JP6946803B2 - Manufacturing method of lithium ion secondary battery - Google Patents

Manufacturing method of lithium ion secondary battery Download PDF

Info

Publication number
JP6946803B2
JP6946803B2 JP2017139238A JP2017139238A JP6946803B2 JP 6946803 B2 JP6946803 B2 JP 6946803B2 JP 2017139238 A JP2017139238 A JP 2017139238A JP 2017139238 A JP2017139238 A JP 2017139238A JP 6946803 B2 JP6946803 B2 JP 6946803B2
Authority
JP
Japan
Prior art keywords
battery
electrode plate
positive electrode
electrolytic solution
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017139238A
Other languages
Japanese (ja)
Other versions
JP2019021510A (en
Inventor
北吉 雅則
雅則 北吉
久尚 小島
小島  久尚
平藤 哲司
哲司 平藤
卓 塩見
卓 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017139238A priority Critical patent/JP6946803B2/en
Publication of JP2019021510A publication Critical patent/JP2019021510A/en
Application granted granted Critical
Publication of JP6946803B2 publication Critical patent/JP6946803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、正極板、セパレータ及び負極板を含む電極体と、電解液とを備えるリチウムイオン二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a lithium ion secondary battery including an electrode body including a positive electrode plate, a separator and a negative electrode plate, and an electrolytic solution.

リチウムイオン二次電池(以下、単に「電池」ともいう)の製造に当たっては、電極体のうち正極板とセパレータの間に、鉄や銅などの金属異物が混入することが考えられる。このような金属異物は、組み立てた電池内に電解液を注液した後に電解液中に徐々に溶解するため、金属異物の近傍には金属異物由来の金属イオンが高い濃度で存在する。本充電の際、負極電位が低下すると、この濃度の高い金属イオンが負極板上で集中的にデンドライト状に析出することがある。また、本充電で正極電位が高くなると、本充電の際に残存していた金属異物が正極板上で溶解した後、その金属イオンが負極板上で集中的にデンドライト状に析出することもある。これらの析出した金属は、セパレータを突き破って負極板から正極板まで達し、短絡を生じるおそれがある。 In the manufacture of a lithium ion secondary battery (hereinafter, also simply referred to as “battery”), it is conceivable that a metallic foreign substance such as iron or copper is mixed between the positive electrode plate and the separator in the electrode body. Since such metal foreign matter is gradually dissolved in the electrolytic solution after the electrolytic solution is injected into the assembled battery, metal ions derived from the metallic foreign matter are present at a high concentration in the vicinity of the metal foreign matter. When the negative electrode potential drops during main charging, metal ions with a high concentration may be concentrated on the negative electrode plate in the form of dendrites. Further, when the positive electrode potential becomes high in the main charge, the metal foreign matter remaining in the main charge may be dissolved on the positive electrode plate, and then the metal ions may be concentratedly deposited in a dendrite shape on the negative electrode plate. .. These precipitated metals may break through the separator and reach from the negative electrode plate to the positive electrode plate, causing a short circuit.

このような短絡が生じるのを防止するべく、例えば特許文献1では、正極電位が金属異物の溶解電位を上回る電位となるまで電池を充電(予備充電)した上で、この正極電位で電池を所定時間にわたり放置し、その後、この電池に初期コンディショニング充電(本充電)を行うことが記載されている(特許文献1の請求項1等を参照)。放置により、金属異物を電解液中に溶解させると共に、金属異物由来の金属イオンを金属異物が存在していた場所から広範囲に拡散させて、その後の本充電で金属異物由来の金属が負極板上で集中的にデンドライト状に析出するのを防止し、短絡を防止できるためと考えられる。 In order to prevent such a short circuit from occurring, for example, in Patent Document 1, the battery is charged (pre-charged) until the positive electrode potential exceeds the dissolution potential of the metal foreign matter, and then the battery is determined at this positive electrode potential. It is described that the battery is left to stand for an extended period of time, and then the battery is subjected to initial conditioning charging (main charging) (see claim 1 and the like of Patent Document 1). By leaving it to stand, the metal foreign matter is dissolved in the electrolytic solution, and the metal ions derived from the metal foreign matter are diffused over a wide range from the place where the metal foreign matter was present. It is considered that this is because it is possible to prevent intensive deposition in the form of dendrites and prevent short circuits.

国際公開第2013/035187号International Publication No. 2013/03518

しかしながら、上述の特許文献1の手法では、金属異物が正極板に接触していない場合には、金属異物の電位が正極電位(金属異物の溶解電位を超える電位)とならないため、金属異物が溶解し難く、その結果、金属異物由来の金属が負極板上に集中的にデンドライト状に析出して短絡が生じることがあった。
また、上述の特許文献1の手法では、予備充電後の電池の放置のみによって金属異物由来の金属イオンの拡散を行っているので、上述の短絡を防止するには、金属イオンを広範囲に拡散させるべく、電池の放置時間を長くとる必要があった。
However, in the method of Patent Document 1 described above, when the metallic foreign matter is not in contact with the positive electrode plate, the potential of the metallic foreign matter does not become the positive electrode potential (potential exceeding the melting potential of the metallic foreign matter), so that the metallic foreign matter is dissolved. As a result, metal derived from a metallic foreign substance may be concentrated on the negative electrode plate in the form of dendrite, resulting in a short circuit.
Further, in the method of Patent Document 1 described above, metal ions derived from metal foreign substances are diffused only by leaving the battery after precharging. Therefore, in order to prevent the above-mentioned short circuit, the metal ions are diffused over a wide range. Therefore, it was necessary to take a long time to leave the battery.

本発明は、かかる現状に鑑みてなされたものであって、正極板とセパレータの間に混入した金属異物の電解液中への溶解を促進させると共に、溶解した金属異物由来の金属イオンの拡散を促進させて、金属異物に起因した短絡を防止できるリチウムイオン二次電池の製造方法を提供することを目的とする。 The present invention has been made in view of the current situation, and promotes the dissolution of the metal foreign matter mixed between the positive electrode plate and the separator in the electrolytic solution, and diffuses the metal ions derived from the dissolved metal foreign matter. It is an object of the present invention to provide a method for manufacturing a lithium ion secondary battery which can be promoted to prevent a short circuit caused by a metal foreign substance.

上記課題を解決するための本発明の一態様は、正極活物質にリチウム遷移金属複合酸化物を含む正極板、及び、負極活物質に炭素材料を含む負極板がセパレータを介して互いに重なった電極体と、電解液と、を備えるリチウムイオン二次電池の製造方法であって、上記電極体を有する未注液のリチウムイオン二次電池内に、上記電解液を注液する注液工程と、上記注液工程の後に、上記リチウムイオン二次電池の上記電極体を、上記正極板、上記セパレータ及び上記負極板の積層方向に第1圧力P1で押圧する第1押圧工程と、上記電極体を上記第1圧力P1で押圧した状態で、上記リチウムイオン二次電池を、正極電位が鉄の溶解電位よりも高く、かつ、負極電位が上記電解液中に溶解した鉄イオンの析出電位よりも高い第1電池電圧V1まで予備充電する予備充電工程と、上記予備充電工程の後に、上記リチウムイオン二次電池を加温し上記電解液の粘度を下げた状態で、上記リチウムイオン二次電池の上記電極体を、上記第1圧力P1よりも高い第2圧力P2で上記積層方向に押圧する第2押圧工程と、上記第2押圧工程の後に、上記第1電池電圧V1よりも高い第2電池電圧V2まで上記リチウムイオン二次電池をコンディショニング充電する本充電工程と、を備え、上記第1圧力P1は、0.60〜0.80MPaであり、上記第2圧力P2は、0.80〜1.8MPaであるリチウムイオン二次電池の製造方法である。 One aspect of the present invention for solving the above problems is an electrode in which a positive electrode plate containing a lithium transition metal composite oxide as a positive electrode active material and a negative electrode plate containing a carbon material as a negative electrode active material are overlapped with each other via a separator. A method for manufacturing a lithium ion secondary battery comprising a body and an electrolytic solution, wherein the electrolytic solution is injected into an uninjected lithium ion secondary battery having the electrode body, and a liquid injection step. After the liquid injection step, the electrode body of the lithium ion secondary battery is pressed with the first pressure P1 in the stacking direction of the positive electrode plate, the separator and the negative electrode plate, and the electrode body is pressed. In the state of being pressed by the first pressure P1, the positive electrode potential of the lithium ion secondary battery is higher than the dissolution potential of iron, and the negative electrode potential is higher than the precipitation potential of iron ions dissolved in the electrolytic solution. After the pre-charging step of pre-charging to the first battery voltage V1 and the pre-charging step, the lithium ion secondary battery is heated to reduce the viscosity of the electrolytic solution, and the lithium ion secondary battery is described above. After the second pressing step of pressing the electrode body in the stacking direction with the second pressure P2 higher than the first pressure P1 and the second pressing step, the second battery voltage higher than the first battery voltage V1. The main charging step of conditioning and charging the lithium ion secondary battery up to V2 is provided , the first pressure P1 is 0.60 to 0.80 MPa, and the second pressure P2 is 0.80 to 1. This is a method for manufacturing a lithium ion secondary battery at 8 MPa.

