JP6948984B2 - センサ素子及びガスセンサ - Google Patents

センサ素子及びガスセンサ Download PDF

Info

Publication number
JP6948984B2
JP6948984B2 JP2018100277A JP2018100277A JP6948984B2 JP 6948984 B2 JP6948984 B2 JP 6948984B2 JP 2018100277 A JP2018100277 A JP 2018100277A JP 2018100277 A JP2018100277 A JP 2018100277A JP 6948984 B2 JP6948984 B2 JP 6948984B2
Authority
JP
Japan
Prior art keywords
sensor
gas
measurement chamber
sensor element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018100277A
Other languages
English (en)
Other versions
JP2019203844A (ja
Inventor
貴也 中河
貴也 中河
正雄 都築
正雄 都築
隆行 鬼頭
隆行 鬼頭
熊谷 寛
寛 熊谷
清水 泰光
泰光 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018100277A priority Critical patent/JP6948984B2/ja
Publication of JP2019203844A publication Critical patent/JP2019203844A/ja
Application granted granted Critical
Publication of JP6948984B2 publication Critical patent/JP6948984B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、センサ素子、及びセンサ素子を備えたガスセンサに関する。
従来から、自動車等の内燃機関に用いるガスセンサにおいて、センサ素子に外部に連通する中空な測定ガス空間を設け、一対の電極のうち一方の電極を測定ガス空間に臨ませ、さらに測定ガス空間に多孔質材料を充填した構成が知られている(特許文献1)。そして、外部の被測定ガスが通路を介して測定ガス空間に導入され、上記電極によって被測定ガス中の特定ガス濃度を測定することができる。
特開平11−248675号公報
ところで、例えば排気管にガスセンサを取り付けた場合、センサ素子の測定ガス空間に導入される被測定ガスの圧力PGが変化し(動的圧力変化)、図8に示すようにセンサ出力が変動するという問題がある。具体的には、理論的なセンサ出力T1が被測定ガスの圧力PGの変動に追随した波形であるのに対し、センサ出力にオーバーシュートU1が生じる。
これは、センサ出力が検出対象である特定ガス成分の濃度におおむね比例するが、外部の被測定ガスの圧力が変動すると、測定ガス空間と外部との圧力差を解消しようとして測定ガス空間に流入又は流出する被測定ガスが異常拡散する。そして、被測定ガスが外部から測定ガス空間に流入する際の異常拡散によって測定ガス空間内の特定ガス成分の量(濃度)が変化し、オーバーシュートU1が生じると考えられる。
又、被測定ガスの圧力の変動によるセンサ出力の変動である静的圧力変化においても、被測定ガスの圧力が増加するとセンサ出力も増加するという問題があり、ガスが通る経路が密なほど静的圧力変化に対する出力変化は大きくなる。一方、この経路が粗であると、被測定ガスの圧力変動による出力変化が少ない(つまり静的圧力依存性が低い)。
従って、図9に示すように、センサ出力が小さいと、オーバーシュートU2の変動が相対的に目立ってしまい、センサ特性がさらに劣ってしまう。
本発明は、かかる現状に鑑みてなされたものであって、被測定ガスの動的圧力変化及び静的圧力変化に伴うセンサの出力変動を低減したセンサ素子及びガスセンサを提供することを目的とする。
本発明のセンサ素子は、検知電極及び第1対向電極が固体電解質体上に設けられる検知セルと、ポンプ電極及び第2対向電極が固体電解質体上に設けられるポンプセルと、前記検知電極及び前記ポンプ電極が臨む測定室と、前記測定室と外部とを連通する連通路と、を有するセンサ素子であって、前記測定室に多孔質体が充填され、前記連通路は空洞をなし、前記連通路から前記測定室へ向かう方向から見たとき、前記測定室の最大断面積Smに対し、(Sm/2)以下の断面積を有する部分が前記連通路とされ、前記測定室の体積V(m)と、前記連通路の外面に露出した部位の断面積Sc(m)との間で、V/Sc≦0.003(m)の関係を満たすことを特徴とする。
測定室に導入される被測定ガスの圧力が変化すると、センサ出力にオーバーシュートが生じる(動的圧力変化)。又、連通路が密なほど被測定ガスの圧力の変動によるセンサ出力の変動が大きくなり、オーバーシュートの変動も相対的に目立ってセンサ特性が劣る。
