JP4911964B2 - Contained structure, measuring device, method and program - Google Patents

Contained structure, measuring device, method and program Download PDF

Info

Publication number
JP4911964B2
JP4911964B2 JP2005356486A JP2005356486A JP4911964B2 JP 4911964 B2 JP4911964 B2 JP 4911964B2 JP 2005356486 A JP2005356486 A JP 2005356486A JP 2005356486 A JP2005356486 A JP 2005356486A JP 4911964 B2 JP4911964 B2 JP 4911964B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
measurement
measured
transmittance
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005356486A
Other languages
Japanese (ja)
Other versions
JP2007163170A (en
Inventor
英志 加藤
雄一 小川
伸一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2005356486A priority Critical patent/JP4911964B2/en
Publication of JP2007163170A publication Critical patent/JP2007163170A/en
Application granted granted Critical
Publication of JP4911964B2 publication Critical patent/JP4911964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、電磁波を照射して測定する被測定物の取り扱いに関する。   The present invention relates to handling of an object to be measured that is measured by irradiation with electromagnetic waves.

従来より、テラヘルツ波を被測定物に照射した際の透過率に基づき、被測定物を分析することが知られている(例えば、特許文献1を参照)。また、金属板に孔をあけたものに電磁波を照射した際の透過率も知られている(例えば、非特許文献1を参照)。さらに、金属板に孔をあけたものを位相差板として利用することも知られている(例えば、特許文献2を参照)。   Conventionally, it is known to analyze an object to be measured based on transmittance when the object to be measured is irradiated with a terahertz wave (see, for example, Patent Document 1). Moreover, the transmittance | permeability at the time of irradiating electromagnetic waves to what opened the hole in the metal plate is also known (for example, refer nonpatent literature 1). Furthermore, it is also known to use a metal plate having a hole as a retardation plate (see, for example, Patent Document 2).

また、非特許文献3のFig.1を参照して、テラヘルツ時間領域分光法(Terahertz Time Domain
Spectroscopy : THz-TDS)による測定法も知られている。
Further, referring to Fig. 1 of Non-Patent Document 3, Terahertz Time Domain Spectroscopy (Terahertz Time Domain Spectroscopy)
Spectroscopy: THz-TDS) is also known.

特開2004−108905号公報JP 2004-108905 A 特開2004−117703号公報JP 2004-117703 A K.F. Renk and L. Genzel “Interference Filters and Fabry-PerotInterferometers for the Far Infrared”, APPLIED OPTICS, Vol. 1, No. 5, 1962年9月K.F.Renk and L. Genzel “Interference Filters and Fabry-PerotInterferometers for the Far Infrared”, APPLIED OPTICS, Vol. 1, No. 5, September 1962 Masaki Tanaka et al., “Effect of a thin dielectric layer onterahertz transmission characteristics for metal hole arrays”, Optics Letters,Vol. 30, 2005年5月Masaki Tanaka et al., “Effect of a thin dielectric layer onterahertz transmission characteristics for metal hole arrays”, Optics Letters, Vol. 30, May 2005 阪井清美、「テラヘルツ時間領域分光法」、分光研究、2001年、第50巻、第6号、p.261−273Sakai Kiyomi, “Terahertz Time Domain Spectroscopy”, Spectroscopic Research, 2001, Vol. 50, No. 6, p. 261-273

しかしながら、上記のような先行技術は、電磁波が照射される被測定物をどのように取り扱えば有利かということを開示していない。   However, the prior art as described above does not disclose how it is advantageous to handle a measurement object irradiated with electromagnetic waves.

また、テラヘルツ時間領域分光法は複雑な測定法である。   Terahertz time domain spectroscopy is a complex measurement method.

そこで、本発明は、電磁波が照射されることによって測定される被測定物を有利に取り扱う(例えば、簡便な測定を行う)ことを課題とする。   Then, this invention makes it a subject to handle the to-be-measured object measured by irradiating electromagnetic waves advantageously (for example, performing a simple measurement).

本発明にかかる収容型構造体は、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体と、被測定物および前記空隙配置構造体を収容する容器と、を備え、前記容器は、前記被測定物の特性を測定するために前記空隙部に照射される測定用電磁波を透過させるように構成される。   A containment structure according to the present invention includes a void arrangement structure in which a void surrounded by a conductor is arranged on a predetermined plane, and a container that accommodates an object to be measured and the void arrangement structure, A container is comprised so that the electromagnetic waves for a measurement irradiated to the said space | gap part may be transmitted in order to measure the characteristic of the said to-be-measured object.

上記のように構成された収容型構造体によれば、空隙配置構造体は、所定の平面において導体で囲まれた空隙部が配置されている。容器は、被測定物および前記空隙配置構造体を収容する。さらに、容器は、前記被測定物の特性を測定するために前記空隙部に照射される測定用電磁波を透過させる。   According to the accommodation type structure configured as described above, the gap arrangement structure is provided with the gap surrounded by the conductor in a predetermined plane. The container accommodates the object to be measured and the gap arrangement structure. Furthermore, the container transmits the electromagnetic wave for measurement irradiated to the gap portion in order to measure the characteristic of the object to be measured.

また、本発明にかかる収容型構造体は、前記容器が、前記被測定物を含む液体または前記被測定物を含む気体を収容するようにしてもよい。   In the accommodation type structure according to the present invention, the container may contain a liquid containing the measurement object or a gas containing the measurement object.

また、本発明にかかる収容型構造体は、前記容器に前記液体または前記気体が注入および排出されている間に、前記測定用電磁波が照射されるようにしてもよい。   In the containment structure according to the present invention, the measurement electromagnetic wave may be irradiated while the liquid or the gas is injected into and discharged from the container.

また、本発明にかかる収容型構造体は、前記容器は、前記空隙部を透過した透過電磁波を透過させるようにしてもよい。   In the containment structure according to the present invention, the container may transmit the transmitted electromagnetic wave that has passed through the gap.

また、本発明にかかる収容型構造体は、前記空隙配置構造体は、同一形状の前記空隙部が所定の方向に一定の間隔で配置されているようにしてもよい。   Moreover, the accommodation type structure concerning this invention WHEREIN: As for the said space | gap arrangement structure body, you may make it the said cavity part of the same shape arrange | positioned by the fixed space | interval in the predetermined direction.

また、本発明にかかる収容型構造体は、前記空隙配置構造体は、導体を貫通する開口が縦方向および横方向に配列された二次元格子であるようにしてもよい。   In the housing structure according to the present invention, the gap arrangement structure may be a two-dimensional lattice in which openings penetrating the conductors are arranged in the vertical direction and the horizontal direction.

