し目的物の単離にはカラムクロマトグラフィー精製が必要となり精製負荷が高いのが欠点である。
その中で、デキストリンやイヌリンの脂肪酸エステルが化粧品用途にオイルのゲル化剤として実用化されている。しかし、これらは高分子化合物であるために品質のばらつきがあることや、高分子に由来するベタツキ感があること、オイルへ溶解するときにダマになりやすいこと、ゲル化するための添加量が多く必要(6〜10%)なことなどの欠点がある。
Further, sucrose fatty acid ester (Patent Document 3) and trehalose fatty acid ester (Patent Document 9) are blended for the purpose of a crystal modifier used in combination with a wax that solidifies oil, and are not used alone as a solidifying agent. No. On the other hand, it is described that the 6,6-diester compound of trehalose synthesized by reacting trehalose with lipase gels an organic solvent at a low concentration, that is, gels ethyl acetate at 0.04 w / v%. (Non-Patent Documents 3 and 4). However, since this diester compound is produced by an enzymatic reaction as described above, a plurality of substituents are produced, and column chromatography purification is required to isolate the desired product, which has a drawback that the purification load is high.
Among them, fatty acid esters of dextrin and inulin have been put into practical use as oil gelling agents for cosmetic applications. However, since these are polymer compounds, there are variations in quality, there is a sticky feeling derived from the polymer, they tend to become lumps when dissolved in oil, and the amount added for gelation is large. There are drawbacks such as the need for many (6-10%).

一方、1,5−アンヒドロ−D−グルシトールまたは1,5−アンヒドロ−D−マンニトールの脂肪酸エステルについては、炭素数12のラウリン酸を導入した1,5−アンヒドロ−D−グルシトール−2,3,4,6−O−テトララウレートが食後過血糖改善ならびに食後高脂血症改善のために使用されているが、オイルのゲル化を目的としたものではない(特許文献10)。
このように、本発明における1,5−アンヒドロ−D−グルシトールまたは1,5−アンヒドロ−D−マンニトールの脂肪酸エステルは使用例も合成例もなく、まったくその機能も不明であった。
On the other hand, for the fatty acid ester of 1,5-anhydro-D-glucitol or 1,5-anhydro-D-mannitol, 1,5-anhydro-D-glucitol-2,3, in which lauric acid having 12 carbon atoms was introduced, was introduced. Although 4,6-O-tetralaurate is used for improving postprandial hyperglycemia and postprandial hyperlipidemia, it is not intended for gelation of oil (Patent Document 10).
As described above, the fatty acid ester of 1,5-anhydro-D-glucitol or 1,5-anhydro-D-mannitol in the present invention has not been used or synthesized, and its function is completely unknown.

GB2368011AGB2368011A WO00/61079WO00 / 61079 特開昭49−134846号公報Japanese Unexamined Patent Publication No. 49-134846 特開昭51−123784号公報Japanese Unexamined Patent Publication No. 51-123784 特開平4−49249号公報Japanese Unexamined Patent Publication No. 4-49249 特開平8−277302号公報Japanese Unexamined Patent Publication No. 8-277302 特許第2811487号明細書Patent No. 2811487 WO2014/024308WO2014 / 024308 WO2013/133271WO2013 / 133271 WO2010/082661WO2010 / 082661

FRAGRANCE JOURNAL 2017−3 p54FRAGRANCE JOURNAL 2017-3 p54 Bull.Chem.Soc.Jpn.,1995,68,3423−3428Bull. Chem. Soc. Jpn. , 1995, 68, 3423-3428 シュガーエステル物語(第一工業製薬株式会社)、p.32−49Sugar Ester Story (Daiichi Kogyo Seiyaku Co., Ltd.), p. 32-49 Angew.Chem.Int.Ed.,2006,45,4772Angew. Chem. Int. Ed. , 2006, 45, 4772 Chem.Mater.,2006,18,5988Chem. Mater. , 2006, 18, 5988

本発明の目的は、オイルゲル化剤として有用な新規化合物およびそのオイルゲル化剤としての使用を提供することにある。 An object of the present invention is to provide a novel compound useful as an oil gelling agent and its use as an oil gelling agent.

本発明の他の目的は、オイルの種類を問わず、オイルをゲル化する能力の高い新規化合物およびそれを使用したゲル化剤を提供することにある。 Another object of the present invention is to provide a novel compound having a high ability to gel an oil regardless of the type of oil, and a gelling agent using the same.

本発明のさらに他の目的は、従来ゲル化剤として実用化されているデキストリン脂肪酸エステルに比べて添加量が少なく、ダマになることなくオイルへの溶解性も良好な新規化合物およびそれを使用したゲル化剤を提供することにある。 Still another object of the present invention is to use a novel compound having a smaller amount of addition than the dextrin fatty acid ester which has been put into practical use as a gelling agent and having good solubility in oil without becoming lumpy. The purpose is to provide a gelling agent.

本発明のさらに他の目的および利点は以下の説明から明らかになろう。 Still other objectives and advantages of the present invention will become apparent from the following description.

本発明によれば、本発明の上記目的および利点は、第1に、
下記式(1)または(2)で示される化合物により達成される。
According to the present invention, the above-mentioned objects and advantages of the present invention are, firstly,
It is achieved by the compound represented by the following formula (1) or (2).

Figure 0006952305
Figure 0006952305

ここで、Rは炭素数10、11または13〜22の直鎖飽和脂肪酸に由来するアシル基であり、4つのRは同一でも異なっていてもよい。 Wherein, R 1 is an acyl group derived from a straight-chain saturated fatty acids of 10, 11 or 13 to 22 carbon atoms, four R 1 may be the same or different.

Figure 0006952305
Figure 0006952305

ここで、Rは炭素数13〜22の直鎖飽和脂肪酸に由来するアシル基であり、4つのRは同一でも異なっていてもよい。 Here, R 2 is an acyl group derived from a straight-chain saturated fatty acid of 13 to 22 carbon atoms, four R 2 may be the same or different.

本発明によれば、本発明の上記目的および利点は、第2に、
上記式(1)または(2)で示される化合物を少なくとも1種含有するゲル化剤により達成される。
According to the present invention, the above object and advantage of the present invention are secondly:
It is achieved by a gelling agent containing at least one compound represented by the above formula (1) or (2).

本発明の新規化合物は、1,5−アンヒドロ−D−グルシトールまたは1,5−アンヒドロ−D−マンニトールという非還元糖と脂肪酸とを反応させることで得られ、オイルの種類を問わず様々なオイルをゲル化可能である。1,5−アンヒドロ−D−グルシトールや1,5−アンヒドロ−D−マンニトールは還元性を持たないため化学的に非常に安定な構造であり、エステル化反応中に着色することがなく生成物が着色してしまうなどの問題はない。さらに、本発明の1,5−アンヒドロ−D−グルシトールや1,5−アンヒドロ−D−マンニトールの脂肪酸エステルは全ての水酸基が置換された構造であるため反応のコントロールが行いやすく、結晶化してろ過精製することで目的物を単離することができるため精製負荷は低い。 The novel compound of the present invention is obtained by reacting a non-reducing sugar called 1,5-anhydro-D-glucitol or 1,5-anhydro-D-mannitol with a fatty acid, and various oils regardless of the type of oil. Can be gelled. Since 1,5-anhydro-D-glucitol and 1,5-anhydro-D-mannitol have no reducing property, they have a chemically stable structure, and the product is not colored during the esterification reaction. There is no problem such as coloring. Furthermore, since the fatty acid esters of 1,5-anhydro-D-glucitol and 1,5-anhydro-D-mannitol of the present invention have a structure in which all hydroxyl groups are substituted, the reaction can be easily controlled, and they are crystallized and filtered. Since the desired product can be isolated by purification, the purification load is low.

また、本発明の化合物は様々なオイルをゲル化することができるので、嚥下食、不飽和脂肪酸を含む液体油の固化、ピーナッツバターなどからの液体油の分離抑制、チョコレート・ホイップクリームなどの保形性の向上などの食品分野、口紅、リップグロス、コンシーラー、制汗スティック、軟膏、リップライナーやアイライナーなどの鉛筆状化粧品などの化粧品分野、軟膏、経皮吸収剤などの医薬品分野、廃油をゲル化して固形物として処理し水質汚染防止する環境保全分野などに利用することができる。 In addition, since the compound of the present invention can gel various oils, swallowing food, solidification of liquid oil containing unsaturated fatty acids, suppression of separation of liquid oil from peanut butter, etc., retention of chocolate, whipped cream, etc. Food fields such as improving shape, cosmetics fields such as lipsticks, lip glosses, concealers, antiperspirant sticks, ointments, pencil-shaped cosmetics such as lip liners and eyeliners, pharmaceutical fields such as ointments and transdermal absorbents, waste oil It can be used in the field of environmental protection to prevent water pollution by gelling and treating it as a solid.

本発明の化合物は、上記式(1)で表される1,5−アンヒドロ−D−グルシトール(以下、1,5−anhydro−D−glucitol、1,5−AGということがある)の直鎖飽和脂肪酸エステルまたは上記式(2)で表される1,5−アンヒドロ−D−マンニトール(以下、1,5−anhydro−D−mannitol、1,5−AMということがある)の直鎖飽和脂肪酸エステルである。
上記式(1)中、Rは炭素数10、11または13〜22の直鎖飽和脂肪酸(XCOOH)に由来するアシル基(XCO−)である。また、式中の4つのRは同一でも異なっていてもよい。かかる直鎖飽和脂肪酸は、具体的に、デカン酸(カプリン酸)、ウンデカン酸(ウンデシル酸、ウンデカノン酸)、トリデカン酸(トリデシル酸、トリデカノン酸)、テトラデカン酸(ミリスチン酸)、ペンタデカン酸(ペンタデシル酸)、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸(マルガリン酸)、オクタデカン酸(ステアリン酸)、ノナデカン酸(ノナデシル酸)、アラキジン酸(イコサン酸、エイコサン酸)、ヘンエイコサン酸(ヘンイコシル酸、ヘンイコサノン酸)およびベヘン酸(ドコサン酸)である。これらのうち、ノナデカン酸、アラキジン酸、ヘンエイコサン酸を除く他の脂肪酸は比較的入手が容易であり好ましい。これらのうち、炭素数10、11または13〜18の直鎖飽和脂肪酸は、ゲル化能に優れた化合物を与えるので好ましい。また、式中の4つのRは同一であるのが好ましい。
また、上記式(2)中、Rは炭素数13〜22の直鎖飽和脂肪酸(XCOOH)に由来するアシル基(XCO−)である。かかる直鎖飽和脂肪酸の具体例は、Rについて示した上記具体的化合物から理解される。これらのうち、炭素数13〜18の直鎖飽和脂肪酸が好ましい。また、式中の4つのRは同一であるのが好ましい。
The compound of the present invention is a linear chain of 1,5-anhydro-D-glucitol (hereinafter, may be referred to as 1,5-anhydro-D-glucitol, 1,5-AG) represented by the above formula (1). Saturated fatty acid ester or linear saturated fatty acid of 1,5-anhydro-D-mannitol represented by the above formula (2) (hereinafter, may be referred to as 1,5-anhydro-D-mannitol, 1,5-AM). Esther.
In the above formula (1), R 1 is an acyl group (X 1 CO−) derived from a linear saturated fatty acid (X 1 COOH) having 10, 11 or 13 to 22 carbon atoms. The four R 1 in the formula may be the same or different. Specific examples of such linear saturated fatty acids include decanoic acid (capric acid), undecanoic acid (undecic acid, undecanoic acid), tridecanoic acid (tridecyl acid, tridecanoic acid), tetradecanoic acid (myristic acid), and pentadecanoic acid (pentadecanoic acid). ), Hexadecanoic acid (palmitic acid), heptadecanoic acid (margaric acid), octadecanoic acid (stearic acid), nonadecanic acid (nonadesil acid), arachidic acid (icosanoic acid, eicosanoic acid), heneicosanoic acid (henicosyl acid, henicosanonic acid) and Bechenic acid (docosic acid). Of these, other fatty acids other than nonadecane acid, arachidic acid, and eneicosane acid are relatively easy to obtain and are preferable. Of these, linear saturated fatty acids having 10, 11 or 13 to 18 carbon atoms are preferable because they give compounds having excellent gelling ability. Further, preferably four of R 1 in the formula are the same.
Further, in the above formula (2), R 2 is an acyl group (X 2 CO−) derived from a linear saturated fatty acid (X 2 COOH) having 13 to 22 carbon atoms. Specific examples of such straight chain saturated fatty acids is understood from the above specific compounds indicated for R 1. Of these, linear saturated fatty acids having 13 to 18 carbon atoms are preferable. The four R 2 in the formula is preferably identical.