そこで、動的圧力変化に対しては、測定室に多孔質体を充填することでこれらの有効体積を低減し、圧力変化時に測定室に急激に出入りするガス量を低減することで、オーバーシュートを低減できる。測定室に多孔質体を充填する理由は、測定室を物理的に小さく形成するのは製造上困難であるためである。
又、静的圧力変化に対しては、外部の被測定ガスが連通路でなるべく律速されずに測定室に導入されるようにすると、センサ出力が上昇する。このため、測定室の体積Vに対し、断面積Scを相対的に大きくする。
本発明のセンサ素子において、前記多孔質体の気孔率が50%以下であってもよい。
このセンサ素子によれば、測定室の有効体積をより低減できる。
本発明のガスセンサは、前記センサ素子を有する。
この発明によれば、被測定ガスの圧力変化に伴うセンサの出力変動を低減することができる。
本発明の実施形態にかかるガスセンサの断面図である。 センサ素子の模式分解斜視図である。 センサ素子の幅方向に沿う模式断面図である。 測定室及び連通路の斜視図である。 測定室と連通路の断面積が連続的に変化している場合の斜視図である。 本実施形態のセンサ素子により、被測定ガスの圧力変化に伴うセンサの出力変動を低減した状態を示す図である。 センサ素子のV/Scを種々変化させたときの、検知精度の誤差を示す図である。 被測定ガスの圧力変化によるセンサ出力のオーバーシュートを示す図である。 センサ出力自体が低下したときの、被測定ガスの圧力変動によるセンサ出力への影響を示す図である。
本発明の実施形態について、図1〜図4に基づいて詳細に説明する。図1は、本発明の実施形態にかかるガスセンサ1の断面図、図2はセンサ素子19の模式分解斜視図、図3はセンサ素子19の幅方向に沿う模式断面図、図4は測定室及び連通路の斜視図である。
図1において、ガスセンサ(全領域空燃比ガスセンサ)1は、センサ素子19と、軸線O方向に貫通してセンサ素子19を挿通させる貫通孔32を有するホルダ(セラミックホルダ)30と、セラミックホルダ30の径方向周囲を取り囲む主体金具11と、を備えている。
センサ素子19のうち、検知部22が形成された先端寄り部位が、セラミックホルダ30より先端に突出している。このように貫通孔32を通されたセンサ素子19は、セラミックホルダ30の後端面側(図示上側)に配置されたシール材(本例では滑石)41を、絶縁材からなるスリーブ43、リングワッシャ45を介して先後方向に圧縮することによって、主体金具11の内側において先後方向に気密を保持して固定されている。
なお、センサ素子19の後端19eを含む後端寄り部位はスリーブ43及び主体金具11より後方に突出しており、その後端寄り部位に形成された各センサパッド部13〜15及びヒータパッド部16,17に、シール材85を通して外部に引き出された各リード線71の先端に設けられた端子金具75が圧接され、電気的に接続されている。また、このセンサパッド部13〜15及びヒータパッド部16,17を含むセンサ素子19の後端寄り部位は、外筒81でカバーされている。以下、さらに詳細に説明する。
センサ素子19は軸線O方向に延びると共に、測定対象に向けられる先端側(図示下側)に、被測定ガス側電極155等(図2参照)からなり被検出ガス中の特定ガス成分を検出する検知部22を備えた帯板状(板状)をなしている。センサ素子19の横断面は、先後において一定の大きさの長方形(矩形)をなし、セラミック(固体電解質等)を主体として細長いものとして形成されている。
このセンサ素子19は、固体電解質(部材)の先端寄り部位に検知部22をなす一対の電極153、155(図2参照)が配置され、これに連なり後端寄り部位には、検知用出力取り出し用のリード線71接続用のセンサパッド部14,15(図2参照)が露出形成されている。
本例では、センサ素子19の先端寄り部位内部に、酸素をポンピングするポンプセル層161(図2参照)が設けられており、後端寄り部位には、ポンプセル制御用のリード線71接続用のセンサパッド部13、15(図2参照)が露出形成されている。
また、本例では、センサ素子19のうち、固体電解質(部材)に積層状に形成されたセラミック材の先端寄り部位内部にヒータ層145(図2参照))が設けられており、後端寄り部位には、ヒータ電圧印加用のリード線71接続用のヒータパッド部16,17(図2参照)が露出形成されている。
なお、これらセンサパッド部13〜15、ヒータパッド部16,17は縦長矩形に形成され、例えばセンサ素子19の後端寄り部位において、図2に示すように帯板の幅広面にセンサパッド部13〜15が3つ横に並び、反対面にヒータパッド部16,17が2つ横に並んでいる。
さらに、センサ素子19の検知部22に、アルミナ又はスピネル等からなる多孔質の保護層23が被覆されている。
