JP6942815B2 - Heat exchanger for heat exchange of fluids of different temperatures - Google Patents

Heat exchanger for heat exchange of fluids of different temperatures Download PDF

Info

Publication number
JP6942815B2
JP6942815B2 JP2019555558A JP2019555558A JP6942815B2 JP 6942815 B2 JP6942815 B2 JP 6942815B2 JP 2019555558 A JP2019555558 A JP 2019555558A JP 2019555558 A JP2019555558 A JP 2019555558A JP 6942815 B2 JP6942815 B2 JP 6942815B2
Authority
JP
Japan
Prior art keywords
heat exchange
flow path
exchange plate
heat exchanger
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019555558A
Other languages
Japanese (ja)
Other versions
JP2020503492A (en
Inventor
タラプーム、ナッタポン
ワチャラヌクラー、トレラット
ソムペック、カウィスラ
スリタマラット、ワナウィジット
クラナーク、スパウィッシ
シリムンカラクル、ニカポーン
ソーンチャミ、タナ
チュバリー、ルングロー
Original Assignee
ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド
ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド
ピーティーティー パブリック カンパニー リミテッド
ピーティーティー パブリック カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TH1601007738A external-priority patent/TH175741A/en
Application filed by ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド, ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド, ピーティーティー パブリック カンパニー リミテッド, ピーティーティー パブリック カンパニー リミテッド filed Critical ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド
Publication of JP2020503492A publication Critical patent/JP2020503492A/en
Application granted granted Critical
Publication of JP6942815B2 publication Critical patent/JP6942815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明のケミカルエンジニアリングは異なる温度をもつ流体の熱交換用の熱交換器に関する。 The chemical engineering of the present invention relates to heat exchangers for heat exchange of fluids having different temperatures.

現在までにマイクロチャネル熱交換器の開発に関する報告がなされている。マイクロチャネルは、通常サイズの流路と比べてみると、シェルアンドチューブ型熱交換器およびプレートアンドフレーム型熱交換器などの通常の熱交換器よりも高い伝熱性能を提供している。これは、マイクロチャネル内の流体の流れがチャネル壁から流体へより速く熱を伝達することができ、各チャネル内の流体が同様の流れ断面温度を有し、同じ容積であれば、伝熱表面積が通常の流路よりも大きく、流路内での圧力降下が比較的小さいからである。しかしながら、マイクロチャネルはいくつかの欠点を有しており、それらが用途の制限をもたらしている。例えば、マイクロチャネルは流路が狭いので詰まりを生じやすい。とくに、圧力が非常に異なる流体間の熱交換に使用される場合には、永久変形を生じることがあり得る。 To date, there have been reports on the development of microchannel heat exchangers. Microchannels offer higher heat transfer performance than regular heat exchangers such as shell-and-tube heat exchangers and plate-and-frame heat exchangers when compared to regular-sized channels. This is because the flow of fluid in the microchannel can transfer heat faster from the channel wall to the fluid, and if the fluid in each channel has a similar flow cross-sectional temperature and the same volume, then the heat transfer surface area. Is larger than the normal flow path, and the pressure drop in the flow path is relatively small. However, microchannels have some drawbacks, which limit their use. For example, microchannels are prone to clogging due to their narrow flow paths. Permanent deformation can occur, especially when used for heat exchange between fluids with very different pressures.

熱交換器の流路の特性は、熱交換性能および熱交換器の全体的な強度にとって重要であることが知られている。また、流路の特性は、製造上の可能性と流路の配置とを一緒に示すためのパラメータである。このため、熱交換器の性能を向上させ、かつ前述した用途の制限を克服するために流路の特性を開発する試みがこれまでに継続的に行われてきた。 The characteristics of the heat exchanger flow path are known to be important for heat exchange performance and the overall strength of the heat exchanger. In addition, the characteristics of the flow path are parameters for showing the manufacturing possibility and the arrangement of the flow path together. For this reason, attempts have been continuously made to develop the characteristics of the flow path in order to improve the performance of the heat exchanger and overcome the above-mentioned limitation of use.

米国公開20040031592号公報は、3つ以上の流体の流れを熱交換するためのマイクロチャネルを含む熱交換器を開示しており、このチャネル壁は熱変化表面積を増大させるためにフィンを有して平坦である。しかしながら、フィンを取り付けると、熱交換器内のファウリング率が増加する。ファウリング率が増加すると、熱交換器の熱伝達性能が低下して、圧力降下が増加する。さらに、高圧流体と共に使用する場合には、この従来技術の設計は問題を抱えている可能性があり、これは用途の制限をもたらす。 U.S.A. 20040031592 discloses a heat exchanger containing microchannels for heat exchange of three or more fluid streams, the channel walls having fins to increase the heat change surface area. It is flat. However, installing fins increases the fouling rate in the heat exchanger. As the fouling rate increases, the heat transfer performance of the heat exchanger decreases and the pressure drop increases. Moreover, when used with high pressure fluids, this prior art design can be problematic, which limits its use.

米国公開4516632号公報は、互い違いに積み重ねられたスロット付き熱交換シートおよびスロット無し熱交換シートを含むマイクロチャネル熱交換器を開示している。この従来技術では、スロット付き熱交換シートとスロット無し熱交換シートとは、異なる温度を有する流体のクロスフロー構成を形成するために、互い違いにかつ互いの向きが90度ずれるように配置されている。それにもかかわらず、この従来技術の熱交換器の流れ構成は高い熱交換性能を与えるものではない。 US Publication No. 45166632 discloses a microchannel heat exchanger that includes staggered stacked heat exchange sheets with slots and heat exchange sheets without slots. In this prior art, the slotted heat exchange sheet and the slotless heat exchange sheet are staggered and offset by 90 degrees to form a cross-flow configuration of fluids with different temperatures. .. Nevertheless, the flow configuration of this prior art heat exchanger does not provide high heat exchange performance.

欧州特許第1875959号公報は、互い違いに積み重ねられたマイクロチャネル熱交換プレートを含む熱交換器の設置によるエマルジョンの形成方法を開示している。この従来技術の熱交換器のマイクロチャネルは、くねくねと蛇行するスネーク形状のように形成されている。この従来技術の熱交換器では、チャネル内に2つの流動パターン、すなわち対向流と並行流とがつくりだされる。しかしながら、この従来技術の流路設計は、汚染物質を容易に目詰まりさせて、一方の側から他方の側への一方向の流れ経路と比べて流路を洗浄することがより困難になる。 European Patent No. 1875959 discloses a method of forming an emulsion by installing a heat exchanger containing staggered microchannel heat exchange plates. The microchannels of this prior art heat exchanger are shaped like a meandering snake. In this prior art heat exchanger, two flow patterns are created in the channel: countercurrent and parallel. However, this prior art flow path design can easily clog contaminants, making it more difficult to clean the flow path compared to a one-way flow path from one side to the other.

