JP6938292B2 - Detection sensor and detection device - Google Patents

Detection sensor and detection device Download PDF

Info

Publication number
JP6938292B2
JP6938292B2 JP2017173331A JP2017173331A JP6938292B2 JP 6938292 B2 JP6938292 B2 JP 6938292B2 JP 2017173331 A JP2017173331 A JP 2017173331A JP 2017173331 A JP2017173331 A JP 2017173331A JP 6938292 B2 JP6938292 B2 JP 6938292B2
Authority
JP
Japan
Prior art keywords
detection sensor
electromagnetic wave
voids
film
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017173331A
Other languages
Japanese (ja)
Other versions
JP2019049454A (en
Inventor
奈緒子 山邊
奈緒子 山邊
小宮 研一
研一 小宮
石川 大介
大介 石川
新井 竜一
竜一 新井
小川 雄一
雄一 小川
哲仁 鈴木
哲仁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba TEC Corp filed Critical Toshiba TEC Corp
Priority to JP2017173331A priority Critical patent/JP6938292B2/en
Publication of JP2019049454A publication Critical patent/JP2019049454A/en
Application granted granted Critical
Publication of JP6938292B2 publication Critical patent/JP6938292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、検出センサーおよび検出装置に関する。 The present invention relates to a detection sensor and a detection device.

空隙が配置された構造体に電磁波が照射されると、当該電磁波の反射率又は透過率について空隙の特性に由来する周波数特性が認められる。この構造体に物質が付加された場合、電磁波の反射率又は透過率の周波数特性は、当該物質によって変化する。このような性質を利用して、構造体を有するセンサーを用いて被測定物の有無又は量を検出する技術が知られている。例えば、テラヘルツ帯域の電磁波を空隙を有する構造体に照射することで、構造体に付着したタンパク質などの被測定物について解析する技術が知られている。このような被測定物の解析では、より高い検出感度やより高い分解能など、より高い精度が求められている。 When an electromagnetic wave is applied to a structure in which a void is arranged, a frequency characteristic derived from the characteristic of the void is recognized with respect to the reflectance or transmittance of the electromagnetic wave. When a substance is added to this structure, the frequency characteristics of the reflectance or transmittance of electromagnetic waves change depending on the substance. A technique for detecting the presence or absence or amount of an object to be measured by using a sensor having a structure is known by utilizing such a property. For example, there is known a technique for analyzing an object to be measured such as a protein attached to a structure by irradiating a structure having voids with an electromagnetic wave in the terahertz band. In the analysis of such an object to be measured, higher accuracy such as higher detection sensitivity and higher resolution is required.

特開2012−145369号公報Japanese Unexamined Patent Publication No. 2012-145369

精度よく被測定物を検出することができる検出センサー及び検出装置を提供する。 Provided are a detection sensor and a detection device capable of accurately detecting an object to be measured.

本実施形態によれば、検出センサーは、被測定物の付着による容量成分の変化を用いた被測定物の検出に用いられ、空気よりも大きい屈折率を有する材料で平坦な面に形成された空隙のない膜と、前記空隙のない膜の前記平坦な面に密着する導体で形成され、C型形状を成す複数の空隙がそれぞれ離間して規則的又は周期的に配置された空隙のある膜とを備え、前記空隙のある膜に付着した前記被測定物による容量成分の変化に基づき、予め設定された共振周波数を変化させ、入射した電磁波の反射率又は透過率の周波数特性の変化から前記被測定物を検出するAccording to the present embodiment, the detection sensor is used for detecting the object to be measured by using the change in the capacitance component due to the adhesion of the object to be measured, and is formed on a flat surface with a material having a refractive index larger than that of air. A film with voids formed of a film without voids and a conductor in close contact with the flat surface of the film without voids, and a plurality of voids forming a C shape are arranged at regular intervals or periodically. If, Bei give a, based on changes in capacity component by the object to be measured adhering to the film with the voids, to change the preset resonant frequency, the change in the frequency characteristic of the reflectance or transmittance of the electromagnetic wave incident The object to be measured is detected from .

図1は、一実施形態に係る検出装置の構成の一例の概略を示す図である。FIG. 1 is a diagram showing an outline of an example of a configuration of a detection device according to an embodiment. 図2Aは、一実施形態に係る検出センサーの構成の一例の概略を示す断面図である。FIG. 2A is a cross-sectional view showing an outline of an example of the configuration of the detection sensor according to the embodiment. 図2Bは、一実施形態に係る検出センサーの構成の一例の概略を示す平面図である。FIG. 2B is a plan view showing an outline of an example of the configuration of the detection sensor according to the embodiment. 図3は、検出装置で取得される電磁波を検出センサーに照射したときの周波数に対する反射率の一例の概略を示す図である。FIG. 3 is a diagram showing an outline of an example of the reflectance with respect to the frequency when the detection sensor is irradiated with the electromagnetic wave acquired by the detection device. 図4は、空隙のない膜と空隙のある膜とを含む検出センサーに電磁波を照射したときの電場の分布を解析した結果を示す。FIG. 4 shows the result of analyzing the distribution of the electric field when the detection sensor including the film without voids and the film with voids is irradiated with electromagnetic waves. 図5は、空隙のない膜を含まず空隙のある膜のみを含む検出センサーに電磁波を照射したときの電場の分布を解析した結果を示す。FIG. 5 shows the result of analyzing the distribution of the electric field when the detection sensor containing only the film having voids and not including the film having no voids is irradiated with electromagnetic waves.