本発明にかかる測定装置は、本発明にかかる収容型構造体に前記測定用電磁波を照射する測定用電磁波照射手段と、照射された前記測定用電磁波に対する前記収容型構造体による応答である測定用応答電磁波を検出する測定用電磁波検出手段と、前記空隙配置構造体に参照電磁波を照射する参照電磁波照射手段と、照射された前記参照電磁波に対する前記空隙配置構造体による応答である参照応答電磁波を検出する参照電磁波検出手段と、前記測定用電磁波検出手段の検出結果および前記参照電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定手段とを備えるように構成される。   The measuring apparatus according to the present invention is a measurement electromagnetic wave irradiation means for irradiating the measurement type electromagnetic wave to the accommodation type structure according to the invention, and a measurement response that is a response by the accommodation type structure to the irradiated measurement electromagnetic wave. Measuring electromagnetic wave detecting means for detecting response electromagnetic waves, reference electromagnetic wave irradiating means for irradiating the gap arrangement structure with a reference electromagnetic wave, and detecting a reference response electromagnetic wave as a response by the gap arrangement structure to the irradiated reference electromagnetic wave A reference electromagnetic wave detection means, and a characteristic measurement means for measuring the characteristic of the object to be measured based on the detection result of the measurement electromagnetic wave detection means and the detection result of the reference electromagnetic wave detection means.

また、本発明にかかる測定装置は、前記特性測定手段が、前記測定用電磁波検出手段の検出結果および前記参照電磁波検出手段の検出結果に基づき、電磁波の透過率を測定する透過率測定手段と、測定された前記透過率に基づき、前記被測定物の屈折率を導出する屈折率導出手段とを有するようにしてもよい。   Further, in the measuring apparatus according to the present invention, the characteristic measuring unit is a transmittance measuring unit that measures the transmittance of the electromagnetic wave based on the detection result of the electromagnetic wave detecting unit for measurement and the detection result of the reference electromagnetic wave detecting unit, You may make it have a refractive index derivation | leading-out means which derives | leads-out the refractive index of the said to-be-measured object based on the measured said transmittance | permeability.

また、本発明にかかる測定装置は、前記屈折率導出手段は、周波数Aにおける前記測定用電磁波検出手段の検出結果に基づき測定された透過率と、周波数Bにおける前記参照電磁波検出手段の検出結果に基づき測定された透過率とが等しい場合に、前記被測定物の屈折率をAおよびBに基づき導出するようにしてもよい。   Further, in the measuring apparatus according to the present invention, the refractive index deriving unit includes the transmittance measured based on the detection result of the measuring electromagnetic wave detecting unit at the frequency A and the detection result of the reference electromagnetic wave detecting unit at the frequency B. If the measured transmittance is equal, the refractive index of the object to be measured may be derived based on A and B.

また、本発明にかかる測定装置は、周波数特性調整部材を備え、前記周波数Bの近傍において、前記透過率の周波数に対する傾きが、前記周波数特性調整部材が無い場合よりも大きくなるようにしてもよい。   Moreover, the measuring apparatus according to the present invention may include a frequency characteristic adjusting member, and in the vicinity of the frequency B, the slope of the transmittance with respect to the frequency may be larger than that without the frequency characteristic adjusting member. .

本発明は、本発明にかかる収容型構造体に前記測定用電磁波を照射する測定用電磁波照射工程と、照射された前記測定用電磁波に対する前記収容型構造体による応答である測定用応答電磁波を検出する測定用電磁波検出工程と、前記空隙配置構造体に参照電磁波を照射する参照電磁波照射工程と、照射された前記参照電磁波に対する前記空隙配置構造体による応答である参照応答電磁波を検出する参照電磁波検出工程と、前記測定用電磁波検出工程の検出結果および前記参照電磁波検出工程の検出結果に基づき、前記被測定物の特性を測定する特性測定工程とを備えた測定方法である。   The present invention detects a measurement electromagnetic wave irradiation step for irradiating the measurement type electromagnetic wave to the accommodation type structure according to the present invention, and a measurement response electromagnetic wave that is a response by the accommodation type structure to the irradiated measurement electromagnetic wave. A measuring electromagnetic wave detecting step, a reference electromagnetic wave irradiating step for irradiating the gap arrangement structure with a reference electromagnetic wave, and a reference electromagnetic wave detection for detecting a reference response electromagnetic wave which is a response by the gap arrangement structure to the irradiated reference electromagnetic wave And a characteristic measurement step of measuring the characteristic of the object to be measured based on the detection result of the measurement electromagnetic wave detection step and the detection result of the reference electromagnetic wave detection step.

本発明は、本発明にかかる収容型構造体に前記測定用電磁波を照射する測定用電磁波照射手段と、照射された前記測定用電磁波に対する前記収容型構造体による応答である測定用応答電磁波を検出する測定用電磁波検出手段と、前記空隙配置構造体に参照電磁波を照射する参照電磁波照射手段と、照射された前記参照電磁波に対する前記空隙配置構造体による応答である参照応答電磁波を検出する参照電磁波検出手段と、を備えた測定装置における測定処理をコンピュータに実行させるためのプログラムであって、前記測定用電磁波検出手段の検出結果および前記参照電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定処理をコンピュータに実行させるためのプログラムである。   The present invention detects a measurement electromagnetic wave irradiating means for irradiating the measurement electromagnetic wave to the accommodation structure according to the invention, and a measurement response electromagnetic wave that is a response by the accommodation structure to the irradiated measurement electromagnetic wave. Measuring electromagnetic wave detecting means, reference electromagnetic wave irradiating means for irradiating the gap arrangement structure with a reference electromagnetic wave, and reference electromagnetic wave detection for detecting a reference response electromagnetic wave which is a response by the gap arrangement structure to the irradiated reference electromagnetic wave A program for causing a computer to execute a measurement process in a measurement apparatus comprising: a measurement result of the measurement electromagnetic wave detection means and a detection result of the reference electromagnetic wave detection means; This is a program for causing a computer to execute a characteristic measurement process for measuring.

以下、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態にかかる格子(空隙配置構造体)1の斜視図である。格子(空隙配置構造体)1は、導体板10を有する。導体板10は、例えば金属板である。導体板10の厚みの方向は、Z方向である。導体板10には、空隙部(開口)12が開けられている。空隙部12はZ方向に導体板10を貫通する。空隙部12は、XY平面において開口する。空隙部12は、縦方向(Y方向)および横方向(X方向)に配列されている。すなわち、格子1は、二次元格子である。   FIG. 1 is a perspective view of a lattice (gap arrangement structure) 1 according to an embodiment of the present invention. The lattice (gap arrangement structure) 1 includes a conductor plate 10. The conductor plate 10 is, for example, a metal plate. The direction of the thickness of the conductor plate 10 is the Z direction. A gap (opening) 12 is opened in the conductor plate 10. The gap 12 penetrates the conductor plate 10 in the Z direction. The gap 12 opens in the XY plane. The gaps 12 are arranged in the vertical direction (Y direction) and the horizontal direction (X direction). That is, the lattice 1 is a two-dimensional lattice.