米国特許第8858159号公報は、低温の空気が通過してガスタービン内のブレードの熱を減少させるための冷却チャネルを備えるガスタービンを開示している。この従来技術の冷却チャネルは、伝熱性能を高めるために、湾曲した内外のリブと各対のリブ間にある台座とを備えている。しかしながら、各対リブ間の台座の性質は、熱交換器の圧力降下を増大させる可能性があるので、圧力が非常に異なる流体間での熱伝達あるいは高粘度の流体間での熱伝達に適用するときに制限を受ける。 US Pat. No. 8,858,159 discloses a gas turbine with a cooling channel for allowing cold air to pass through and reduce the heat of the blades in the gas turbine. This prior art cooling channel comprises curved inner and outer ribs and a pedestal between each pair of ribs to enhance heat transfer performance. However, the nature of the pedestal between each rib can increase the pressure drop in the heat exchanger, making it suitable for heat transfer between fluids with very different pressures or between highly viscous fluids. Be restricted when you do.

米国公開20100314088号公報は、互い違いに交互に積み重ねられたマイクロチャネルからなるプレートを含む熱交換器を開示している。この従来技術のプレートは湾曲するように形成され、マイクロチャネルは流体の流れ方向に沿って平行なチャネルを形成する非対称波形状に設定されている。直接部と曲線部の全長は一定である。しかしながら、この従来技術は、幅寸法や曲率半径等のような波形状チャネルの適切なパラメータを開示していない。 U.S.A. Publication No. 201314088 discloses a heat exchanger that includes plates consisting of staggered alternating microchannels. This prior art plate is formed to be curved and the microchannels are set in an asymmetric wave shape that forms parallel channels along the direction of fluid flow. The total length of the direct part and the curved part is constant. However, this prior art does not disclose appropriate parameters of the wavy channel such as width dimension, radius of curvature and the like.

上記のすべてから、本発明は、とくに流体の熱伝達性能を高め、圧力が非常に異なる流体間での熱交換用の熱交換器に関する問題を低減するために、異なる温度をもつ流体間での熱交換用の熱交換器を提供することを目的とする。 From all of the above, the present invention particularly enhances the heat transfer performance of fluids and reduces the problems with heat exchangers for heat exchange between fluids with very different pressures between fluids with different temperatures. It is an object of the present invention to provide a heat exchanger for heat exchange.

本発明は、異なる温度をもつ流体の熱交換用の熱交換器を提供することに係り、特に異なる温度をもつ流体の熱交換性能を向上させ、圧力が非常に異なる流体間での熱交換用の熱交換器に関する問題を低減することを目的とする。 The present invention relates to providing a heat exchanger for heat exchange of fluids having different temperatures, particularly improving the heat exchange performance of fluids having different temperatures and for heat exchange between fluids having very different pressures. The purpose is to reduce problems with heat exchangers.

本発明の一態様では、本発明は、異なる温度をもつ流体の熱交換用の熱交換器であって、順次交互に積み重ねられた少なくとも1つの平らな熱交換プレート、少なくとも1つの高温熱交換プレートおよび少なくとも1つの低温熱交換プレートを有し、前記高温熱交換プレートの各々を通して高温流体を通流させるために、高温流体入口および高温流体出口が配置され、前記低温熱交換プレートの各々を通して低温流体を通流させるために、低温流体入口および低温流体出口が配置され、前記高温熱交換プレートは高温流路を含み、前記低温熱交換プレートは低温流路を含み、これらの前記流路は、前記流体の流れ方向に延びる長さを有し、 前記流路の各々の側壁は、前記流路の中心線を対称軸として対称的な波形状パターンを有する熱交換器を開示する。 In one aspect of the invention, the invention is a heat exchanger for heat exchange of fluids having different temperatures, at least one flat heat exchange plate and at least one high temperature heat exchange plate stacked alternately in sequence. And having at least one cold heat exchange plate, a hot fluid inlet and a hot fluid outlet are arranged to allow hot fluid to flow through each of the hot heat exchange plates, and cold fluid through each of the cold heat exchange plates. A low temperature fluid inlet and a low temperature fluid outlet are arranged to allow passage, the high temperature heat exchange plate includes a high temperature flow path, the low temperature heat exchange plate includes a low temperature flow path, and these flow paths are said to be said. Discloses a heat exchanger having a length extending in the flow direction of the fluid, each side wall of the flow path having a symmetric wave-shaped pattern with the center line of the flow path as the axis of symmetry.

図1は、本発明の熱交換器の一態様を示す図である。FIG. 1 is a diagram showing one aspect of the heat exchanger of the present invention. 図2は、本発明の熱交換器における熱交換プレートの配置の一態様を示す図である。FIG. 2 is a diagram showing an aspect of arrangement of heat exchange plates in the heat exchanger of the present invention. 図3は、本発明の熱交換器の各高温流路および各高温流路の一態様を示す図である。FIG. 3 is a diagram showing one aspect of each high temperature flow path and each high temperature flow path of the heat exchanger of the present invention. 図4のa)は本発明の熱交換器の高温熱交換プレートおよび低温熱交換プレートの一態様を示す等角図、図4のb)は本発明の熱交換器の高温熱交換プレートおよび低温熱交換プレートの一態様を示す上面図、図4のc)は本発明の熱交換器の高温熱交換プレートおよび低温熱交換プレートの一態様を示す正面図である。FIG. 4a) is an isometric view showing one aspect of the high temperature heat exchange plate and low temperature heat exchange plate of the heat exchanger of the present invention, and FIG. 4b) is the high temperature heat exchange plate and low temperature of the heat exchanger of the present invention. The top view showing one aspect of the heat exchange plate, c) of FIG. 4 is a front view showing one aspect of the high temperature heat exchange plate and the low temperature heat exchange plate of the heat exchanger of the present invention. 図5のa)は非対称波形状流路を有する比較熱交換器の高温熱交換プレートおよび低温熱交換プレートの一態様を示す等角図、図5のb)は非対称波形状流路を有する比較熱交換器の高温熱交換プレートおよび低温熱交換プレートの一態様を示す上面図、図5のc)は非対称波形状流路を有する比較熱交換器の高温熱交換プレートおよび低温熱交換プレートの一態様を示す正面図である。5a) is an isometric view showing one aspect of a high-temperature heat exchange plate and a low-temperature heat exchange plate of a comparative heat exchanger having an asymmetric wave-shaped flow path, and b) of FIG. 5 is a comparison having an asymmetric wave-shaped flow path. The top view showing one aspect of the high temperature heat exchange plate and the low temperature heat exchange plate of the heat exchanger, c) of FIG. 5 is one of the high temperature heat exchange plate and the low temperature heat exchange plate of the comparative heat exchanger having an asymmetric wave-shaped flow path. It is a front view which shows the aspect. 図6のa)はストレート流路を有する比較熱交換器の高温熱交換プレートおよび低温熱交換プレートの一態様を示す等角図、図6のb)はストレート流路を有する比較熱交換器の高温熱交換プレートおよび低温熱交換プレートの一態様を示す上面図、図6のc)はストレート流路を有する比較熱交換器の高温熱交換プレートおよび低温熱交換プレートの一態様を示す正面図である。6a) is an isometric view showing one aspect of a high temperature heat exchange plate and a low temperature heat exchange plate of a comparative heat exchanger having a straight flow path, and b) of FIG. 6 is a comparative heat exchanger having a straight flow path. The top view showing one aspect of the high temperature heat exchange plate and the low temperature heat exchange plate, c) in FIG. 6 is a front view showing one aspect of the high temperature heat exchange plate and the low temperature heat exchange plate of the comparative heat exchanger having a straight flow path. be. 図7は、本発明の熱交換器および従来の熱交換器の流量に対する伝熱量をそれぞれ示すグラフ図である。FIG. 7 is a graph showing the amount of heat transfer with respect to the flow rate of the heat exchanger of the present invention and the conventional heat exchanger, respectively.