上述のリチウムイオン二次電池の製造方法では、注液工程の後、第1押圧工程で電池の電極体を積層方向に第1圧力P1で押圧し、この状態で予備充電工程を行って、電池を上述の第1電池電圧V1まで充電する。電極体を積層方向に押圧することで、正極板とセパレータとの間隔が狭くなって、正極板とセパレータの間に混入した金属異物が、より確実に正極板に接触することとなる。このため、予備充電工程において、正極板の正極電位が高くなったときに、正極板に接触する金属異物の電位も高くなって、正極板上で金属異物(特に鉄の異物)が電解液中に溶解し易くなる。一方、負極電位は低くなり過ぎないため、負極板上で金属異物(特に鉄の異物)由来の金属が析出し難い。 In the method for manufacturing a lithium ion secondary battery described above, after the liquid injection step, the electrode body of the battery is pressed at the first pressure P1 in the stacking direction in the first pressing step, and a precharging step is performed in this state to perform the battery. Is charged to the above-mentioned first battery voltage V1. By pressing the electrode body in the stacking direction, the distance between the positive electrode plate and the separator is narrowed, and the metal foreign matter mixed between the positive electrode plate and the separator comes into contact with the positive electrode plate more reliably. Therefore, in the precharging step, when the positive electrode potential of the positive electrode plate becomes high, the potential of the metallic foreign matter in contact with the positive electrode plate also becomes high, and the metallic foreign matter (particularly the iron foreign matter) is contained in the electrolytic solution on the positive electrode plate. It becomes easy to dissolve in. On the other hand, since the negative electrode potential does not become too low, it is difficult for metal derived from metal foreign matter (particularly iron foreign matter) to precipitate on the negative electrode plate.

また、上述の製造方法では、予備充電工程の後、第2押圧工程において、電池を加温し電解液の粘度を下げた状態で、電極体を第1圧力P1よりも高い第2圧力P2で積層方向に押圧する。これにより、正極板と負極板との間隔が狭くなって、これらの間における電解液が押し出され、この電解液に含まれる金属異物由来の金属イオンの拡散が促進される。
かくして、上述の製造方法では、製造過程で正極板とセパレータの間に金属異物が混入したとしても、この金属異物の電解液への溶解を促進させると共に、溶解した金属異物由来の金属イオンの拡散を促進させることができ、金属異物に起因した短絡を防止できる。
Further, in the above-mentioned manufacturing method, in the second pressing step after the precharging step, the electrode body is subjected to a second pressure P2 higher than the first pressure P1 in a state where the battery is heated and the viscosity of the electrolytic solution is lowered. Press in the stacking direction. As a result, the distance between the positive electrode plate and the negative electrode plate is narrowed, the electrolytic solution is extruded between them, and the diffusion of metal ions derived from metal foreign substances contained in the electrolytic solution is promoted.
Thus, in the above-mentioned manufacturing method, even if a metal foreign substance is mixed between the positive electrode plate and the separator in the manufacturing process, the dissolution of the metal foreign substance in the electrolytic solution is promoted and the metal ion derived from the dissolved metal foreign substance is diffused. Can be promoted, and short circuits caused by metallic foreign substances can be prevented.

第1押圧工程における「第1圧力P1」は、0.60〜0.80MPaである。第1圧力P1が低すぎると、正極板とセパレータの間に混入した金属異物が正極板に接触できないおそれがある。一方、第1圧力P1が高すぎると、正極板と負極板の間隔が狭くなりすぎて、これらの間の電解液の量が減って、金属異物が電解液中に溶解し難くなるからである。 The "first pressure P1" in the first pressing step is 0.60 to 0.80 MPa. If the first pressure P1 is too low, the metal foreign matter mixed between the positive electrode plate and the separator may not come into contact with the positive electrode plate. On the other hand, if the first pressure P1 is too high, the distance between the positive electrode plate and the negative electrode plate becomes too narrow, the amount of the electrolytic solution between them decreases, and it becomes difficult for the metal foreign matter to dissolve in the electrolytic solution. ..

第2押圧工程における「第2圧力P2」は、0.80〜1.8MPaである。第2圧力P2が低すぎると、この第2押圧工程における正極板と負極板の間隔の減少が少なく、電解液が押し出され難い。一方、第2圧力P2が高すぎると、正極板と負極板の間隔が狭くなりすぎて、これらの間の電解液の量が少なくなりすぎるからである。 The "second pressure P2" in the second pressing step is 0.80 to 1.8 MPa. If the second pressure P2 is too low, the decrease in the distance between the positive electrode plate and the negative electrode plate in this second pressing step is small, and it is difficult for the electrolytic solution to be extruded. On the other hand, if the second pressure P2 is too high, the distance between the positive electrode plate and the negative electrode plate becomes too narrow, and the amount of the electrolytic solution between them becomes too small.

「第2押圧工程」における電池温度Teは、電解液の粘度を十分に下げるべく、25℃以上、更には、30℃以上とするのが好ましい。一方、この電池温度Teは、60℃以下、更には、50℃以下とするのが好ましい。電池温度Teを高くし過ぎると、電池が劣化したり、電池の低温時の入出力特性が低下するなど、電池の特性が変化するおそれがあるからである。 The battery temperature Te in the "second pressing step" is preferably 25 ° C. or higher, more preferably 30 ° C. or higher in order to sufficiently reduce the viscosity of the electrolytic solution. On the other hand, the battery temperature Te is preferably 60 ° C. or lower, more preferably 50 ° C. or lower. This is because if the battery temperature Te is set too high, the characteristics of the battery may change, such as deterioration of the battery or deterioration of the input / output characteristics of the battery at a low temperature.

本充電工程における「コンディショニング充電」とは、電池性能を安定化させるために行う充電である。具体的には、電池をSOC70%に相当する電池電圧以上、更には、SOC90%に相当する電池電圧以上に充電するのが好ましい。このように高い充電状態まで充電を行うことで、この本充電工程の際に金属異物が残っている場合でも、この金属異物を正極板上で溶解させることができる。また、良好なSEI(Solid Electrolyte Interphase)皮膜が負極板で形成され、電池のサイクル特性が良好になるなど、電池性能が向上し得るからである。 "Conditioning charging" in this charging process is charging performed to stabilize the battery performance. Specifically, it is preferable to charge the battery to a battery voltage corresponding to SOC 70% or higher, and further to a battery voltage corresponding to SOC 90% or higher. By charging to such a high charging state, even if metallic foreign matter remains during this main charging step, the metallic foreign matter can be dissolved on the positive electrode plate. Further, a good SEI (Solid Electrolyte Interphase) film is formed on the negative electrode plate, and the cycle characteristics of the battery are improved, so that the battery performance can be improved.

更に、上記のリチウムイオン二次電池の製造方法であって、前記予備充電工程の後、前記第2押圧工程の前に、前記第1電池電圧V1の状態で前記電池を0.5時間以上放置する充電後放置工程を備えるリチウムイオン二次電池の製造方法とするのが好ましい。 Further, in the above method for manufacturing a lithium ion secondary battery, the battery is left for 0.5 hours or more in the state of the first battery voltage V1 after the precharging step and before the second pressing step. It is preferable to use a method for manufacturing a lithium ion secondary battery including a step of leaving the battery after charging.