図2は、本発明の実施形態にかかる格子(空隙配置構造体)1のXY平面図である。図2を参照して、格子(空隙配置構造体)1は、XY平面において、空隙部(開口)12が二方向(X方向およびY方向)に配列されている。空隙部12は、正方形の開口であり、X方向およびY方向の一辺の長さ(アパーチャー:aperture)はともに等しい(aであるとする)。また、空隙部12のX方向のピッチおよびY方向のピッチ(pitch)はともに等しい(pであるとする)。なお、aおよびpが数十ミクロン程度なので、格子1は、いわゆるメッシュであるともいえる。   FIG. 2 is an XY plan view of the lattice (gap arrangement structure) 1 according to the embodiment of the present invention. Referring to FIG. 2, in a lattice (gap arrangement structure) 1, gaps (openings) 12 are arranged in two directions (X direction and Y direction) on the XY plane. The gap 12 is a square opening, and the lengths of one side (aperture) in the X direction and the Y direction are equal (assuming that they are a). Further, the pitch in the X direction and the pitch in the Y direction of the gap 12 are equal (assuming that they are p). Since a and p are about several tens of microns, it can be said that the lattice 1 is a so-called mesh.

図3は、格子1の空隙部12の一つの近傍を表示した平面図である。空隙部12は、XY平面において、導体板10の一部である導体14で囲まれているものといえる。このような空隙部12がX方向およびY方向に配列されている。   FIG. 3 is a plan view showing one vicinity of the gap 12 of the lattice 1. It can be said that the gap 12 is surrounded by the conductor 14 which is a part of the conductor plate 10 in the XY plane. Such voids 12 are arranged in the X direction and the Y direction.

図4は、格子1の変形例について説明するためのXY平面図である。図4(a)は、空隙部12が一方向(X方向)にしか配列されていない。すなわち、一次元に配列されたものである。図4(b)は、空隙部12がX方向、Y1方向およびY2方向(Y方向ではない)に配列されている。どちらも、格子1として使用できる。ただし、図4に示すように同一形状(同じ形かつ同じ大きさ)の空隙部12が所定のピッチ(または間隔)で配置されていることを要する。また、格子1の空隙部12は正方形でなくてもよく、円形でもよいし、三角形や四角形でも可能である。すなわち、二次元的な図形であればよい。さらに、図5に示すように、空隙部12が一個だけの場合も格子1として使用できる。   FIG. 4 is an XY plan view for explaining a modified example of the grating 1. In FIG. 4A, the gaps 12 are arranged only in one direction (X direction). That is, they are arranged one-dimensionally. In FIG. 4B, the gaps 12 are arranged in the X direction, the Y1 direction, and the Y2 direction (not the Y direction). Either can be used as the grating 1. However, as shown in FIG. 4, it is necessary that the gaps 12 having the same shape (the same shape and the same size) are arranged at a predetermined pitch (or interval). Further, the gap portion 12 of the lattice 1 may not be a square, may be a circle, and may be a triangle or a rectangle. That is, it may be a two-dimensional figure. Further, as shown in FIG. 5, even when there is only one gap portion 12, it can be used as the lattice 1.

図6は、本発明の実施形態にかかる容器50に収容された被測定物の屈折率を測定するための測定装置の構成を示す図である。測定装置は、放射制御部32、電磁波照射部(測定用電磁波照射手段および参照電磁波照射手段)34、電磁波検出部(測定用電磁波検出手段および参照電磁波検出手段)36、特性測定部40、容器50、注入用パイプ62、排出用パイプ64、注入装置72、排出装置74を備える。   FIG. 6 is a diagram showing a configuration of a measuring apparatus for measuring the refractive index of the measurement object accommodated in the container 50 according to the embodiment of the present invention. The measurement apparatus includes a radiation control unit 32, an electromagnetic wave irradiation unit (measurement electromagnetic wave irradiation unit and reference electromagnetic wave irradiation unit) 34, an electromagnetic wave detection unit (measurement electromagnetic wave detection unit and reference electromagnetic wave detection unit) 36, a characteristic measurement unit 40, and a container 50. , An injection pipe 62, a discharge pipe 64, an injection device 72, and a discharge device 74.

なお、図10は、図6において容器50(および容器50に収容された格子1)を格子1に置き換えたときの測定装置の構成を示す図である。   FIG. 10 is a diagram showing the configuration of the measuring apparatus when the container 50 (and the grid 1 accommodated in the container 50) in FIG.

図7は、容器50の側面図(図7(a))、b−b断面図(図7(b))、c−c断面図(図7(c))である。容器50は、中空の直方体である。容器50は、正面52、背面54、側面56を有する。正面52および背面54は平行である。側面56は正面52および背面54と直交する四つの側面である。   7 is a side view of the container 50 (FIG. 7A), a bb cross-sectional view (FIG. 7B), and a cc cross-sectional view (FIG. 7C). The container 50 is a hollow rectangular parallelepiped. The container 50 has a front surface 52, a back surface 54, and a side surface 56. The front surface 52 and the back surface 54 are parallel. The side surfaces 56 are four side surfaces orthogonal to the front surface 52 and the back surface 54.

容器50は図7に示すように中空であり、この中空な部分に格子1を収容する。容器50が格子1を収容したものが、収容型構造体である。   The container 50 is hollow as shown in FIG. 7, and the lattice 1 is accommodated in this hollow portion. What accommodated the grid | lattice 1 in the container 50 is an accommodation type structure.

図8は、容器50に格子1を取り付けた状態の側面断面図(図8(a))、b−b断面図(図8(b))である。格子1は、正面52および背面54に平行に配置される。   FIG. 8 is a side sectional view (FIG. 8A) and a bb sectional view (FIG. 8B) in a state where the grid 1 is attached to the container 50. The grid 1 is arranged in parallel to the front surface 52 and the back surface 54.

図9は、図8に示す状態の容器50に注入用パイプ62および排出用パイプ64を取り付けた状態の正面図(図9(a))、側面断面図(図9(b))である。注入用パイプ62の一端は注入装置72に取り付けられ、他端は容器50の内部の上側に接続されている。排出用パイプ64の一端は排出装置74に取り付けられ、他端は容器50の内部の下側に接続されている。   9 is a front view (FIG. 9 (a)) and a side sectional view (FIG. 9 (b)) in a state where the injection pipe 62 and the discharge pipe 64 are attached to the container 50 in the state shown in FIG. One end of the injection pipe 62 is attached to the injection device 72, and the other end is connected to the upper side inside the container 50. One end of the discharge pipe 64 is attached to the discharge device 74, and the other end is connected to the lower side inside the container 50.