上記式(1)で表される1,5−AG脂肪酸エステルとしては、例えば、1,5−AG−2,3,4,6−O−テトラデカノエート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetradecanoate) 、1,5−AG−2,3,4,6−O−テトラウンデカノエート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetraundecanoate)、1,5−AG−2,3,4,6−O−テトラトリデカノエート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetratridecanoate)、1,5−AG−2,3,4,6−O−テトラミリステート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetramyristate)、1,5−AG−2,3,4,6−O−テトラペンタデカノエート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetrapentadecanoate)、1,5−AG−2,3,4,6−O−テトラパルミテート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetrapalmitate)、1,5−AG−2,3,4,6−O−テトラヘプタデカノエート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetraheptadecanoate)、1,5−AG−2,3,4,6−O−テトラステアレート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetrastearate)、1,5−AG−2,3,4,6−O−テトラノナデカノエート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetranonadecanoate)、1,5−AG−2,3,4,6−O−テトラアラキデート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetraarachidate)、1,5−AG−2,3,4,6−O−テトラヘンエイコサノエート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetraheneicosanoate)および1,5−AG−2,3,4,6−O−テトラベヘネート(1,5−anhydro−D−glucitol−2,3,4,6−O−tetrabehenate)を好ましいものとして挙げることができる。 Examples of the 1,5-AG fatty acid ester represented by the above formula (1) include 1,5-AG-2,3,4,6-O-tetradecanoate (1,5-anhydro-D-). glucitol-2,3,4,6-O-tetradecanoate), 1,5-AG-2,3,4,6-O-tetraundecanoate (1,5-anhydro-D-glucitol-2,3, 4,6-O-tetrandecanoate), 1,5-AG-2,3,4,6-O-tetratridecanoate (1,5-anhydro-D-glucitol-2,3,4,6-O- terratridecanoate), 1,5-AG-2,3,4,6-O-tetramyristate (1,5-anhydro-D-glucitol-2,3,4,6-O-tetramylstate), 1,5- AG-2,3,4,6-O-tetrapentadecanoate (1,5-anhydro-D-glucitol-2,3,4,6-O-tetrapentadecanoate), 1,5-AG-2,3 , 4,6-O-tetrapalmitate, 1,5-AG-2,3,4,6-O- Tetraheptadecanoate (1,5-anhydro-D-glucitol-2,3,4,6-O-tetraheptadecanoate), 1,5-AG-2,3,4,6-O-tetrastearate (1) , 5-anhydro-D-glucitol-2,3,4,6-O-tetraceate), 1,5-AG-2,3,4,6-O-tetranonadecanoate (1,5-anhydro-) D-glucitol-2,3,4,6-O-tetranonadecanoate), 1,5-AG-2,3,4,6-O-tetraarachidate (1,5-anhydro-D-glucitol-2,3) , 4,6-O-tetralachide), 1,5-AG-2,3,4,6-O-tetraheneikosanoate (1,5-anhydro-D-glucitol-2,3,4,6- O-tetraheneicosanoate) and 1,5-AG-2,3,4,6-O-tetrabehenate (1,5-anhydro-D-glucitol-2,3,4,6-O-tetrabehenate) are preferred. matter Can be done.

同様に、上記式(2)で表される1,5−AM脂肪酸エステルとしては、例えば1,5−AM−2,3,4,6−O−テトラトリデカノエート(1,5−anhydro−D−mannitol−2,3,4,6−O−tetratridecanoate)、1,5−AM−2,3,4,6−O−テトラミリステート(1,5−anhydro−D−mannitol−2,3,4,6−O−tetramyristate)、1,5−AM−2,3,4,6−O−テトラペンタデカノエート(1,5−anhydro−D−mannitol−2,3,4,6−O−tetrapentadecanoate)、1,5−AM−2,3,4,6−O−テトラパルミテート(1,5−anhydro−D−mannitol−2,3,4,6−O−tetrapalmitate)、1,5−AM−2,3,4,6−O−テトラヘプタデカノエート(1,5−anhydro−D−mannitol−2,3,4,6−O−tetraheptadecanoate)、1,5−AM−2,3,4,6−O−テトラステアレート(1,5−anhydro−D−mannitol−2,3,4,6−O−tetrastearate)、1,5−AM−2,3,4,6−O−テトラノナデカノエート(1,5−anhydro−D−mannitol−2,3,4,6−O−tetranonadecanoate)、1,5−AM−2,3,4,6−O−テトラアラキデート(1,5−anhydro−D−mannitol−2,3,4,6−O−tetraarachidate)、1,5−AM−2,3,4,6−O−テトラヘンエイコサノエート(1,5−anhydro−D−mannitol−2,3,4,6−O−tetraheneicosanoate)および1,5−AM−2,3,4,6−O−テトラベヘネート(1,5−anhydro−D−mannitol−2,3,4,6−O−tetrabehenate)を好ましいものとして挙げることができる。 Similarly, examples of the 1,5-AM fatty acid ester represented by the above formula (2) include 1,5-AM-2,3,4,6-O-tetratridecanoate (1,5-anhydro-). D-mannitol-2,3,4,6-O-tetratridecanate), 1,5-AM-2,3,4,6-O-tetramillistate (1,5-anhydro-D-mannitol-2,3) , 4,6-O-tetramylistate), 1,5-AM-2,3,4,6-O-tetrapentadecanoate (1,5-anhydro-D-mannitol-2,3,4,6- O-tetrapentadecanate), 1,5-AM-2,3,4,6-O-tetrapalmitate (1,5-anhydro-D-mannitol-2,3,4,6-O-tetrapaltate), 1, 5-AM-2,3,4,6-O-tetraheptadecanoate (1,5-anhydro-D-mannitol-2,3,4,5-AM-2), 1,5-AM-2 , 3,4,6-O-tetrastearate (1,5-anhydro-D-mannitol-2, 3,4,6-O-tetherateate), 1,5-AM-2,3,4,6- O-Tetranonadecanoate (1,5-anhydro-D-mannitol-2,3,4,6-O-tetranonadecanoate), 1,5-AM-2,3,4,6-O-tetraarachidate (1,5-anhydro-D-mannitol-2,3,4,6-O-terarachidate), 1,5-AM-2,3,4,6-O-tetrahenei cosanoate (1,5-) anhydro-D-mannitol-2,3,4,6-O-tetraheneicosanoate) and 1,5-AM-2,3,4,6-O-tetrabehenate (1,5-anhydro-D-mannitol-2,3) , 4,6-O-telebehenate) can be mentioned as preferable.

上記式(1)および(2)で表される化合物は、例えば、1,5−AGまたは1,5−AMを、塩基性化合物の存在下、直鎖飽和脂肪酸クロライドまたは直鎖飽和脂肪酸無水物と反応させることにより製造することができる。
直鎖飽和脂肪酸クロライドとしては、例えばデカン酸クロライド、ウンデカン酸クロライド、トリデカン酸クロライド、テトラデカン酸クロライド(ミリスチン酸クロライド)、ペンタデカン酸クロライド、ヘキサデカン酸クロライド(パルミチン酸クロライド)、ヘプタデカン酸クロライド、オクタデカン酸クロライド(ステアリン酸クロライド)、ノナデカン酸クロライド、アラキジン酸クロライド、ヘンエイコサン酸クロライドおよびベヘン酸クロライドを挙げることができる。
また、直鎖飽和脂肪酸無水物としては、例えば無水デカン酸(C19COOCOC19)、無水ウンデカン酸、無水トリデカン酸、無水テトラデカン酸、無水ペンタデカン酸、無水ヘキサデカン酸、無水ヘプタデカン酸、無水ステアリン酸、無水ノナデカン酸、無水アラキジン酸、無水ヘンエイコサン酸および無水ベヘン酸を挙げることができる。
The compounds represented by the above formulas (1) and (2) are, for example, 1,5-AG or 1,5-AM in the presence of a basic compound, a linear saturated fatty acid chloride or a linear saturated fatty acid anhydride. It can be produced by reacting with.
Examples of linear saturated fatty acid chlorides include decanoic acid chloride, undecanoic acid chloride, tridecanoic acid chloride, tetradecanoic acid chloride (myristic acid chloride), pentadecanoic acid chloride, hexadecanoic acid chloride (palmitic acid chloride), heptadecanoic acid chloride, and octadecanoic acid chloride. (Stearic acid chloride), nonadecylic acid chloride, arachidic acid chloride, heneikosanoic acid chloride and behenic acid chloride can be mentioned.
Examples of the linear saturated fatty acid anhydride include decanoic anhydride (C 9 H 19 COOCOC 9 H 19 ), undecanoic anhydride, tridecanoic anhydride, tetradecanoic anhydride, pentadecanoic anhydride, hexadecanoic anhydride, and heptadecanoic anhydride. Examples thereof include stearic anhydride, nonadecanic acid anhydride, arachidic acid anhydride, heneicosanoic acid anhydride and bechenic acid anhydride.

反応は、例えば1,5−AGまたは1,5−AM 1モルと直鎖飽和脂肪酸クロライドまたは直鎖飽和脂肪酸無水物 4モル以上、好ましくは4〜8モルとを、N,N−ジメチルホルムアミドの如き非プロトン性極性溶媒中、窒素の如き不活性雰囲気下、40〜100℃の反応温度で反応させることにより、好ましく行うことができる。
上記反応はそれ自体アシル化反応として知られている。式(1)または(2)で表される化合物は、その他、それ自体公知の反応、例えば糖類と脂肪酸または油脂を高温で、触媒として酸性化合物を用いて直接反応させる方法;糖類と脂肪酸エステルを、炭酸カリウムなどを触媒として、N,N−ジメチルホルムアミドなどの有機溶媒中で反応させる方法;糖類をプロピレングリコールやグリセリン、水などに溶解した溶液と脂肪酸メチルとの混合物に石鹸を加えてミクロエマルジョンを得、これに少量の触媒を加えて減圧下でエステル交換する方法;リパーゼなどの酵素を用いる方法などによっても製造することができる(非特許文献3) 。
In the reaction, for example, 1 mol of 1,5-AG or 1,5-AM and 4 mol or more, preferably 4 to 8 mol of linear saturated fatty acid chloride or linear saturated fatty acid anhydride were added to N, N-dimethylformamide. It can be preferably carried out by reacting in an aprotonic polar solvent such as in an inert atmosphere such as nitrogen at a reaction temperature of 40 to 100 ° C.
The reaction is itself known as an acylation reaction. The compound represented by the formula (1) or (2) is another method known per se, for example, a method of directly reacting a saccharide with a fatty acid or a fat or oil at a high temperature using an acidic compound as a catalyst; a saccharide and a fatty acid ester. , A method of reacting in an organic solvent such as N, N-dimethylformamide using potassium carbonate as a catalyst; microemulsion by adding soap to a mixture of a solution of saccharides in propylene glycol, glycerin, water, etc. and fatty acid methyl. It can also be produced by a method of adding a small amount of a catalyst to the obtained product and transesterifying it under reduced pressure; a method using an enzyme such as lipase (Non-Patent Document 3).

本発明の上記式(1)または(2)で表される化合物は、オイルをゲル化する能力に優れている。ゲル化の対象となるオイル は、加熱により上記ゲル化剤を充分に溶解させ、室温に冷却したときにゲルを形成するものであれば特に制限はないが、例えば、流動パラフィン、スクワラン、水添ポリイソブテン、ワセリン等の炭化水素系オイル、テトライソステアリン酸ペンタエリスリチル、ミリスチン酸イソプロピル、パルミチン酸エチルへキシル、トリ(カプリル酸/カプリン酸)グリセリル、トリオクタン酸グリセリル、リンゴ酸ジイソステアリル、トリイソステアリン酸ポリグリセリル−2等のエステル油、カプリン酸、ラウリン酸等の高級脂肪酸、オリーブオイル、キャノーラ油、大豆油、カスターオイル等の油脂、キャンデリラロウ、ホホバオイル等のワックス類、オクチルドデカノール、エタノール等のアルコール類、鎖状シリコーン(ジメチコン)、環状シリコーン(シクロペンタシロキサン)、ジフェニルシロキシフェニルトリメチコン等のシリコーンオイル等であることができる。
これらのオイルに対し、式(1)または(2)で表される化合物を、例えば1〜20重量%で添加し、混合することにより、これらのオイルをゲル化することができる。
The compound represented by the above formula (1) or (2) of the present invention has an excellent ability to gel an oil. The oil to be gelled is not particularly limited as long as it sufficiently dissolves the gelling agent by heating and forms a gel when cooled to room temperature. For example, liquid paraffin, squalane, or hydrogenated oil is used. Hydrocarbon oils such as polyisobutene and vaseline, pentaerythrityl tetraisostearate, isopropyl myristate, ethylhexyl palmitate, glyceryl tri (caprylic acid / capric acid), glyceryl trioctanoate, diisostearyl malate, triisostearic acid Ester oils such as polyglyceryl-2, higher fatty acids such as capric acid and lauric acid, fats and oils such as olive oil, canola oil, soybean oil and castor oil, waxes such as candelilla wax and jojoba oil, octyldodecanol, ethanol and the like. Alcohols, chain silicones (dimethicone), cyclic silicones (cyclopentasiloxane), silicone oils such as diphenylsiloxyphenyltrimethicone and the like can be used.
These oils can be gelled by adding, for example, 1 to 20% by weight of the compound represented by the formula (1) or (2) to these oils and mixing them.

本発明の上記式(1)または(2)で表される化合物は、上記の如く、種々の極性のオイルをゲル化する能力を有するため、種々の分野でゲル化による固化を目的として利用することができる。例えば嚥下食、不飽和脂肪酸を含む液体油の固化、ピーナッツバターなどからの液体油の分離抑制、チョコレート・ホイップクリームなどの保形性の向上などの食品分野、口紅、リップグロス、コンシーラー、制汗スティック、軟膏、リップライナーやアイライナーなどの鉛筆状化粧品などの化粧品分野、軟膏、経皮吸収剤などの医薬品分野、廃油をゲル化して固形物として処理し水質汚染防止する環境保全分野などに利用することができる。 Since the compound represented by the above formula (1) or (2) of the present invention has the ability to gel oils of various polarities as described above, it is used for the purpose of solidification by gelation in various fields. be able to. For example, swallowing food, solidification of liquid oil containing unsaturated fatty acids, suppression of separation of liquid oil from peanut butter, improvement of shape retention such as chocolate and whipped cream, lipstick, lip gloss, concealer, antiperspirant Used in the cosmetics field such as sticks, ointments, pencil-shaped cosmetics such as lip liners and eyeliners, the pharmaceutical field such as ointments and transdermal absorbents, and the environmental protection field where waste oil is gelled and treated as a solid to prevent water pollution. can do.

以下、実施例により、本発明をさらに詳細に説明する。本発明はこれらの実施例により何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is not limited by these examples.

化合物の合成
化合物の製造は以下のように行い、得られた化合物の構造はNMRとMSにより確認を行った。H NMR(400.13MHz)と13C NMR(100.61MHz)は化合物を重クロロホルムに溶解し、Avance 400 spectrometer(Bruker BioSpin)を用いて300Kにて測定を行った。テトラメチルシランを内部標準(0ppm)として用いた(s=singlet,d=doublet,t=triplet,and m=multiplet)。MS測定はMALDI−TOF MS(Applied Biosystems 4700 Proteomics Analyzer)にて行った。
Synthesis of compound The production of the compound was carried out as follows, and the structure of the obtained compound was confirmed by NMR and MS. 1 H NMR (400.13 MHz) and 13 C NMR (100.61 MHz) dissolved the compound in deuterated chloroform and measured at 300 K using an Avance 400 spectrometer (Bruker BioSpin). Tetramethylsilane was used as the internal standard (0 ppm) (s = singlet, d = doublet, t = triplet, and m = multiplet). MS measurement was performed by MALDI-TOF MS (Applied Biosystems 4700 Proteomics Analyzer).