予備充電工程後、第2押圧工程前に上述の充電後放置工程を行って電池を第1電池電圧V1の状態で0.5時間以上放置することで、この放置中にも正極板上に残存する金属異物が電解液中に溶解する。このため、金属異物をより確実に電解液中に溶解させることができる。なお、この充電後放置工程で電池を放置する時間は、1時間以上とするのが更に好ましい。 After the pre-charging step and before the second pressing step, the above-mentioned post-charging leaving step is performed to leave the battery at the first battery voltage V1 for 0.5 hours or more, so that the battery remains on the positive electrode plate even during this leaving. Metallic foreign matter dissolves in the electrolytic solution. Therefore, the metal foreign matter can be more reliably dissolved in the electrolytic solution. The time for leaving the battery in the leaving step after charging is more preferably 1 hour or more.

更に、上記のリチウムイオン二次電池の製造方法であって、前記予備充電工程及び前記充電後放置工程を、上記リチウムイオン二次電池を加温し前記電解液の粘度を下げた状態で行うリチウムイオン二次電池の製造方法とするのが好ましい。 Further, in the method for manufacturing a lithium ion secondary battery, the preliminary charging step and the post-charging leaving step are performed in a state where the lithium ion secondary battery is heated and the viscosity of the electrolytic solution is lowered. It is preferable to use a method for manufacturing an ion secondary battery.

予備充電工程及び充電後放置工程を、電池を加温し電解液の粘度を下げた状態で行うことで、これらの工程中においても、電解液の粘度を下げたことにより、金属異物由来の金属イオンの拡散を促進させることができる。 By performing the pre-charging step and the step of leaving after charging in a state where the battery is heated and the viscosity of the electrolytic solution is lowered, the viscosity of the electrolytic solution is lowered even during these steps, so that the metal derived from the metal foreign matter is obtained. It can promote the diffusion of ions.

実施形態に係るリチウムイオン二次電池の斜視図である。It is a perspective view of the lithium ion secondary battery which concerns on embodiment. 実施形態に係るリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery which concerns on embodiment. 実施形態に係るリチウムイオン二次電池の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the lithium ion secondary battery which concerns on embodiment. 実施例及び比較例に係るリチウムイオン二次電池の平面図である。It is a top view of the lithium ion secondary battery which concerns on Example and comparative example. 実施例及び比較例に係る電極体等の平面図である。It is a top view of the electrode body and the like which concerns on Example and the comparative example. 比較例に係るリチウムイオン二次電池の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the lithium ion secondary battery which concerns on a comparative example. 本充電工程後のセパレータの正極側表面のうち、金属異物を配置した部位の写真を図面化したものであり、(a)は実施例に係るセパレータの写真を図面化したものであり、(b)は比較例に係るセパレータの写真を図面化したものである。A photograph of a portion of the surface on the positive electrode side of the separator after the main charging step on which a metal foreign substance is arranged is drawn, and (a) is a drawing of a photograph of the separator according to the embodiment (b). ) Is a drawing of a photograph of the separator according to the comparative example.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係るリチウムイオン二次電池(以下、単に「電池」ともいう)1の斜視図及び断面図を示す。なお、以下では、電池1の電池縦方向BH、電池横方向CH及び電池厚み方向DHを、図1及び図2に示す方向と定めて説明する。この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a perspective view and a cross-sectional view of a lithium ion secondary battery (hereinafter, also simply referred to as “battery”) 1 according to the present embodiment. In the following description, the battery vertical direction BH, the battery horizontal direction CH, and the battery thickness direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2. The battery 1 is a square and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric vehicle.

電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。また、電池ケース10内には、電解液17が収容されており、その一部は電極体20内に含浸されている。本実施形態の電解液17は、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びメチルエチルカーボネート(MEC)を体積比30:40:30で混合した非水溶媒に、LiPF6 を1.1Mの濃度で溶解した非水電解液である。 The battery 1 is composed of a battery case 10, an electrode body 20 housed therein, a positive electrode terminal member 50 supported by the battery case 10, a negative electrode terminal member 60, and the like. Further, the electrolytic solution 17 is housed in the battery case 10, and a part of the electrolytic solution 17 is impregnated in the electrode body 20. The electrolytic solution 17 of the present embodiment contains LiPF 6 of 1.1 M in a non-aqueous solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 30:40:30. It is a non-aqueous electrolyte solution dissolved at a concentration.

電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20のうち正極板21に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20のうち負極板31に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。 The battery case 10 has a rectangular parallelepiped shape and is made of metal (aluminum in this embodiment). The battery case 10 is composed of a bottomed square cylindrical case body member 11 having an opening only on the upper side, and a rectangular plate-shaped case lid member 13 welded in a form of closing the opening of the case body member 11. NS. A positive electrode terminal member 50 made of aluminum is fixed to the case lid member 13 in a state of being insulated from the case lid member 13. The positive electrode terminal member 50 is connected to and conducts with the positive electrode plate 21 of the electrode body 20 in the battery case 10, while penetrating the case lid member 13 and extending to the outside of the battery. Further, a negative electrode terminal member 60 made of copper is fixed to the case lid member 13 in a state of being insulated from the case lid member 13. The negative electrode terminal member 60 is connected to and conductive to the negative electrode plate 31 of the electrode body 20 in the battery case 10, while penetrating the case lid member 13 and extending to the outside of the battery.

電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10の間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状で樹脂製の多孔質膜からなる一対のセパレータ41,41を介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。 The electrode body 20 has a flat shape and is housed in the battery case 10 in a state of being laid on its side. A bag-shaped insulating film enclosure 19 made of an insulating film is arranged between the electrode body 20 and the battery case 10. In the electrode body 20, the strip-shaped positive electrode plate 21 and the strip-shaped negative electrode plate 31 are overlapped with each other via a pair of strip-shaped and resin porous membrane separators 41 and 41, and wound around the axis to form a flat shape. It is compressed.

正極板21は、帯状のアルミニウム箔からなる正極集電箔の両主面の所定位置に、正極活物質層を帯状に設けてなる。この正極活物質層は、正極活物質、導電材及び結着剤からなる。本実施形態では、正極活物質として、リチウム遷移金属複合酸化物、具体的には、リチウムニッケルコバルトマンガン系複合酸化物を用いている。また、負極板31は、帯状の銅箔からなる負極集電箔の両主面の所定位置に、負極活物質層を帯状に設けてなる。この負極活物質層は、負極活物質、結着剤及び増粘剤からなる。本実施形態では、負極活物質として、炭素材料、具体的には、黒鉛を用いている。 The positive electrode plate 21 is formed by providing a strip-shaped positive electrode active material layer at predetermined positions on both main surfaces of a positive electrode current collecting foil made of a strip-shaped aluminum foil. The positive electrode active material layer is composed of a positive electrode active material, a conductive material and a binder. In the present embodiment, a lithium transition metal composite oxide, specifically, a lithium nickel cobalt manganese-based composite oxide is used as the positive electrode active material. Further, the negative electrode plate 31 is provided with a negative electrode active material layer in a band shape at predetermined positions on both main surfaces of the negative electrode current collector foil made of a band-shaped copper foil. The negative electrode active material layer is composed of a negative electrode active material, a binder and a thickener. In this embodiment, a carbon material, specifically graphite, is used as the negative electrode active material.

次いで、上記電池1の製造方法について説明する(図3参照)。まず、「組立工程S1」において、未注液の電池1xを組み立てる。具体的には、正極板21及び負極板31を、一対のセパレータ41,41を介して互いに重ねて捲回し、扁平状に圧縮して電極体20を形成する。次に、ケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設する(図1及び図2参照)。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板31にそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。かくして、未注液の電池1xが形成される。なお、この組立工程S1において、電池1xの電極体20内、具体的には正極板21とセパレータ41の間に、鉄や銅などの金属異物が混入することがある。 Next, a method for manufacturing the battery 1 will be described (see FIG. 3). First, in the "assembly step S1", the uninjected battery 1x is assembled. Specifically, the positive electrode plate 21 and the negative electrode plate 31 are wound on top of each other via a pair of separators 41 and 41 and compressed into a flat shape to form the electrode body 20. Next, the case lid member 13 is prepared, and the positive electrode terminal member 50 and the negative electrode terminal member 60 are fixedly attached to the case lid member 13 (see FIGS. 1 and 2). After that, the positive electrode terminal member 50 and the negative electrode terminal member 60 are welded to the positive electrode plate 21 and the negative electrode plate 31 of the electrode body 20, respectively. Next, the electrode body 20 is covered with the insulating film enclosing body 19, and these are inserted into the case main body member 11, and the opening of the case main body member 11 is closed with the case lid member 13. Then, the case body member 11 and the case lid member 13 are welded to form the battery case 10. Thus, an uninjected battery 1x is formed. In this assembly step S1, metallic foreign substances such as iron and copper may be mixed in the electrode body 20 of the battery 1x, specifically between the positive electrode plate 21 and the separator 41.