主体金具11は、先後において同心異径の筒状をなし、先端側が小径で、後述するプロテクタ51、61を外嵌して固定するための円筒状の円環状部(以下、円筒部ともいう)12を有し、その後方(図示上方)の外周面には、それより大径をなす、エンジンの排気管への固定用のネジ33が設けられている。そして、その後方には、このネジ33によってセンサ1をねじ込むための多角形部14を備えている。また、この多角形部14の後方には、ガスセンサ1の後方をカバーする保護筒(外筒)81を外嵌して溶接する円筒部11eが連設され、その後方には外径がそれより小さく薄肉のカシメ用円筒部36を備えている。なお、このカシメ用円筒部36は、図1では、カシメ後のために内側に曲げられている。なお、多角形部14の下面には、ねじ込み時におけるシール用のガスケット21が取着されている。
一方、主体金具11は、軸線O方向に貫通する内孔18を有している。内孔18の内周面は後端側から先端側に向かって径方向内側に先細るテーパ状の段部11dを有している。
主体金具11の内側には、絶縁性セラミック(例えばアルミナ)からなり、概略短円筒状に形成されたセラミックホルダ30が配置されている。セラミックホルダ30は、先端に向かって先細りのテーパ状に形成された先端向き面30aを有している。そして、先端向き面30aの外周寄りの部位が段部11dに係止されつつ、セラミックホルダ30が後端側からシール材41で押圧されることで主体金具11内にセラミックホルダ30が位置決めされ、かつ隙間嵌めされている。
一方、貫通孔32は、セラミックホルダ30の中心に設けられると共に、センサ素子19が略隙間なく通るように、センサ素子19の横断面とほぼ同一の寸法の矩形の開口とされている。
センサ素子19は、セラミックホルダ30の貫通孔32に通され、センサ素子19の先端をセラミックホルダ30及び主体金具11の先端12aよりも先方に突出させている。
一方、センサ素子19の先端部位は、本形態では、2層構造からなり、共にそれぞれ通気孔(穴)56、67を有する有底円筒状のプロテクタ(保護カバー)51,61で覆われている。このうち内側のプロテクタ51の後端が、主体金具11の円筒部12に外嵌され、溶接されている。なお、通気孔56はプロテクタ51の後端側で周方向において例えば8箇所設けられている。一方プロテクタ51の先端側にも、周方向において例えば4箇所、排出穴53が設けられている。
また、外側のプロテクタ61は、内側のプロテクタ51に外嵌して、同時に円筒部12に溶接されている。外側のプロテクタ61の通気孔67は、先端寄り部位に、周方向において例えば8箇所設けられており、また、プロテクタ61先端の底部中央にも排出孔69が設けられている。
又、図1に示すように、センサ素子19の後端寄り部位に形成された各センサパッド部13〜15及びヒータパッド部16,17には、外部にシール材85を通して引き出された各リード線71の先端に設けられた各端子金具75がそのバネ性により圧接され、電気的に接続されている。そして、この圧接部を含む各端子金具75は、本例ガスセンサ1では、外筒81内に配置された絶縁性のセパレータ91内に設けられた各収容部内に、それぞれ対向配置で設けられている。なお、セパレータ91は、外筒81内にカシメ固定された保持部材82を介して径方向及び先端側への動きが規制されている。そして、この外筒81の先端部を、主体金具11の後端寄り部位の円筒部11eに外嵌して溶接することで、ガスセンサ1の後方が気密状にカバーされている。
なお、リード線71は外筒81の後端部の内側に配置されたシール材(例えばゴム)85を通されて外部に引き出されており、外筒81の小径筒部83を縮径カシメしてこのシール材85を圧縮することにより、この部位の気密が保持されている。
因みに、外筒81の軸線O方向の中央よりやや後端側には、先端側が径大の段部81dが形成され、この段部81dの内面がセパレータ91の後端を先方に押すように支持する。一方、セパレータ91はその外周に形成されたフランジ93を外筒81の内側に固定された保持部材82の上に支持させられており、段部81dと保持部材82とによってセパレータ91が軸線O方向に保持されている。
次に、図2〜図3を参照し、センサ素子19の構成について説明する。
センサ素子19は厚さ方向(積層方向)に、図2の上方から順に、第1セラミック層180、第2セラミック層160、第3セラミック層170、第4セラミック層150及びヒータ層145を積層してなる。各層145、150〜180は、アルミナ等の絶縁性セラミックからなり、外形寸法(少なくとも幅及び長さ)の等しい矩形板状をなしている。
第1セラミック層180は、先端側(図2の左側)に矩形状に開口する貫通部181hを有し、貫通部181hに埋め込まれるように多孔質層182が配置されている。第1セラミック層180は以下の第2セラミック層160を保護して覆い、多孔質層182は第2セラミック層160におけるポンプ電極163を覆っている。
多孔質層182は外部に露出しており、多孔質層182を介してポンプ電極163と外部との間で酸素の汲み出し及び汲み入れが可能となっている。
第2セラミック層160は、矩形板状の固体電解質体162を備えたポンプセル層161と、固体電解質体162の表裏面にそれぞれ設けられた上述のポンプ電極163及び対向電極165とを備えている。セル層161の先端側(図2の左側)には矩形状に開口する貫通部161hが設けられ、貫通部161hに埋め込まれるように固体電解質体162が配置されている。なお、ポンプ電極163はポンプ電極部163E、及び、当該ポンプ電極部163Eから後端側へ向かって延びるリード部163Lからなり、対向電極165は対向電極部165E、及び、当該対向電極部165Eから後端側へ向かって延びるリード部165Lからなる。