一実施形態について図面を参照して説明する。本実施形態は、例えばサンプル中に含まれる被測定物の有無、量又は特性を検出するための検出装置に係る。一般に、空隙が配置された構造体に電磁波を照射したときの当該電磁波の反射率又は透過率は、空隙の特性に由来する周波数特性を有する。この構造体に被測定物が付着したとき、この電磁波の反射率又は透過率の周波数特性は変化する。本実施形態に係る検出装置は、このような照射した電磁波の反射率又は透過率の周波数特性の変化を利用して被測定物を検出する。ここで、被測定物の検出は、被測定物の有無、量又は特性等を特定することを含む。 One embodiment will be described with reference to the drawings. The present embodiment relates to a detection device for detecting, for example, the presence / absence, amount, or characteristics of an object to be measured contained in a sample. In general, the reflectance or transmittance of an electromagnetic wave when a structure in which a void is arranged is irradiated with an electromagnetic wave has a frequency characteristic derived from the characteristic of the void. When an object to be measured adheres to this structure, the frequency characteristics of the reflectance or transmittance of this electromagnetic wave change. The detection device according to the present embodiment detects an object to be measured by utilizing such a change in the frequency characteristic of the reflectance or transmittance of the irradiated electromagnetic wave. Here, the detection of the object to be measured includes specifying the presence / absence, amount, characteristics, etc. of the object to be measured.

[検出装置の構成]
図1は、本実施形態に係る検出装置2の構成の一例の概略を示す図である。検出装置2には、上述の構造体を有する検出センサー1が配置される。検出装置2は、駆動回路11と、電磁波照射部12と、電磁波検出部14と、AD変換回路15と、プロセッサー16とを備える。
[Detector configuration]
FIG. 1 is a diagram showing an outline of an example of the configuration of the detection device 2 according to the present embodiment. A detection sensor 1 having the above-mentioned structure is arranged in the detection device 2. The detection device 2 includes a drive circuit 11, an electromagnetic wave irradiation unit 12, an electromagnetic wave detection unit 14, an AD conversion circuit 15, and a processor 16.

プロセッサー16は、例えば、Central Processing Unit(CPU)、Application Specific Integrated Circuit(ASIC)、又はField Programmable Gate Array(FPGA)等を含む。プロセッサー16は、検出装置2の各部の動作を制御したり、各種の演算を行ったりする。プロセッサー16を動作させるために、検出装置2は、図示しないRandom Access Memory(RAM)等の記憶装置を含み得る。また、プロセッサー16を動作させるためのプログラム、測定結果などを記録するために、検出装置2は、図示しないフラッシュメモリ等の各種記憶装置を含み得る。 The processor 16 includes, for example, a Central Processing Unit (CPU), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), and the like. The processor 16 controls the operation of each part of the detection device 2 and performs various calculations. To operate the processor 16, the detection device 2 may include a storage device such as a Random Access Memory (RAM) (not shown). Further, in order to record a program for operating the processor 16, measurement results, and the like, the detection device 2 may include various storage devices such as a flash memory (not shown).

電磁波照射部12は、電磁波を放射する電磁波発生源を含む。電磁波照射部12は、電磁波を検出センサー1に照射するように構成されている。ここで用いられる電磁波は、検出センサー1の表面に電場を発生させることのできる電磁波であれば特に限定されない。電磁波として、例えば、X線、紫外線、可視光線、赤外線、マイクロ波、電波等のいずれも用いられ得るし、その周波数も特に限定されない。この電磁波の周波数は、例えば1GHz〜1PHzであることが好ましく、20GHz〜120THzであることがさらに好ましい。電磁波の周波数は、後に詳述する検出センサー1の構造に応じて定まる検出センサー1の周波数特性に応じて決定され得る。駆動回路11は、電磁波照射部12を駆動する回路である。駆動回路11は、プロセッサー16の制御下で、電磁波照射部12の動作を制御する。 The electromagnetic wave irradiation unit 12 includes an electromagnetic wave generation source that radiates an electromagnetic wave. The electromagnetic wave irradiation unit 12 is configured to irradiate the detection sensor 1 with an electromagnetic wave. The electromagnetic wave used here is not particularly limited as long as it is an electromagnetic wave capable of generating an electric field on the surface of the detection sensor 1. As the electromagnetic wave, for example, any of X-ray, ultraviolet ray, visible light, infrared ray, microwave, radio wave and the like can be used, and the frequency thereof is not particularly limited. The frequency of this electromagnetic wave is preferably, for example, 1 GHz to 1 PHz, and more preferably 20 GHz to 120 THz. The frequency of the electromagnetic wave can be determined according to the frequency characteristic of the detection sensor 1 which is determined according to the structure of the detection sensor 1 which will be described in detail later. The drive circuit 11 is a circuit that drives the electromagnetic wave irradiation unit 12. The drive circuit 11 controls the operation of the electromagnetic wave irradiation unit 12 under the control of the processor 16.

電磁波検出部14は、電磁波照射部12から放射された帯域の電磁波を検出する検出器を備える。電磁波検出部14は、電磁波照射部12から放射され、検出センサー1で反射した電磁波を検出するように構成されている。電磁波検出部14は、検出器に入射した電磁波に応じたアナログ電気信号を出力する。AD変換回路15は、電磁波検出部14から出力されたアナログの電気信号をデジタルの電気信号に変換し、プロセッサー16へと伝達する。プロセッサー16は、この電気信号に基づいて、検出センサー1の特性を解析し、被測定物の有無又は量等を特定する。 The electromagnetic wave detection unit 14 includes a detector that detects electromagnetic waves in the band radiated from the electromagnetic wave irradiation unit 12. The electromagnetic wave detection unit 14 is configured to detect an electromagnetic wave radiated from the electromagnetic wave irradiation unit 12 and reflected by the detection sensor 1. The electromagnetic wave detection unit 14 outputs an analog electric signal corresponding to the electromagnetic wave incident on the detector. The AD conversion circuit 15 converts the analog electric signal output from the electromagnetic wave detection unit 14 into a digital electric signal and transmits it to the processor 16. Based on this electric signal, the processor 16 analyzes the characteristics of the detection sensor 1 and specifies the presence / absence or amount of the object to be measured.