次に、「注液工程S2」において、この未注液の電池1x内に電解液17を注液する。具体的には、電解液17を注液孔13hから電池ケース10内に注液して、その後、封止部材15で注液孔13hを封止する。その後、この電池1を6.5時間放置して、注液した電解液17を更に電極体20内に含浸させる。この注液工程S2は、20℃の温度下で行う。なお、組立工程S1で混入した金属異物は、電解液17の注液後に電解液17中に徐々に溶解する。 Next, in the “liquid injection step S2”, the electrolytic solution 17 is injected into the uninjected battery 1x. Specifically, the electrolytic solution 17 is injected into the battery case 10 from the injection hole 13h, and then the injection hole 13h is sealed by the sealing member 15. Then, the battery 1 is left to stand for 6.5 hours, and the injected electrolytic solution 17 is further impregnated into the electrode body 20. This liquid injection step S2 is performed at a temperature of 20 ° C. The metal foreign matter mixed in the assembly step S1 is gradually dissolved in the electrolytic solution 17 after the electrolytic solution 17 is injected.

次に、「第1押圧工程S3」において、電池1の電極体20を、正極板21、セパレータ41及び負極板31の積層方向SH(図1参照、図2において紙面に直交する方向)に第1圧力P1で押圧する。具体的には、電池ケース10の幅広な側面10cを一対の板状の押圧治具(不図示)で電池厚み方向DHに挟んで、電池1を電池厚み方向DHに押圧した状態で拘束することにより、電極体20を積層方向SHに第1圧力P1(本実施形態では、P1=0.70Pa)で押圧する。このような第1押圧工程S3を行うことで、正極板21とセパレータ41との間隔が狭くなって、正極板21とセパレータ41の間に混入した金属異物が、より確実に正極板21に接触することとなる。 Next, in the "first pressing step S3", the electrode body 20 of the battery 1 is placed in the stacking direction SH of the positive electrode plate 21, the separator 41, and the negative electrode plate 31 (see FIG. 1, the direction orthogonal to the paper surface in FIG. 2). Press with 1 pressure P1. Specifically, the wide side surface 10c of the battery case 10 is sandwiched between a pair of plate-shaped pressing jigs (not shown) in the battery thickness direction DH, and the battery 1 is restrained in a state of being pressed in the battery thickness direction DH. the (in this embodiment, P1 = 0.70 M Pa) first pressure P1 of the electrode body 20 in the stacking direction SH is pressed. By performing the first pressing step S3 in this way, the distance between the positive electrode plate 21 and the separator 41 is narrowed, and the metallic foreign matter mixed between the positive electrode plate 21 and the separator 41 comes into contact with the positive electrode plate 21 more reliably. Will be done.

次に、「充電前放置工程S4」において、電池1を放置する。本実施形態では、電池1を1時間放置する。この充電前放置工程S4は、放置開始から5分間で電池温度Teを20℃から50℃まで加温する。そして、残りの55分間は、電池温度Te=50℃を保持し、後述する予備充電工程S5を電池温度Te=50℃で行う。本実施形態で用いた前述の電解液17は、20℃における粘度が3.65cPであるのに対し、50℃における粘度が1.95cPである。従って、電池1を電池温度Te=20℃から50℃に加温することにより、電解液17の粘度は約半分(1.95/3.65=0.53)まで下がる。 Next, in the "pre-charging leaving step S4", the battery 1 is left. In this embodiment, the battery 1 is left for 1 hour. In this pre-charging leaving step S4, the battery temperature Te is heated from 20 ° C. to 50 ° C. within 5 minutes from the start of leaving. Then, the battery temperature Te = 50 ° C. is maintained for the remaining 55 minutes, and the preliminary charging step S5 described later is performed at the battery temperature Te = 50 ° C. The above-mentioned electrolytic solution 17 used in the present embodiment has a viscosity at 20 ° C. of 3.65 cP, whereas a viscosity at 50 ° C. is 1.95 cP. Therefore, by heating the battery 1 from the battery temperature Te = 20 ° C. to 50 ° C., the viscosity of the electrolytic solution 17 is reduced to about half (1.95 / 3.65 = 0.53).

次に、「予備充電工程S5」において、電極体20を第1圧力P1で押圧した状態で、電池1を第1電池電圧V1(本実施形態では、V1=2.0V)まで予備充電する。この第1電池電圧V1は、正極電位が鉄が溶解する溶解電位(3.2V vs. Li/Li+)よりも高く、負極電位が電解液17中に溶解した鉄イオンが析出する析出電位(2.3V vs. Li/Li+)よりも高くなる電池電圧である。具体的には、電池1に充放電装置を接続して、50℃の温度下において、定電流定電圧(CCCV)充電により、0.5Cの定電流で電池電圧Veが約0Vから第1電池電圧V1=2.0Vになるまで充電した後、この第1電池電圧V1=2.0Vを2分間維持した。 Next, in the "preliminary charging step S5", the battery 1 is precharged to the first battery voltage V1 (V1 = 2.0V in this embodiment) while the electrode body 20 is pressed by the first pressure P1. In this first battery voltage V1, the positive electrode potential is higher than the dissolution potential (3.2 V vs. Li / Li +) in which iron dissolves, and the negative electrode potential is the precipitation potential (2) in which iron ions dissolved in the electrolytic solution 17 are precipitated. The battery voltage is higher than .3V vs. Li / Li +). Specifically, a charging / discharging device is connected to the battery 1, and the battery voltage Ve changes from about 0 V to the first battery at a constant current of 0.5 C by charging with a constant current constant voltage (CCCV) at a temperature of 50 ° C. After charging until the voltage V1 = 2.0V, the first battery voltage V1 = 2.0V was maintained for 2 minutes.

このような予備充電工程S5を行うと、正極電位が高くなり鉄の溶解電位を超えて、正極板21上で金属異物が電解液17中に溶解し易くなる。特に、電極体20を第1圧力P1で押圧した状態とすることで、前述のように、正極板21とセパレータ41の間に混入した金属異物が、より確実に正極板21に接触しているので、正極板21上で金属異物が溶解し易い。一方、負極電位は低くなり過ぎないため(鉄イオンの析出電位よりも高い状態のままであるため)、負極板31上で金属異物由来の金属が析出し難い。 When such a precharging step S5 is performed, the positive electrode potential becomes high and exceeds the dissolution potential of iron, so that the metal foreign matter is easily dissolved in the electrolytic solution 17 on the positive electrode plate 21. In particular, by pressing the electrode body 20 with the first pressure P1, as described above, the metal foreign matter mixed between the positive electrode plate 21 and the separator 41 is more reliably in contact with the positive electrode plate 21. Therefore, the metal foreign matter is easily dissolved on the positive electrode plate 21. On the other hand, since the negative electrode potential does not become too low (because it remains higher than the precipitation potential of iron ions), it is difficult for metal derived from metallic foreign matter to precipitate on the negative electrode plate 31.

次に、「充電後放置工程S6」において、電池1を放置する。本実施形態では、電池1を3.5時間放置する。この充電後放置工程S6は、引き続き50℃の温度下で行う。このような充電後放置工程S6を行うことで、この放置中にも正極板21上に存在する金属異物が電解液17中に溶解する。このため、金属異物をより確実に電解液17中に溶解させることができる。 Next, in the "leaving step S6 after charging", the battery 1 is left unattended. In this embodiment, the battery 1 is left for 3.5 hours. This post-charging leaving step S6 is continuously performed at a temperature of 50 ° C. By performing the leaving step S6 after charging as described above, the metal foreign matter existing on the positive electrode plate 21 is dissolved in the electrolytic solution 17 even during the leaving. Therefore, the metal foreign matter can be more reliably dissolved in the electrolytic solution 17.