Figure 0006952305
Figure 0006952305

実施例1:1,5−anhydro−D−glucitol−2,3,4,6−O−tetradecanoateの合成
1,5−AG(152mg,0.926mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(DMF,4ml)とピリジン(pyridine,600μl,7.43mmol)に分散させ、50℃とした。そこに、デカン酸クロライド(Decanoyl chrolide,915μl,4.51mmol)を加え、反応温度を90℃として6時間反応させた。反応液にメタノール(4ml)を加えた。反応液を2N塩酸で洗い、クロロホルムにて抽出した。減圧濃縮後、得られた固体をオープンカラムクロマトグラフィー(トルエン)にて精製し、白色の固体(606mg,84%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−glucitol−2,3,4,6−O−tetradecanoate(表1のNo1)であることを確認した。
H NMR(CDCl):5.22(t,1H,J=9.5Hz),5.04(t,1H,J=9.8Hz),5.00(td,1H,J=5.6,10.0Hz),4.15(d,2H,J=3.4Hz),4.14(dd,1H,J=5.6Hz),3.58(dt,1H,J=9.9,3.5Hz),3.29(t,1H,J=10.9Hz),2.36−2.20(m,8H),1.63−1.54(m,8H),1.26(broad s,48H),0.88(t,12H,J=7.0Hz)
13C NMR(CDCl):173.49,172.96,172.59,172.21,77.33−76.70,73.36,68.88,68.17,66.97,62.11,34.18−34.01,31.87,29.71−29.08,24.90−24.79,22.67,14.10
MS:m/z 803.60[M+Na](calculated for C4684Na,803.60)
Example 1: Synthesis of 1,5-anhydro-D-glucitol-2,3,4,6-O-tetradicanoate 1,5-AG (152 mg, 0.926 mmol) in a nitrogen atmosphere, N, N-dimethylformamide It was dispersed in (DMF, 4 ml) and pyridine (pyridine, 600 μl, 7.43 mmol) to 50 ° C. Decanoic chloride (Decanoyl chloride, 915 μl, 4.51 mmol) was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 6 hours. Methanol (4 ml) was added to the reaction solution. The reaction mixture was washed with 2N hydrochloric acid and extracted with chloroform. After concentration under reduced pressure, the obtained solid was purified by open column chromatography (toluene) to obtain a white solid (606 mg, 84%). NMR structure analysis and MS measurement were performed, and it was confirmed that the substance was 1,5-anhydroglucitol-2,3,4,6-O-tetradecanoate (No. 1 in Table 1).
1 1 H NMR (CDCl 3 ): 5.22 (t, 1H, J = 9.5 Hz), 5.04 (t, 1H, J = 9.8 Hz), 5.00 (td, 1H, J = 5. 6,10.0Hz), 4.15 (d, 2H, J = 3.4Hz), 4.14 (dd, 1H, J = 5.6Hz), 3.58 (dt, 1H, J = 9.9) , 3.5Hz), 3.29 (t, 1H, J = 10.9Hz), 2.36-2.20 (m, 8H), 1.63-1.54 (m, 8H), 1.26 (Broad s, 48H), 0.88 (t, 12H, J = 7.0Hz)
13 C NMR (CDCl 3 ): 173.49, 172.96, 172.59, 172.21, 77.33-76.70, 73.36, 68.88, 68.17, 66.97, 62. 11, 34.18-34.01, 31.87, 29.71-29.08, 24.90-24.79, 22.67, 14.10
MS: m / z 803.60 [M + Na] + (calculated for C 46 H 84 O 9 Na + , 803.60)

実施例2:1,5−anhydro−D−glucitol−2,3,4,6−O−tetraundecanoateの合成
1,5−AG(152mg,0.926mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、ウンデカン酸クロライド(undecanoyl chrolide,993μl,4.51mmol)を加え、反応温度を90℃として6時間反応させた。反応液にメタノール(4ml)を加えた。反応液を2N塩酸で洗い、クロロホルムにて抽出した。減圧濃縮後、得られた固体をオープンカラムクロマトグラフィー(トルエン)にて精製し、白色の固体(632mg,82%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−glucitol−2,3,4,6−O−tetraundecanoate(表1のNo2)であることを確認した。
H NMR(CDCl):5.22(t,1H,J=9.5Hz),5.04(t,1H,J=9.8Hz),5.00(td,1H,J=5.7,9.9Hz),4.15(d,2H,J=3.2Hz),4.14(dd,1H,J=5.6Hz),3.58(dt,1H,J=9.9,3.5Hz),3.29(t,1H,J=10.8Hz),2.36−2.20(m,8H),1.63−1.55(m,8H),1.25(broad s,56H),0.88(t,12H,J=7.0Hz)
13C NMR(CDCl):173.50,172.97,172.60,172.22,77.34−76.71,73.36,68.89,68.18,66.98,62.12,34.19−34.02,31.91,29.62−29.09,24.91−24.79,22.69,14.11
MS:m/z 859.65[M+Na](calculated for C5092Na,859.66)
Example 2: Synthesis of 1,5-anhydro-D-glucitol-2,3,4,6-O-tetrandecanoate 1,5-AG (152 mg, 0.926 mmol) in a nitrogen atmosphere, N, N-dimethylformamide It was dispersed in (4 ml) and pyridine (600 μl, 7.43 mmol) to 50 ° C. Undecanoyl chloride (993 μl, 4.51 mmol) was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 6 hours. Methanol (4 ml) was added to the reaction solution. The reaction mixture was washed with 2N hydrochloric acid and extracted with chloroform. After concentration under reduced pressure, the obtained solid was purified by open column chromatography (toluene) to obtain a white solid (632 mg, 82%). NMR structure analysis and MS measurement were performed, and it was confirmed that the substance was 1,5-anhydro-D-glucitol-2,3,4,6-O-tetrandecanoate (No. 2 in Table 1).
1 1 H NMR (CDCl 3 ): 5.22 (t, 1H, J = 9.5 Hz), 5.04 (t, 1H, J = 9.8 Hz), 5.00 (td, 1H, J = 5. 7,9.9Hz), 4.15 (d, 2H, J = 3.2Hz), 4.14 (dd, 1H, J = 5.6Hz), 3.58 (dt, 1H, J = 9.9Hz) , 3.5Hz), 3.29 (t, 1H, J = 10.8Hz), 2.36-2.20 (m, 8H), 1.63-1.55 (m, 8H), 1.25 (Broads, 56H), 0.88 (t, 12H, J = 7.0Hz)
13 C NMR (CDCl 3 ): 173.50, 172.97, 172.60, 172.22, 77.34-76.71, 73.36, 68.89, 68.18, 66.98, 62. 12, 34.19-34.02, 31.91,29.62-29.09, 24.91-24.79, 22.69, 14.11
MS: m / z 859.65 [M + Na] + (calculated for C 50 H 92 O 9 Na + , 859.66)

実施例3:1,5−anhydro−D−glucitol−2,3,4,6−O−tetralaurateの合成
1,5−AG(152mg,0.926mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、ラウリン酸クロライド(lauroyl chloride,1073μl,4.51mmol)を加え、反応温度を90℃として5時間反応させた。反応液にメタノール(4ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、メタノールで洗浄した。減圧乾燥し、白色の固体(730mg,88%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−glucitol−2,3,4,6−O−tetralaurate(表1のNo3)であることを確認した。
H NMR(CDCl):5.22(t,1H,J=9.5Hz),5.04(t,1H,J=9.9Hz),5.01(td,1H,J=5.7,9.9Hz),4.15(d,2H,J=3.2Hz),4.14(dd,1H,J=5.6Hz),3.58(dt,1H,J=9.9,3.6Hz),3.29(t,1H,J=10.9Hz),2.36−2.20(m,8H),1.63−1.55(m,8H),1.25(broad s,64H),0.88(t,12H,J=7.1Hz)
13C NMR (CDCl):173.48,172.95,172.59,172.21,77.34−76.70,73.36,68.88,68.17,66.98,62.11,34.18−34.01,31.93,29.67−29.08,24.91−24.79,22.69,14.11
MS:m/z 915.73[M+Na](calculated for C54100Na,915.73)
Example 3: Synthesis of 1,5-anhydro-D-glucitol-2,3,4,6-O-tetralurate 1,5-AG (152 mg, 0.926 mmol) in a nitrogen atmosphere, N, N-dimethylformamide It was dispersed in (4 ml) and pyridine (600 μl, 7.43 mmol) to 50 ° C. Lauric acid chloride (1073 μl, 4.51 mmol) was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 5 hours. Methanol (4 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with methanol. Drying under reduced pressure gave a white solid (730 mg, 88%). NMR structure analysis and MS measurement were performed, and it was confirmed that the content was 1,5-anhydro-D-glucitol-2, 3,4,6-O-tetralurate (No. 3 in Table 1).
1 1 H NMR (CDCl 3 ): 5.22 (t, 1H, J = 9.5 Hz), 5.04 (t, 1H, J = 9.9 Hz), 5.01 (td, 1H, J = 5. 7,9.9Hz), 4.15 (d, 2H, J = 3.2Hz), 4.14 (dd, 1H, J = 5.6Hz), 3.58 (dt, 1H, J = 9.9Hz) , 3.6Hz), 3.29 (t, 1H, J = 10.9Hz), 2.36-2.20 (m, 8H), 1.63-1.55 (m, 8H), 1.25 (Broad s, 64H), 0.88 (t, 12H, J = 7.1Hz)
13 C NMR (CDCl 3 ): 173.48, 172.95, 172.59, 172.21, 77.34-76.70, 73.36, 68.88, 68.17, 66.98, 62. 11, 34.18-34.01, 31.93, 29.67-29.08, 24.91-24.79, 22.69, 14.11
MS: m / z 915.73 [M + Na] + (calculated for C 54 H 100 O 9 Na + , 915.73)

実施例4:1,5−anhydro−D−glucitol−2,3,4,6−O−tetratridecanoateの合成
トリデカン酸(3g,14.0mmol)を1,2−ジクロロエタン(30ml)とN,N−ジメチルホルムアミド(1077μl,14.0mmol)に加えて分散させた。塩化チオニル(5.1ml,70.0mmol)を加えて、室温で3時間反応した。反応終了後、減圧濃縮を行い、液体のトリデカン酸クロライド(tridecanoyl chloride)を得た。これをそのまま次の反応に用いた。
Example 4: Synthesis of 1,5-anhydro-D-glucitol-2,3,4,6-O-tetratridecanoate Tridecanoic acid (3 g, 14.0 mmol) was added to 1,2-dichloroethane (30 ml) and N, N-. It was dispersed in addition to dimethylformamide (1077 μl, 14.0 mmol). Thionyl chloride (5.1 ml, 70.0 mmol) was added and reacted at room temperature for 3 hours. After completion of the reaction, concentration was carried out under reduced pressure to obtain a liquid tridecanoyl chloride. This was used as it was for the next reaction.

1,5−AG(152mg,0.926mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、上記で合成したトリデカン酸クロライド(1149μl,4.51mmol)を加え、反応温度を90℃として4時間反応させた。反応液にメタノール(4ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、メタノールで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(10ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、メタノールで洗浄した。減圧乾燥し、白色の固体(778mg,89%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−glucitol−2,3,4,6−O−tetratridecanoate(表1のNo4)であることを確認した。
H NMR(CDCl):5.22(t,1H,J=9.5Hz),5.04(t,1H,J=9.7Hz),5.00(td,1H,J=5.7,9.7Hz),4.14(d,2H,J=3.1Hz),4.14(dd,1H,J=10.8,5.7Hz),3.58(dt,1H,J=9.9,3.6Hz),3.29(t,1H,J=10.8Hz),2.35−2.20(m,8H),1.63−1.53(m,8H),1.25(broad s,72H),0.88(t,12H,J=7.1Hz)
13C NMR(CDCl):173.50,172.97,172.60,172.23,77.34−76.71,73.37,68.89,68.18,66.98,62.12,34.19−34.02,31.94,29.66−29.09,24.91−24.79,22.70,14.12
MS:m/z 971.79[M+Na](calculated for C58108Na,971.79)
1,5-AG (152 mg, 0.926 mmol) was dispersed in N, N-dimethylformamide (4 ml) and pyridine (600 μl, 7.43 mmol) under a nitrogen atmosphere to 50 ° C. The tridecanoic acid chloride (1149 μl, 4.51 mmol) synthesized above was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 4 hours. Methanol (4 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with methanol. Further, the solid was dissolved in N, N-dimethylformamide (10 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with methanol. Drying under reduced pressure gave a white solid (778 mg, 89%). NMR structure analysis and MS measurement were performed, and it was confirmed that the substance was 1,5-anhydro-D-glucitol-2,3,4,6-O-tellatridecanoate (No. 4 in Table 1).
1 1 H NMR (CDCl 3 ): 5.22 (t, 1H, J = 9.5Hz), 5.04 (t, 1H, J = 9.7Hz), 5.00 (td, 1H, J = 5. 7,9.7Hz), 4.14 (d, 2H, J = 3.1Hz), 4.14 (dd, 1H, J = 10.8, 5.7Hz), 3.58 (dt, 1H, J) = 9.9, 3.6Hz), 3.29 (t, 1H, J = 10.8Hz), 2.35-2.20 (m, 8H), 1.63-1.53 (m, 8H) , 1.25 (roads, 72H), 0.88 (t, 12H, J = 7.1Hz)
13 C NMR (CDCl 3 ): 173.50, 172.97, 172.60, 172.23, 77.34-76.71, 73.37, 68.89, 68.18, 66.98, 62. 12, 34.19-34.02, 31.94, 29.66-29.09, 24.91-24.79, 22.70, 14.12
MS: m / z 971.79 [M + Na] + (calculated for C 58 H 108 O 9 Na + , 971.79)