本発明は、以下の実施形態に従って記述説明されるように、異なる温度をもつ流体の熱を交換するための熱交換器に関する。 The present invention relates to a heat exchanger for exchanging heat of fluids having different temperatures, as described and described according to the following embodiments.

本明細書中で用いられる任意の態様は、特に明記しない限り、本発明の他の態様への適用を含むことを指す。 As used herein, any aspect refers to including application to other aspects of the invention, unless otherwise specified.

本明細書中で使用される技術用語または科学用語は、他に述べられない限り、当業者によって理解されるような定義を有する。 Technical or scientific terms used herein have definitions as will be understood by those skilled in the art unless otherwise stated.

本明細書で言及される任意の道具、機器、方法、または化学薬品は、それらが本発明においてのみ特定の道具、機器、方法、または化学薬品であることが明示されない限り、当業者によって一般的に操作または使用される道具、機器、方法または化学薬品を意味している。 Any tool, device, method, or chemical referred to herein is common to those skilled in the art unless it is explicitly stated that they are a particular tool, device, method, or chemical only in the present invention. Means a tool, device, method or chemical that is operated or used in.

請求項または本明細書において「含む」を有する単数名詞または単数形代名詞の使用は、「1つ」および「1つまたは複数」、「少なくとも1つ」、および「1つまたは複数」を指している。 The use of singular or singular pronouns with "contains" in the claims or in the present specification refers to "one" and "one or more", "at least one", and "one or more". There is.

以下の詳細は、本願明細書中に記載されているが、決して本発明の範囲を限定することを意図するものではない。本発明は、順次交互に積み重ねられた少なくとも1つの平らな熱交換プレート、少なくとも1つの高温熱交換プレートおよび少なくとも1つの低温熱交換プレートを有する熱交換器であって、前記高温熱交換プレートの各々を通して高温流体を通流させるために、高温流体入口および高温流体出口が配置され、前記低温熱交換プレートの各々を通して低温流体を通流させるために、低温流体入口および低温流体出口が配置され、前記高温熱交換プレートは高温流路を含み、前記低温熱交換プレートは低温流路を含み、これらの前記流路は、前記流体の流れ方向に延びる長さを有し、前記流路の各々の側壁は、前記流路の中心線を対称軸として対称的な波形状パターンを有することを特徴とする異なる温度を有する流体の熱交換用の熱交換器を開示している。 The following details are described herein, but are by no means intended to limit the scope of the invention. The present invention is a heat exchanger having at least one flat heat exchange plate, at least one high temperature heat exchange plate and at least one low temperature heat exchange plate stacked alternately in sequence, and each of the high temperature heat exchange plates. A hot fluid inlet and a hot fluid outlet are arranged to allow the hot fluid to flow through, and a cold fluid inlet and a cold fluid outlet are arranged to allow the cold fluid to flow through each of the cold heat exchange plates. The high temperature heat exchange plate includes a high temperature flow path, the low temperature heat exchange plate includes a low temperature flow path, and these flow paths have a length extending in the flow direction of the fluid, and each side wall of the flow path. Discloses a heat exchanger for heat exchange of fluids having different temperatures, which has a symmetric wave-shaped pattern with the center line of the flow path as the axis of symmetry.

図1と図2は、本発明の熱交換器の一態様を示している。この態様では、熱交換器は、順次交互に積み重ねられた少なくとも1つの平らな熱交換プレート12、少なくとも1つの高温熱交換プレート14、および少なくとも1つの低温熱交換プレート16を有し、高温流体を各高温熱交換プレート14に通流させるために、高温流体入口18aと高温流体出口20aとが配置され、低温流体を各低温熱交換プレート16に通流させるために、低温流体入口18bと低温流体出口20bとが配置されている。前記熱交換プレートの各々において、前記入口および出口部品組立体を熱交換器から分離することができる。 1 and 2 show one aspect of the heat exchanger of the present invention. In this embodiment, the heat exchanger has at least one flat heat exchange plate 12, at least one high temperature heat exchange plate 14, and at least one low temperature heat exchange plate 16 stacked alternately in sequence to provide a hot fluid. A high temperature fluid inlet 18a and a high temperature fluid outlet 20a are arranged to pass through each high temperature heat exchange plate 14, and a low temperature fluid inlet 18b and a low temperature fluid are allowed to flow through each low temperature heat exchange plate 16. The outlet 20b is arranged. At each of the heat exchange plates, the inlet and outlet component assemblies can be separated from the heat exchanger.

前記高温熱交換プレート14は高温流路15を有し、前記低温熱交換プレート16は低温流路17を有し、前記流路は前記流体の流れ方向に延びる長さを有し、各流路の側壁は各流路の中心線を対称軸として幾何学的に対称な波形状の曲線パターンを有している。 The high temperature heat exchange plate 14 has a high temperature flow path 15, the low temperature heat exchange plate 16 has a low temperature flow path 17, and the flow path has a length extending in the flow direction of the fluid, and each flow path has a length. The side wall has a wave-shaped curve pattern that is geometrically symmetric with the center line of each flow path as the axis of symmetry.

一実施形態では、高温流路15および低温流路17は、100〜5,000μmの範囲の平均幅(y)と、次式による湾曲長さ(x)と曲率半径(r)とを有している。 In one embodiment, the high temperature flow path 15 and the low temperature flow path 17 have an average width (y) in the range of 100 to 5,000 μm, a curvature length (x) according to the following equation, and a radius of curvature (r). ing.

Figure 0006942815
Figure 0006942815

好ましくは、前記流路は、100〜3,000μmの範囲の平均幅、1,000〜3,000μmの範囲の湾曲長さ、および2,000〜5,000μmの範囲の曲率半径を有する。 Preferably, the flow path has an average width in the range of 100-3,000 μm, a curvature length in the range of 1,000-3,000 μm, and a radius of curvature in the range of 2,000-5,000 μm.

一実施形態では、高温流路15および低温流路17は、各高温熱交換プレート14の頂部と各低温熱交換プレート16の頂部とによって設定される平面と比べたときに、約10〜2,000μmの範囲の深さを有する。図2に示すように高温流路15と低温流路17とを交互に配置するために、高温熱交換プレート14と低温熱交換プレート16とを配置することが好ましい。 In one embodiment, the high temperature channels 15 and 17 are about 10-2, when compared to the planes set by the tops of the high temperature heat exchange plates 14 and the tops of the low temperature heat exchange plates 16. It has a depth in the range of 000 μm. In order to arrange the high temperature flow path 15 and the low temperature flow path 17 alternately as shown in FIG. 2, it is preferable to arrange the high temperature heat exchange plate 14 and the low temperature heat exchange plate 16.