次に、「第2押圧工程S7」において、電池1の電極体20を第1圧力P1よりも高い第2圧力P2で積層方向SHに押圧する。具体的には、この第2押圧工程S7は、引き続き50℃の温度下で行う。電池ケース10の幅広な側面10cを前述の一対の押圧治具(不図示)で電池厚み方向DHに挟んで、電極体20を積層方向SHに第2圧力P2(本実施形態では、P2=1.3Pa)で押圧する。このような第2押圧工程S7を行うことで、正極板21と負極板31の間隔が狭くなって、これらの間における電解液17が押し出され、この電解液17に含まれる金属異物由来の金属イオンの拡散が促進される。特に、電池1の加温により(本実施形態では、電池温度Te=50℃)、電解液17の粘度が低くなっているので、電解液17が押し出され易く、金属イオンが拡散し易い。 Next, in the "second pressing step S7", the electrode body 20 of the battery 1 is pressed in the stacking direction SH at a second pressure P2 higher than the first pressure P1. Specifically, this second pressing step S7 is continuously performed at a temperature of 50 ° C. The wide side surface 10c of the battery case 10 is sandwiched between the pair of pressing jigs (not shown) described above in the battery thickness direction DH, and the electrode body 20 is placed in the stacking direction SH at a second pressure P2 (P2 = 1 in this embodiment). .3 pressed by M Pa). By performing such a second pressing step S7, the distance between the positive electrode plate 21 and the negative electrode plate 31 is narrowed, the electrolytic solution 17 is extruded between them, and the metal derived from the metal foreign substance contained in the electrolytic solution 17 is extruded. Ion diffusion is promoted. In particular, since the viscosity of the electrolytic solution 17 is lowered by heating the battery 1 (in this embodiment, the battery temperature Te = 50 ° C.), the electrolytic solution 17 is easily extruded and metal ions are easily diffused.

次に、「本充電工程S8」において、電池1に本充電(コンディショニング充電)を行う。具体的には、電池1に充放電装置を接続して、引き続き50℃の温度下において、定電流定電圧(CCCV)充電により、1Cの定電流で電池電圧Veが第2電池電圧V2=4.1Vになるまで充電した後、この第2電池電圧V2=4.1Vを2分間維持した。この本充電工程S8を行うと、負極電位が下がり、鉄イオンの析出電位よりも低くなるため、負極板31上で鉄等の金属異物由来の金属が析出し易くなる。しかし、本実施形態では、本充電工程S8の開始時には、金属異物は既に溶解してしまって存在せず、また、金属異物由来の金属イオンが金属異物が存在した場所から広範囲に拡散しており、金属イオンの濃度が高くなった部位が存在しない。このため、金属異物由来の金属が負極板31上で集中的にデンドライト状に析出することがなく、金属異物に起因した短絡が生じない。 Next, in the "main charging step S8", the battery 1 is fully charged (conditioning charging). Specifically, a charging / discharging device is connected to the battery 1, and the battery voltage Ve is set to the second battery voltage V2 = 4 at a constant current of 1C by continuously charging at a constant current constant voltage (CCCV) at a temperature of 50 ° C. After charging until it became .1 V, this second battery voltage V2 = 4.1 V was maintained for 2 minutes. When this main charging step S8 is performed, the negative electrode potential is lowered and becomes lower than the precipitation potential of iron ions, so that metal derived from a metallic foreign substance such as iron is likely to be deposited on the negative electrode plate 31. However, in the present embodiment, at the start of the main charging step S8, the metal foreign matter has already melted and does not exist, and the metal ions derived from the metal foreign matter are widely diffused from the place where the metal foreign matter exists. , There is no site where the concentration of metal ions is high. Therefore, the metal derived from the metal foreign matter does not concentrate in a dendrite shape on the negative electrode plate 31, and a short circuit due to the metal foreign matter does not occur.

次に、「エージング工程S9」において、電池1を放置してエージングする。具体的には、本充電後の電池1を、60℃の温度下において、端子開放した状態で20hrにわたり放置してエージングする。 Next, in the "aging step S9", the battery 1 is left to age. Specifically, the fully charged battery 1 is left at a temperature of 60 ° C. for 20 hours with its terminals open for aging.

次に、「短絡検知工程S10」において、電池1を端子開放した状態で放置して放電させて(自己放電させて)、放置中の電池電圧Veの電圧低下量ΔVeを測定し、当該電池1の内部短絡の有無を検知する。具体的には、電池1を20℃の温度下で端子開放した状態で放置して、エージング工程S9の終了時(短絡検知工程S10の開始時)から2日経過後に測定した電池電圧Vaと、エージング工程S9の終了時(短絡検知工程S10の開始時)から7日経過後に測定した電池電圧Vbとから、電圧低下量ΔVe=Va−Vbを算出する。そして、取得した当該電池1の電圧低下量ΔVeを、予め定めた基準低下量ΔVrと比較し、電圧低下量ΔVeが基準低下量ΔVrよりも大きい場合(ΔVe>ΔVr)に、当該電池1に内部短絡が生じている不良品と判定し、その電池1を除去する。一方、当該電池1の電圧低下量ΔVeが基準低下量ΔVrよりも小さい場合(ΔVe≦ΔVr)には、当該電池1を内部短絡の無い良品と判定する。
短絡検知工程S10の後は、良品と判定された電池1について、他の各種検査を行う。かくして、電池1が完成する。
Next, in the "short circuit detection step S10", the battery 1 is left open and discharged (self-discharged), and the voltage decrease amount ΔVe of the battery voltage Ve during the leave is measured, and the battery 1 is measured. Detects the presence or absence of an internal short circuit. Specifically, the battery voltage Va measured two days after the end of the aging step S9 (the start of the short circuit detection step S10) after leaving the battery 1 in a state where the terminals are open at a temperature of 20 ° C. The voltage decrease amount ΔVe = Va−Vb is calculated from the battery voltage Vb measured 7 days after the end of the aging step S9 (the start of the short circuit detection step S10). Then, the acquired voltage reduction amount ΔVe of the battery 1 is compared with a predetermined reference reduction amount ΔVr, and when the voltage reduction amount ΔVe is larger than the reference reduction amount ΔVr (ΔVe> ΔVr), the inside of the battery 1 is inside. It is determined that the product is defective due to a short circuit, and the battery 1 is removed. On the other hand, when the voltage drop amount ΔVe of the battery 1 is smaller than the reference drop amount ΔVr (ΔVe ≦ ΔVr), the battery 1 is determined to be a non-defective product without an internal short circuit.
After the short-circuit detection step S10, various other inspections are performed on the battery 1 determined to be a non-defective product. Thus, the battery 1 is completed.

(実施例及び比較例)
次いで、本発明の効果を検証するために行った試験の結果について説明する。実施例及び比較例として、図4及び図5に示すラミネート型のリチウムイオン二次電池(以下、単に「電池」ともいう)100をそれぞれ製造した。
これらの電池100は、ラミネートフィルムを袋状にした外装体110の内部に、電極体120、電解液117等が収容されている。このうち電極体120は、1枚の矩形状の正極板121と、1枚の矩形状の負極板131とを、1枚の矩形状のセパレータ141を介して互いに重ねたものである。
(Examples and comparative examples)
Next, the results of tests conducted to verify the effects of the present invention will be described. As Examples and Comparative Examples, laminated lithium ion secondary batteries (hereinafter, also simply referred to as “batteries”) 100 shown in FIGS. 4 and 5, respectively, were manufactured.
In these batteries 100, the electrode body 120, the electrolytic solution 117, and the like are housed inside the outer body 110 in which the laminated film is shaped like a bag. Of these, the electrode body 120 is formed by stacking one rectangular positive electrode plate 121 and one rectangular negative electrode plate 131 on top of each other via one rectangular separator 141.