実施例5:1,5−anhydro−D−glucitol−2,3,4,6−O−tetramyristateの合成
1,5−AG(152mg,0.926mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、ミリスチン酸クロライド(myristoyl chloride,1224μl,4.51mmol)を加え、反応温度を90℃として6時間反応させた。反応液にメタノール(4ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、アセトンで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(10ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、アセトンで洗浄した。減圧乾燥し、白色の固体(723mg,78%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−glucitol−2,3,4,6−O−tetramyristate(表1のNo5)であることを確認した。
H NMR(CDCl):5.22(t,1H,J=9.5Hz),5.04(t,1H,J=9.7Hz),5.00(td,1H,J=5.6,10.4Hz),4.15(d,2H,J=3.5Hz),4.14(dd,1H,J=11.0,5.6Hz),3.58(dt,1H,J=9.9,3.6Hz),3.29(t,1H,J=10.9Hz),2.36−2.20(m,8H),1.65−1.54(m,8H),1.25(broad s,80H),0.88(t,12H,J=7.0Hz)
13C NMR(CDCl):173.47,172.95,172.58,172.20,77.33−76.70,73.35,68.88,68.17,66.97,62.11,34.18−34.01,31.94,29.68−29.08,24.91−24.79,22.70,14.12
MS:m/z 1027.84[M+Na](calculated for C62116Na,1027.85)
Example 5: Synthesis of 1,5-anhydro-D-glucitol-2,3,4,6-O-tetramylstate 1,5-AG (152 mg, 0.926 mmol) in a nitrogen atmosphere, N, N-dimethylformamide. It was dispersed in (4 ml) and pyridine (600 μl, 7.43 mmol) to 50 ° C. Myristic chloride (1224 μl, 4.51 mmol) was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 6 hours. Methanol (4 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with acetone. Further, the solid was dissolved in N, N-dimethylformamide (10 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with acetone. Drying under reduced pressure gave a white solid (723 mg, 78%). NMR structure analysis and MS measurement were performed, and it was confirmed that the value was 1,5-anhydro-D-glicitol-2,3,4,6-O-tetramylstate (No. 5 in Table 1).
1 1 H NMR (CDCl 3 ): 5.22 (t, 1H, J = 9.5 Hz), 5.04 (t, 1H, J = 9.7 Hz), 5.00 (td, 1H, J = 5. 6,10.4Hz), 4.15 (d, 2H, J = 3.5Hz), 4.14 (dd, 1H, J = 11.0, 5.6Hz), 3.58 (dt, 1H, J) = 9.9, 3.6 Hz), 3.29 (t, 1H, J = 10.9 Hz), 2.36-2.20 (m, 8H), 1.65-1.54 (m, 8H) , 1.25 (roads, 80H), 0.88 (t, 12H, J = 7.0Hz)
13 C NMR (CDCl 3 ): 173.47, 172.95, 172.58, 172.20, 77.33-76.70, 73.35, 68.88, 68.17, 66.97, 62. 11, 34.18-34.01, 31.94, 29.68-29.08, 24.91-24.79, 22.70, 14.12
MS: m / z 1027.84 [M + Na] + (calculated for C 62 H 116 O 9 Na + , 1027.85)

実施例6:1,5−anhydro−D−glucitol−2,3,4,6−O−tetrapentadecanoateの合成
ペンタデカン酸(3g,12.4mmol)を1,2−ジクロロエタン(30ml)とN,N−ジメチルホルムアミド(953μl,12.4mmol)に加えて分散させた。塩化チオニル(4.5ml,61.9mmol)を加えて、室温で3時間反応した。反応終了後、減圧濃縮を行い、液体のペンタデカン酸クロライド(pentadecanoyl chloride)を得た。これをそのまま次の反応に用いた。
Example 6: Synthesis of 1,5-anhydro-D-glucitol-2,3,4,6-O-telepentadecanoate Pentadecylic acid (3 g, 12.4 mmol) was added to 1,2-dichloroethane (30 ml) and N, N- It was dispersed in addition to dimethylformamide (953 μl, 12.4 mmol). Thionyl chloride (4.5 ml, 61.9 mmol) was added and reacted at room temperature for 3 hours. After completion of the reaction, the mixture was concentrated under reduced pressure to obtain a liquid pentadecanoyl chloride. This was used as it was for the next reaction.

1,5−AG(152mg,0.926mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、上記で合成したペンタデカン酸クロライド(1294μl,4.51mmol)を加え、反応温度を90℃として4時間反応させた。反応液にメタノール(4ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、アセトンで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(10ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、アセトンで洗浄した。減圧乾燥し、白色の固体(867mg,88%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−glucitol−2,3,4,6−O−tetrapentadecanoate(表1のNo6)であることを確認した。
H NMR(CDCl):5.22(t,1H,J=9.5Hz),5.04(t,1H,J=9.7Hz),5.00(td,1H,J=5.7,9.7Hz),4.14(d,2H,J=3.0Hz),4.14(dd,1H,J=5.7Hz),3.58(dt,1H,J=9.9,3.6Hz),3.29(t,1H,J=10.9Hz),2.35−2.20(m,8H),1.63−1.53(m,8H),1.25(broad s,88H),0.88(t,12H,J=7.1Hz)
13C NMR(CDCl):173.49,172.96,172.59,172.22,77.34−76.70,73.36,68.89,68.17,66.98,62.12,34.19−34.01,31.94,29.68−29.09,24.91−24.79,22.70,14.12
MS:m/z 1083.84[M+Na](calculated for C66124Na, 1083.91)
1,5-AG (152 mg, 0.926 mmol) was dispersed in N, N-dimethylformamide (4 ml) and pyridine (600 μl, 7.43 mmol) under a nitrogen atmosphere to 50 ° C. Pentadecylic acid chloride (1294 μl, 4.51 mmol) synthesized above was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 4 hours. Methanol (4 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with acetone. Further, the solid was dissolved in N, N-dimethylformamide (10 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with acetone. Drying under reduced pressure gave a white solid (867 mg, 88%). NMR structure analysis and MS measurement were performed, and it was confirmed that the substance was 1,5-anhydro-D-glucitol-2,3,4,6-O-tetherapentadecanoate (No. 6 in Table 1).
1 1 H NMR (CDCl 3 ): 5.22 (t, 1H, J = 9.5Hz), 5.04 (t, 1H, J = 9.7Hz), 5.00 (td, 1H, J = 5. 7,9.7Hz), 4.14 (d, 2H, J = 3.0Hz), 4.14 (dd, 1H, J = 5.7Hz), 3.58 (dt, 1H, J = 9.9) , 3.6Hz), 3.29 (t, 1H, J = 10.9Hz), 2.35-2.20 (m, 8H), 1.63-1.53 (m, 8H), 1.25 (Broad s, 88H), 0.88 (t, 12H, J = 7.1Hz)
13 C NMR (CDCl 3 ): 173.49, 172.96, 172.59, 172.22, 77.34-76.70, 73.36, 68.89, 68.17, 66.98, 62. 12, 34.19-34.01, 31.94, 29.68-29.09, 24.91-24.79, 22.70, 14.12
MS: m / z 1083.84 [M + Na] + (calculated for C 66 H 124 O 9 Na + , 1083.91)

実施例7:1,5−anhydro−D−glucitol−2,3,4,6−O−tetrapalmitateの合成
1,5−AG(304mg,1.85mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(8ml)とピリジン(1200μl,14.87mmol)に分散させ、50℃とした。そこに、パルミチン酸クロライド(palmitoyl chloride,2726μl,9.02mmol)を加え、反応温度を90℃として5時間反応させた。反応液にメタノール(6ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、アセトンで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(15ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、アセトンで洗浄した。減圧乾燥し、白色の固体(1.87g,90%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−glucitol−2,3,4,6−O−tetrapalmitate(表1のNo7)であることを確認した。
H NMR(CDCl):5.22(t,1H,J=9.5Hz),5.04(t,1H,J=9.7Hz),5.00(td,1H,J=5.7,9.8Hz),4.14(d,2H,J=3.0Hz),4.14(dd,1H,J=5.8Hz),3.58(dt,1H,J=9.9,3.6Hz),3.29(t,1H,J=10.9Hz),2.35−2.20(m,8H),1.62−1.54(m,8H),1.25(broad s,96H),0.88(t,12H,J=7.0Hz)
13C NMR(CDCl):173.49,172.96,172.59,172.22,77.34−76.71,73.36,68.89,68.18,66.98,62.12,34.19−34.02,31.95,29.72−29.09,24.92−24.80,22.71,14.13
MS:m/z 1139.98[M+Na](calculated for C70132Na,1139.98)
Example 7: Synthesis of 1,5-anhydro-D-glucitol-2,3,4,6-O-tetrapaltate 1,5-AG (304 mg, 1.85 mmol) in a nitrogen atmosphere, N, N-dimethylformamide It was dispersed in (8 ml) and pyridine (1200 μl, 14.87 mmol) to 50 ° C. Palmitic chloride (2726 μl, 9.02 mmol) was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 5 hours. Methanol (6 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with acetone. Further, the solid was dissolved in N, N-dimethylformamide (15 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with acetone. Drying under reduced pressure gave a white solid (1.87 g, 90%). NMR structure analysis and MS measurement were performed, and it was confirmed that the substance was 1,5-anhydro-D-glucitol-2,3,4,6-O-tetrapaltate (No. 7 in Table 1).
1 1 H NMR (CDCl 3 ): 5.22 (t, 1H, J = 9.5 Hz), 5.04 (t, 1H, J = 9.7 Hz), 5.00 (td, 1H, J = 5. 7,9.8Hz), 4.14 (d, 2H, J = 3.0Hz), 4.14 (dd, 1H, J = 5.8Hz), 3.58 (dt, 1H, J = 9.9) , 3.6Hz), 3.29 (t, 1H, J = 10.9Hz), 2.35-2.20 (m, 8H), 1.62-1.54 (m, 8H), 1.25 (Broads, 96H), 0.88 (t, 12H, J = 7.0Hz)
13 C NMR (CDCl 3 ): 173.49, 172.96, 172.59, 172.22, 77.34-76.71, 73.36, 68.89, 68.18, 66.98, 62. 12, 34.19-34.02, 31.95, 29.72-29.09, 24.92-24.80, 22.71, 14.13
MS: m / z 1139.98 [M + Na] + (calculated for C 70 H 132 O 9 Na + , 1139.98)

実施例8:1,5−anhydro−D−glucitol−2,3,4,6−O−tetraheptadecanoateの合成
ヘプタデカン酸(3g,11.1mmol)を1,2−ジクロロエタン(30ml)とN,N−ジメチルホルムアミド(854μl,11.1mmol)に加えて分散させた。塩化チオニル(4.0ml,55.5mmol)を加えて、室温で2.5時間反応した。反応終了後、減圧濃縮を行い、液体のヘプタデカン酸クロライド(heptadecanoyl chloride)を得た。これをそのまま次の反応に用いた。
Example 8: Synthesis of 1,5-anhydro-D-glucitol-2,3,4,6-O-tellaheptadecanoate Heptadecanic acid (3 g, 11.1 mmol) was added to 1,2-dichloroethane (30 ml) and N, N-. It was dispersed in addition to dimethylformamide (854 μl, 11.1 mmol). Thionyl chloride (4.0 ml, 55.5 mmol) was added and reacted at room temperature for 2.5 hours. After completion of the reaction, concentration was carried out under reduced pressure to obtain a liquid heptadecanoyl chloride. This was used as it was for the next reaction.

1,5−AG(152mg,0.926mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、上記で合成したヘプタデカン酸クロライド(1432μl,4.51mmol)を加え、反応温度を90℃として5時間反応させた。反応液にメタノール(4ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、アセトンで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(10ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、アセトンで洗浄した。減圧乾燥し、白色の固体(959mg,88%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−glucitol−2,3,4,6−O−tetraheptadecanoate(表1のNo8)であることを確認した。
H NMR(CDCl):5.22(t,1H,J=9.5Hz),5.04(t,1H,J=9.7Hz),5.00(td,1H,J=5.7,9.7Hz),4.14(d,2H,J=3.0Hz),4.14(dd,1H,J=6.0Hz),3.58(dt,1H,J=9.9,3.6Hz),3.29(t,1H,J=10.9Hz),2.37−2.20(m,8H),1.63−1.54(m,8H),1.25(broad s,104H),0.88(t,12H,J=7.1Hz)
13C NMR(CDCl):173.49,172.96,172.59,172.22,77.33−76.70,73.36,68.88,68.17,66.98,62.11,34.18−34.01,31.94,29.72−29.09,24.91−24.79,22.70,14.12
MS:m/z 1196.07[M+Na](calculated for C74140Na,1196.04)
1,5-AG (152 mg, 0.926 mmol) was dispersed in N, N-dimethylformamide (4 ml) and pyridine (600 μl, 7.43 mmol) under a nitrogen atmosphere to 50 ° C. Chloride heptadecanoic acid (1432 μl, 4.51 mmol) synthesized above was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 5 hours. Methanol (4 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with acetone. Further, the solid was dissolved in N, N-dimethylformamide (10 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with acetone. Drying under reduced pressure gave a white solid (959 mg, 88%). NMR structure analysis and MS measurement were performed, and it was confirmed that the substance was 1,5-anhydroglucitol-2,3,4,6-O-tetraheptadecanoate (No. 8 in Table 1).
1 1 H NMR (CDCl 3 ): 5.22 (t, 1H, J = 9.5Hz), 5.04 (t, 1H, J = 9.7Hz), 5.00 (td, 1H, J = 5. 7,9.7Hz), 4.14 (d, 2H, J = 3.0Hz), 4.14 (dd, 1H, J = 6.0Hz), 3.58 (dt, 1H, J = 9.9) , 3.6Hz), 3.29 (t, 1H, J = 10.9Hz), 2.37-2.20 (m, 8H), 1.63-1.54 (m, 8H), 1.25 (Broad s, 104H), 0.88 (t, 12H, J = 7.1Hz)
13 C NMR (CDCl 3 ): 173.49, 172.96, 172.59, 172.22, 77.33-76.70, 73.36, 68.88, 68.17, 66.98, 62. 11, 34.18-34.01, 31.94, 29.72-29.09, 24.91-24.79, 22.70, 14.12
MS: m / z 1196.07 [M + Na] + (calculated for C 74 H 140 O 9 Na + , 1196.04)