一実施形態では、平らな熱交換プレート12、高温の熱交換プレート14、および低温の熱交換プレート16は、約10〜10,000μmの範囲、好ましくは約100〜2,000μmの範囲の厚さを有する。 In one embodiment, the flat heat exchange plate 12, the hot heat exchange plate 14, and the cold heat exchange plate 16 have a thickness in the range of about 10 to 10,000 μm, preferably in the range of about 100 to 2,000 μm. Have.

異なる温度をもつ流体の熱を交換するための十分な強度および寸法安定性をもって効率的に熱交換器を機能させるために、前記熱交換プレートは炭素鋼、ステンレス鋼、アルミニウム、チタン、白金、クロム、銅、またはこれらの合金、好ましくはステンレス鋼316グレード(SS316)から製造することができる。 In order for the heat exchanger to function efficiently with sufficient strength and dimensional stability to exchange heat in fluids of different temperatures, the heat exchange plates are made of carbon steel, stainless steel, aluminum, titanium, platinum, chrome. , Copper, or alloys thereof, preferably stainless steel 316 grade (SS316).

一実施形態では、高温熱交換プレート14および低温熱交換プレート16は、打抜き機械技術、光化学機械(PCM)技術、またはコンピュータ数値制御フライス盤技術によって作製することができる。 In one embodiment, the high temperature heat exchange plate 14 and the low temperature heat exchange plate 16 can be made by punching machine technology, photochemical machine (PCM) technology, or computer numerically controlled milling machine technology.

一実施形態では、異なる温度をもつ流体を向流方向に流すために、高温流体入口18aと低温流体入口18bとが熱交換器の反対側に配置され、異なる温度をもつ前記流体は、少なくとも1℃、好ましくは少なくとも10℃の温度差を有することができる。 In one embodiment, the hot fluid inlet 18a and the cold fluid inlet 18b are located on opposite sides of the heat exchanger in order to allow fluids having different temperatures to flow in the countercurrent direction, and the fluids having different temperatures are at least one. It can have a temperature difference of ° C., preferably at least 10 ° C.

3つ以上のプレートからなる平らな熱交換プレート12、高温熱交換プレート14、および低温熱交換プレート16を順次交互に積み重ねることができ、高流量の流体を熱交換するための熱交換器に多数の流路を設けるために、より多くの数を積み重ねることが可能であることは当業者によく知られているところである。 A flat heat exchange plate 12 composed of three or more plates, a high temperature heat exchange plate 14, and a low temperature heat exchange plate 16 can be stacked alternately in sequence, and many heat exchangers for heat exchange of high-flow fluids can be used. It is well known to those skilled in the art that a larger number can be stacked to provide the flow path of.

本発明の熱交換器の性能を従来技術の流路(チャネル)を含む熱交換器と比較するために、図4に示す外観の高温流路15および低温流路17を有する本発明の熱交換器と、(それぞれ図5と図6の外観に従う)非対称波形状パターン流路およびストレート流路で特徴付けられる高温流路および低温流路を有する熱交換器とについて、以下のようにANSYS Fluentソフトウェアのバージョン16.1を用いるコンピュータ流動力学モデルを構築し、試験した。 In order to compare the performance of the heat exchanger of the present invention with the heat exchanger including the flow path (channel) of the prior art, the heat exchange of the present invention having the high temperature flow path 15 and the low temperature flow path 17 as shown in FIG. For the vessel and the heat exchanger with hot and cold channels characterized by asymmetric wave-shaped pattern channels and straight channels (following the appearance of FIGS. 5 and 6, respectively), ANSYS Fluent software: A computer fluid dynamics model using version 16.1 of was constructed and tested.

[本発明の熱交換器]
[熱交換1]
平らな熱交換プレート12、高温熱交換プレート14および低温熱交換プレート16の板厚をそれぞれ0.5mmとした。図4に示す高温流路15および低温流路17は、平均幅(y)を約2,000μmとし、湾曲長さ(x)を約2,000μmとし、曲率半径(r)を約3,000μmとした。流路の長さを約240mmとし、流路の深さを約1,000μmとした。
[Heat exchanger of the present invention]
[Heat exchange 1]
The flat heat exchange plate 12, the high temperature heat exchange plate 14, and the low temperature heat exchange plate 16 were each set to 0.5 mm in thickness. The high temperature flow path 15 and the low temperature flow path 17 shown in FIG. 4 have an average width (y) of about 2,000 μm, a curvature length (x) of about 2,000 μm, and a radius of curvature (r) of about 3,000 μm. And said. The length of the flow path was set to about 240 mm, and the depth of the flow path was set to about 1,000 μm.

[熱交換2]
平らな熱交換プレート12、高温熱交換プレート14および低温熱交換プレート16の板厚をそれぞれ0.5mmとした。図4に示す高温流路15および低温流路17は、平均幅(y)を約2,000μmとし、湾曲長さ(x)を約2,000μmとし、曲率半径(r)を約4,000μmとした。流路の長さを約240mmとし、流路の深さを約1,000μmとした。
[Heat exchange 2]
The flat heat exchange plate 12, the high temperature heat exchange plate 14, and the low temperature heat exchange plate 16 were each set to 0.5 mm in thickness. The high temperature flow path 15 and the low temperature flow path 17 shown in FIG. 4 have an average width (y) of about 2,000 μm, a curvature length (x) of about 2,000 μm, and a radius of curvature (r) of about 4,000 μm. And said. The length of the flow path was set to about 240 mm, and the depth of the flow path was set to about 1,000 μm.

[熱交換3]
平らな熱交換プレート12、高温熱交換プレート14および低温熱交換プレート16の板厚をそれぞれ0.5mmとした。図4に示す高温流路15および低温流路17は、平均幅(y)を約2,000μmとし、湾曲長さ(x)を約3,000μmとし、曲率半径(r)を約3,000μmとした。流路の長さを約240mmとし、流路の深さを約1,000μmとした。
[Heat exchange 3]
The flat heat exchange plate 12, the high temperature heat exchange plate 14, and the low temperature heat exchange plate 16 were each set to 0.5 mm in thickness. The high temperature flow path 15 and the low temperature flow path 17 shown in FIG. 4 have an average width (y) of about 2,000 μm, a curvature length (x) of about 3,000 μm, and a radius of curvature (r) of about 3,000 μm. And said. The length of the flow path was set to about 240 mm, and the depth of the flow path was set to about 1,000 μm.