正極板121は、矩形状のアルミニウム箔からなる正極集電箔の一方の主面(負極板131と対向する側の主面)の所定位置に、正極活物質層を23mm×23mmの大きさに矩形状に設けてなる。また、この正極板121には、帯状のアルミニウム板からなる正極タブ150が接合され、外装体110の内部から外部に延出している。一方、負極板131は、矩形状の銅箔からなる負極集電箔の一方の主面(正極板121と対向する側の主面)の所定位置に、負極活物質層を25mm×25mmの大きさに矩形状に設けてなる。また、この負極板131には、帯状の銅板からなる負極タブ160が接合され、外装体110の内部から外部に延出している。 The positive electrode plate 121 has a positive electrode active material layer having a size of 23 mm × 23 mm at a predetermined position on one main surface (main surface on the side facing the negative electrode plate 131) of the positive electrode current collecting foil made of rectangular aluminum foil. It is provided in a rectangular shape. Further, a positive electrode tab 150 made of a strip-shaped aluminum plate is joined to the positive electrode plate 121, and extends from the inside of the exterior body 110 to the outside. On the other hand, the negative electrode plate 131 has a negative electrode active material layer having a size of 25 mm × 25 mm at a predetermined position on one main surface (main surface on the side facing the positive electrode plate 121) of the negative electrode current collecting foil made of rectangular copper foil. It is provided in a rectangular shape. Further, a negative electrode tab 160 made of a strip-shaped copper plate is joined to the negative electrode plate 131, and extends from the inside of the exterior body 110 to the outside.

なお、これらの電池100においては、未注液の電池100xを組み立てる際に、正極板121の正極活物質層の中央部とセパレータ141との間に、金属異物として、直径200μm、厚み10μmの大きさの円板状をなす鉄の塊をそれぞれ配置した。 In these batteries 100, when assembling the uninjected battery 100x, a large metal foreign substance having a diameter of 200 μm and a thickness of 10 μm is provided between the central portion of the positive electrode active material layer of the positive electrode plate 121 and the separator 141. Each of the iron lumps forming a disk shape was placed.

実施例では、実施形態と同様に(図3参照)、注液工程S2の後、第1押圧工程S3、充電前放置工程S4、予備充電工程S5、充電後放置工程S6、第2押圧工程S7を行ってから、本充電工程S8を行った。その後は、エージング工程S9及び短絡検知工程S10は行わずに、電池100を解体して、セパレータ141の正極側表面うち、金属異物と接触していた部分を、走査型電子顕微鏡で観察し、金属異物の溶解状態(溶け残り具合)を調査した。また、負極板131上にデンドライト状に金属(鉄)が析出しているか否かを確認した。 In the embodiment, as in the embodiment (see FIG. 3), after the liquid injection step S2, the first pressing step S3, the pre-charging leaving step S4, the pre-charging step S5, the post-charging leaving step S6, and the second pressing step S7. After that, the main charging step S8 was performed. After that, without performing the aging step S9 and the short circuit detection step S10, the battery 100 was disassembled, and the portion of the positive electrode side surface of the separator 141 that was in contact with the metal foreign matter was observed with a scanning electron microscope, and the metal was observed. The dissolved state of the foreign matter (the degree of undissolved residue) was investigated. Further, it was confirmed whether or not metal (iron) was deposited in a dendrite shape on the negative electrode plate 131.

一方、比較例では、図6に示すように、注液工程S2の後、押圧工程S3Aを行って、本充電工程S8を行った。この比較例の押圧工程S3Aは、実施例(実施形態)の第2押圧工程S7と同様に、電池100の電極体120を第2圧力P2で積層方向SHに押圧する。但し、この比較例では、この押圧工程S3A及びその後の本充電工程S8を、50℃の温度下ではなく、20℃の温度下で行った。本充電工程S8の後は、実施例と同様に、電池100を解体して、金属異物の溶解状態を調査した。また、負極板131上にデンドライト状に金属(鉄)が析出しているか否かを確認した。 On the other hand, in the comparative example, as shown in FIG. 6, after the liquid injection step S2, the pressing step S3A was performed, and the main charging step S8 was performed. In the pressing step S3A of this comparative example, the electrode body 120 of the battery 100 is pressed in the stacking direction SH by the second pressure P2, similarly to the second pressing step S7 of the embodiment (embodiment). However, in this comparative example, the pressing step S3A and the subsequent main charging step S8 were performed not at a temperature of 50 ° C. but at a temperature of 20 ° C. After the main charging step S8, the battery 100 was disassembled and the dissolved state of the metal foreign matter was investigated in the same manner as in the examples. Further, it was confirmed whether or not metal (iron) was deposited in a dendrite shape on the negative electrode plate 131.

その結果、比較例の電池100では、図7(b)に示すように、予め配置した金属(鉄)異物が殆ど溶解しないで残っていた。また、負極板131上にデンドライト状に金属(鉄)が析出していた。一方、実施例の電池100では、図7(a)に示すように、金属(鉄)異物が殆ど溶解していた。また、負極板131上にデンドライト状に金属(鉄)が析出していなかった。このような結果となった理由は、以下であると考えられる。 As a result, in the battery 100 of the comparative example, as shown in FIG. 7B, the metal (iron) foreign matter arranged in advance remained almost undissolved. Further, metal (iron) was deposited in a dendrite shape on the negative electrode plate 131. On the other hand, in the battery 100 of the example, as shown in FIG. 7A, most of the metal (iron) foreign matter was dissolved. Further, no metal (iron) was deposited in a dendrite shape on the negative electrode plate 131. The reason for this result is considered to be as follows.

即ち、比較例では、前述の第1押圧工程S3及び予備充電工程S5を行っていないため、本充電工程S8以前に、正極板121上で電解液117中に溶解する金属異物の量が少ない。また、正極板121とセパレータ141の間に配置した金属異物が、正極板121に接触していないため、本充電工程S8の際に、金属異物の電位が上がり難く、金属異物が溶解し難い。このため、金属異物の多くが溶解しないで残ったと考えられる。また、本充電の際に、金属異物の一部が溶解した金属イオンが負極板131上で集中的にデンドライト状に析出したと考えられる。 That is, in the comparative example, since the above-mentioned first pressing step S3 and precharging step S5 are not performed, the amount of metal foreign matter dissolved in the electrolytic solution 117 on the positive electrode plate 121 is small before the main charging step S8. Further, since the metal foreign matter arranged between the positive electrode plate 121 and the separator 141 does not come into contact with the positive electrode plate 121, the potential of the metal foreign matter does not easily rise during the main charging step S8, and the metal foreign matter does not easily dissolve. Therefore, it is considered that most of the metallic foreign substances remained undissolved. Further, it is considered that during the main charging, metal ions in which a part of the metal foreign matter was dissolved were concentrated and deposited in a dendrite shape on the negative electrode plate 131.

これに対し、実施例では、第1押圧工程S3及び予備充電工程S5を行っている。第1押圧工程S3で電極体120を積層方向SHに押圧することで、正極板121とセパレータ141との間隔が狭くなって、正極板121とセパレータ141の間に配置した金属異物が、正極板121に接触した。このため、予備充電工程S5において、正極板121の正極電位が高くなったときに、金属異物の電位も高くなって、正極板121上で金属異物が電解液中に溶解した。一方、負極電位は低くなり過ぎないため、負極板131上で金属異物由来の金属が析出し難い。 On the other hand, in the embodiment, the first pressing step S3 and the precharging step S5 are performed. By pressing the electrode body 120 in the stacking direction SH in the first pressing step S3, the distance between the positive electrode plate 121 and the separator 141 is narrowed, and the metallic foreign matter arranged between the positive electrode plate 121 and the separator 141 is removed from the positive electrode plate. Contacted 121. Therefore, in the preliminary charging step S5, when the positive electrode potential of the positive electrode plate 121 is increased, the potential of the metallic foreign matter is also increased, and the metallic foreign matter is dissolved in the electrolytic solution on the positive electrode plate 121. On the other hand, since the negative electrode potential does not become too low, it is difficult for metal derived from a metallic foreign substance to precipitate on the negative electrode plate 131.