[検出センサーの構成]
検出センサー1の構造について、図面を参照して説明する。図2Aは、検出センサー1の一例の断面図を示し、図2Bは、検出センサー1の一例の平面図を示す。図2Aは、図2Bに示したIIA−IIA線における断面を示す。
[Detection sensor configuration]
The structure of the detection sensor 1 will be described with reference to the drawings. FIG. 2A shows a cross-sectional view of an example of the detection sensor 1, and FIG. 2B shows a plan view of an example of the detection sensor 1. FIG. 2A shows a cross section taken along the line IIA-IIA shown in FIG. 2B.

図2A及び図2Bに示すように、検出センサー1において、空隙のない膜21の上に空隙のある膜22が設けられている。空隙のない膜21は、例えばシリコンで形成されている。空隙のある膜22は、例えば金で形成されている。図2Bに示すように、空隙のある膜22には、例えばC型の空隙が多数並べて形成されている。多数のC型の空隙を有する図2Bに示す例は、メタマテリアル共振器の代表例で、相補型分割リング共振器と呼ばれている。相補型分割リング共振器は、所定の周波数帯の電磁波が照射されたときに、特徴的な反射特性を示す。すなわち、電磁波が照射されたとき、空隙のある膜22のC型の空隙がある部分は、電気的にLC回路のように振る舞う。このため、このLC回路の共振周波数の近傍の周波数において、照射された電磁波は、相補型分割リング共振器と強く相互作用し、吸収される。その結果、相補型分割リング共振器は、LC回路の共振周波数の近傍で反射率が低下する反射特性を示す。例えば、C型の空隙部の大きさが数μm程度であるとき、共振周波数は、テラヘルツ帯域に表れる。 As shown in FIGS. 2A and 2B, in the detection sensor 1, a film 22 having voids is provided on the film 21 having no voids. The voidless film 21 is made of, for example, silicon. The film 22 with voids is formed of, for example, gold. As shown in FIG. 2B, for example, a large number of C-shaped voids are formed side by side on the film 22 having voids. The example shown in FIG. 2B having a large number of C-shaped voids is a typical example of a metamaterial resonator and is called a complementary split ring resonator. Complementary split ring resonators exhibit characteristic reflection characteristics when irradiated with electromagnetic waves in a predetermined frequency band. That is, when the electromagnetic wave is irradiated, the portion of the film 22 having the voids having the C-shaped voids behaves electrically like an LC circuit. Therefore, at a frequency near the resonance frequency of this LC circuit, the irradiated electromagnetic wave strongly interacts with the complementary split ring resonator and is absorbed. As a result, the complementary split ring resonator exhibits a reflection characteristic in which the reflectance decreases in the vicinity of the resonance frequency of the LC circuit. For example, when the size of the C-shaped gap is about several μm, the resonance frequency appears in the terahertz band.

相補型分割リング共振器に物質が付着したとき、当該物質がLC回路の主に容量成分を変化させる。その結果、当該LC回路の共振周波数が変化する。図3は、相補型分割リング共振器に電磁波を照射したときの反射率の周波数特性を示す。横軸は照射する電磁波の周波数を示し、縦軸は反射率を示す。破線31は、相補型分割リング共振器に被測定物がないときの周波数特性を示し、実線32は、相補型分割リング共振器に被測定物があるときの周波数特性を示す。図3に示すように、相補型分割リング共振器に被測定物があるか否かに応じて、反射率の周波数特性が変化する。 When a substance adheres to the complementary split ring resonator, the substance mainly changes the capacitance component of the LC circuit. As a result, the resonance frequency of the LC circuit changes. FIG. 3 shows the frequency characteristics of the reflectance when the complementary split ring resonator is irradiated with an electromagnetic wave. The horizontal axis shows the frequency of the irradiating electromagnetic wave, and the vertical axis shows the reflectance. The broken line 31 shows the frequency characteristic when there is no object to be measured in the complementary split ring resonator, and the solid line 32 shows the frequency characteristic when there is an object to be measured in the complementary split ring resonator. As shown in FIG. 3, the frequency characteristic of the reflectance changes depending on whether or not there is an object to be measured in the complementary split ring resonator.

この周波数特性の変化を利用することで、相補型分割リング共振器は、検出センサー1として用いられ得る。すなわち、検出装置2の電磁波照射部12が放射する電磁波の周波数は、LC回路の共振周波数の近傍の周波数に設定される。電磁波照射部12から放射された電磁波は、検出センサー1に照射される。このとき、電磁波検出部14は、検出センサー1で反射した電磁波を検出する。プロセッサー16は、検出された電磁波の強度に基づいて、検出センサー1上の物質の有無又は量等を特定できる。 By utilizing this change in frequency characteristics, the complementary split ring resonator can be used as the detection sensor 1. That is, the frequency of the electromagnetic wave radiated by the electromagnetic wave irradiation unit 12 of the detection device 2 is set to a frequency near the resonance frequency of the LC circuit. The electromagnetic wave radiated from the electromagnetic wave irradiating unit 12 irradiates the detection sensor 1. At this time, the electromagnetic wave detection unit 14 detects the electromagnetic wave reflected by the detection sensor 1. The processor 16 can specify the presence / absence or amount of a substance on the detection sensor 1 based on the intensity of the detected electromagnetic wave.