実施例9:1,5−anhydro−D−glucitol−2,3,4,6−O−tetrastearateの合成
1,5−AG(152mg,0.926mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、ステアリン酸クロライド(stearoyl chloride,1519μl,4.51mmol)を加え、反応温度を90℃として6時間反応させた。反応液にメタノール(4ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、アセトンで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(10ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、アセトンで洗浄した。減圧乾燥し、白色の固体(981mg,86%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−glucitol−2,3,4,6−O−tetrastearate(表1のNo9)であることを確認した。
H NMR(CDCl):5.22(t,1H,J=9.5Hz),5.04(t,1H,J=9.7Hz),5.00(td,1H,J=5.5,10.1Hz),4.15(d,2H,J=3.5Hz),4.14(dd,1H,J=5.6Hz),3.58(dt,1H,J=10.0,3.6Hz),3.29(t,1H,J=10.9Hz),2.35−2.20(m,8H),1.63−1.54(m,8H),1.25(broad s,112H),0.88(t,12H,J=7.0Hz)
13C NMR(CDCl):173.48,172.95,172.58,172.21,77.34−76.70,73.36,68.88,68.17,66.98,62.11,34.18−34.01,31.94,29.72−29.09,24.91−24.79,22.70,14.12
MS:m/z 1252.11[M+Na](calculated for C78148Na,1252.10)
Example 9: Synthesis of 1,5-anhydro-D-glucitol-2,3,4,6-O-tetraterate 1,5-AG (152 mg, 0.926 mmol) in a nitrogen atmosphere, N, N-dimethylformamide. It was dispersed in (4 ml) and pyridine (600 μl, 7.43 mmol) to 50 ° C. Stearic acid chloride (1519 μl, 4.51 mmol) was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 6 hours. Methanol (4 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with acetone. Further, the solid was dissolved in N, N-dimethylformamide (10 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with acetone. Drying under reduced pressure gave a white solid (981 mg, 86%). NMR structure analysis and MS measurement were performed, and it was confirmed that the value was 1,5-anhydro-D-glicitol-2, 3,4,6-O-tetheraterate (No. 9 in Table 1).
1 1 H NMR (CDCl 3 ): 5.22 (t, 1H, J = 9.5Hz), 5.04 (t, 1H, J = 9.7Hz), 5.00 (td, 1H, J = 5. 5,10.1Hz), 4.15 (d, 2H, J = 3.5Hz), 4.14 (dd, 1H, J = 5.6Hz), 3.58 (dt, 1H, J = 10.0) , 3.6Hz), 3.29 (t, 1H, J = 10.9Hz), 2.35-2.20 (m, 8H), 1.63-1.54 (m, 8H), 1.25 (Broads, 112H), 0.88 (t, 12H, J = 7.0Hz)
13 C NMR (CDCl 3 ): 173.48, 172.95, 172.58, 172.21, 77.34-76.70, 73.36, 68.88, 68.17, 66.98, 62. 11, 34.18-34.01, 31.94, 29.72-29.09, 24.91-24.79, 22.70, 14.12
MS: m / z 1252.11 [M + Na] + (calculated for C 78 H 148 O 9 Na + , 1252.10)

実施例10:1,5−anhydro−D−glucitol−2,3,4,6−O−tetrabehenateの合成
ベヘン酸(4.43g,13.0mmol)を1,2−ジクロロエタン(37ml)とN,N−ジメチルホルムアミド(1000μl,13.0mmol)に加えて分散させた。塩化チオニル(4.7ml,65.0mmol)を加えて、室温で反応した。反応終了後、減圧濃縮を行い、固体のベヘン酸クロライド(behenoyl chloride)を得た。これをそのまま次の反応に用いた。
Example 10: Synthesis of 1,5-anhydro-D-glucitol-2,3,4,6-O-tetrabehente Behenic acid (4.43 g, 13.0 mmol) was added to 1,2-dichloroethane (37 ml) and N, It was dispersed in addition to N-dimethylformamide (1000 μl, 13.0 mmol). Thionyl chloride (4.7 ml, 65.0 mmol) was added and reacted at room temperature. After completion of the reaction, the mixture was concentrated under reduced pressure to obtain a solid behenic acid chloride. This was used as it was for the next reaction.

1,5−AG(114mg,0.694mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(3ml)とピリジン(450μl,5.58mmol)に分散させ、50℃とした。そこに、上記で合成したベヘン酸クロライド(1.27g,3.36mmol)を予めトルエン(2ml)に溶解して加え、反応温度を90℃として5時間反応させた。反応液にメタノール(3ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、アセトンで洗浄した。減圧乾燥し、白色の固体(970mg,96%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−glucitol−2,3,4,6−O−tetrabehenate(表1のNo10)であることを確認した。
H NMR(CDCl):5.22(t,1H,J=9.5Hz),5.04(t,1H,J=9.8Hz),5.00(td,1H,J=5.7,9.9Hz),4.14(d,2H,J=2.9Hz),4.14(dd,1H,J=5.7Hz),3.58(dt,1H,J=9.9,3.6Hz),3.28(t,1H,J=10.9Hz),2.35−2.20(m,8H),1.63−1.54(m,8H),1.25(broad s,144H),0.88(t,12H,J=7.1Hz)
13C NMR(CDCl):173.48,172.95,172.58,172.21,77.33−76.70,73.35,68.88,68.17,66.97,62.11,34.18−34.01,31.94,29.73−29.09,24.91−24.79,22.70,14.12
MS:m/z 1476.37[M+Na](calculated for C94180Na,1476.35)
1,5-AG (114 mg, 0.694 mmol) was dispersed in N, N-dimethylformamide (3 ml) and pyridine (450 μl, 5.58 mmol) under a nitrogen atmosphere to 50 ° C. The behenic acid chloride (1.27 g, 3.36 mmol) synthesized above was dissolved in toluene (2 ml) in advance and added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 5 hours. Methanol (3 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with acetone. Drying under reduced pressure gave a white solid (970 mg, 96%). NMR structure analysis and MS measurement were performed, and it was confirmed that the substance was 1,5-anhydro-D-glucitol-2,3,4,6-O-tetrabete (No. 10 in Table 1).
1 1 H NMR (CDCl 3 ): 5.22 (t, 1H, J = 9.5Hz), 5.04 (t, 1H, J = 9.8Hz), 5.00 (td, 1H, J = 5. 7,9.9Hz), 4.14 (d, 2H, J = 2.9Hz), 4.14 (dd, 1H, J = 5.7Hz), 3.58 (dt, 1H, J = 9.9Hz) , 3.6Hz), 3.28 (t, 1H, J = 10.9Hz), 2.35-2.20 (m, 8H), 1.63-1.54 (m, 8H), 1.25 (Broad s, 144H), 0.88 (t, 12H, J = 7.1Hz)
13 C NMR (CDCl 3 ): 173.48, 172.95, 172.58, 172.21, 77.33-76.70, 73.35, 68.88, 68.17, 66.97, 62. 11, 34.18-34.01, 31.94, 29.73-29.09, 24.91-24.79, 22.70, 14.12
MS: m / z 1476.37 [M + Na] + (calculated for C 94 H 180 O 9 Na + , 1476.35)

Figure 0006952305
Figure 0006952305

実施例11:1,5−anhydro−D−mannitol−2,3,4,6−O−tetratridecanoateの合成
トリデカン酸(3g,14.0mmol)を1,2−ジクロロエタン(30ml)とN,N−ジメチルホルムアミド(1077μl,14.0mmol)に加えて分散させた。塩化チオニル(5.1ml,70.0mmol)を加えて、室温で3時間反応した。反応終了後、減圧濃縮を行い、液体のトリデカン酸クロライド(tridecanoyl chloride)を得た。これをそのまま次の反応に用いた。
Example 11: Synthesis of 1,5-anhydro-D-mannitol-2,3,4,6-O-tetratridecanoate Tridecanoic acid (3 g, 14.0 mmol) was added to 1,2-dichloroethane (30 ml) and N, N-. It was dispersed in addition to dimethylformamide (1077 μl, 14.0 mmol). Thionyl chloride (5.1 ml, 70.0 mmol) was added and reacted at room temperature for 3 hours. After completion of the reaction, concentration was carried out under reduced pressure to obtain a liquid tridecanoyl chloride. This was used as it was for the next reaction.

1,5−AM(152mg,0.926mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、上記で合成したトリデカン酸クロライド(1149μl,4.51mmol)を加え、反応温度を90℃として4時間反応させた。反応液にメタノール(4ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、メタノールで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(10ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、メタノールで洗浄した。減圧乾燥し、白色の固体(718mg,82%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−mannitol−2,3,4,6−O−tetratridecanoate(表2のNo11)であることを確認した。
H NMR(CDCl):5.32(broad s,1H),5.29(t,1H,J=10.0Hz),5.06(dd,1H,J=3.5,10.0Hz),4.18(d,1H,J=4.8Hz),4.17(d,1H,J=2.4Hz),4.04(dd,1H,J=13.1,1.8Hz),3.66(d,1H,J=13.0Hz),3.58(ddd,1H,J=9.7,5.0,2.9Hz),2.46−2.15(m,8H),1.66−1.54(m,8H),1.25(broad s,72H),0.88(t,12H,J=7.0Hz)
13C NMR(CDCl):173.50,173.13,172.86,172.32,77.34−76.70,71.60,68.44,68.17,65.94,62.62,34.27−34.07,31.94,29.67−29.15,25.02−24.73,22.70,14.12
MS:m/z 971.80[M+Na](calculated for C58108Na,971.79)
1,5-AM (152 mg, 0.926 mmol) was dispersed in N, N-dimethylformamide (4 ml) and pyridine (600 μl, 7.43 mmol) under a nitrogen atmosphere to 50 ° C. The tridecanoic acid chloride (1149 μl, 4.51 mmol) synthesized above was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 4 hours. Methanol (4 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with methanol. Further, the solid was dissolved in N, N-dimethylformamide (10 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with methanol. Drying under reduced pressure gave a white solid (718 mg, 82%). NMR structure analysis and MS measurement were performed, and it was confirmed that the substance was 1,5-anhydro-D-mannitol-2,3,4,6-O-terrortridecanate (No. 11 in Table 2).
1 1 H NMR (CDCl 3 ): 5.32 (roads, 1H), 5.29 (t, 1H, J = 10.0Hz), 5.06 (dd, 1H, J = 3.5, 10.0Hz) ), 4.18 (d, 1H, J = 4.8Hz), 4.17 (d, 1H, J = 2.4Hz), 4.04 (dd, 1H, J = 13.1, 1.8Hz) , 3.66 (d, 1H, J = 13.0Hz), 3.58 (ddd, 1H, J = 9.7, 5.0, 2.9Hz), 2.46-2.15 (m, 8H) ), 1.66-1.54 (m, 8H), 1.25 (roads, 72H), 0.88 (t, 12H, J = 7.0Hz)
13 C NMR (CDCl 3 ): 173.50, 173.13, 172.86, 172.32, 77.34-76.70, 71.60, 68.44, 68.17, 65.94, 62. 62, 34.27-34.07, 31.94, 29.67-29.15, 25.02-24.73, 22.70, 14.12
MS: m / z 971.80 [M + Na] + (calculated for C 58 H 108 O 9 Na + , 971.79)

実施例12:1,5−anhydro−D−mannitol−2,3,4,6−O−tetramyristateの合成
1,5−AM(114mg,0.694mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(3ml)とピリジン(450μl,5.58mmol)に分散させ、50℃とした。そこに、ミリスチン酸クロライド(myristoyl chloride,911μl,3.36mmol)を加え、反応温度を90℃として5時間反応させた。反応液にメタノール(3ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、メタノールで洗浄した。減圧乾燥し、白色の固体(615mg,88%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−mannitol−2,3,4,6−O−tetramyristate(表2のNo12)であることを確認した。
H NMR(CDCl):5.32(broad s,1H),5.29(t,1H,J=9.9Hz),5.06(dd,1H,J=3.5,10.0Hz),4.18(d,1H,J=5.0Hz),4.17(d,1H,J=2.4Hz),4.04(dd,1H,J=13.2,1.9Hz),3.66(d,1H,J=13.1Hz),3.58(ddd,1H,J=9.8,5.1,2.9Hz),2.46−2.15(m,8H),1.68−1.55(m,8H),1.25(broad s,80H),0.88(t,12H,J=7.1Hz)
13C NMR(CDCl):173.49,173.12,172.85,172.31,77.33−76.70,71.60,68.44,68.16,65.93,62.61,34.26−34.06,31.94,29.68−29.15,25.01−24.73,22.70,14.12
MS:m/z 1027.84[M+Na](calculated for C62116Na,1027.85)
Example 12: Synthesis of 1,5-anhydro-D-mannitol-2,3,4,6-O-tetramylstate 1,5-AM (114 mg, 0.694 mmol) in a nitrogen atmosphere, N, N-dimethylformamide. It was dispersed in (3 ml) and pyridine (450 μl, 5.58 mmol) to 50 ° C. Myristic chloride (911 μl, 3.36 mmol) was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 5 hours. Methanol (3 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with methanol. Drying under reduced pressure gave a white solid (615 mg, 88%). NMR structure analysis and MS measurement were performed, and it was confirmed that the product was 1,5-anhydro-D-mannitol-2,3,4,6-O-tetramylstate (No. 12 in Table 2).
1 1 H NMR (CDCl 3 ): 5.32 (roads, 1H), 5.29 (t, 1H, J = 9.9Hz), 5.06 (dd, 1H, J = 3.5, 10.0Hz ), 4.18 (d, 1H, J = 5.0Hz), 4.17 (d, 1H, J = 2.4Hz), 4.04 (dd, 1H, J = 13.2,1.9Hz) , 3.66 (d, 1H, J = 13.1Hz), 3.58 (ddd, 1H, J = 9.8, 5.1,2.9Hz), 2.46-2.15 (m, 8H) ), 1.68-1.55 (m, 8H), 1.25 (roads, 80H), 0.88 (t, 12H, J = 7.1Hz)
13 C NMR (CDCl 3 ): 173.49, 173.12, 172.85, 172.31, 77.33-76.70, 71.60, 68.44, 68.16, 65.93, 62. 61, 34.26-34.06, 31.94, 29.68-29.15, 25.01-24.73, 22.70, 14.12
MS: m / z 1027.84 [M + Na] + (calculated for C 62 H 116 O 9 Na + , 1027.85)

実施例13:1,5−anhydro−D−mannitol−2,3,4,6−O−tetrapentadecanoateの合成
ペンタデカン酸(3g,12.4mmol)を1,2−ジクロロエタン(30ml)とN,N−ジメチルホルムアミド(953μl,12.4mmol)に加えて分散させた。塩化チオニル(4.5ml,61.9mmol)を加えて、室温で3時間反応した。反応終了後、減圧濃縮を行い、液体のペンタデカン酸クロライド(pentadecanoyl chloride)を得た。これをそのまま次の反応に用いた。
Example 13: Synthesis of 1,5-anhydro-D-mannitol-2,3,4,6-O-tetherapentadecanoate Pentadecylic acid (3 g, 12.4 mmol) was added to 1,2-dichloroethane (30 ml) and N, N- It was dispersed in addition to dimethylformamide (953 μl, 12.4 mmol). Thionyl chloride (4.5 ml, 61.9 mmol) was added and reacted at room temperature for 3 hours. After completion of the reaction, the mixture was concentrated under reduced pressure to obtain a liquid pentadecanoyl chloride. This was used as it was for the next reaction.