また、実施例では、第2押圧工程S7において、電池100を加温し電解液117の粘度を下げた状態で、電極体120を第1圧力P1よりも高い第2圧力P2で積層方向SHに押圧している。これにより、正極板121と負極板131の間隔が狭くなって、これらの間における電解液117が押し出され、この電解液117に含まれる金属異物由来の金属イオンの拡散が促進される。特に、電池100の加温によって電解液117の粘度が低くなっているので、電解液117が押し出され易く、金属イオンの拡散が促進される。その結果、金属イオンが負極板131上で集中的にデンドライト状に析出するのが防止されたと考えられる。 Further, in the embodiment, in the second pressing step S7, in a state where the battery 100 is heated and the viscosity of the electrolytic solution 117 is lowered, the electrode body 120 is set to the stacking direction SH at a second pressure P2 higher than the first pressure P1. Pressing. As a result, the distance between the positive electrode plate 121 and the negative electrode plate 131 is narrowed, the electrolytic solution 117 is extruded between them, and the diffusion of metal ions derived from metal foreign substances contained in the electrolytic solution 117 is promoted. In particular, since the viscosity of the electrolytic solution 117 is lowered by heating the battery 100, the electrolytic solution 117 is easily extruded and the diffusion of metal ions is promoted. As a result, it is considered that the metal ions were prevented from being concentratedly deposited in a dendrite shape on the negative electrode plate 131.

以上で説明したように、電池1の製造方法では、注液工程S2の後、第1押圧工程S3で電池1の電極体20を積層方向SHに第1圧力P1で押圧し、この状態で予備充電工程S5を行って、電池1を第1電池電圧V1まで充電している。電極体20を積層方向SHに押圧することで、正極板21とセパレータ41との間隔が狭くなって、正極板21とセパレータ41の間に混入した金属異物が、より確実に正極板21に接触することとなる。このため、予備充電工程S5において、正極板21の正極電位が高くなったときに、正極板21に接触する金属異物の電位も高くなって、正極板21上で金属異物(特に鉄の異物)が電解液17中に溶解し易くなる。一方、負極電位は低くなり過ぎないため、負極板31上で金属異物(特に鉄の異物)由来の金属が析出し難い。 As described above, in the method for manufacturing the battery 1, after the liquid injection step S2, the electrode body 20 of the battery 1 is pressed in the stacking direction SH with the first pressure P1 in the first pressing step S3, and the battery 1 is prepared in this state. The charging step S5 is performed to charge the battery 1 to the first battery voltage V1. By pressing the electrode body 20 in the stacking direction SH, the distance between the positive electrode plate 21 and the separator 41 is narrowed, and the metallic foreign matter mixed between the positive electrode plate 21 and the separator 41 comes into contact with the positive electrode plate 21 more reliably. Will be done. Therefore, in the preliminary charging step S5, when the positive electrode potential of the positive electrode plate 21 becomes high, the potential of the metallic foreign matter in contact with the positive electrode plate 21 also becomes high, and the metallic foreign matter (particularly the iron foreign matter) is placed on the positive electrode plate 21. Is easily dissolved in the electrolytic solution 17. On the other hand, since the negative electrode potential does not become too low, it is difficult for metal derived from metal foreign matter (particularly iron foreign matter) to precipitate on the negative electrode plate 31.

また、電池1の製造方法では、予備充電工程S5の後、第2押圧工程S7において、電池1を加温し電解液17の粘度を下げた状態で、電極体20を第1圧力P1よりも高い第2圧力P2で積層方向SHに押圧している。これにより、正極板21と負極板31の間隔が狭くなって、これらの間における電解液17が押し出され、この電解液17に含まれる金属異物由来の金属イオンの拡散が促進される。
かくして、電池1の製造方法では、製造過程で正極板21とセパレータ41の間に金属異物が混入したとしても、この金属異物の電解液17への溶解を促進させると共に、溶解した金属異物由来の金属イオンの拡散を促進させることができ、金属異物に起因した短絡を防止できる。
Further, in the method for manufacturing the battery 1, after the pre-charging step S5, in the second pressing step S7, the electrode body 20 is made higher than the first pressure P1 in a state where the battery 1 is heated and the viscosity of the electrolytic solution 17 is lowered. It is pressed in the stacking direction SH with a high second pressure P2. As a result, the distance between the positive electrode plate 21 and the negative electrode plate 31 is narrowed, the electrolytic solution 17 is extruded between them, and the diffusion of metal ions derived from metal foreign substances contained in the electrolytic solution 17 is promoted.
Thus, in the method for manufacturing the battery 1, even if a metallic foreign substance is mixed between the positive electrode plate 21 and the separator 41 in the manufacturing process, the dissolution of the metallic foreign substance in the electrolytic solution 17 is promoted and the dissolved metallic foreign substance is derived. It is possible to promote the diffusion of metal ions and prevent short circuits caused by foreign metals.

また、電池1の製造方法では、第1押圧工程S3における第1圧力P1を、0.60〜0.80Paとしている。第1圧力P1が低すぎないので、正極板21とセパレータ41の間に混入した金属異物が正極板21に接触し易い。一方、第1圧力P1が高すぎないので、正極板21と負極板31の間隔が狭くなりすぎて、これらの間の電解液17の量が減って、金属異物が電解液17中に溶解し難くなるのを防止できる。 In the manufacturing method of the battery 1, the first pressure P1 in the first pressing step S3, it is set to 0.60 to 0.80 M Pa. Since the first pressure P1 is not too low, the metallic foreign matter mixed between the positive electrode plate 21 and the separator 41 easily comes into contact with the positive electrode plate 21. On the other hand, since the first pressure P1 is not too high, the distance between the positive electrode plate 21 and the negative electrode plate 31 becomes too narrow, the amount of the electrolytic solution 17 between them decreases, and the metal foreign matter dissolves in the electrolytic solution 17. It can be prevented from becoming difficult.

また、第2押圧工程S7における第2圧力P2を、0.80〜1.8Paとしている。第2圧力P2が低すぎないので、正極板21と負極板31の間隔が適切に狭くなって、電解液17が押し出され易い。一方、第2圧力P2が高すぎないので、正極板21と負極板31の間隔が狭くなりすぎず、これらの間の電解液17の量が少なくなりすぎない。
また、第2押圧工程S7における電池温度Teを、25℃以上、更には、30℃以上としているので、電解液17の粘度が適切に下がる。一方で、この電池温度Teを、60℃以下、更には、50℃以下としているので、電池1が劣化したり、電池1の低温時の入出力特性が低下するなど、電池の特性が変化するのを防止できる。
Further, the second pressure P2 in the second pressing step S7, and a from .80 to 1.8 M Pa. Since the second pressure P2 is not too low, the distance between the positive electrode plate 21 and the negative electrode plate 31 is appropriately narrowed, and the electrolytic solution 17 is likely to be extruded. On the other hand, since the second pressure P2 is not too high, the distance between the positive electrode plate 21 and the negative electrode plate 31 is not too narrow, and the amount of the electrolytic solution 17 between them is not too small.
Further, since the battery temperature Te in the second pressing step S7 is 25 ° C. or higher, further 30 ° C. or higher, the viscosity of the electrolytic solution 17 is appropriately lowered. On the other hand, since the battery temperature Te is set to 60 ° C. or lower, further 50 ° C. or lower, the characteristics of the battery change, such as deterioration of the battery 1 or deterioration of the input / output characteristics of the battery 1 at a low temperature. Can be prevented.

また、電池1の製造方法では、予備充電工程S5の後、第2押圧工程S7の前に充電後放置工程S6を行って電池1を第1電池電圧V1で0.5時間以上放置している。この放置中にも正極板21上に残存する金属異物が電解液17中に溶解するので、金属異物をより確実に電解液17中に溶解させることができる。
また、電池1の製造方法では、予備充電工程S5及び充電後放置工程S6を、電池1を加温し電解液17の粘度を下げた状態で行っているので、これらの工程中においても、電解液17の粘度を下げたことにより、金属異物由来の金属イオンの拡散を促進させることができる。
Further, in the method of manufacturing the battery 1, the battery 1 is left at the first battery voltage V1 for 0.5 hours or more by performing the post-charging leaving step S6 after the pre-charging step S5 and before the second pressing step S7. .. Since the metal foreign matter remaining on the positive electrode plate 21 is dissolved in the electrolytic solution 17 even during this leaving, the metal foreign matter can be more reliably dissolved in the electrolytic solution 17.
Further, in the method for manufacturing the battery 1, since the pre-charging step S5 and the post-charging leaving step S6 are performed in a state where the battery 1 is heated and the viscosity of the electrolytic solution 17 is lowered, electrolysis is performed even during these steps. By lowering the viscosity of the liquid 17, it is possible to promote the diffusion of metal ions derived from metal foreign substances.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、第1押圧工程S3及び第2押圧工程S7において、拘束部材で電池1を拘束して電極体20を積層方向SHに押圧したが、これに限られない。例えば、油圧プレスなどのプレス機で電池1を押圧して電極体20を積層方向SHに押圧してもよい。また、電池1におもりを載せるなどして電極体20を積層方向SHに押圧してもよい。
Although the present invention has been described above in accordance with the embodiments, it is needless to say that the present invention is not limited to the above-described embodiments and can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, in the first pressing step S3 and the second pressing step S7, the battery 1 is restrained by the restraining member and the electrode body 20 is pressed in the stacking direction SH, but the present invention is not limited to this. For example, the battery 1 may be pressed by a press machine such as a hydraulic press to press the electrode body 20 in the stacking direction SH. Further, the electrode body 20 may be pressed in the stacking direction SH by placing a weight on the battery 1.