注入装置72は液体20を注入用パイプ62を介して容器50の内部に注入する。容器50はその内部に注入された液体20を収容する。排出装置74は液体20を排出用パイプ64を介して容器50の内部から排出する。液体20は、溶質22、溶媒24を有する。溶質22が被測定物に相当する。ただし、被測定物自体が液体状である場合も考えられ、この場合は液体20が被測定物となる。溶質22が被測定物である場合、および液体20が被測定物である場合を、「液体20が被測定物を含む」という。   The injection device 72 injects the liquid 20 into the container 50 through the injection pipe 62. The container 50 contains the liquid 20 injected therein. The discharge device 74 discharges the liquid 20 from the inside of the container 50 through the discharge pipe 64. The liquid 20 has a solute 22 and a solvent 24. The solute 22 corresponds to the object to be measured. However, the case where the object to be measured itself is in a liquid state is also conceivable. In this case, the liquid 20 is the object to be measured. The case where the solute 22 is the object to be measured and the case where the liquid 20 is the object to be measured are referred to as “the liquid 20 includes the object to be measured”.

なお、液体20のかわりに気体を使用することもできる。この気体中に被測定物が存在している。被測定物が気体状でもよい。気体中に被測定物が存在している場合、および被測定物が気体状である場合を、「気体が被測定物を含む」という。   A gas can be used instead of the liquid 20. An object to be measured exists in this gas. The object to be measured may be gaseous. The case where the object to be measured exists in the gas and the case where the object to be measured is gaseous are referred to as “the gas includes the object to be measured”.

なお、図7〜図9においては、容器50が中空の直方体であるように図示している。しかし、容器50は中空の円筒であってもよい。容器50は液体20および格子1を収容できればよく、直方体および円筒に限定されない。   7 to 9, the container 50 is illustrated as a hollow rectangular parallelepiped. However, the container 50 may be a hollow cylinder. The container 50 is not limited to a rectangular parallelepiped and a cylinder as long as it can accommodate the liquid 20 and the grid 1.

放射制御部32は、電磁波のパワーP1、電磁波の周波数fを指定して、電磁波照射部34に電磁波を放射させる。指定したパワーP1および周波数fは、特性測定部40の透過率測定部42にも与えられる。   The radiation control unit 32 designates the electromagnetic wave power P1 and the electromagnetic wave frequency f, and causes the electromagnetic wave irradiation unit 34 to emit the electromagnetic wave. The designated power P1 and frequency f are also given to the transmittance measuring unit 42 of the characteristic measuring unit 40.

電磁波照射部(測定用電磁波照射手段および参照電磁波照射手段)34は、パワーP1および周波数fの電磁波を放射する。放射された電磁波は格子1(図10参照)または収容型構造体(格子1および容器50:図6参照)に照射される。   The electromagnetic wave irradiation unit (measuring electromagnetic wave irradiation means and reference electromagnetic wave irradiation means) 34 emits an electromagnetic wave having power P1 and frequency f. The emitted electromagnetic wave is applied to the grating 1 (see FIG. 10) or the housing structure (the grating 1 and the container 50: see FIG. 6).

ここで、収容型構造体に照射される電磁波を測定用電磁波といい、格子1に照射される電磁波を参照電磁波という。   Here, the electromagnetic wave irradiated to the housing structure is called a measurement electromagnetic wave, and the electromagnetic wave irradiated to the grating 1 is called a reference electromagnetic wave.

電磁波検出部(測定用電磁波検出手段および参照電磁波検出手段)36は、格子1または収容型構造体を透過した電磁波を検出し、パワーP2を測定し、特性測定部40の透過率測定部42に与える。なお、透過した電磁波ではなく反射した電磁波を検出することも考えられる。   The electromagnetic wave detection unit (measurement electromagnetic wave detection unit and reference electromagnetic wave detection unit) 36 detects an electromagnetic wave that has passed through the lattice 1 or the housing structure, measures the power P2, and transmits the power P2 to the transmittance measurement unit 42 of the characteristic measurement unit 40. give. It is also conceivable to detect reflected electromagnetic waves instead of transmitted electromagnetic waves.

すなわち、電磁波検出部36は、照射された測定用電磁波に対する収容型構造体による応答(例えば、透過、反射)である測定用応答電磁波および照射された参照電磁波に対する格子1による応答(例えば、透過、反射)である参照応答電磁波を検出すればよい。   That is, the electromagnetic wave detection unit 36 is a response (for example, transmission, reflection) of the measurement response electromagnetic wave that is a response (for example, transmission and reflection) to the irradiated measurement electromagnetic wave and a reference electromagnetic wave for irradiation. It is only necessary to detect a reference response electromagnetic wave that is a reflection.

特性測定部40は、電磁波検出部36の検出結果に基づき、被測定物22の特性を測定する。特性測定部40は、透過率測定部42、透過率記録部44、屈折率導出部46を有する。   The characteristic measurement unit 40 measures the characteristic of the DUT 22 based on the detection result of the electromagnetic wave detection unit 36. The characteristic measuring unit 40 includes a transmittance measuring unit 42, a transmittance recording unit 44, and a refractive index deriving unit 46.

透過率測定部42は、電磁波検出部36の検出結果に基づき、電磁波の透過率を測定する。すなわち、被測定物付き構造体および格子1の電磁波の透過率を測定する。透過率は、P2/P1により求められる。ただし、反射が無視できない場合は、厚さの異なる同一物について、P2を測定してやれば、反射の影響をキャンセルできる。これについては周知なので詳細には説明をしない。   The transmittance measuring unit 42 measures the transmittance of the electromagnetic wave based on the detection result of the electromagnetic wave detecting unit 36. That is, the electromagnetic wave transmittance of the structure with the object to be measured and the grating 1 is measured. The transmittance is obtained by P2 / P1. However, if the reflection cannot be ignored, the influence of the reflection can be canceled by measuring P2 for the same object having a different thickness. This is well known and will not be described in detail.

透過率記録部44は、透過率測定部42が測定した透過率を電磁波の周波数に対応づけて記録する。   The transmittance recording unit 44 records the transmittance measured by the transmittance measuring unit 42 in association with the frequency of the electromagnetic wave.

屈折率導出部46は、測定された透過率に基づき、被測定物22の屈折率を導出する。すなわち、周波数Aにおける測定用応答電磁波の検出結果に基づき測定された透過率と、周波数Bにおける参照応答電磁波の検出結果に基づき測定された透過率とが等しい場合に、被測定物22の屈折率をAおよびBに基づき導出する。   The refractive index deriving unit 46 derives the refractive index of the DUT 22 based on the measured transmittance. That is, when the transmittance measured based on the detection result of the measurement response electromagnetic wave at the frequency A is equal to the transmittance measured based on the detection result of the reference response electromagnetic wave at the frequency B, the refractive index of the DUT 22 Is derived based on A and B.

次に、本発明の実施形態の動作を説明する。   Next, the operation of the embodiment of the present invention will be described.