1,5−AM(152mg,0.926mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、上記で合成したペンタデカン酸クロライド(1294μl,4.51mmol)を加え、反応温度を90℃として4時間反応させた。反応液にメタノール(4ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、アセトンで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(10ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、アセトンで洗浄した。減圧乾燥し、白色の固体(653mg,66%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−mannitol−2,3,4,6−O−tetrapentadecanoate(表2のNo13)であることを確認した。
H NMR(CDCl):5.32(broad s,1H),5.29(t,1H,J=9.9Hz),5.06(dd,1H,J=3.5,10.0Hz),4.18(d,1H,J=4.8Hz),4.17(d,1H,J=2.4Hz),4.04(dd,1H,J=13.1,1.8Hz),3.66(d,1H,J=13.0Hz),3.58(ddd,1H,J=9.7,5.1,2.1Hz),2.46−2.15(m,8H),1.66−1.53(m,8H),1.26(broad s,88H),0.88(t,12H,J=7.0Hz)
13C NMR(CDCl):173.50,173.14,172.86,172.33,77.34−76.70,71.61,68.45,68.17,65.94,62.62,34.27−34.07,31.94,29.72−29.15,25.02−24.73,22.71,14.12
MS:m/z 1083.91[M+Na](calculated for C66124Na,1083.91)
1,5-AM (152 mg, 0.926 mmol) was dispersed in N, N-dimethylformamide (4 ml) and pyridine (600 μl, 7.43 mmol) under a nitrogen atmosphere to 50 ° C. Pentadecylic acid chloride (1294 μl, 4.51 mmol) synthesized above was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 4 hours. Methanol (4 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with acetone. Further, the solid was dissolved in N, N-dimethylformamide (10 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with acetone. Drying under reduced pressure gave a white solid (653 mg, 66%). NMR structure analysis and MS measurement were performed, and it was confirmed that the substance was 1,5-anhydro-D-mannitol-2,3,4,6-O-telepentadecanoate (No. 13 in Table 2).
1 1 H NMR (CDCl 3 ): 5.32 (roads, 1H), 5.29 (t, 1H, J = 9.9Hz), 5.06 (dd, 1H, J = 3.5, 10.0Hz ), 4.18 (d, 1H, J = 4.8Hz), 4.17 (d, 1H, J = 2.4Hz), 4.04 (dd, 1H, J = 13.1, 1.8Hz) , 3.66 (d, 1H, J = 13.0Hz), 3.58 (ddd, 1H, J = 9.7, 5.1, 2.1Hz), 2.46-2.15 (m, 8H) ), 1.66-1.53 (m, 8H), 1.26 (roads, 88H), 0.88 (t, 12H, J = 7.0Hz)
13 C NMR (CDCl 3 ): 173.50, 173.14, 172.86, 172.33, 77.34-76.70, 71.61, 68.45, 68.17, 65.94, 62. 62, 34.27-34.07, 31.94, 29.72-29.15, 25.02-24.73, 22.71, 14.12
MS: m / z 1083.91 [M + Na] + (calculated for C 66 H 124 O 9 Na + , 1083.91)

実施例14:1,5−anhydro−D−mannitol−2,3,4,6−O−tetrapalmitateの合成
1,5−AM(152mg,0.926mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、パルミチン酸クロライド(palmitoyl chloride,1365μl,4.51mmol)を加え、反応温度を90℃として5時間反応させた。反応液にメタノール(4ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、アセトンで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(10ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、アセトンで洗浄した。減圧乾燥し、白色の固体(822mg,79%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−mannitol−2,3,4,6−O−tetrapalmitate(表2のNo14)であることを確認した。
H NMR(CDCl):5.32(broad s,1H),5.29(t,1H,J=9.9Hz),5.06(dd,1H,J=3.5,10.0Hz),4.17(d,1H,J=4.8Hz),4.17(d,1H,J=2.4Hz),4.04(dd,1H,J=13.3,1.9Hz),3.66(d,1H,J=12.8Hz),3.58(ddd,1H,J=9.6,5.0,2.9Hz),2.46−2.15(m,8H),1.68−1.54(m,8H),1.26(broad s,96H),0.88(t,12H,J=7.0Hz)
13C NMR(CDCl):173.51,173.14,172.87,172.33,77.34−76.71,71.61,68.45,68.17,65.94,62.62,34.27−34.07,31.95,29.73−29.15,25.02−24.74,22.71,14.12
MS:m/z 1139.99[M+Na](calculated for C70132Na,1139.98)
Example 14: Synthesis of 1,5-anhydro-D-mannitol-2,3,4,6-O-tetrapaltate 1,5-AM (152 mg, 0.926 mmol) in a nitrogen atmosphere, N, N-dimethylformamide. It was dispersed in (4 ml) and pyridine (600 μl, 7.43 mmol) to 50 ° C. Palmitic chloride (1365 μl, 4.51 mmol) was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 5 hours. Methanol (4 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with acetone. Further, the solid was dissolved in N, N-dimethylformamide (10 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with acetone. Drying under reduced pressure gave a white solid (822 mg, 79%). NMR structure analysis and MS measurement were performed, and it was confirmed that the content was 1,5-anhydro-D-mannitol-2,3,4,6-O-tetrapaltate (No. 14 in Table 2).
1 1 H NMR (CDCl 3 ): 5.32 (roads, 1H), 5.29 (t, 1H, J = 9.9Hz), 5.06 (dd, 1H, J = 3.5, 10.0Hz ), 4.17 (d, 1H, J = 4.8Hz), 4.17 (d, 1H, J = 2.4Hz), 4.04 (dd, 1H, J = 13.3, 1.9Hz) , 3.66 (d, 1H, J = 12.8Hz), 3.58 (ddd, 1H, J = 9.6, 5.0, 2.9Hz), 2.46-2.15 (m, 8H) ), 1.68-1.54 (m, 8H), 1.26 (roads, 96H), 0.88 (t, 12H, J = 7.0Hz)
13 C NMR (CDCl 3 ): 173.51,173.14,172.87,172.33, 77.34-76.71, 71.61, 68.45, 68.17, 65.94, 62. 62, 34.27-34.07, 31.95, 29.73-29.15, 25.02-24.74, 22.71, 14.12
MS: m / z 1139.99 [M + Na] + (calculated for C 70 H 132 O 9 Na + , 1139.98)

実施例15:1,5−anhydro−D−mannitol−2,3,4,6−O−tetraheptadecanoateの合成
ヘプタデカン酸(3g,11.1mmol)を1,2−ジクロロエタン(30ml)とN,N−ジメチルホルムアミド(854μl,11.1mmol)に加えて分散させた。塩化チオニル(4.0ml,55.5mmol)を加えて、室温で2.5時間反応した。反応終了後、減圧濃縮を行い、液体のヘプタデカン酸クロライド(heptadecanoyl chloride)を得た。これをそのまま次の反応に用いた。
Example 15: Synthesis of 1,5-anhydro-D-mannitol-2,3,4,6-O-tellaheptadecanoate Heptadecanic acid (3 g, 11.1 mmol) was added to 1,2-dichloroethane (30 ml) and N, N-. It was dispersed in addition to dimethylformamide (854 μl, 11.1 mmol). Thionyl chloride (4.0 ml, 55.5 mmol) was added and reacted at room temperature for 2.5 hours. After completion of the reaction, concentration was carried out under reduced pressure to obtain a liquid heptadecanoyl chloride. This was used as it was for the next reaction.

1,5−AM(152mg,0.93mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、上記で合成したヘプタデカン酸クロライド(1432μl,4.51mmol)を加え、反応温度を90℃として5時間反応させた。反応液にメタノール(4ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、アセトンで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(10ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、アセトンで洗浄した。減圧乾燥し、白色の固体(711mg,65%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−mannitol−2,3,4,6−O−tetraheptadecanoate(表2のNo15)であることを確認した。
H NMR(CDCl):5.32(broad s,1H),5.29(t,1H,J=9.9Hz),5.06(dd,1H,J=3.5,10.0Hz),4.18(d,1H,J=5.0Hz),4.17(d,1H,J=2.4Hz),4.04(dd,1H,J=13.2,2.0Hz),3.66(d,1H,J=13.1Hz),3.58(ddd,1H,J=9.7,5.0,2.9Hz),2.42−2.17(m,8H),1.66−1.54(m,8H),1.25(broad s,104H),0.88(t,12H,J=7.1Hz)
13C NMR(CDCl):173.49,173.12,172.85,172.32,77.33−76.70,71.60,68.44,68.16,65.93,62.61,34.26−34.06,31.94,29.74−29.16,25.02−24.73,22.71,14.12
MS:m/z 1196.04[M+Na](calculated for C74140Na,1196.04)
1,5-AM (152 mg, 0.93 mmol) was dispersed in N, N-dimethylformamide (4 ml) and pyridine (600 μl, 7.43 mmol) under a nitrogen atmosphere to 50 ° C. Chloride heptadecanoic acid (1432 μl, 4.51 mmol) synthesized above was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 5 hours. Methanol (4 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with acetone. Further, the solid was dissolved in N, N-dimethylformamide (10 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with acetone. Drying under reduced pressure gave a white solid (711 mg, 65%). NMR structure analysis and MS measurement were performed, and it was confirmed that the substance was 1,5-anhydro-D-mannitol-2,3,4,6-O-tetraheptadecanoate (No. 15 in Table 2).
1 1 H NMR (CDCl 3 ): 5.32 (roads, 1H), 5.29 (t, 1H, J = 9.9Hz), 5.06 (dd, 1H, J = 3.5, 10.0Hz ), 4.18 (d, 1H, J = 5.0Hz), 4.17 (d, 1H, J = 2.4Hz), 4.04 (dd, 1H, J = 13.2,2.0Hz) , 3.66 (d, 1H, J = 13.1Hz), 3.58 (ddd, 1H, J = 9.7, 5.0, 2.9Hz), 2.42-2.17 (m, 8H) ), 1.66-1.54 (m, 8H), 1.25 (roads, 104H), 0.88 (t, 12H, J = 7.1Hz)
13 C NMR (CDCl 3 ): 173.49, 173.12, 172.85, 172.32, 77.33-76.70, 71.60, 68.44, 68.16, 65.93, 62. 61, 34.26-34.06, 31.94, 29.74-29.16, 25.02-24.73, 22.71, 14.12
MS: m / z 1196.04 [M + Na] + (calculated for C 74 H 140 O 9 Na + , 1196.04)

実施例16:1,5−anhydro−D−mannitol−2,3,4,6−O−tetrastearateの合成
1,5−AM(114mg,0.694mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(3ml)とピリジン(450μl,5.58mmol)に分散させ、50℃とした。そこに、ステアリン酸クロライド(stearoyl chloride,911μl,3.36mmol)を加え、反応温度を90℃として5時間反応させた。反応液にメタノール(3ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、アセトンで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(10ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、アセトンで洗浄した。減圧乾燥し、白色の固体(734mg,86%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−mannitol−2,3,4,6−O−tetrastearate(表2のNo16)であることを確認した。
H NMR(CDCl):5.32(broad s,1H),5.29(t,1H,J=9.9Hz),5.06(dd,1H,J=3.5,10.0Hz),4.18(d,1H,J=5.0Hz),4.17(d,1H,J=2.4Hz),4.04(dd,1H,J=13.1,1.9Hz),3.66(d,1H,J=13.1Hz),3.58(ddd,1H,J=9.7,5.0,2.8Hz),2.42−2.17(m,8H),1.66−1.54(m,8H),1.25(broad s,112H),0.88(t,12H,J=7.1Hz)
13C NMR(CDCl):173.49,173.12,172.85,172.31,77.33−76.70,71.60,68.44,68.16,65.93,62.61,34.26−34.06,31.94,29.73−29.15,25.02−24.73,22.70,14.12
MS:m/z 1252.11[M+Na](calculated for C78148Na,1252.10)
Example 16: Synthesis of 1,5-anhydro-D-mannitol-2,3,4,6-O-tetraterate 1,5-AM (114 mg, 0.694 mmol) in a nitrogen atmosphere, N, N-dimethylformamide. It was dispersed in (3 ml) and pyridine (450 μl, 5.58 mmol) to 50 ° C. Stearic acid chloride (911 μl, 3.36 mmol) was added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 5 hours. Methanol (3 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with acetone. Further, the solid was dissolved in N, N-dimethylformamide (10 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with acetone. Drying under reduced pressure gave a white solid (734 mg, 86%). NMR structure analysis and MS measurement were performed, and it was confirmed that the content was 1,5-anhydro-D-mannitol-2,3,4,6-O-tetraslate (No. 16 in Table 2).
1 1 H NMR (CDCl 3 ): 5.32 (roads, 1H), 5.29 (t, 1H, J = 9.9Hz), 5.06 (dd, 1H, J = 3.5, 10.0Hz ), 4.18 (d, 1H, J = 5.0Hz), 4.17 (d, 1H, J = 2.4Hz), 4.04 (dd, 1H, J = 13.1,1.9Hz) , 3.66 (d, 1H, J = 13.1Hz), 3.58 (ddd, 1H, J = 9.7, 5.0, 2.8Hz), 2.42-2.17 (m, 8H) ), 1.66-1.54 (m, 8H), 1.25 (roads, 112H), 0.88 (t, 12H, J = 7.1Hz)
13 C NMR (CDCl 3 ): 173.49, 173.12, 172.85, 172.31, 77.33-76.70, 71.60, 68.44, 68.16, 65.93, 62. 61, 34.26-34.06, 31.94, 29.73-29.15, 25.02-24.73, 22.70, 14.12
MS: m / z 1252.11 [M + Na] + (calculated for C 78 H 148 O 9 Na + , 1252.10)