固体電解質体162,ポンプ電極163及び対向電極165は、後述する測定室171内の被測定ガス中の酸素の汲み出し及び汲み入れを行う酸素ポンプセル(第2セラミック層)160を構成し、対向電極165は測定室171に臨み、ポンプ電極163は多孔質層182を介して外部に連通している。
リード部163Lは、第1セラミック層180に設けられたスルーホールを介してセンサパッド部13と電気的に接続されている。又、リード部165Lは、セル層161、第1セラミック層180に設けられたスルーホールを介してセンサパッド部15と電気的に接続されている。
そして、測定室171内の酸素濃度に応じ、ポンプ電極163及び対向電極165の間に流れる電流の方向及び大きさがセンサパッド部13、15を介して2本のリード線71から外部装置によって制御され、酸素がポンピングされる。
第3セラミック層170の先端側(図2の左側)には測定室171が矩形状に開口している。又、第3セラミック層170の長辺側の両側面には、測定室171を外部と区画する連通路173が配置されている。一方、測定室171の先端側と後端側には、測定室171の側壁をなすセラミック絶縁層175が配置されている。
測定室171は連通路173を介して外部と連通しており、測定室171のすべてに多孔質体が充填されている。
測定室171及び連通路173については後述する。
第4セラミック層150は、矩形板状の固体電解質体152を備えたセル層151と、固体電解質体152の表裏面にそれぞれ設けられた基準ガス側電極153及び被測定ガス側電極155とを備えている。セル層151の先端側(図2の左側)には矩形状に開口する貫通部151hが設けられ、貫通部151hに埋め込まれるように固体電解質体152が配置されている。なお、基準ガス側電極153は基準ガス側電極部153E、及び、当該基準ガス側電極部153Eから後端側へ向かって延びるリード部153Lからなり、被測定ガス側電極155は被測定ガス側電極部155E、及び、当該被測定ガス側電極部155Eから後端側へ向かって延びるリード部155Lからなる。
固体電解質体152,基準ガス側電極153及び被測定ガス側電極155は、被測定ガス中の酸素濃度の検知セル(第4セラミック層)150を構成し、被測定ガス側電極部155Eは測定室171に臨んでいる。一方、基準ガス側電極部153Eは、リード部153L、スルーホールを介して外部に通気する。
リード部153Lは、セル層151、第3セラミック層170、第2セラミック層160及び第1セラミック層180に設けられたスルーホールを介してセンサパッド部14と電気的に接続されている。又、リード部155Lは、第3セラミック層170、第2セラミック層160及び第1セラミック層180に設けられたスルーホールを介してセンサパッド部15と電気的に接続されている。
そして、基準ガス側電極153及び被測定ガス側電極155の検出信号が、センサパッド部14,15から2本のリード線71を介して外部に出力され、酸素濃度が検出される。
なお、センサ素子19においては、検知セル(第4セラミック層)150の電極間に生じる電圧(起電力)が所定の値(例えば、450mV)となるように、酸素ポンプセル(第2セラミック層)160の電極間に流れる電流の方向及び大きさが調整され、酸素ポンプセル160に流れる電流に応じた被測定ガス中の酸素濃度をリニアに検出する酸素センサ素子を構成する。
すなわち、測定室171に臨む被測定ガス側電極部155Eが特許請求の範囲の「検知電極」に相当し、固体電解質体152が特許請求の範囲の「固体電解質体」に相当し、基準ガス側電極部153Eが特許請求の範囲の「第1対向電極」に相当する。又、測定室171に臨む対向電極部165Eが特許請求の範囲の「ポンプ電極」に相当し、固体電解質体162が特許請求の範囲の「固体電解質体」に相当し、ポンプ電極部163Eが特許請求の範囲の「第2対向電極」に相当する。
ヒータ層145は、第1層145a、第2層145b、及び第1層145aと第2層145bの間に配置される発熱体146を備えている。第1層145aは第4セラミック層150と対向している。発熱体146は、蛇行状のパターンを有する発熱部146m、及び発熱部146mの両端から後端側に延びる2つのリード部146Lを備えている。
各リード部146Lは、第2層145bに設けられたスルーホールを介してヒータパッド部16,17と電気的に接続されている。そして、2本のリード線71を介してヒータパッド部16,17から発熱体146に通電することで、発熱体146が発熱し、固体電解質体152,162を活性化する。
次に、図4を参照し、測定室171及び連通路173の構成について説明する。
図4に示すように、測定室171は略直方体状をなし、測定室171の幅方向両端に、測定室171よりも小さく略直方体状の連通路173がそれぞれ接続されている。