図11は、本発明の実施形態にかかる測定装置の動作を示すフローチャートである。図12は、被測定物22の屈折率の決定法を説明するためのグラフである。   FIG. 11 is a flowchart showing the operation of the measurement apparatus according to the embodiment of the present invention. FIG. 12 is a graph for explaining a method for determining the refractive index of the DUT 22.

なお、格子1の散乱および吸収は無視できるものとする。例えば、格子1の材質がそのような条件を満たすものである。または、格子1の厚さがそのような条件を満たすものである。   Note that the scattering and absorption of the grating 1 are negligible. For example, the material of the lattice 1 satisfies such a condition. Alternatively, the thickness of the grating 1 satisfies such a condition.

正面52は、測定用電磁波を透過させるものである。測定用電磁波は、被測定物22の特性(例えば、屈折率)を測定するために空隙部12に向けて照射される電磁波であるといえる。測定用電磁波の周波数とテラヘルツ(THz : 1012Hz)であるため、正面52は例えば薄いプラスチックフィルム、薄い石英または薄いポリエチレンである。 The front surface 52 transmits the measurement electromagnetic wave. It can be said that the electromagnetic wave for measurement is an electromagnetic wave irradiated toward the gap portion 12 in order to measure the characteristic (for example, refractive index) of the object 22 to be measured. Due to the frequency of the electromagnetic wave for measurement and terahertz (THz: 10 12 Hz), the front surface 52 is, for example, a thin plastic film, thin quartz, or thin polyethylene.

背面54は、測定用応答電磁波を透過させるものである。具体的には、背面54は、測定用電磁波が空隙部12を透過した電磁波である測定用応答電磁波を透過させるものである。測定用応答電磁波の周波数は、測定用電磁波の周波数と同じくテラヘルツ(THz : 1012Hz)であるため、背面54は例えば薄いプラスチックフィルム、薄い石英または薄いポリエチレンである。 The back surface 54 transmits the measurement response electromagnetic wave. Specifically, the back surface 54 transmits the measurement response electromagnetic wave that is the electromagnetic wave through which the measurement electromagnetic wave has passed through the gap 12. Since the frequency of the measurement response electromagnetic wave is terahertz (THz: 10 12 Hz), the frequency of the measurement electromagnetic wave is, for example, a thin plastic film, thin quartz, or thin polyethylene.

一般的に、強度がI0の入射波が物質中をxだけ進行した点での強度をI(x)とすると、入射波の減衰(吸収)は、I(x)
= I0exp-αxのように表せる。
In general, if the intensity at the point where an incident wave with an intensity of I 0 travels through the substance by x is I (x), the attenuation (absorption) of the incident wave is I (x)
= I 0 exp -αx

上記の式のα(材質によって定まる)かx(厚さ)が非常に小さい場合に吸収が無視できる。   Absorption is negligible when α (determined by the material) or x (thickness) in the above equation is very small.

まず、格子1を電磁波照射部34および電磁波検出部36の間に配置して(図10参照)、電磁波照射部34から所定の帯域の参照電磁波を放射する。電磁波検出部36は、透過した電磁波(参照応答電磁波)を検出する。そして、透過率測定部42が格子1の透過率を測定する(S10)。透過率は、P2/P1により求められる。測定された透過率は参照電磁波の周波数に対応付けられて透過率記録部44に記録される。ただし、測定装置は屈折率n0(例えば、1)の空気中で使用するものとする。 First, the grid 1 is disposed between the electromagnetic wave irradiation unit 34 and the electromagnetic wave detection unit 36 (see FIG. 10), and the electromagnetic wave irradiation unit 34 radiates a reference electromagnetic wave in a predetermined band. The electromagnetic wave detection unit 36 detects the transmitted electromagnetic wave (reference response electromagnetic wave). Then, the transmittance measuring unit 42 measures the transmittance of the grating 1 (S10). The transmittance is obtained by P2 / P1. The measured transmittance is recorded in the transmittance recording unit 44 in association with the frequency of the reference electromagnetic wave. However, the measuring device is used in air having a refractive index n 0 (for example, 1).

図12に示す例では、所定の帯域として0THzを超えて6THz(テラヘルツ)までの帯域をとり、格子1の透過率を測定したグラフG1が図示されている。このグラフG1は、Tn0(f)と表現できる。すなわち、透過率Tは、屈折率n0および周波数fの関数である。 In the example shown in FIG. 12, a graph G1 is shown in which the transmittance of the grating 1 is measured by taking a band from 0 THz to 6 THz (terahertz) as a predetermined band. This graph G1 can be expressed as T n0 (f). That is, the transmittance T is a function of the refractive index n 0 and the frequency f.

次に、収容型構造体(格子1および容器50)を電磁波照射部34および電磁波検出部36の間に配置して、電磁波照射部34から周波数Aの測定用電磁波を照射する。測定用電磁波は、容器50の正面52を透過し、収容型構造体を透過し、さらに容器50の背面54を透過する(測定用応答電磁波)。電磁波検出部36は、透過した電磁波(測定用応答電磁波)を検出する。そして、透過率測定部42が収容型構造体の透過率を測定する(S12)。透過率は、P2/P1により求められる。   Next, the accommodation type structure (lattice 1 and container 50) is disposed between the electromagnetic wave irradiation unit 34 and the electromagnetic wave detection unit 36, and the electromagnetic wave for measurement of frequency A is irradiated from the electromagnetic wave irradiation unit 34. The measurement electromagnetic wave passes through the front surface 52 of the container 50, passes through the housing structure, and further passes through the back surface 54 of the container 50 (measurement response electromagnetic wave). The electromagnetic wave detection unit 36 detects the transmitted electromagnetic wave (measurement response electromagnetic wave). And the transmittance | permeability measurement part 42 measures the transmittance | permeability of an accommodation type structure (S12). The transmittance is obtained by P2 / P1.

なお、測定用電磁波が照射されている間に、容器50には液体20が収容されている。液体20は、測定用電磁波が照射される前に、注入用パイプ62および注入装置72によって、容器50に予め注入しておいてもよい。また、測定用電磁波が照射される間に、注入用パイプ62および注入装置72によって液体20を注入しながら、排出用パイプ64および排出装置74によって液体20を排出してもよい。   In addition, the liquid 20 is accommodated in the container 50 while the measurement electromagnetic wave is irradiated. The liquid 20 may be injected into the container 50 in advance by the injection pipe 62 and the injection device 72 before the measurement electromagnetic wave is irradiated. Further, while the measurement electromagnetic wave is irradiated, the liquid 20 may be discharged by the discharge pipe 64 and the discharge device 74 while the liquid 20 is injected by the injection pipe 62 and the injection device 72.