実施例17:1,5−anhydro−D−mannitol−2,3,4,6−O−tetrabehenateの合成
ベヘン酸(4.43g,13.0mmol)を1,2−ジクロロエタン(37ml)とN,N−ジメチルホルムアミド(1000μl,13.0mmol)に加えて分散させた。塩化チオニル(4.7ml,65.0mmol)を加えて、室温で反応した。反応終了後、減圧濃縮を行い、固体のベヘン酸クロライド(behenoyl chloride)を得た。これをそのまま次の反応に用いた。
Example 17: Synthesis of 1,5-anhydro-D-mannitol-2,3,4,6-O-tetrabehente Behenic acid (4.43 g, 13.0 mmol) was added to 1,2-dichloroethane (37 ml) and N, It was dispersed in addition to N-dimethylformamide (1000 μl, 13.0 mmol). Thionyl chloride (4.7 ml, 65.0 mmol) was added and reacted at room temperature. After completion of the reaction, the mixture was concentrated under reduced pressure to obtain a solid behenic acid chloride. This was used as it was for the next reaction.

1,5−AM(114mg,0.694mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(3ml)とピリジン(450μl,5.58mmol)に分散させ、50℃とした。そこに、上記で合成したベヘン酸クロライド(1.27g,3.36mmol)を予めトルエン(2ml)に溶解して加え、反応温度を90℃として5時間反応させた。反応液にメタノール(3ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、アセトンで洗浄した。減圧乾燥し、白色の固体(961mg,95%)を得た。NMR構造解析とMS測定を行い、1,5−anhydro−D−mannitol−2,3,4,6−O−tetrabehenate(表2のNo17)であることを確認した。
H NMR(CDCl):5.32(broad s,1H),5.29(t,1H,J=9.9Hz),5.06(dd,1H,J=3.5,10.0Hz),4.18(d,1H,J=5.1Hz),4.17(d,1H,J=2.5Hz),4.04(dd,1H,J=13.1,1.8Hz),3.66(d,1H,J=13.0Hz),3.58(ddd,1H,J=9.8,5.0,2.8Hz),2.42−2.17(m,8H),1.66−1.54(m,8H),1.25(broad s,144H),0.88(t,12H,J=7.1Hz)
13C NMR(CDCl):173.48,173.11,172.84,172.31,77.33−76.70,71.60,68.44,68.16,65.93,62.61,34.26−34.06,31.94,29.73−29.16,25.02−24.73,22.70,14.12
MS:m/z 1476.39[M+Na](calculated for C94180Na,1476.35)
1,5-AM (114 mg, 0.694 mmol) was dispersed in N, N-dimethylformamide (3 ml) and pyridine (450 μl, 5.58 mmol) under a nitrogen atmosphere to 50 ° C. The behenic acid chloride (1.27 g, 3.36 mmol) synthesized above was dissolved in toluene (2 ml) in advance and added thereto, and the reaction was carried out at a reaction temperature of 90 ° C. for 5 hours. Methanol (3 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with acetone. Drying under reduced pressure gave a white solid (961 mg, 95%). NMR structure analysis and MS measurement were performed, and it was confirmed that the substance was 1,5-anhydro-D-mannitol-2,3,4,6-O-tetrabete (No. 17 in Table 2).
1 1 H NMR (CDCl 3 ): 5.32 (roads, 1H), 5.29 (t, 1H, J = 9.9Hz), 5.06 (dd, 1H, J = 3.5, 10.0Hz ), 4.18 (d, 1H, J = 5.1Hz), 4.17 (d, 1H, J = 2.5Hz), 4.04 (dd, 1H, J = 13.1, 1.8Hz) , 3.66 (d, 1H, J = 13.0Hz), 3.58 (ddd, 1H, J = 9.8, 5.0, 2.8Hz), 2.42-2.17 (m, 8H) ), 1.66-1.54 (m, 8H), 1.25 (roads, 144H), 0.88 (t, 12H, J = 7.1Hz)
13 C NMR (CDCl 3 ): 173.48, 173.11, 172.84, 172.31, 77.33-76.70, 71.60, 68.44, 68.16, 65.93, 62. 61, 34.26-34.06, 31.94, 29.73-29.16, 25.02-24.73, 22.70, 14.12
MS: m / z 1476.39 [M + Na] + (calculated for C 94 H 180 O 9 Na + , 1476.35)

実施例18:ミリスチン酸とパルミチン酸を有する1,5−AG脂肪酸エステルの合成
1,5−AG(152mg,0.93mmol)を窒素雰囲気下、N,N−ジメチルホルムアミド(4ml)とピリジン(600μl,7.43mmol)に分散させ、50℃とした。そこに、予め混合したミリスチン酸クロライドとパルミチン酸クロライド(脂肪酸のモル比は1:1、1293μl,4.51mmol)を加え、反応温度を90℃として5.5時間反応させた。反応液にメタノール(4ml)を加えて、室温に冷却すると固体が析出した。得られた固体をろ過し、メタノールで洗浄した。さらに、固体をN,N−ジメチルホルムアミド(10ml)に90℃で溶解し、室温に冷却し析出した固体をろ過し、メタノールで洗浄した。減圧乾燥し、白色の固体(880mg)を得た。H NMRの積分値より脂肪酸の割合はミリスチン酸:パルミチン酸=44:56であることが分かった。MS測定よりミリスチン酸のみを有する1,5−AG脂肪酸エステル、ミリスチン酸3個とパルミチン酸1個を有する1,5−AG脂肪酸エステル、ミリスチン酸2個とパルミチン酸2個を有する1,5−AG脂肪酸エステル、ミリスチン酸1個とパルミチン酸3個を有する1,5−AG脂肪酸エステル、パルミチン酸のみを有する1,5−AG脂肪酸エステルの混合物であることを確認した。以上より、ミリスチン酸とパルミチン酸を有する1,5−AG脂肪酸エステルの混合物であることを確認した。
H NMR(CDCl):5.22(t,1H,J=9.5Hz),5.04(t,1H,J=9.8Hz),5.00(td,1H,J=5.7,9.8Hz),4.14(d,2H,J=3.1Hz),4.14(dd,1H,J=5.6Hz),3.58(dt,1H,J=10.0,3.6Hz),3.29(t,1H,J=10.8Hz),2.35−2.20(m,8H),1.63−1.54(m,8H),1.25(broad s,89H),0.88(t,12H,J=7.1Hz)
13C NMR(CDCl):173.48,172.95,172.59,172.21,77.33−76.70,73.36,68.88,68.17,66.98,62.12,34.19−34.01,31.94,29.68−29.09,24.91−24.79,22.70,14.12
MS:m/z 1027.85,1055.88,1083.91,1111.94,1139.96[M+Na](calculated for C62116Na,1027.85 C64120Na,1055.88 C66124Na,1083.91 C68128Na,1111.95 C70132Na,1139.98)
Example 18: Synthesis of 1,5-AG fatty acid ester having myristic acid and palmitic acid 1,5-AG (152 mg, 0.93 mmol) was added to N, N-dimethylformamide (4 ml) and pyridine (600 μl) under a nitrogen atmosphere. , 7.43 mmol) to 50 ° C. To this, premixed myristic acid chloride and palmitic acid chloride (fatty acid molar ratio 1: 1, 1293 μl, 4.51 mmol) were added, and the reaction was carried out at a reaction temperature of 90 ° C. for 5.5 hours. Methanol (4 ml) was added to the reaction solution, and the mixture was cooled to room temperature to precipitate a solid. The resulting solid was filtered and washed with methanol. Further, the solid was dissolved in N, N-dimethylformamide (10 ml) at 90 ° C., cooled to room temperature, and the precipitated solid was filtered and washed with methanol. Drying under reduced pressure gave a white solid (880 mg). From the integrated value of 1 H NMR, it was found that the ratio of fatty acids was myristic acid: palmitic acid = 44:56. From MS measurement, 1,5-AG fatty acid ester having only myristic acid, 1,5-AG fatty acid ester having 3 myristic acid and 1 palmitic acid, 1,5-AG having 2 myristic acid and 2 palmitic acid It was confirmed that the mixture was an AG fatty acid ester, a 1,5-AG fatty acid ester having one myristic acid and three palmitic acids, and a 1,5-AG fatty acid ester having only palmitic acid. From the above, it was confirmed that the mixture was a mixture of 1,5-AG fatty acid ester having myristic acid and palmitic acid.
1 1 H NMR (CDCl 3 ): 5.22 (t, 1H, J = 9.5Hz), 5.04 (t, 1H, J = 9.8Hz), 5.00 (td, 1H, J = 5. 7,9.8Hz), 4.14 (d, 2H, J = 3.1Hz), 4.14 (dd, 1H, J = 5.6Hz), 3.58 (dt, 1H, J = 10.0) , 3.6Hz), 3.29 (t, 1H, J = 10.8Hz), 2.35-2.20 (m, 8H), 1.63-1.54 (m, 8H), 1.25 (Broad s, 89H), 0.88 (t, 12H, J = 7.1Hz)
13 C NMR (CDCl 3 ): 173.48, 172.95, 172.59, 172.21, 77.33-76.70, 73.36, 68.88, 68.17, 66.98, 62. 12, 34.19-34.01, 31.94, 29.68-29.09, 24.91-24.79, 22.70, 14.12
MS: m / z 1027.85, 1055.88, 1083.91, 1111.94, 1139.96 [M + Na] + (calculated for C 62 H 116 O 9 Na + , 1027.85 C 64 H 120 O 9 Na + , 1055.88 C 66 H 124 O 9 Na + , 1083.91 C 68 H 128 O 9 Na + , 1111.95 C 70 H 132 O 9 Na + , 1139.98)

ゲル化能の評価
実施例19、20および比較例1〜5 各種原料のパルミチン酸エステルのゲル化試験
表3記載の原料のパルミチン酸エステルのゲル化試験は次のように行った。スクリュー管瓶に各種パルミチン酸エステル 1wt%とオイルとして流動パラフィン#350を加え、100℃に加熱し、溶解させた。得られた溶液を室温に冷却し、12時間以上放置してゲルの形成を観察した。なお、放冷後、溶液の流動性が失われて、スクリュー管瓶を倒置しても流れ落ちない状態をゲル化できた(○)、流れ落ちる状態をゲル化できない(×)として判断した。また、市販品であるパルチミン酸デキストリンも比較に用いた。
Evaluation of Gelling Ability Examples 19 and 20 and Comparative Examples 1 to 5 Gelation test of palmitic acid ester of various raw materials The gelation test of palmitic acid ester of the raw material shown in Table 3 was carried out as follows. 1 wt% of various palmitic acid esters and liquid paraffin # 350 as oil were added to a screw tube bottle, and the mixture was heated to 100 ° C. to dissolve it. The obtained solution was cooled to room temperature and left for 12 hours or more, and gel formation was observed. After allowing to cool, the fluidity of the solution was lost, and it was judged that the state in which the solution did not flow down even when the screw tube bottle was inverted could be gelled (◯), and the state in which the solution flowed down could not be gelled (×). A commercially available dextrin palmitate was also used for comparison.