ここで、センサ素子19の外面に露出した連通路173から測定室171へ向かう方向Fから見たとき、測定室171の最大断面積Smに対し、(Sm/2)以下の断面積Sxを有する部分が連通路173とされる。
本例では、方向Fから見て測定室171と連通路173の断面積がそれぞれ一定であり、かつ測定室171と連通路173とは断面積が異なるので、測定室171と連通路173とを簡単に区別できる。一方、例えば図5のように、測定室171と連通路173の断面積が連続的に変化している場合、両者の境界が明確ではない。そこで、測定室171の最大断面積Smの半分(Sm/2)である断面積の部位を、測定室171と連通路173との境界とみなすこととする。
次に、測定室171に多孔質体が充填されている理由について説明する。
図8に示したように、被測定ガスの圧力変化(動的圧力変化)により、センサ出力がオーバーシュートするが、その原因は測定室171に流入又は流出する被測定ガスの異常拡散に伴い、測定室171内の特定ガス成分の量(濃度)nが変化するものである。
ここで、気体の状態方程式によれば、特定ガス成分の量(濃度)nの変化量Δn=PV/RTであるから、測定室171の体積Vを小さくするほど、Δn、ひいてはオーバーシュートを低減できることになる。
但し、測定室171を物理的に小さく形成するのは製造上困難であるので、測定室171に多孔質体を充填することで、測定室171の体積V(有効体積)は、多孔質体の気孔部分のみに低減される。この点からは、多孔質体の気孔率が50%以下であると、測定室171の体積Vをより低減できるので好ましい。
図4に戻り、測定室171の体積V(m)と、連通路173の外面に露出した部位の断面積Sc(m)との間で、V/Sc≦0.003(m)の関係を満たす。この理由について説明する。
連通路173が密なほど被測定ガスの圧力変動によるセンサ出力の変動(静的圧力変化)の影響が大きくなり、図9に示すように、オーバーシュートの変動が相対的に目立ってセンサ特性が劣る。
そこで、外部の被測定ガスが連通路173でなるべく律速されずに測定室171に導入されるようにする。このため、(i)連通路173を空洞として粗とすることと、(ii)測定室171の体積Vに対し、断面積Scを相対的に大きくすることで、外部の被測定ガスが測定室171に導入され易くなる。
これにより、図6に示すように、被測定ガスの圧力PGの変動前後のセンサ出力T3の差S3が減少し、被測定ガスの圧力変動の影響が小さくなる。又、センサ出力が上昇するので、オーバーシュートU3の変動が相対的に小さくなり、センサ性能が向上する。
V/Sc>0.003(m)であると、外部の被測定ガスが連通路173で律速され、センサ出力が低下する。
なお、体積Vに対し、次元の異なる断面積Scを比較対象とする理由は、オーバーシュートは体積Vに依存し、体積Vを小さくするほどオーバーシュートも低減されるものの、設計上、オーバーシュートがゼロになることはなく、オーバーシュートによってセンサの検知性能が悪化するが、オーバーシュートが及ぼすセンサの検知性能への影響を断面積Scの大小によってある程度制御することができるためである。
以上のようにして、動的圧力変化及び静的圧力変化の影響を共に低減し、被被測定ガスの圧力変化に伴うセンサの出力変動を低減することができる。
なお、断面積Sc(m)は大きいほどセンサ特性が向上する点では良いが、あまり大きくなると、酸素ポンピングに要する電力が大きくなって固体電解質体の破損に繋がるおそれがある。
本発明のガスセンサは、本発明の要旨を逸脱しない限りにおいて、適宜にその構造、構成を設計変更して具体化できる。
例えば測定室及び連通路の形状は上記実施形態に限定されない。また、センサ素子としては、酸素の濃度を測定するものに限定されず、窒素酸化物(NOx)又は炭化水素(HC)等の濃度を測定するものを用いてもよい。
又、例えば測定室及び測定室に連通する別の室(つまり、2室)を有するNOxセンサ等にも本発明を適用可能である。
測定室171の体積V=0.141(m)とし、連通路173の断面積Scを種々変化させて図2に示すセンサ素子19を製造した。
なお、測定室171に、気孔率45%の多孔質体を充填した。この多孔質体は、アルミナ粒子とチタニア粒子と焼失性カーボンを含むペーストを測定室171に充填して焼成することで形成した。
得られたガスセンサ1において、酸素濃度20%の被測定ガスを用いて出力のオーバーシュートを測定した。
得られた結果を図7に示す。V/Sc≦0.003(m)の場合、検知精度の誤差が基準値を下回り、オーバーシュートによるセンサ検知性能の悪化を抑制できたことがわかる。
なお、図7の「センサ検知精度の誤差(%)」は、図6のオーバーシュートU3からセンサ出力T3を差し引いた値(オーバーシュート分)を、基準値(大気圧下のセンサ出力)で除した値(%)である。
1 ガスセンサ
19 センサ素子
150 検知セル(第4セラミック層)
152,162 固体電解質体
153E 第1対向電極
155E 検知電極
160 ポンプセル(第2セラミック層)
163E 第2対向電極
165E ポンプ電極
171 測定室
173 連通路
F 連通路から測定室へ向かう方向