図12に示す例では、周波数A=1THzとして、一体型構造体2の透過率=40%を得る(グラフG2)。このグラフG2は、Tnx(A)と表現できる。すなわち、周波数Aにおける一体型構造体2の透過率Tnxは、被測定物22の屈折率nxおよび周波数A(=1THz)の関数である。 In the example shown in FIG. 12, the transmittance A = 40% of the integrated structure 2 is obtained with the frequency A = 1 THz (graph G2). This graph G2 can be expressed as T nx (A). That is, the transmittance T nx integral structure 2 in the frequency A is a function of the refractive index of the object to be measured 22 n x and frequency A (= 1 THz).

次に、屈折率導出部46が、透過率記録部44の記録内容および透過率測定部42の測定した一体型構造体2の透過率に基づき、対応周波数Bを決定する(S14)。すなわち、図8を参照して、屈折率導出部46が、周波数A(=1THz)における電磁波検出部36の検出結果(グラフG2)に基づき測定された透過率(=40%)と、対応周波数Bにおける電磁波検出部36の検出結果に基づき測定された透過率とが等しくなるような、対応周波数Bを決定する。対応周波数Bは3.4THzとなる。   Next, the refractive index deriving unit 46 determines the corresponding frequency B based on the recorded content of the transmittance recording unit 44 and the transmittance of the integrated structure 2 measured by the transmittance measuring unit 42 (S14). That is, with reference to FIG. 8, the refractive index deriving unit 46 transmits the transmittance (= 40%) measured based on the detection result (graph G2) of the electromagnetic wave detecting unit 36 at the frequency A (= 1 THz) and the corresponding frequency. The corresponding frequency B is determined such that the transmittance measured based on the detection result of the electromagnetic wave detection unit 36 in B becomes equal. The corresponding frequency B is 3.4 THz.

これは、Tn0(B) = Tnx(A)ということを意味する。 This means that T n0 (B) = T nx (A).

最後に、屈折率導出部46が、被測定物22の屈折率を導出する(S16)。すなわち、被測定物22の屈折率=B/Aとして、被測定物22の屈折率nxを導出する。図8に示す例では、屈折率nx=3.4THz/1THz=3.4となる。これは、B=nx・Aということを用いて、被測定物22の屈折率nxを導出したものである。 Finally, the refractive index deriving unit 46 derives the refractive index of the DUT 22 (S16). That is, the refractive index = B / A of the object 22, to derive the refractive indices n x of the object 22. In the example shown in FIG. 8, the refractive index n x = 3.4 THz / 1 THz = 3.4. This uses the fact that B = n x · A, is obtained by deriving the refractive indices n x of the object 22.

本発明の実施形態にかかる収容型構造体によれば、被測定物22を有利に取り扱うことができる。例えば、被測定物22が液体20に含まれている場合、容器50に液体20を収容できる。さらに、液体20の被測定物22が、格子1の空隙部12を通過する。このため、容器50に測定用電磁波を照射すれば、格子1の空隙部12を通過する被測定物22に電磁波を照射でき、被測定物22の特性を測定できる。   According to the housed structure according to the embodiment of the present invention, the DUT 22 can be handled advantageously. For example, when the DUT 22 is contained in the liquid 20, the liquid 20 can be stored in the container 50. Further, the measurement object 22 of the liquid 20 passes through the gap 12 of the lattice 1. For this reason, if the measurement electromagnetic wave is irradiated to the container 50, the electromagnetic wave can be irradiated to the object 22 passing through the gap 12 of the lattice 1, and the characteristics of the object 22 can be measured.

本発明の実施形態にかかる測定装置によれば、収容型構造体および格子(空隙配置構造体)1における電磁波の透過率を測定することにより、被測定物22の特性(例えば、屈折率)を容易に測定できる。   According to the measuring apparatus according to the embodiment of the present invention, the characteristics (for example, the refractive index) of the object to be measured 22 are measured by measuring the transmittance of the electromagnetic wave in the housing structure and the lattice (gap arrangement structure) 1. Easy to measure.

図13は、格子1の透過率を測定したグラフG1の、アパーチャーaおよびピッチpに対する変化を説明するための図である。aおよびpが小さいと(グラフG1−1)、傾きが小さく、aおよびpが大きいと(グラフG1−2)、傾きが大きい。   FIG. 13 is a diagram for explaining changes of the graph G1 in which the transmittance of the grating 1 is measured with respect to the aperture a and the pitch p. When a and p are small (graph G1-1), the inclination is small, and when a and p are large (graph G1-2), the inclination is large.

対応周波数Bの最大値は、透過率が極大値をとる周波数F1(グラフG1−1)、周波数F2(グラフG1−2)である。対応周波数Bの最大値が大きい程、より大きな屈折率を測定できる。よって、aおよびpが小さいと(グラフG1−1)、広い範囲の屈折率を測定できる。逆に、aおよびpが大きいと(グラフG1−2)、高精度に屈折率を測定できる。屈折率がわずかに異なっても、透過率が大きく変化するからである。   The maximum value of the corresponding frequency B is the frequency F1 (graph G1-1) and the frequency F2 (graph G1-2) at which the transmittance is a maximum value. The larger the maximum value of the corresponding frequency B, the larger the refractive index can be measured. Therefore, when a and p are small (graph G1-1), a wide range of refractive indexes can be measured. Conversely, when a and p are large (graph G1-2), the refractive index can be measured with high accuracy. This is because the transmittance varies greatly even if the refractive index is slightly different.

よって、広い範囲の屈折率を測定したいならばアパーチャーaおよびピッチpを小さくした格子1を利用するとよい。高精度に屈折率を測定したいならばアパーチャーaおよびピッチpを大きくした格子1を利用するとよい。   Therefore, if it is desired to measure the refractive index in a wide range, it is preferable to use the grating 1 having a small aperture a and pitch p. If it is desired to measure the refractive index with high accuracy, it is preferable to use the grating 1 having a larger aperture a and pitch p.

なお、ピッチpが小さいと、透過率が極大値をとる周波数が高周波側になる。ピッチpが大きいと、透過率が極大値をとる周波数が低周波側になる。そこで、第一電磁波の周波数に応じて、ピッチpを選択するとよい。   In addition, when the pitch p is small, the frequency at which the transmittance takes a maximum value is on the high frequency side. When the pitch p is large, the frequency at which the transmittance takes a maximum value is on the low frequency side. Therefore, the pitch p may be selected according to the frequency of the first electromagnetic wave.

また、高精度に屈折率を測定するためには、ワイヤストリップ幅2α(=p−a)または一体型構造体2の厚さtを変化させてもよい。   Further, in order to measure the refractive index with high accuracy, the wire strip width 2α (= pa) or the thickness t of the integrated structure 2 may be changed.