[熱交換4]
平らな熱交換プレート12、高温熱交換プレート14および低温熱交換プレート16の板厚をそれぞれ0.5mmとした。図4に示す高温流路15および低温流路17は、平均幅(y)を約2,000μmとし、湾曲長さ(x)を約3,000μmとし、曲率半径(r)を約4,000μmとした。流路の長さを約240mmとし、流路の深さを約1,000μmとした。
[Heat exchange 4]
The flat heat exchange plate 12, the high temperature heat exchange plate 14, and the low temperature heat exchange plate 16 were each set to 0.5 mm in thickness. The high temperature flow path 15 and the low temperature flow path 17 shown in FIG. 4 have an average width (y) of about 2,000 μm, a curvature length (x) of about 3,000 μm, and a radius of curvature (r) of about 4,000 μm. And said. The length of the flow path was set to about 240 mm, and the depth of the flow path was set to about 1,000 μm.

[比較の熱交換器]
[熱交換A]
比較の熱交換器は、図5に示す非対称波形状パターンを有する高温流路および低温流路の特徴を用いたことを除いて、上記の熱交換器1に記載したような構成要素を備えるものとした。
[Comparison heat exchanger]
[Heat exchange A]
The comparative heat exchanger is provided with the components as described in the heat exchanger 1 above, except that the characteristics of the high temperature flow path and the low temperature flow path having the asymmetric wave shape pattern shown in FIG. 5 are used. And said.

[熱交換B]
比較の熱交換器は、図5に示す非対称波形状パターンを有する高温流路および低温流路の特徴を用いたことを除いて、上記の熱交換器2に記載したような構成要素を備えるものとした。
[Heat exchange B]
The comparative heat exchanger is provided with the components as described in the heat exchanger 2 above, except that the characteristics of the high temperature flow path and the low temperature flow path having the asymmetric wave shape pattern shown in FIG. 5 are used. And said.

[熱交換C]
比較の熱交換器は、図5に示す非対称波形状パターンを有する高温流路および低温流路の特徴を用いたことを除いて、上記の熱交換器3に記載したような構成要素を備えるものとした。
[Heat exchange C]
The comparative heat exchanger is provided with the components as described in the heat exchanger 3 above, except that the characteristics of the high temperature flow path and the low temperature flow path having the asymmetric wave shape pattern shown in FIG. 5 are used. And said.

[熱交換D]
比較の熱交換器は、図5に示す非対称波形状パターンを有する高温流路および低温流路の特徴を用いたことを除いて、上記の熱交換器4に記載したような構成要素を備えるものとした。
[Heat exchange D]
The comparative heat exchanger is provided with the components as described in the heat exchanger 4 above, except that the characteristics of the high temperature flow path and the low temperature flow path having the asymmetric wave shape pattern shown in FIG. 5 are used. And said.

[熱交換E]
比較の熱交換器は、図6に示す幅が約2,000μmのストレート経路を有する高温流路および低温流路の特徴を用いたことを除いて、上記の熱交換器1に記載したような構成要素を備えるものとした。
[Heat exchange E]
The comparative heat exchangers are as described in the heat exchanger 1 above, except that the features of the high temperature and low temperature channels having a straight path with a width of about 2,000 μm shown in FIG. 6 were used. It is supposed to have components.

上記のように異なる流路特性を有する熱交換器について、以下のパラメータを有するANSYS Fluentソフトウェアのバージョン16.1を用いて、それぞれ熱交換性能を試験した。本モデルで用いた流体は、異なる温度の水とし、高温流体(高温水)を約90℃とし、低温流体(低温水)を約10℃とした。これらの流体を、各経路内での流速が約0.582g /秒となるように向流方向に流した。その結果を表1および図7に示した。 Heat exchangers with different flow path characteristics as described above were tested for heat exchange performance using ANSYS Fluent software version 16.1 with the following parameters. The fluid used in this model was water having different temperatures, the high temperature fluid (high temperature water) was about 90 ° C, and the low temperature fluid (low temperature water) was about 10 ° C. These fluids were flowed in the countercurrent direction so that the flow velocity in each path was about 0.582 g / sec. The results are shown in Table 1 and FIG.

表1に、高温流路と低温流路の異なる特性を有する熱交換器の出口からの高温流体出口の温度および低温流体出口の温度をそれぞれ示す。 Table 1 shows the temperature of the high temperature fluid outlet from the outlet of the heat exchanger having different characteristics of the high temperature flow path and the low temperature flow path, and the temperature of the low temperature fluid outlet, respectively.

Figure 0006942815
Figure 0006942815

熱交換器の性能は、表1に示されるような高温流体出口の温度および低温流体出口の温度、ならびに図7に示されるような流体体積当たりに伝達される熱から考慮することができる。 The performance of the heat exchanger can be considered from the temperature of the hot fluid outlet and the temperature of the cold fluid outlet as shown in Table 1, and the heat transferred per fluid volume as shown in FIG.

図7から、本発明の熱交換器1と比較用熱交換器A,Eとの比較、本発明の熱交換器2と比較用熱交換器B,Eとの比較、本発明の熱交換器3と比較用熱交換器C,Eとの比較、および本発明の熱交換器4と比較用熱交換器D,Eとの比較によって、本発明の熱交換器のほうが流体体積当たりより高い熱伝達を与えることが判明した。本発明の熱交換器のうち、平均幅が約2,000μm、湾曲長さが約3,000μm、曲率半径が約3,000μmの対称波形パターンの流路を有する熱交換器3が最も高い性能を提供した。 From FIG. 7, a comparison between the heat exchanger 1 of the present invention and the comparative heat exchangers A and E, a comparison between the heat exchanger 2 of the present invention and the comparative heat exchangers B and E, and the heat exchanger of the present invention. By comparing 3 with the comparative heat exchangers C and E, and by comparing the heat exchanger 4 of the present invention with the comparative heat exchangers D and E, the heat exchanger of the present invention has higher heat per fluid volume. Turned out to give communication. Among the heat exchangers of the present invention, the heat exchanger 3 having a flow path with a symmetrical waveform pattern having an average width of about 2,000 μm, a curvature length of about 3,000 μm, and a radius of curvature of about 3,000 μm has the highest performance. Provided.

さらに、本発明の熱交換器と従来の流路を備える熱交換器との強度を比較するために、上述のように流路の異なる特性を有する熱交換器をANSYS Fluentソフトウェアバージョン16.1を用いて試験した。以下のように各種パラメータを設定した。熱交換プレートは316グレードのステンレス鋼(SS316)により製造した。高温流体の圧力は約1.5MPaとした。低温流体の圧力は約0.5MPaとした。熱交換プレートを熱交換プレートの端部に固定した。強度比較試験結果を表2に示した。表中にて、等価応力の各段階における熱交換プレートの体積百分率は、以下の式から算出した。 Further, in order to compare the strength of the heat exchanger of the present invention with a heat exchanger having a conventional flow path, a heat exchanger having different flow path characteristics as described above was used with ANSYS Fluent software version 16.1 Tested. Various parameters were set as follows. The heat exchange plate was made of 316 grade stainless steel (SS316). The pressure of the high temperature fluid was about 1.5 MPa. The pressure of the low temperature fluid was about 0.5 MPa. The heat exchange plate was fixed to the end of the heat exchange plate. The results of the strength comparison test are shown in Table 2. In the table, the volume percentage of the heat exchange plate at each stage of equivalent stress was calculated from the following formula.