Claims (3)

  1. 検知電極及び第1対向電極が固体電解質体上に設けられる検知セルと、ポンプ電極及び第2対向電極が固体電解質体上に設けられるポンプセルと、
    前記検知セル及び前記ポンプセルの間に形成され、前記検知電極及び前記ポンプ電極が臨む測定室と、
    前記測定室と外部とを連通する連通路と、
    を有するセンサ素子であって、
    前記測定室に多孔質体が充填され、
    前記連通路は空洞をなし、
    前記連通路から前記測定室へ向かう方向から見たとき、前記測定室の最大断面積Smに対し、(Sm/2)以下の断面積を有する部分が前記連通路とされ、
    前記測定室の体積V(m)と、前記連通路の外面に露出した部位の断面積Sc(m)との間で、V/Sc≦0.003(m)の関係を満たすことを特徴とするセンサ素子。
  2. 前記多孔質体の気孔率が50%以下である請求項1記載のセンサ素子。
  3. 請求項1又は2に記載のセンサ素子を有するガスセンサ。
JP2018100277A 2018-05-25 2018-05-25 センサ素子及びガスセンサ Active JP6948984B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018100277A JP6948984B2 (ja) 2018-05-25 2018-05-25 センサ素子及びガスセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018100277A JP6948984B2 (ja) 2018-05-25 2018-05-25 センサ素子及びガスセンサ