Figure 0006952305
Figure 0006952305

1,5−アンヒドロ−D−グルシトール(1,5−AG)と、1,5−アンヒドロ−D−マンニトール(1,5−AM)の脂肪酸エステルがこれらの化合物の中で高いゲル化能を有することが分かった。
なお、化合物a〜dは本発明の化合物と同様の方法で合成した。
a:全ての水酸基がパルミチン酸で置換されている(DS5)。アノマー比(α:β)は61:39である。
b:異なる置換度の化合物の混合物である(DS6:DS5=75:25)。
c:全ての水酸基がパルミチン酸で置換されている。(DS5)
d:全ての水酸基がパルミチン酸で置換されている。(DS4)
Fatty acid esters of 1,5-anhydro-D-glucitol (1,5-AG) and 1,5-anhydro-D-mannitol (1,5-AM) have the highest gelling ability among these compounds. It turned out.
Compounds a to d were synthesized in the same manner as the compounds of the present invention.
a: All hydroxyl groups are substituted with palmitic acid (DS5). The anomer ratio (α: β) is 61:39.
b: A mixture of compounds with different degrees of substitution (DS6: DS5 = 75: 25).
c: All hydroxyl groups are substituted with palmitic acid. (DS5)
d: All hydroxyl groups are substituted with palmitic acid. (DS4)

ゲル化能の評価
実施例21〜42 脂肪酸の長さの異なる1,5−AG脂肪酸エステルとAM脂肪酸エステルのゲル化試験
脂肪酸の長さの異なる1,5−AG脂肪酸エステルと1,5−AM脂肪酸エステルのゲル化試験は次のように行った。スクリュー管瓶に各種脂肪酸エステルとオイルを加え、100℃に加熱し、溶解させた。得られた溶液を室温に冷却し、12時間以上放置してゲルの形成を観察した。なお、放冷後、溶液の流動性が失われて、スクリュー管瓶を倒置しても流れ落ちない状態をゲル化と判断した。各種脂肪酸エステルの添加濃度[wt%]は1,2,5,10,20%で行った。表中に最低ゲル化濃度を示した。結果を表4、表5および表6に示した。
・オイル:流動パラフィン#350
Evaluation of gelling ability Examples 21-42 Gelation test of 1,5-AG fatty acid ester and AM fatty acid ester having different fatty acid lengths 1,5-AG fatty acid ester and 1,5-AM with different fatty acid lengths The gelation test of the fatty acid ester was carried out as follows. Various fatty acid esters and oils were added to the screw tube bottle and heated to 100 ° C. to dissolve them. The obtained solution was cooled to room temperature and left for 12 hours or more, and gel formation was observed. In addition, it was judged that gelation was a state in which the fluidity of the solution was lost after allowing to cool and the screw tube bottle did not flow down even if it was inverted. The addition concentration [wt%] of various fatty acid esters was 1,2,5,10,20%. The lowest gelation concentration is shown in the table. The results are shown in Tables 4, 5 and 6.
・ Oil: Liquid paraffin # 350

Figure 0006952305
Figure 0006952305

Figure 0006952305
・オイル:オリーブスクワラン
Figure 0006952305
・ Oil: Olive Squalane

Figure 0006952305
Figure 0006952305

流動パラフィン#350を用いた試験から炭素数11から22の1,5−AG脂肪酸エステル 、炭素数13から22の1,5−AM脂肪酸エステルがゲル化能を有することがわかった。また、オリーブスクワランを用いた試験から炭素数10から18の1,5−AG脂肪酸エステルがゲル化能を有することが分かった。
以上のことから、炭素数10から22の1,5−AG脂肪酸エステルと、炭素数13から22の1,5−AM脂肪酸エステルがオイルのゲル化能を有することが分かった。
From the test using liquid paraffin # 350, it was found that the 1,5-AG fatty acid ester having 11 to 22 carbon atoms and the 1,5-AM fatty acid ester having 13 to 22 carbon atoms have gelling ability. Further, from a test using olive squalane, it was found that 1,5-AG fatty acid ester having 10 to 18 carbon atoms has a gelling ability.
From the above, it was found that the 1,5-AG fatty acid ester having 10 to 22 carbon atoms and the 1,5-AM fatty acid ester having 13 to 22 carbon atoms have an oil gelling ability.

実施例43 各種オイルに対するゲル化試験
各種オイルに対するゲル化試験は次のように行った。スクリュー管瓶に炭素数16の1,5−AG脂肪酸エステル(化合物No.7)と表7に示すオイルをそれぞれ加え、100℃に加熱し、溶解させた(※ジメチコンとシクロペンタシロキサンについては120℃で溶解させた)。得られた溶液を室温に冷却し、12時間以上放置してゲルの形成を観察した。なお、放冷後、溶液の流動性が失われて、スクリュー管瓶を倒置しても流れ落ちない状態をゲル化と判断した。脂肪酸エステルの添加濃度[wt%]は1,5,10%で行った。
その結果、炭素数16の1,5−AG脂肪酸エステルは極性の異なる様々なオイルに対してゲル化能を有することが分かった。
以上のことから、本発明の化合物は種々のオイルに対するゲル化能を有することが分かった。
Example 43 Gelation test for various oils The gelation test for various oils was performed as follows. 1,5-AG fatty acid ester (Compound No. 7) having 16 carbon atoms and the oil shown in Table 7 were added to the screw tube bottle, respectively, and heated to 100 ° C. to dissolve them (* 120 for dimethicone and cyclopentasiloxane). Dissolved at ° C). The obtained solution was cooled to room temperature and left for 12 hours or more, and gel formation was observed. In addition, it was judged that gelation was a state in which the fluidity of the solution was lost after allowing to cool and the screw tube bottle did not flow down even if it was inverted. The fatty acid ester addition concentration [wt%] was 1,5,10%.
As a result, it was found that the 1,5-AG fatty acid ester having 16 carbon atoms has a gelling ability for various oils having different polarities.
From the above, it was found that the compound of the present invention has a gelling ability for various oils.

Figure 0006952305
Figure 0006952305

実施例44 異なる脂肪酸を有する化合物のゲル化試験
異なる脂肪酸を有する化合物のゲル化試験は次のように行った。スクリュー管瓶にミリスチン酸とパルミチン酸を有する1,5−AG脂肪酸エステル(実施例18)5wt%とオイルとして流動パラフィン#350を加え、100℃に加熱し、溶解させた。得られた溶液を室温に冷却し、12時間以上放置してゲルの形成を観察した。なお、放冷後、溶液の流動性が失われて、スクリュー管瓶を倒置しても流れ落ちない状態をゲル化と判断した。
その結果、ミリスチン酸とパルミチン酸を有する1,5−AG脂肪酸エステルは流動パラフィン#350をゲル化することが分かった。
以上のことから、異なる脂肪酸を有する場合でも本発明の化合物はゲル化能を有することが分かった。
Example 44 Gelation test of compounds having different fatty acids The gelation test of compounds having different fatty acids was performed as follows. To a screw tube bottle, 5 wt% of 1,5-AG fatty acid ester having myristic acid and palmitic acid (Example 18) and liquid paraffin # 350 as oil were added, and the mixture was heated to 100 ° C. to dissolve it. The obtained solution was cooled to room temperature and left for 12 hours or more, and gel formation was observed. In addition, it was judged that gelation was a state in which the fluidity of the solution was lost after allowing to cool and the screw tube bottle did not flow down even if it was inverted.
As a result, it was found that the 1,5-AG fatty acid ester having myristic acid and palmitic acid gels liquid paraffin # 350.
From the above, it was found that the compound of the present invention has a gelling ability even when it has different fatty acids.

実施例45 異なる化合物の組み合わせによるゲル化試験
異なる化合物の組み合わせによるゲル化試験は次のように行った。スクリュー管瓶に炭素数14の1,5−AG脂肪酸エステル(化合物No.5)0.5wt%と炭素数16の1,5−AG脂肪酸エステル(化合物No.7)0.5wt%、オイルとして流動パラフィン#350を加え、100℃に加熱し、溶解させた。得られた溶液を室温に冷却し、12時間以上放置してゲルの形成を観察した。なお、放冷後、溶液の流動性が失われて、スクリュー管瓶を倒置しても流れ落ちない状態をゲル化と判断した。
その結果、上記の化合物を組み合わせた場合でも流動パラフィン#350をゲル化することが分かった。
以上のことから、本発明の化合物は複数組み合わせた場合でもゲル化能を有することが分かった。
Example 45 Gelation test using a combination of different compounds A gelation test using a combination of different compounds was performed as follows. 0.5 wt% of 1,5-AG fatty acid ester (Compound No. 5) having 14 carbon atoms and 0.5 wt% of 1,5-AG fatty acid ester (Compound No. 7) having 16 carbon atoms in a screw tube bottle as oil Liquid fatty acid # 350 was added and heated to 100 ° C. to dissolve. The obtained solution was cooled to room temperature and left for 12 hours or more, and gel formation was observed. In addition, it was judged that gelation was a state in which the fluidity of the solution was lost after allowing to cool and the screw tube bottle did not flow down even if it was inverted.
As a result, it was found that liquid paraffin # 350 gels even when the above compounds are combined.
From the above, it was found that the compound of the present invention has a gelling ability even when a plurality of compounds are combined.

実施例46〜49 オイルの組み合わせによるゲル化試験
オイルの組み合わせによるゲル化試験は次のように行った。スクリュー管瓶に炭素数16の1,5−AG脂肪酸エステル(化合物No.7)と2種類のオイルを表8記載の配合(wt%)で加え、100℃に加熱し、溶解させた。得られた溶液を室温に冷却し、12時間以上放置してゲルの形成を観察した。なお、放冷後、溶液の流動性が失われて、スクリュー管瓶を倒置しても流れ落ちない状態をゲル化できた(○)、流れ落ちる状態をゲル化できない(×)として判断した。
その結果、炭素数16の1,5−AG脂肪酸エステルは表8記載のオイルを組み合わせた場合でもオイルをゲル化することが分かった。
以上のことから、本発明の化合物はオイルを複数組み合わせた場合にもゲル化能を有することが分かった。
Examples 46 to 49 Gelling test using a combination of oils The gelation test using a combination of oils was performed as follows. A 1,5-AG fatty acid ester having 16 carbon atoms (Compound No. 7) and two kinds of oils were added to a screw tube bottle in the formulation (wt%) shown in Table 8 and heated to 100 ° C. to dissolve them. The obtained solution was cooled to room temperature and left for 12 hours or more, and gel formation was observed. After allowing to cool, the fluidity of the solution was lost, and it was judged that the state in which the solution did not flow down even when the screw tube bottle was inverted could be gelled (◯), and the state in which the solution flowed down could not be gelled (×).
As a result, it was found that the 1,5-AG fatty acid ester having 16 carbon atoms gels the oil even when the oils shown in Table 8 are combined.
From the above, it was found that the compound of the present invention has a gelling ability even when a plurality of oils are combined.

Figure 0006952305
Figure 0006952305

Claims (4)

下記式(1)または(2)で示される化合物。
Figure 0006952305
ここで、Rは炭素数10、11または13〜22の直鎖飽和脂肪酸に由来するアシル基であり、4つのRは同一でも異なっていてもよい。
Figure 0006952305
ここで、Rは炭素数13〜22の直鎖飽和脂肪酸に由来するアシル基であり、4つのRは同一でも異なっていてもよい。
A compound represented by the following formula (1) or (2).
Figure 0006952305
Wherein, R 1 is an acyl group derived from a straight-chain saturated fatty acids of 10, 11 or 13 to 22 carbon atoms, four R 1 may be the same or different.
Figure 0006952305
Here, R 2 is an acyl group derived from a straight-chain saturated fatty acid of 13 to 22 carbon atoms, four R 2 may be the same or different.
下記式(1)または(2)で示される化合物。
Figure 0006952305
ここで、Rは炭素数10、11または13〜22の直鎖飽和脂肪酸に由来するアシル基であり、4つのRは同一である。
Figure 0006952305
ここで、Rは炭素数13〜22の直鎖飽和脂肪酸に由来するアシル基であり、4つのRは同一である。
A compound represented by the following formula (1) or (2).
Figure 0006952305
Wherein, R 1 is an acyl group derived from a straight-chain saturated fatty acids of 10, 11 or 13 to 22 carbon atoms, four R 1 are the same.
Figure 0006952305
Here, R 2 is an acyl group derived from a linear saturated fatty acid having 13 to 22 carbon atoms, and the four R 2 are the same.
請求項1または2に記載の化合物を少なくとも1種含有するゲル化剤。 A gelling agent containing at least one compound according to claim 1 or 2. 請求項3に記載のゲル化剤と少なくとも1種のオイルを含有するゲル状組成物。 A gel-like composition containing the gelling agent according to claim 3 and at least one oil.
JP2017218162A 2017-11-13 2017-11-13 Sugar fatty acid ester and oil gelling agent Active JP6952305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017218162A JP6952305B2 (en) 2017-11-13 2017-11-13 Sugar fatty acid ester and oil gelling agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017218162A JP6952305B2 (en) 2017-11-13 2017-11-13 Sugar fatty acid ester and oil gelling agent

Publications (2)

Publication Number Publication Date
JP2019089719A JP2019089719A (en) 2019-06-13
JP6952305B2 true JP6952305B2 (en) 2021-10-20

Family

ID=66835759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017218162A Active JP6952305B2 (en) 2017-11-13 2017-11-13 Sugar fatty acid ester and oil gelling agent

Country Status (1)

Country Link
JP (1) JP6952305B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2737135B1 (en) * 1995-07-24 1997-09-12 Atta FLUORINATED CONTINUOUS PHASE REVERSE GELS
US6051540A (en) * 1998-11-05 2000-04-18 International Flavors & Fragrances Inc. Method employing drum chilling and apparatus therefor for producing fragrance-containing long lasting solid particle
JP5362179B2 (en) * 2006-10-20 2013-12-11 日清オイリオグループ株式会社 Polyoxyethylene sorbitol fatty acid ester and aqueous wax dispersion containing the same
US8921640B2 (en) * 2010-10-08 2014-12-30 The Procter & Gamble Company Absorbent article with philic anhydrous lotion
US9669130B2 (en) * 2010-10-08 2017-06-06 The Procter & Gamble Company Absorbent article with lotion
JP6844535B2 (en) * 2016-02-17 2021-03-17 東レ株式会社 How to make sugar alcohol

Also Published As

Publication number Publication date
JP2019089719A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
EP0736545B1 (en) Dextrin ester of fatty acids and use thereof
JP6142801B2 (en) Basic amino acid derivatives
JP5092753B2 (en) Gelling agent
JP2811487B2 (en) Oil gelling agent and cosmetic containing the same
JP6347742B2 (en) Novel sugar derivative gelling agent
KR20080074167A (en) Trehalose fatty acid ester composition
JP6167908B2 (en) Zwitterionic basic amino acid derivatives
JPWO2013118921A1 (en) Gelling agent
JP6952305B2 (en) Sugar fatty acid ester and oil gelling agent
JP6292230B2 (en) Gelling agent
JP5347104B2 (en) Gelling agent
KR20140123969A (en) Trehalose fatty acid ester composition
JP2009507926A (en) Personal care products incorporating cellulose fatty acid esters
TW202003447A (en) Novel complex and emulsion composition
JP2016210711A (en) Transparent oily liquid thickener and transparent thickening composition and cosmetic
JP7487856B2 (en) Novel ascorbic acid derivative, cosmetic composition containing the same, and cosmetic composition containing the same
JP2639417B2 (en) Cosmetics
JPH08208710A (en) Cyclic inulooligosaccharide derivative and cosmetic containing the same
JP3501612B2 (en) Composition containing cyclohexanetricarboxamide derivative
JP5295695B2 (en) Thickening gelling agent
JP7026355B2 (en) Thickening stabilizer
TW202006022A (en) Novel complex and emulsion composition
JP6824544B1 (en) Water-in-oil emulsion
WO2023229014A1 (en) Gelation agent composition
JP2021147379A (en) Water-in-oil emulsion

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6952305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150