例えば、図3に示す例において、電磁波照射部12が放射する電磁波の周波数を、一点鎖線で示した周波数F1とする。このとき、破線31で示した被検出物が存在しない検出センサー1の反射率は、第1の反射率R1として検出される。一方、実線32で示した被検出物が存在する検出センサー1の反射率は、第2の反射率R2として検出される。このような反射率の変化の有無に基づいて、被検出物の有無が特定され得る。また、反射率の変化量に基づいて、被検出物の量又は特性が特定され得る。 For example, in the example shown in FIG. 3, the frequency of the electromagnetic wave radiated by the electromagnetic wave irradiation unit 12 is defined as the frequency F1 indicated by the alternate long and short dash line. At this time, the reflectance of the detection sensor 1 in which the object to be detected does not exist, which is indicated by the broken line 31, is detected as the first reflectance R1. On the other hand, the reflectance of the detection sensor 1 in which the object to be detected shown by the solid line 32 is present is detected as the second reflectance R2. The presence or absence of the object to be detected can be specified based on the presence or absence of such a change in reflectance. In addition, the amount or characteristics of the object to be detected can be specified based on the amount of change in reflectance.

空隙のある膜22を形成する材料は、金に限定されない。空隙のある膜22を形成する材料は、導体であればよい。ここで、導体とは、電気を通す物質のことである。導体は、金属、半導体等を含む。金属としては、金、銀、銅、ニッケル、クロム、ゲルマニウムなどが挙げられる。また、導体は、金属インクも含む。 The material that forms the void film 22 is not limited to gold. The material that forms the film 22 with voids may be a conductor. Here, the conductor is a substance that conducts electricity. The conductor includes metals, semiconductors and the like. Examples of the metal include gold, silver, copper, nickel, chromium, germanium and the like. The conductor also includes metal ink.

空隙の形状はC型に限定されない。空隙の形状は、例えば、四角形又は多角形など他の形状であってもよい。また、空隙の配置は、図2Bに示すように、マトリックス状の配置に限定されない。空隙の配置は、規則的又は周期的に配置されていればよい。 The shape of the void is not limited to the C type. The shape of the void may be another shape such as a quadrangle or a polygon. Further, the arrangement of the voids is not limited to the matrix-like arrangement as shown in FIG. 2B. The voids may be arranged regularly or periodically.

空隙のない膜21を形成する材料は、シリコンに限定されない。空隙のない膜21を形成する材料は、空気の屈折率(誘電率)よりも大きい屈折率(誘電率)を有する材料である。また、空隙のない膜21を形成する材料は、使用する電磁波の周波数帯において透明性を有する材料であることが好ましい。また、空隙のない膜21を形成する材料は、使用する電磁波の周波数帯において、屈折率の周波数依存性が小さいことが好ましい。ここで、屈折率の周波数依存性が小さいとは、検出装置2を用いた検出の目的を達成できる程度に十分に周波数依存性が小さいことを意味している。すなわち、空隙のない膜21が周波数依存性を有しているとき、この周波数依存性は、空隙のある膜22による被検出物の検出に対してノイズとなる。したがって、空隙のない膜21についての周波数依存性は、被測定物、測定の目的等によって決定され得る検出装置2の測定精度が得られる程度に十分小さいことが好ましい。空隙のない膜21を形成する材料としては、シリコンなどの無機材料、ポリエチレンなどの有機材料等が用いられ得る。シリコンは、本実施形態に係る検出センサー1のように、微細な構造を有する金属膜が形成されるプロセスにおいて、頻繁に使われる材料であり、好ましい。 The material for forming the void-free film 21 is not limited to silicon. The material for forming the film 21 without voids is a material having a refractive index (dielectric constant) larger than the refractive index (dielectric constant) of air. Further, the material for forming the film 21 without voids is preferably a material having transparency in the frequency band of the electromagnetic wave used. Further, it is preferable that the material for forming the film 21 having no voids has a small frequency dependence of the refractive index in the frequency band of the electromagnetic wave to be used. Here, the fact that the frequency dependence of the refractive index is small means that the frequency dependence is sufficiently small to achieve the purpose of detection using the detection device 2. That is, when the film 21 without voids has frequency dependence, this frequency dependence becomes noise with respect to the detection of the object to be detected by the film 22 with voids. Therefore, it is preferable that the frequency dependence of the film 21 without voids is sufficiently small so that the measurement accuracy of the detection device 2 that can be determined by the object to be measured, the purpose of measurement, and the like can be obtained. As the material for forming the film 21 without voids, an inorganic material such as silicon, an organic material such as polyethylene, or the like can be used. Silicon is a material that is frequently used in the process of forming a metal film having a fine structure, such as the detection sensor 1 according to the present embodiment, and is preferable.

空隙のある膜22及び空隙のない膜21の厚さは特に限定されない。ただし、空隙のある膜22の厚さに比べて、空隙のない膜21の厚さの方が厚いことが好ましい。例えば、空隙のない膜21の厚さは、数μm乃至数百μm程度であり得るし、空隙のある膜22の厚さは、数nm乃至数十μm程度であり得る。空隙のある膜22は空隙のない膜21と隙間なく密着している。 The thickness of the film 22 having voids and the film 21 having no voids is not particularly limited. However, it is preferable that the thickness of the film 21 without voids is thicker than the thickness of the film 22 with voids. For example, the thickness of the film 21 without voids may be about several μm to several hundred μm, and the thickness of the film 22 with voids may be about several nm to several tens of μm. The film 22 with voids is in close contact with the film 21 without voids without any gaps.