1,100 電池
1x,100x (未注液の)電池
17,117 電解液
20,120 電極体
2,121 正極板
31,131 負極板
41,141 セパレータ
S1 組立工程
S2 注液工程
S3 第1押圧工程
S4 充電前放置工程
S5 予備充電工程
S6 充電後放置工程
S7 第2押圧工程
S8 本充電工程
S9 エージング工程
S10 短絡検知工程
S3A 押圧工程
1,100 Battery 1x, 100x (uninjected) Battery 17,117 Electrolyte 20,120 Electrode 2,121 Positive electrode plate 31,131 Negative electrode plate 41,141 Separator S1 Assembly step S2 Lubrication step S3 First pressing step S4 Pre-charging leaving step S5 Pre-charging step S6 Post-charging leaving step S7 Second pressing step S8 Main charging step S9 Aging step S10 Short circuit detection step S3A Pressing step

Claims (1)

正極活物質にリチウム遷移金属複合酸化物を含む正極板、及び、負極活物質に炭素材料を含む負極板がセパレータを介して互いに重なった電極体と、電解液と、を備えるリチウムイオン二次電池の製造方法であって、
上記電極体を有する未注液のリチウムイオン二次電池内に、上記電解液を注液する注液工程と、
上記注液工程の後に、上記リチウムイオン二次電池の上記電極体を、上記正極板、上記セパレータ及び上記負極板の積層方向に第1圧力P1で押圧する第1押圧工程と、
上記電極体を上記第1圧力P1で押圧した状態で、上記リチウムイオン二次電池を、正極電位が鉄の溶解電位よりも高く、かつ、負極電位が上記電解液中に溶解した鉄イオンの析出電位よりも高い第1電池電圧V1まで予備充電する予備充電工程と、
上記予備充電工程の後に、上記リチウムイオン二次電池を加温し上記電解液の粘度を下げた状態で、上記リチウムイオン二次電池の上記電極体を、上記第1圧力P1よりも高い第2圧力P2で上記積層方向に押圧する第2押圧工程と、
上記第2押圧工程の後に、上記第1電池電圧V1よりも高い第2電池電圧V2まで上記リチウムイオン二次電池をコンディショニング充電する本充電工程と、を備え
上記第1圧力P1は、0.60〜0.80MPaであり、
上記第2圧力P2は、0.80〜1.8MPaである
リチウムイオン二次電池の製造方法。
A lithium ion secondary battery including a positive electrode plate containing a lithium transition metal composite oxide as a positive electrode active material, an electrode body in which a negative electrode plate containing a carbon material as a negative electrode active material is overlapped with each other via a separator, and an electrolytic solution. It is a manufacturing method of
A liquid injection step of injecting the electrolytic solution into an uninjected lithium ion secondary battery having the electrode body, and a liquid injection step.
After the liquid injection step, a first pressing step of pressing the electrode body of the lithium ion secondary battery with a first pressure P1 in the stacking direction of the positive electrode plate, the separator, and the negative electrode plate.
In a state where the electrode body is pressed by the first pressure P1, in the lithium ion secondary battery, the positive electrode potential is higher than the iron dissolution potential and the negative electrode potential is the precipitation of iron ions dissolved in the electrolytic solution. A pre-charging process that pre-charges up to the first battery voltage V1, which is higher than the potential, and
After the precharging step, in a state where the lithium ion secondary battery is heated to reduce the viscosity of the electrolytic solution, the electrode body of the lithium ion secondary battery is placed in a second position higher than the first pressure P1. The second pressing step of pressing in the stacking direction with the pressure P2, and
After the second pressing step, a main charging step of conditioning and charging the lithium ion secondary battery to a second battery voltage V2 higher than the first battery voltage V1 is provided .
The first pressure P1 is 0.60 to 0.80 MPa.
The second pressure P2 is 0.80 to 1.8 MPa . A method for manufacturing a lithium ion secondary battery.
JP2017139238A 2017-07-18 2017-07-18 Manufacturing method of lithium ion secondary battery Active JP6946803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017139238A JP6946803B2 (en) 2017-07-18 2017-07-18 Manufacturing method of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017139238A JP6946803B2 (en) 2017-07-18 2017-07-18 Manufacturing method of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2019021510A JP2019021510A (en) 2019-02-07
JP6946803B2 true JP6946803B2 (en) 2021-10-06

Family

ID=65354468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017139238A Active JP6946803B2 (en) 2017-07-18 2017-07-18 Manufacturing method of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6946803B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893495B2 (en) * 1995-03-06 2012-03-07 宇部興産株式会社 Non-aqueous secondary battery
JP4383781B2 (en) * 2002-08-21 2009-12-16 株式会社東芝 Battery manufacturing method
JP2005243537A (en) * 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd Manufacturing method of non-aqueous electrolyte secondary battery
KR101332112B1 (en) * 2010-03-08 2013-11-21 도요타지도샤가부시키가이샤 Device for treatment of non-aqueous electrolyte secondary battery, and process for production of non-aqueous electrolyte secondary battery
US9385398B2 (en) * 2011-09-08 2016-07-05 Toyota Jidosha Kabushiki Kaisha Method for manufacturing lithium secondary battery
CN104115326B (en) * 2012-02-16 2016-08-24 丰田自动车株式会社 The manufacture method of secondary cell
JP2015015084A (en) * 2013-07-03 2015-01-22 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP2015219971A (en) * 2014-05-14 2015-12-07 トヨタ自動車株式会社 Method for manufacturing secondary cell
JP6202347B2 (en) * 2015-06-25 2017-09-27 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2019021510A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
CN108780127B (en) Method and apparatus for detecting low voltage defect of secondary battery
KR101352738B1 (en) Jelly-roll type electrode assembly pattern-coated with active material and secondary battery therewith
CN101341610B (en) Nonaqueous electrolyte secondary battery
US10026950B2 (en) Prismatic secondary battery having spark prevention mechanism and battery pack using the same
KR102232176B1 (en) Method for producing non-aqueous electrolyte secondary battery
JP5564338B2 (en) Lithium ion battery
KR20180071798A (en) Apparatus and method for inspecting low voltage defect of secondary battery
JPH08185850A (en) Lithium ion secondary battery
KR100749645B1 (en) Separator and lithium rechargeable battery using the same
JP4179528B2 (en) Secondary battery inspection method
KR102337494B1 (en) Secondary battery
US20150194679A1 (en) Method for producing battery and battery
CN104854754A (en) Non-aqueous electrolytic solution secondary battery and method for producing non-aqueous electrolytic solution secondary battery
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JP2019160391A (en) Method for manufacturing lithium ion secondary battery
KR101833609B1 (en) Method of manufacturing electric power storage device, and electric power storage device
JP6946803B2 (en) Manufacturing method of lithium ion secondary battery
JP2014203551A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP7052697B2 (en) Manufacturing method of lithium ion secondary battery
JP7107649B2 (en) Battery manufacturing method
JP2011170972A (en) Method of manufacturing secondary battery
US10181597B2 (en) Electrochemical energy store
CN110534799B (en) Battery and battery cover plate assembly
JP7011782B2 (en) Secondary battery inspection method
JP2012028044A (en) Lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R151 Written notification of patent or utility model registration

Ref document number: 6946803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151