図17は、ワイヤストリップ幅2α(=p−a)の変化によって透過率が極大値をとる周波数の移動を示す図である。図17に示すように、ワイヤストリップ幅2αが変化しても透過率が極大値をとる周波数は変化しない。しかし、ワイヤストリップ幅2αを大きくすると、透過率が極大値をとる周波数の近傍の傾きが大きくなる。よって、ワイヤストリップ幅2αを大きくすると、高精度に屈折率を測定できる。   FIG. 17 is a diagram showing the shift of the frequency at which the transmittance reaches the maximum value due to the change in the wire strip width 2α (= pa). As shown in FIG. 17, even when the wire strip width 2α is changed, the frequency at which the transmittance reaches a maximum value does not change. However, when the wire strip width 2α is increased, the slope in the vicinity of the frequency at which the transmittance reaches a maximum value increases. Therefore, when the wire strip width 2α is increased, the refractive index can be measured with high accuracy.

図18は、一体型構造体2の厚さtの変化によって透過率が極大値をとる周波数の移動を示す図である。図18に示すように、一体型構造体2の厚さtが変化しても透過率が極大値をとる周波数は変化しない。しかし、一体型構造体2の厚さtを大きくすると、透過率が極大値をとる周波数の近傍の傾きが大きくなる。よって、一体型構造体2の厚さtを大きくすると、高精度に屈折率を測定できる。   FIG. 18 is a diagram illustrating a frequency shift in which the transmittance has a maximum value due to a change in the thickness t of the integrated structure 2. As shown in FIG. 18, even if the thickness t of the integrated structure 2 changes, the frequency at which the transmittance reaches the maximum value does not change. However, when the thickness t of the integrated structure 2 is increased, the slope in the vicinity of the frequency at which the transmittance reaches a maximum value increases. Therefore, when the thickness t of the integral structure 2 is increased, the refractive index can be measured with high accuracy.

なお、本発明の実施形態には図14に示すような変形例が考えられる。   It should be noted that the embodiment of the present invention may be modified as shown in FIG.

図14は、本発明の実施形態の変形例における容器50の側面断面図である。容器50には、格子1および格子1’(周波数特性調整部材)が収容されている。格子1と格子1’とは平行であり、間隔d=(λ/2)・n(ただし、nは自然数)である。なお、λは対応周波数Bに対応する電磁波の波長である。   FIG. 14 is a side cross-sectional view of a container 50 in a modification of the embodiment of the present invention. The container 50 accommodates the grating 1 and the grating 1 ′ (frequency characteristic adjusting member). The lattice 1 and the lattice 1 ′ are parallel to each other, and the distance d = (λ / 2) · n (where n is a natural number). Note that λ is the wavelength of the electromagnetic wave corresponding to the corresponding frequency B.

図15は、格子1’を格子1に平行に配置したときの透過率のグラフG1および格子1’を配置しないときの透過率のグラフG1’を示す図である。格子1’を格子1に平行に配置したときは対応周波数Bにおいて共振が成立するので、対応周波数Bの近傍部分における透過率の周波数に対する傾きが、格子1’を配置しないときよりも大きくなる。   FIG. 15 is a diagram showing a transmittance graph G1 when the grating 1 'is arranged parallel to the grating 1 and a transmittance graph G1' when the grating 1 'is not arranged. When the grating 1 'is arranged in parallel with the grating 1, resonance is established at the corresponding frequency B, so that the slope of the transmittance with respect to the frequency in the vicinity of the corresponding frequency B becomes larger than when the grating 1' is not arranged.

すなわち、格子1’を格子1に平行に配置したときの透過率のグラフG1は、波打った線になる。言換えれば、格子1’を格子1に平行に配置した構成はファブリペローエタロン共振器と同等の構造なので、透過率のグラフG1は、周期的に透過量のピークをもつ。ここで、被測定物22として屈折率のわずかに異なる試料、例えば、構造の異なる数種類のタンパク質を考える。このような被測定物22の透過率をそれぞれ測定する。屈折率がわずかに異なるだけなので、格子1’を配置しなければ、透過率もわずかにしか異ならない。しかし、格子1’を配置すれば、わずかな屈折率の違いでも、透過率が大きく異なる。よって、被測定物22のそれぞれについて異なる透過率が得られるため、タンパク質の構造の違いを判別できる。   That is, the transmittance graph G1 when the grating 1 'is arranged in parallel to the grating 1 is a wavy line. In other words, since the configuration in which the grating 1 ′ is arranged in parallel with the grating 1 has a structure equivalent to that of a Fabry-Perot etalon resonator, the transmittance graph G <b> 1 has a peak of the amount of transmission periodically. Here, a sample having a slightly different refractive index, for example, several types of proteins having different structures is considered as the DUT 22. The transmittance of the DUT 22 is measured. Since the refractive indexes are only slightly different, the transmittance is only slightly different if the grating 1 'is not arranged. However, if the grating 1 'is arranged, the transmittance varies greatly even with a slight difference in refractive index. Therefore, since different transmittances are obtained for each of the objects to be measured 22, the difference in protein structure can be determined.

なお、上記の実施形態において、格子1および収容型構造体の透過率を計測すると、透過率が極大値をとる周波数が移動することがわかる。図16は、格子1および収容型構造体によって透過率が極大値をとる周波数の移動を示す図である。図16に示すように、透過率が極大値をとる周波数Fa(格子1:グラフGa)がFb(収容型構造体:グラフGb)に移動する。これにより、被測定物22が何であるか(これも被測定物22の特性の一種)を特定するようなこともできる。   In the above embodiment, when the transmittance of the grating 1 and the housing structure is measured, it can be seen that the frequency at which the transmittance reaches a maximum value moves. FIG. 16 is a diagram showing the shift of the frequency at which the transmittance reaches the maximum value by the grating 1 and the housed structure. As shown in FIG. 16, the frequency Fa (lattice 1: graph Ga) at which the transmittance reaches a maximum value moves to Fb (accommodating structure: graph Gb). Thereby, what is the device under test 22 (this is also a kind of characteristic of the device under test 22) can be specified.

また、格子1および収容型構造体に電磁波を照射して、被測定物22の複素屈折率(n+jk)および複素誘電率ε(ω)を測定することも可能である。なお、nは複素屈折率の実部、kは複素屈折率の虚部であり、ωは格子1および収容型構造体に照射する電磁波の角周波数である。一般的に、(n+jk)2 =ε(ω)である。 It is also possible to measure the complex refractive index (n + jk) and the complex dielectric constant ε (ω) of the DUT 22 by irradiating the grating 1 and the housing structure with electromagnetic waves. Here, n is the real part of the complex refractive index, k is the imaginary part of the complex refractive index, and ω is the angular frequency of the electromagnetic wave irradiating the grating 1 and the housing structure. In general, (n + jk) 2 = ε (ω).