[検出装置の動作の概要]
検出装置2の動作の概要を説明する。ユーザーは、被測定物の有無、量又は特性等を明らかにしたいサンプルを反応させた検出センサー1を、検出装置2に配置する。サンプルに被測定物が含まれているとき、検出センサー1にはサンプルに応じて被測定物が付加される。検出センサー1が配置された状態で、以下の検出処理が行われる。
[Overview of detection device operation]
The outline of the operation of the detection device 2 will be described. The user arranges the detection sensor 1 in which the sample for which the presence / absence, the amount, the characteristics, etc. of the object to be measured is to be clarified is reacted in the detection device 2. When the sample contains an object to be measured, the object to be measured is added to the detection sensor 1 according to the sample. The following detection process is performed with the detection sensor 1 arranged.

プロセッサー16の制御下で、駆動回路11は、電磁波照射部12に電磁波を放射させる。電磁波照射部12から放射された電磁波13aは、例えば図示しない各種光学素子を用いて、検出センサー1に照射される。この電磁波の少なくとも一部は、検出センサー1で反射する。 Under the control of the processor 16, the drive circuit 11 radiates an electromagnetic wave to the electromagnetic wave irradiation unit 12. The electromagnetic wave 13a radiated from the electromagnetic wave irradiation unit 12 irradiates the detection sensor 1 with various optical elements (not shown), for example. At least a part of this electromagnetic wave is reflected by the detection sensor 1.

反射した電磁波13bは、例えば図示しない各種光学素子を用いて、電磁波検出部14へと導かれる。電磁波検出部14は、電磁波13bを検出し、検出結果を示すアナログ電気信号を生成する。電磁波検出部14は、例えば電磁波13bの強度を検出し、電磁波13bの強度に応じた電気信号を出力する。電磁波検出部14から出力された検出結果を示す電気信号は、AD変換回路15でデジタル電気信号に変換され、プロセッサー16へと伝達される。 The reflected electromagnetic wave 13b is guided to the electromagnetic wave detection unit 14 by using, for example, various optical elements (not shown). The electromagnetic wave detection unit 14 detects the electromagnetic wave 13b and generates an analog electric signal indicating the detection result. The electromagnetic wave detection unit 14 detects, for example, the intensity of the electromagnetic wave 13b, and outputs an electric signal corresponding to the intensity of the electromagnetic wave 13b. The electric signal indicating the detection result output from the electromagnetic wave detection unit 14 is converted into a digital electric signal by the AD conversion circuit 15 and transmitted to the processor 16.

プロセッサー16は、電磁波検出部14の検出結果に基づいて、検出センサー1に固定された被測定物の有無、量又は特性等を特定する。例えば、検出センサー1に被測定物が固定されていないときと固定されているときとで、検出センサー1における電磁波の反射に係る周波数特性が変化する。このため、電磁波照射部12から所定の周波数を有する電磁波が放射され、検出センサー1で当該電磁波が反射するとき、被測定物の有無に応じて検出センサー1で反射する電磁波の強度が変化する。プロセッサー16は、例えば予め取得しておいた被測定物が固定されていないときに検出される電磁波の強度と、サンプルで処理した検出センサー1を用いて検出された電磁波の強度とを比較して、被測定物の有無又は量等を特定する。 The processor 16 specifies the presence / absence, amount, characteristics, and the like of the object to be measured fixed to the detection sensor 1 based on the detection result of the electromagnetic wave detection unit 14. For example, the frequency characteristic related to the reflection of electromagnetic waves in the detection sensor 1 changes depending on whether the object to be measured is fixed to the detection sensor 1 or not. Therefore, when an electromagnetic wave having a predetermined frequency is emitted from the electromagnetic wave irradiation unit 12 and the electromagnetic wave is reflected by the detection sensor 1, the intensity of the electromagnetic wave reflected by the detection sensor 1 changes depending on the presence or absence of the object to be measured. The processor 16 compares, for example, the intensity of the electromagnetic wave detected in advance when the object to be measured is not fixed with the intensity of the electromagnetic wave detected by using the detection sensor 1 processed by the sample. , Specify the presence or absence or amount of the object to be measured.

本実施形態に係る検出装置2が検出する対象である被測定物としては、例えば、タンパク質などの生体分子、菌などの微生物等が挙げられる。 Examples of the object to be measured to be detected by the detection device 2 according to the present embodiment include biomolecules such as proteins and microorganisms such as bacteria.