Figure 0006942815
Figure 0006942815

表2に、高温流路および低温流路の異なる特性を有する熱交換器の強度の比較を示す。 Table 2 shows a comparison of the intensities of heat exchangers having different characteristics of the high temperature flow path and the low temperature flow path.

Figure 0006942815
Figure 0006942815

表2は本発明の熱交換器と従来の熱交換器との強度の比較を示すものであり、異なる温度の流体の熱伝達中に熱交換器の熱交換プレートに生じた等価応力の各段階における熱交換プレートの最大等価応力および体積百分率から考慮することができる。表から明らかなように、本発明の熱交換器3の流路は、平均幅約2,000μm、湾曲長さ約3mm、および曲率半径約3mmの対称波形状パターンを有したものであり、その最大強度は、最も低い最大等価応力と、低い等価応力段階(0〜3MPa)における熱交換プレートの高い体積百分率と、高い等価応力段階(6〜9MPa)における熱交換プレートの高い体積百分率とから考慮されたものである。さらに、本発明の熱交換器の最大等価応力は、強度試験においてサンプル材料として使用される316グレードのステンレス鋼(約207MPa)よりも低い引張降伏強度を有していた。これは、熱交換器の前記熱交換プレートが上記の条件で操作されたときに永久変形しないということを示した。 Table 2 shows a comparison of the strengths of the heat exchanger of the present invention and the conventional heat exchanger, and each stage of the equivalent stress generated in the heat exchange plate of the heat exchanger during the heat transfer of the fluids of different temperatures. It can be considered from the maximum equivalent stress and volume percentage of the heat exchange plate in. As is clear from the table, the flow path of the heat exchanger 3 of the present invention has a symmetrical wave shape pattern having an average width of about 2,000 μm, a curvature length of about 3 mm, and a radius of curvature of about 3 mm. The maximum strength is considered from the lowest maximum equivalent stress, the high volume percentage of the heat exchange plate at the low equivalent stress stage (0-3 MPa), and the high volume percentage of the heat exchange plate at the high equivalent stress stage (6-9 MPa). It was done. Furthermore, the maximum equivalent stress of the heat exchanger of the present invention had a lower tensile yield strength than the 316 grade stainless steel (about 207 MPa) used as the sample material in the strength test. This indicates that the heat exchange plate of the heat exchanger does not permanently deform when operated under the above conditions.

以上の結果から、本発明の熱交換器は、異なる温度の流体の伝熱性能が高く、強度が高いことが確認された。そして、本発明の目的で述べられているように、本発明の熱交換器は圧力が非常に異なる流体を熱交換するために使用することができる。 From the above results, it was confirmed that the heat exchanger of the present invention has high heat transfer performance and high strength of fluids having different temperatures. And, as stated in the object of the present invention, the heat exchanger of the present invention can be used to exchange heat with fluids having very different pressures.

本発明の最良の形態The best form of the present invention

本発明の最良の形態は、本発明の記述説明において提供される通りである。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1]異なる温度を有する流体の熱交換用の熱交換器であって、
順次交互に積み重ねられた少なくとも1つの平らな熱交換プレート(12)、少なくとも1つの高温熱交換プレート(14)および少なくとも1つの低温熱交換プレート(16)を有し、
前記高温熱交換プレート(14)の各々を通して高温流体を通流させるために、高温流体入口(18a)および高温流体出口(20a)が配置され、
前記低温熱交換プレート(16)の各々を通して低温流体を通流させるために、低温流体入口(18b)および低温流体出口(20b)が配置され、
前記高温熱交換プレート(14)は高温流路(15)を含み、前記低温熱交換プレート(16)は低温流路(17)を含み、
これらの前記流路は、前記流体の流れ方向に延びる長さを有し、
前記流路の各々の側壁は、前記流路の中心線を対称軸として対称的な波形状パターンを有することを特徴とする熱交換器。
[2]前記高温流路(15)および前記低温流路(17)は、100〜5,000μmの範囲の平均幅(y)と、式x≦2rを満たす湾曲長さ(x)と曲率半径(r)とを有し、但し前記xは100〜100,000の範囲にあることを特徴とする[1]に記載の熱交換器。
[3]前記高温流路(15)および前記低温流路(17)の前記平均幅は100〜3,000μmの範囲にあり、前記湾曲長さは1,000〜3,000μmの範囲にあり、前記曲率半径は2,000〜5,000μmの範囲にあることを特徴とする[1]又は[2]のいずれか1に記載の熱交換器。
[4]前記高温流路(15)および前記低温流路(17)の深さは、前記高温熱交換プレート(14)の各々の頂部と前記低温熱交換プレート(16)の各々の頂部とによって画定される平面に従い10〜2,000μmの範囲にあることを特徴とする[1]乃至[3]のいずれか1に記載の熱交換器。
[5]前記高温流路(15)および前記低温流路(17)の深さは、前記高温熱交換プレート(14)の各々の頂部と前記低温熱交換プレート(16)の各々の頂部とによって画定される平面に従い500〜1,500μmの範囲にあることを特徴とする[4]に記載の熱交換器。
[6]前記高温熱交換プレート(14)と前記低温熱交換プレート(16)とは、前記高温流路(15)と前記低温流路(17)とが交互に配置される向きに配置されることを特徴とする[4]又は[5]のいずれか1に記載の熱交換器。
[7]前記平らな熱交換プレート(12)、前記高温熱交換プレート(14)および前記低温熱交換プレート(16)は、10〜10,000μmの範囲の厚さを有することを特徴とする[1]に記載の熱交換器。
[8]前記平らな熱交換プレート(12)、前記高温熱交換プレート(14)および前記低温熱交換プレート(16)は、100〜2,000μmの範囲の厚さを有することを特徴とする[7]に記載の熱交換器。
[9]前記高温流体入口(18a)と前記低温流体入口(18b)とは、異なる温度を有する流体の対向流を形成するために前記熱交換器の反対側に対向配置されていることを特徴とする[1]に記載の熱交換器。
[10]前記流体は少なくとも1℃の温度差を有することを特徴とする[1]又は[9]のいずれか1に記載の熱交換器。
[11]前記流体は少なくとも10℃の温度差を有することを特徴とする請求項[10]に記載の熱交換器。
The best form of the present invention is as provided in the description of the present invention.
The inventions described in the claims of the original application of the present application are described below.
[1] A heat exchanger for heat exchange of fluids having different temperatures.
It has at least one flat heat exchange plate (12), at least one hot heat exchange plate (14) and at least one cold heat exchange plate (16) stacked alternately in sequence.
A hot fluid inlet (18a) and a hot fluid outlet (20a) are arranged to allow the hot fluid to flow through each of the hot heat exchange plates (14).
A cold fluid inlet (18b) and a cold fluid outlet (20b) are arranged to allow the cold fluid to flow through each of the cold heat exchange plates (16).
The high temperature heat exchange plate (14) includes a high temperature flow path (15), and the low temperature heat exchange plate (16) includes a low temperature flow path (17).
These flow paths have a length extending in the flow direction of the fluid, and have a length extending in the flow direction of the fluid.
A heat exchanger characterized in that each side wall of the flow path has a symmetric wave-shaped pattern with the center line of the flow path as the axis of symmetry.
[2] The high temperature flow path (15) and the low temperature flow path (17) have an average width (y) in the range of 100 to 5,000 μm, a curvature length (x) satisfying the equation x ≦ 2r, and a radius of curvature. (R) The heat exchanger according to [1], wherein x is in the range of 100 to 100,000.
[3] The average width of the high temperature flow path (15) and the low temperature flow path (17) is in the range of 100 to 3,000 μm, and the curvature length is in the range of 1,000 to 3,000 μm. The heat exchanger according to any one of [1] and [2], wherein the radius of curvature is in the range of 2,000 to 5,000 μm.
[4] The depth of the high temperature flow path (15) and the low temperature flow path (17) depends on each top of the high temperature heat exchange plate (14) and each top of the low temperature heat exchange plate (16). The heat exchanger according to any one of [1] to [3], wherein the heat exchanger is in the range of 10 to 2,000 μm according to the defined plane.
[5] The depth of the high temperature flow path (15) and the low temperature flow path (17) depends on each top of the high temperature heat exchange plate (14) and each top of the low temperature heat exchange plate (16). The heat exchanger according to [4], wherein the heat exchanger is in the range of 500 to 1,500 μm according to the defined plane.
[6] The high temperature heat exchange plate (14) and the low temperature heat exchange plate (16) are arranged in a direction in which the high temperature flow path (15) and the low temperature flow path (17) are alternately arranged. The heat exchanger according to any one of [4] or [5].
[7] The flat heat exchange plate (12), the high temperature heat exchange plate (14), and the low temperature heat exchange plate (16) have a thickness in the range of 10 to 10,000 μm [7]. 1] The heat exchanger according to.
[8] The flat heat exchange plate (12), the high temperature heat exchange plate (14), and the low temperature heat exchange plate (16) have a thickness in the range of 100 to 2,000 μm [8]. 7] The heat exchanger according to.
[9] The high temperature fluid inlet (18a) and the low temperature fluid inlet (18b) are arranged to face each other on opposite sides of the heat exchanger in order to form a countercurrent of fluids having different temperatures. The heat exchanger according to [1].
[10] The heat exchanger according to any one of [1] and [9], wherein the fluid has a temperature difference of at least 1 ° C.
[11] The heat exchanger according to claim [10], wherein the fluid has a temperature difference of at least 10 ° C.