Publications (2)

Publication Number Publication Date
JP2019203844A JP2019203844A (ja) 2019-11-28
JP6948984B2 true JP6948984B2 (ja) 2021-10-13

Family

ID=68726763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018100277A Active JP6948984B2 (ja) 2018-05-25 2018-05-25 センサ素子及びガスセンサ

Country Status (1)

Country Link
JP (1) JP6948984B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2989961B2 (ja) * 1991-05-27 1999-12-13 株式会社デンソー 吸気管内用酸素濃度検出器
DE19803532A1 (de) * 1998-01-30 1999-08-05 Bosch Gmbh Robert Elektrochemischer Meßfühler
JP2003149196A (ja) * 2001-08-30 2003-05-21 Kyocera Corp 酸素センサ
JP3832437B2 (ja) * 2002-04-03 2006-10-11 株式会社デンソー ガスセンサ素子
JP4644810B2 (ja) * 2005-10-14 2011-03-09 国立大学法人九州大学 地下埋設物探査装置及び地下埋設物探査方法
JP2011227061A (ja) * 2010-03-29 2011-11-10 Ngk Insulators Ltd ガスセンサ
US10267761B2 (en) * 2016-06-14 2019-04-23 Delphi Technologies Ip Limited Material for sensing electrode of NOX gas sensor

Also Published As

Publication number Publication date
JP2019203844A (ja) 2019-11-28

Similar Documents

Publication Publication Date Title
CN100580443C (zh) 气体传感器元件及气体传感器
US20090250344A1 (en) Gas sensor
US6726819B2 (en) Gas sensor
US9506899B2 (en) Gas sensor
JP4981075B2 (ja) NOxセンサ
US4591423A (en) Oxygen sensor
US11959877B2 (en) Gas sensor
JP4865572B2 (ja) ガスセンサ素子、ガスセンサ及びNOxセンサ
US4076608A (en) Oxygen sensor
JP6962870B2 (ja) ガスセンサ
JP4965356B2 (ja) ガスセンサの劣化判定方法
JP6948984B2 (ja) センサ素子及びガスセンサ
US10012611B2 (en) Gas sensor element and gas sensor
JP6219596B2 (ja) ガスセンサ
JP7229204B2 (ja) センサ素子、ガスセンサ及びガスセンサユニット
US10775342B2 (en) Gas sensor
JP6974249B2 (ja) センサ素子及びガスセンサ
US20190128836A1 (en) Gas sensor
JP6979387B2 (ja) センサ素子及びガスセンサ
US11761924B2 (en) Sensor element, gas sensor, and gas sensor unit
JP6890061B2 (ja) ガスセンサ
US11921079B2 (en) Gas sensor
US11549925B2 (en) NOx sensor element and NOx sensor
JP7391638B2 (ja) センサ素子及びガスセンサ
US20230314364A1 (en) Gas sensor and casing for containing sensor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210921

R150 Certificate of patent or registration of utility model

Ref document number: 6948984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350