[検出センサーにおける空隙のない膜の有無について]
図2A及び図2Bに示した本実施形態に係る検出センサー1に電磁波を照射した際に生じる電場の分布を解析した。図4は、検出センサー1に電磁波を照射した際に生じる電場の分布の解析結果を示す。解析には、有限差分時間領域法(Finite Difference Time Domain法、FDTD法)を用いた。この解析において、空隙のない膜21の材料はシリコンとし、その屈折率は3.4とした。空隙のない膜21の厚さは20μmとした。一方、空隙のある膜22の材料は金とした。空隙のある膜22の厚さは20nmとした。空隙のない膜21及び空隙のある膜22以外の領域は、空気が存在するものとした。また、電磁波は、空隙のない膜21と垂直な方向に、空隙のない膜21の側から照射されるものとした。図4において、明るい箇所ほど強い電場が生じていることを表している。
[Regarding the presence or absence of a void-free film in the detection sensor]
The distribution of the electric field generated when the detection sensor 1 according to the present embodiment shown in FIGS. 2A and 2B was irradiated with electromagnetic waves was analyzed. FIG. 4 shows an analysis result of the distribution of the electric field generated when the detection sensor 1 is irradiated with an electromagnetic wave. The finite difference time domain method (Finite Difference Time Domain method, FDTD method) was used for the analysis. In this analysis, the material of the film 21 having no voids was silicon, and its refractive index was 3.4. The thickness of the film 21 without voids was 20 μm. On the other hand, the material of the film 22 having voids was gold. The thickness of the film 22 having voids was 20 nm. It was assumed that air was present in the regions other than the film 21 having no voids and the film 22 having voids. Further, the electromagnetic wave is radiated from the side of the film 21 having no void in the direction perpendicular to the film 21 having no void. In FIG. 4, the brighter the part, the stronger the electric field is generated.

比較例として、空隙のない膜21が存在せず、空隙のある膜22のみからなる検出センサーに電磁波を照射した際に生じる電場の分布を解析した。空隙のない膜21の有無以外の条件は、図4に結果を示した解析と同条件で解析を行った。図5は、空隙のない膜21がない場合の解析結果を示す。図4及び図5の比較に基づくと、図4に示す空隙のない膜21が存在する場合、空隙のある膜22の表面の近傍に電場が局在していることが明らかになった。 As a comparative example, the distribution of the electric field generated when the detection sensor consisting of only the film 22 having a void does not exist and the film 21 having no void is irradiated with an electromagnetic wave was analyzed. The analysis was performed under the same conditions as the analysis shown in FIG. 4 except for the presence or absence of the film 21 having no voids. FIG. 5 shows the analysis result when there is no film 21 without voids. Based on the comparison of FIGS. 4 and 5, it was revealed that when the film 21 without voids shown in FIG. 4 is present, the electric field is localized in the vicinity of the surface of the film 22 with voids.

この結果は、以下の理由で生じたと考えられる。すなわち、シリコンで形成された空隙のない膜21は空気と比較して電磁波を通しやすい。このため、図4に示す例では、導体である空隙のある膜22で生じた電場は、空隙のない膜21を介して小さく回り込み、広がらないと考えられる。これに対して、図5に示す例では、空隙のある膜22で生じた電場は、空隙のない膜21が存在しないため、大きく広がったと考えられる。 This result is considered to have occurred for the following reasons. That is, the air-free film 21 made of silicon is easier to pass electromagnetic waves than air. Therefore, in the example shown in FIG. 4, it is considered that the electric field generated in the film 22 having voids, which is a conductor, wraps around a small amount through the film 21 having no voids and does not spread. On the other hand, in the example shown in FIG. 5, the electric field generated in the film 22 having voids is considered to have greatly expanded because the film 21 having no voids does not exist.

以上のように、検出センサー1は、導体で形成された空隙のある膜22と、空気よりも屈折率が大きい材料で形成された空隙のない膜21とを一体化させた構造を有する。このような構造により、発生した電場は、検出センサー1の表面付近に広がらずに引き寄せられる。その結果、空隙のない膜21が存在する場合、図3に示したような被検出物の有無による周波数特性の変化が、空隙のない膜21が存在しない場合より大きくなる。さらに、空隙のない膜21が存在する場合、周波数に応じた反射率の変化(図3に示す図における谷の深さ)も、空隙のない膜21が存在しない場合より大きくなる。したがって、検出センサー1として空隙のない膜21が存在する構造を採用することで、被測定物の大きさが微小であったり、被測定物の量が微量であったりする場合にも、検出装置2は、被測定物を高精度に検出することが可能になる。このような効果は、空隙のある膜22の厚さに比べて、空隙のない膜21の厚さの方が厚いときにより得られる。 As described above, the detection sensor 1 has a structure in which a film 22 having voids formed of a conductor and a film 21 having no voids formed of a material having a refractive index higher than that of air are integrated. Due to such a structure, the generated electric field is attracted to the vicinity of the surface of the detection sensor 1 without spreading. As a result, when the film 21 without voids is present, the change in frequency characteristics depending on the presence or absence of the object to be detected as shown in FIG. 3 becomes larger than when the film 21 without voids is present. Further, when the film 21 without voids is present, the change in reflectance according to the frequency (depth of the valley in the figure shown in FIG. 3) is also larger than when the film 21 without voids is present. Therefore, by adopting a structure in which the film 21 having no voids exists as the detection sensor 1, the detection device is used even when the size of the object to be measured is very small or the amount of the object to be measured is very small. No. 2 makes it possible to detect the object to be measured with high accuracy. Such an effect is obtained when the thickness of the film 21 without voids is thicker than the thickness of the film 22 with voids.

[変形例]
上述の実施形態において、検出センサー1の空隙のある膜22は、例えば図2A及び図2Bに示すように、例えば導体にC字型の空隙が設けられているようなものでなくてもよい。検出センサー1の空隙のある膜22は、例えば導体でC字型が形成され、当該C字型の導体が、マトリックス状に配置されているようなものであってもよい。この場合、空隙のある膜22において、C字型以外の領域が空隙となる。このような構造であっても、空隙のある膜22のC字型の部分は、LC回路として振る舞うため、所定の周波数特性を示す。また、空隙のない膜21は、電磁波の照射によって生じた電場を引き寄せる。したがって、上述の実施形態に係る検出センサー1と同様の特性を示す。
[Modification example]
In the above-described embodiment, the film 22 having a gap in the detection sensor 1 does not have to be, for example, a conductor provided with a C-shaped gap, as shown in FIGS. 2A and 2B. The film 22 having a gap in the detection sensor 1 may be, for example, a conductor in which a C-shape is formed, and the C-shaped conductors are arranged in a matrix. In this case, in the film 22 having a gap, a region other than the C-shape becomes a gap. Even with such a structure, the C-shaped portion of the film 22 having a gap behaves as an LC circuit, and therefore exhibits a predetermined frequency characteristic. Further, the film 21 having no voids attracts the electric field generated by the irradiation of electromagnetic waves. Therefore, it exhibits the same characteristics as the detection sensor 1 according to the above-described embodiment.