Claims (7)

異なる温度を有する流体の熱交換用の熱交換器であって、
順次交互に積み重ねられた少なくとも1つの平らな熱交換プレート(12)、少なくとも1つの高温熱交換プレート(14)および少なくとも1つの低温熱交換プレート(16)を有し、
前記高温熱交換プレート(14)の各々を通して高温流体を通流させるために、高温流体入口(18a)および高温流体出口(20a)が配置され、
前記低温熱交換プレート(16)の各々を通して低温流体を通流させるために、低温流体入口(18b)および低温流体出口(20b)が配置され、
前記高温熱交換プレート(14)は高温流路(15)を含み、前記低温熱交換プレート(16)は低温流路(17)を含み、
前記高温流路(15)および前記低温流路(17)は、前記流体の流れ方向に延びる長さと、100〜3,000μmの範囲の平均幅(y)と、1,000〜3,000μmの範囲の曲線の長さ(x)と、2,000〜5,000μmの範囲の曲線の半径(r)と、前記高温熱交換プレート(14)の各々の頂部と前記低温熱交換プレート(16)の各々の頂部とによって画定される平面に従う500〜1,500μmの範囲の深さと、をそれぞれ有し、
前記高温流路(15)および前記低温流路(17)の各々の側壁は、前記流路の中心線を対称軸として対称的な波形状パターンを有することを特徴とする熱交換器。
A heat exchanger for heat exchange of fluids with different temperatures.
It has at least one flat heat exchange plate (12), at least one hot heat exchange plate (14) and at least one cold heat exchange plate (16) stacked alternately in sequence.
A hot fluid inlet (18a) and a hot fluid outlet (20a) are arranged to allow the hot fluid to flow through each of the hot heat exchange plates (14).
A cold fluid inlet (18b) and a cold fluid outlet (20b) are arranged to allow the cold fluid to flow through each of the cold heat exchange plates (16).
The high temperature heat exchange plate (14) includes a high temperature flow path (15), and the low temperature heat exchange plate (16) includes a low temperature flow path (17).
The high temperature flow path (15) and the low temperature flow path (17) have a length extending in the flow direction of the fluid, an average width (y) in the range of 100 to 3,000 μm, and 1,000 to 3,000 μm. The length of the curve in the range (x), the radius (r) of the curve in the range of 2,000 to 5,000 μm, the top of each of the high temperature heat exchange plates (14), and the low temperature heat exchange plate (16). ) With a depth in the range of 500 to 1,500 μm, respectively, according to the plane defined by each apex.
A heat exchanger characterized in that each side wall of the high temperature flow path (15) and the low temperature flow path (17) has a symmetric wave shape pattern with the center line of the flow path as the axis of symmetry.
前記高温熱交換プレート(14)と前記低温熱交換プレート(16)とは、前記高温流路(15)と前記低温流路(17)とが交互に配置される向きに配置されることを特徴とする請求項1に記載の熱交換器。 The high-temperature heat exchange plate (14) and the low-temperature heat exchange plate (16) are characterized in that the high-temperature flow path (15) and the low-temperature flow path (17) are arranged in a direction in which the high-temperature flow path (15) and the low-temperature flow path (17) are alternately arranged. The heat exchanger according to claim 1. 前記平らな熱交換プレート(12)、前記高温熱交換プレート(14)および前記低温熱交換プレート(16)は、10〜10,000μmの範囲の厚さを有することを特徴とする請求項1に記載の熱交換器。 The first aspect of claim 1, wherein the flat heat exchange plate (12), the high temperature heat exchange plate (14), and the low temperature heat exchange plate (16) have a thickness in the range of 10 to 10,000 μm. The heat exchanger described. 前記平らな熱交換プレート(12)、前記高温熱交換プレート(14)および前記低温熱交換プレート(16)は、100〜2,000μmの範囲の厚さを有することを特徴とする請求項3に記載の熱交換器。 3. The flat heat exchange plate (12), the high temperature heat exchange plate (14), and the low temperature heat exchange plate (16) have a thickness in the range of 100 to 2,000 μm, according to claim 3 . The heat exchanger described. 前記高温流体入口(18a)と前記低温流体入口(18b)とは、異なる温度を有する流体の対向流を形成するために前記熱交換器の反対側に対向配置されていることを特徴とする請求項1に記載の熱交換器。 A claim characterized in that the high temperature fluid inlet (18a) and the low temperature fluid inlet (18b) are arranged opposite to each other on the opposite side of the heat exchanger in order to form a countercurrent of fluids having different temperatures. Item 1. The heat exchanger according to item 1. 前記流体は少なくとも1℃の温度差を有することを特徴とする請求項1又は5のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 or 5, wherein the fluid has a temperature difference of at least 1 ° C. 前記流体は少なくとも10℃の温度差を有することを特徴とする請求項6に記載の熱交換器。 The heat exchanger according to claim 6 , wherein the fluid has a temperature difference of at least 10 ° C.
JP2019555558A 2016-12-26 2017-12-21 Heat exchanger for heat exchange of fluids of different temperatures Active JP6942815B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TH1601007738 2016-12-26
TH1601007738A TH175741A (en) 2016-12-26 Heat exchanger for fluid heat exchanger With different temperatures
PCT/TH2017/000089 WO2018124980A2 (en) 2016-12-26 2017-12-21 A heat exchanger for exchanging heat of fluids having different temperatures