もちろん上述の実施形態と同様に、形成されている導体の形状であるC字型は一態様である。導体の形状は、四角形又は多角形など他の形状であってもよい。また、導体の配置は、マトリックス状の配置に限定されない。導体の配置は、規則的又は周期的に配置されていればよい。 Of course, as in the above-described embodiment, the C-shape, which is the shape of the formed conductor, is one aspect. The shape of the conductor may be another shape such as a quadrangle or a polygon. Further, the arrangement of the conductors is not limited to the matrix-like arrangement. The conductors may be arranged regularly or periodically.

また、上述の実施形態では、検出装置2は、電磁波を検出センサー1に照射して、検出センサー1で反射した電磁波を検出する構成となっているがこれに限らない。検出装置2は、電磁波を検出センサー1に照射して、検出センサー1を透過した電磁波を検出する構成であってもよい。特に、上述の変形例のように、例えば導体でC字型が形成されている空隙のある膜22を有する検出センサー1を用いる場合等は、検出センサー1を透過した電磁波を検出する方が、反射波を検出する場合よりも、検出精度は向上する。 Further, in the above-described embodiment, the detection device 2 is configured to irradiate the detection sensor 1 with electromagnetic waves and detect the electromagnetic waves reflected by the detection sensor 1, but the present invention is not limited to this. The detection device 2 may be configured to irradiate the detection sensor 1 with electromagnetic waves to detect the electromagnetic waves transmitted through the detection sensor 1. In particular, when a detection sensor 1 having a film 22 having a void in which a C-shape is formed by a conductor is used as in the above-mentioned modification, it is better to detect the electromagnetic wave transmitted through the detection sensor 1. The detection accuracy is improved as compared with the case of detecting the reflected wave.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
尚、上述した実施形態は、以下の発明を含んでいる。
(1) 電磁波が照射される検出センサーであり、前記検出センサーへの被測定物の付加によって変化する前記電磁波の反射率又は透過率の周波数特性に基づく前記被測定物の検出に用いられる検出センサーであって、空気よりも大きい屈折率を有する材料で形成された空隙のない膜と、前記空隙のない膜に密着して導体で形成された空隙のある膜とを備える検出センサー。
(2) 前記空気よりも大きい屈折率を有する材料はシリコンである、(1)項に記載の検出センサー。
(3) 前記空隙のない膜は、前記空隙のある膜よりも厚い、(1)項又は(2)項に記載の検出センサー。
(4) 前記空隙のない膜の前記屈折率の周波数依存性は、前記電磁波の周波数帯において小さい、(1)項乃至(3)項のうち何れか1項に記載の検出センサー。
(5) (1)項乃至(4)項のうち何れか1項に記載の検出センサーが配置され、前記検出センサーに電磁波を照射する電磁波照射部と、前記検出センサーで反射した電磁波、又は、前記検出センサーを透過した電磁波を検出する電磁波検出部とを備える検出装置。
Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
The above-described embodiment includes the following inventions.
(1) A detection sensor that is irradiated with electromagnetic waves, and is a detection sensor used for detecting an object to be measured based on the frequency characteristics of the reflectance or transmittance of the electromagnetic wave that changes due to the addition of the object to be measured to the detection sensor. A detection sensor comprising: a void-free film made of a material having a refractive index larger than that of air, and a void-free film formed of a conductor in close contact with the void-free film.
(2) The detection sensor according to item (1), wherein the material having a refractive index larger than that of air is silicon.
(3) The detection sensor according to item (1) or (2), wherein the film without voids is thicker than the film with voids.
(4) The detection sensor according to any one of (1) to (3), wherein the frequency dependence of the refractive index of the voidless film is small in the frequency band of the electromagnetic wave.
(5) The detection sensor according to any one of items (1) to (4) is arranged, and an electromagnetic wave irradiating unit that irradiates the detection sensor with an electromagnetic wave, an electromagnetic wave reflected by the detection sensor, or an electromagnetic wave reflected by the detection sensor. A detection device including an electromagnetic wave detection unit that detects an electromagnetic wave transmitted through the detection sensor.

1…検出センサー、2…検出装置、11…駆動回路、12…電磁波照射部、13a,13b…電磁波、14…電磁波検出部、15…AD変換回路、16…プロセッサー、21…空隙のない膜、22…空隙のある膜。 1 ... Detection sensor, 2 ... Detection device, 11 ... Drive circuit, 12 ... Electromagnetic wave irradiation unit, 13a, 13b ... Electromagnetic wave, 14 ... Electromagnetic wave detection unit, 15 ... AD conversion circuit, 16 ... Processor, 21 ... Void-free film, 22 ... A film with voids.

Claims (4)

被測定物の付着による容量成分の変化を用いて被測定物を検出する検出センサーであって、
空気よりも大きい屈折率を有する材料で平坦な面に形成された空隙のない膜と、
前記空隙のない膜の前記平坦な面に密着する導体で形成され、C型形状を成す複数の空隙がそれぞれ離間して規則的又は周期的に配置された空隙のある膜とを備え、
前記空隙のある膜に付着した前記被測定物による容量成分の変化に基づき、予め設定された共振周波数を変化させ、入射した電磁波の反射率又は透過率の周波数特性の変化から前記被測定物を検出する検出センサー。
It is a detection sensor that detects the object to be measured by using the change in the volume component due to the adhesion of the object to be measured.
A void-free film formed on a flat surface made of a material having a refractive index higher than that of air,
They are formed by conductors in close contact with the flat surface with no said void layer, Bei example a membrane with a regular or periodically disposed voids plurality of voids which form a C-shaped is separated respectively, and,
Based on the change in the capacitance component due to the object to be measured adhering to the film with voids, the preset resonance frequency is changed, and the object to be measured is determined from the change in the frequency characteristics of the reflectance or transmittance of the incident electromagnetic wave. Detection sensor to detect.
前記空気よりも大きい屈折率を有する材料はシリコンである、請求項1に記載の検出センサー。 The detection sensor according to claim 1, wherein the material having a refractive index larger than that of air is silicon. 前記空隙のない膜は、前記空隙のある膜よりも厚い、請求項1又は2に記載の検出センサー。 The detection sensor according to claim 1 or 2, wherein the film without voids is thicker than the film with voids. 請求項1乃至のうち何れか1項に記載の検出センサーが配置され、
前記検出センサーに電磁波を照射する電磁波照射部と、
前記検出センサーで反射した電磁波、又は、前記検出センサーを透過した電磁波を検出する電磁波検出部と
を備える検出装置。
The detection sensor according to any one of claims 1 to 3 is arranged, and the detection sensor is arranged.
An electromagnetic wave irradiation unit that irradiates the detection sensor with electromagnetic waves,
A detection device including an electromagnetic wave detection unit that detects an electromagnetic wave reflected by the detection sensor or an electromagnetic wave transmitted through the detection sensor.
JP2017173331A 2017-09-08 2017-09-08 Detection sensor and detection device Active JP6938292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017173331A JP6938292B2 (en) 2017-09-08 2017-09-08 Detection sensor and detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017173331A JP6938292B2 (en) 2017-09-08 2017-09-08 Detection sensor and detection device

Publications (2)

Publication Number Publication Date
JP2019049454A JP2019049454A (en) 2019-03-28
JP6938292B2 true JP6938292B2 (en) 2021-09-22

Family

ID=65905530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017173331A Active JP6938292B2 (en) 2017-09-08 2017-09-08 Detection sensor and detection device

Country Status (1)

Country Link
JP (1) JP6938292B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132022A1 (en) * 2022-01-06 2023-07-13 三菱電機株式会社 Sensor tag, method for reading sensor tag, and sensor system using sensor tag

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9030286B2 (en) * 2009-04-08 2015-05-12 New Jersey Institute Of Technology Metamaterials with terahertz response and methods of making same
JP5609654B2 (en) * 2011-01-07 2014-10-22 株式会社村田製作所 Measuring method of measured object
CN103477204A (en) * 2011-03-31 2013-12-25 株式会社村田制作所 Measurement structure, method for producing same, and measurement method using same
JP6169546B2 (en) * 2014-09-11 2017-07-26 日本電信電話株式会社 Dielectric spectroscopic sensor, measurement system using dielectric spectroscopic sensor, and measurement method using dielectric spectroscopic sensor
JP6395049B2 (en) * 2014-12-24 2018-09-26 大日本印刷株式会社 Inspection method and inspection apparatus for detecting adhering matter adhering to an object

Also Published As

Publication number Publication date
JP2019049454A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
Peng et al. Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement
Seo et al. Terahertz biochemical molecule‐specific sensors
US7633299B2 (en) Inspection apparatus using terahertz wave
JP4726212B2 (en) Sensing device
EP3683848B1 (en) Detection of terahertz radiation
JP2007010366A (en) Monolithic structure, measuring instrument and method, and program
US20070108382A1 (en) Specimen testing element, specimen information obtaining method and specimen testing apparatus
JP2008122306A (en) Specimen analyzer and specimen analytical method
KR20080042926A (en) Terahertz waveguide device and detection method using the same
JP5582192B2 (en) Method for measuring the characteristics of the object to be measured
JP4911965B2 (en) Measuring structure, measuring apparatus, method and program
US10408750B2 (en) Void-arranged structure and measurement method using the same
JP6938292B2 (en) Detection sensor and detection device
Lu et al. Terahertz microchip for illicit drug detection
JP2005172779A (en) Method and apparatus for measuring bacteria, virus and toxic substance by irradiation with electromagnetic wave
JP5609654B2 (en) Measuring method of measured object
Ozturk et al. Measurement methods and extraction techniques to obtain the dielectric properties of materials
JP7059057B2 (en) Detection device and measuring device
JP6938291B2 (en) Sensors, detectors and detection systems
JP4911964B2 (en) Contained structure, measuring device, method and program
Shon et al. High speed terahertz pulse imaging in the reflection geometry and image quality enhancement by digital image processing
Lee et al. Highly sensitive terahertz spectroscopy of residual pesticide using nano-antenna
CN111665576B (en) Optical imaging apparatus using metamaterial and optical imaging method using metamaterial
US20150241348A1 (en) Information acquiring apparatus and information acquiring method
JP7253421B2 (en) Detection sensor and measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210901

R150 Certificate of patent or registration of utility model

Ref document number: 6938292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150