Publications (2)

Publication Number Publication Date
JP2020503492A JP2020503492A (en) 2020-01-30
JP6942815B2 true JP6942815B2 (en) 2021-09-29

Family

ID=62710367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019555558A Active JP6942815B2 (en) 2016-12-26 2017-12-21 Heat exchanger for heat exchange of fluids of different temperatures

Country Status (6)

Country Link
US (1) US20190339018A1 (en)
EP (1) EP3542118B1 (en)
JP (1) JP6942815B2 (en)
KR (1) KR102555230B1 (en)
CN (1) CN110268218A (en)
WO (1) WO2018124980A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013319A1 (en) * 2018-07-13 2020-01-16 株式会社三井E&Sマシナリー Vaporizer
JP2022511772A (en) * 2018-11-26 2022-02-01 ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド Microchannel heat exchanger
JP1653096S (en) * 2018-11-26 2020-02-17
JP1653094S (en) * 2018-11-26 2020-02-17
JP1653095S (en) * 2018-11-26 2020-02-17
CN110006277A (en) * 2019-05-06 2019-07-12 南通文鼎换热设备科技有限公司 A kind of waveform fluid channel heat exchanger fin of plate heat exchanger
US20210254904A1 (en) * 2020-02-19 2021-08-19 The Boeing Company Additively manufactured heat exchanger
JP7428538B2 (en) 2020-02-27 2024-02-06 三菱重工業株式会社 heat exchange core
CN111661888B (en) * 2020-06-15 2022-07-05 方诺传热***(江苏)有限公司 Falling film type air cooler based on evaporative air cooling technology and wastewater treatment process
CN111680378B (en) * 2020-07-17 2022-09-16 天华化工机械及自动化研究设计院有限公司 ANSYS-based heat exchanger tube bundle modal analysis method in liquid filling state
CN111928688B (en) * 2020-07-22 2021-10-29 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Fluid channel structure of printed circuit board heat exchanger and printed circuit board heat exchanger
US11927402B2 (en) 2021-07-13 2024-03-12 The Boeing Company Heat transfer device with nested layers of helical fluid channels

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815534A (en) * 1987-09-21 1989-03-28 Itt Standard, Itt Corporation Plate type heat exchanger
IL114613A (en) * 1995-07-16 1999-09-22 Tat Ind Ltd Parallel flow condenser heat exchanger
JP4072876B2 (en) * 1998-05-22 2008-04-09 セキサーマル株式会社 Laminate heat exchanger
SE516537C2 (en) * 2000-05-19 2002-01-29 Alfa Laval Ab Flat pack and plate heat exchanger
US6867973B2 (en) * 2003-03-05 2005-03-15 Shyy-Woei Chang Heat dissipation device with liquid coolant
JP4756585B2 (en) * 2005-09-09 2011-08-24 臼井国際産業株式会社 Heat exchanger tube for heat exchanger
JP5082120B2 (en) * 2007-03-23 2012-11-28 国立大学法人 東京大学 Heat exchanger
KR100990309B1 (en) * 2008-06-03 2010-10-26 한국수력원자력 주식회사 Heat exchanger
FR2938637B1 (en) * 2008-11-18 2013-01-04 Cie Mediterraneenne Des Cafes CIRCULATING CONDUIT OF A FLUID
KR100938802B1 (en) * 2009-06-11 2010-01-27 국방과학연구소 Heat exchanger having micro-channels
KR101303234B1 (en) * 2011-08-08 2013-09-04 김태식 Heat exchanger for exhaust-heat recovery
US9878893B2 (en) * 2012-07-27 2018-01-30 Huang-Han Chen Water dispenser
ITPD20120365A1 (en) * 2012-12-05 2014-06-06 Blue Box Group S R L HEAT EXCHANGER
CN105329924A (en) * 2015-10-14 2016-02-17 贵阳铝镁设计研究院有限公司 Low speed aluminum oxide channelization dissolution heat exchange apparatus
CN105651094A (en) * 2016-03-17 2016-06-08 郑州大学 Novel variable-section alternating spiral twisted heat exchange tube
CN105870081A (en) * 2016-04-01 2016-08-17 西安交通大学 Waveform micro-channel heat exchanger

Also Published As

Publication number Publication date
WO2018124980A3 (en) 2018-10-25
CN110268218A (en) 2019-09-20
EP3542118B1 (en) 2021-09-29
KR20190102228A (en) 2019-09-03
KR102555230B1 (en) 2023-07-13
JP2020503492A (en) 2020-01-30
WO2018124980A2 (en) 2018-07-05
EP3542118A4 (en) 2020-09-02
US20190339018A1 (en) 2019-11-07
EP3542118A2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6942815B2 (en) Heat exchanger for heat exchange of fluids of different temperatures
JP6367869B2 (en) Counterflow heat exchanger with spiral passage
US8453719B2 (en) Heat transfer surfaces with flanged apertures
JP5106453B2 (en) Plate heat exchanger and refrigeration air conditioner
KR102391896B1 (en) Corrugated fins for heat exchanger
JP2008096048A (en) Inner fin for exhaust gas heat exchanger
JP2015227770A (en) Heat exchanger and offset fin for heat exchanger
KR101900232B1 (en) Plate heat exchanger
JP6979547B2 (en) Heat exchanger
JP2022511772A (en) Microchannel heat exchanger
EP2064509A1 (en) Heat transfer surfaces with flanged apertures
CN105318768B (en) A kind of inclined plate type fin
JP6398469B2 (en) Heat exchanger
KR20190075679A (en) shell in a shell and plate heat exchanger, and shell and plate heat exchanger having the same
KR20240103773A (en) Heat exchanger
US9677828B2 (en) Engineered packing for heat exchange and systems and methods constructing the same
CN105157459A (en) Right angle plate-fin type heat exchanger with spikes for non-azeotropic multicomponent mixture condensation
JP6525248B2 (en) Heat exchanger and plate unit for heat exchanger
JP2023041317A (en) Heat exchanger
JP2011043318A (en) Heat exchanger
CN105180690A (en) Trapezoidal plate fin type heat exchanger provided with stabs and used for condensation of non-azeotropic multi-component mixture
CN103697737A (en) Baffling fin of heat exchanger
JP2009224557A (en) Cooling device
JP2012013310A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210908

R150 Certificate of patent or registration of utility model

Ref document number: 6942815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150