なお、図13、図15、図16を参照して説明したように、格子1および収容型構造体は、周波数がテラヘルツの電磁波を照射すると、透過率が大きく変化する。格子1および収容型構造体の透過率は、アパーチャーaが照射される電磁波の波長に対してある程度大きい(例えば、数倍程度の大きさ)と、ほぼ一定になる。また、アパーチャーaが電磁波の波長に対して非常に小さいと、照射される電磁波は格子1および収容型構造体をほぼ透過しない。そこで、例えば、格子1および収容型構造体のアパーチャーaの大きさを調節して、周波数がテラヘルツの電磁波を照射すると、透過率が大きく変化するようにしている。   Note that, as described with reference to FIGS. 13, 15, and 16, the transmittance of the grating 1 and the housing structure greatly changes when an electromagnetic wave having a frequency of terahertz is irradiated. The transmittance of the grating 1 and the housing structure is substantially constant when it is large to some extent (for example, several times as large) as the wavelength of the electromagnetic wave irradiated by the aperture a. When the aperture a is very small with respect to the wavelength of the electromagnetic wave, the irradiated electromagnetic wave hardly transmits the grating 1 and the housing structure. Therefore, for example, when the size of the grating 1 and the aperture a of the housing structure is adjusted to irradiate electromagnetic waves having a frequency of terahertz, the transmittance is changed greatly.

なお、上記の実施形態は、以下のようにして実現できる。CPU、ハードディスク、メディア(フロッピー(登録商標)ディスク、CD−ROMなど)読み取り装置を備えたコンピュータのメディア読み取り装置に、上記の各部分(例えば、特性測定部40)を実現するプログラムを記録したメディアを読み取らせて、ハードディスクにインストールする。このような方法でも、上記の実施形態を実現できる。   In addition, said embodiment is realizable as follows. A medium in which a program for realizing each of the above-described parts (for example, the characteristic measuring unit 40) is recorded in a medium reading device of a computer having a CPU, a hard disk, and a medium (floppy (registered trademark) disk, CD-ROM, etc.) reading device. And install it on the hard disk. The above embodiment can also be realized by such a method.

本発明の実施形態にかかる格子(空隙配置構造体)1の斜視図である。1 is a perspective view of a lattice (gap arrangement structure) 1 according to an embodiment of the present invention. 本発明の実施形態にかかる格子(空隙配置構造体)1のXY平面図である。It is XY top view of the grating | lattice (gap arrangement structure body) 1 concerning embodiment of this invention. 格子1の空隙部12の一つの近傍を表示した平面図である。FIG. 3 is a plan view showing one vicinity of a gap 12 of the lattice 1. 格子1の変形例について説明するためのXY平面図である。FIG. 6 is an XY plan view for explaining a modification of the lattice 1. 空隙部12が一個だけの場合の格子1のXY平面図である。It is an XY plan view of the lattice 1 when there is only one gap portion 12. 本発明の実施形態にかかる容器50に収容された被測定物の屈折率を測定するための測定装置の構成を示す図である。It is a figure which shows the structure of the measuring apparatus for measuring the refractive index of the to-be-measured object accommodated in the container 50 concerning embodiment of this invention. 容器50の側面図(図7(a))、b−b断面図(図7(b))、c−c断面図(図7(c))である。They are a side view (Drawing 7 (a)) of a container 50, a bb sectional view (Drawing 7 (b)), and a cc sectional view (Drawing 7 (c)). 容器50に格子1を取り付けた状態の側面断面図(図8(a))、b−b断面図(図8(b))である。FIG. 8 is a side sectional view (FIG. 8A) and a bb sectional view (FIG. 8B) in a state where the grid 1 is attached to the container 50. 図8に示す状態の容器50に注入用パイプ62および排出用パイプ64を取り付けた状態の正面図(図9(a))、側面断面図(図9(b))である。FIG. 9 is a front view (FIG. 9A) and a side cross-sectional view (FIG. 9B) in a state where an injection pipe 62 and a discharge pipe 64 are attached to the container 50 in the state shown in FIG. 8. 図6において容器50(および容器50に収容された格子1)を格子1に置き換えたときの測定装置の構成を示す図である。It is a figure which shows the structure of the measuring apparatus when the container 50 (and the grating | lattice 1 accommodated in the container 50) in FIG. 本発明の実施形態にかかる測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the measuring apparatus concerning embodiment of this invention. 被測定物22の屈折率の決定法を説明するためのグラフである。4 is a graph for explaining a method for determining a refractive index of an object to be measured 22; 格子1の透過率を測定したグラフG1の、アパーチャーaおよびピッチpに対する変化を説明するための図である。It is a figure for demonstrating the change with respect to the aperture a and the pitch p of the graph G1 which measured the transmittance | permeability of the grating | lattice 1. FIG. 本発明の実施形態の変形例における容器50の側面断面図である。It is side surface sectional drawing of the container 50 in the modification of embodiment of this invention. 格子1’を格子1に平行に配置したときの透過率のグラフG1および格子1’を配置しないときの透過率のグラフG1’を示す図である。It is a figure which shows the transmittance | permeability graph G1 when the grating | lattice 1 'is arrange | positioned in parallel with the grating | lattice 1, and the transmittance | permeability graph G1' when not arrange | positioning the grating | lattice 1 '. 格子1および収容型構造体によって透過率が極大値をとる周波数の移動を示す図である。It is a figure which shows the movement of the frequency from which the transmittance | permeability takes the maximum value with the grating | lattice 1 and the accommodation type structure. ワイヤストリップ幅2α(=p−a)の変化によって透過率が極大値をとる周波数の移動を示す図である。It is a figure which shows the movement of the frequency from which the transmittance | permeability takes the maximum value by the change of wire strip width 2 (alpha) (= pa). 一体型構造体2の厚さtの変化によって透過率が極大値をとる周波数の移動を示す図である。It is a figure which shows the movement of the frequency from which the transmittance | permeability takes the maximum value with the change of the thickness t of the integrated structure 2. FIG.

符号の説明Explanation of symbols

1 格子(空隙配置構造体)
1’ 格子(周波数特性調整部材)
10 導体板
12 空隙部(開口)
20 液体
22 溶質(被測定物)
24 溶媒
30 電磁波照射部
32 放射制御部
34 電磁波照射部(測定用電磁波照射手段および参照電磁波照射手段)
36 電磁波検出部(測定用電磁波検出手段および参照電磁波検出手段)
40 特性測定部
42 透過率測定部
44 透過率記録部
46 屈折率導出部
50 容器
52 正面
54 背面
56 側面
62 注入用パイプ
64 排出用パイプ
72 注入装置
74 排出装置
60 電磁波検出部
70 制御・演算部
1 Lattice (void arrangement structure)
1 'grating (frequency characteristic adjustment member)
10 Conductor plate 12 Air gap (opening)
20 liquid 22 solute (object to be measured)
24 Solvent 30 Electromagnetic wave irradiation unit 32 Radiation control unit 34 Electromagnetic wave irradiation unit (Measurement electromagnetic wave irradiation means and reference electromagnetic wave irradiation means)
36 Electromagnetic wave detection section (measurement electromagnetic wave detection means and reference electromagnetic wave detection means)
40 Characteristic Measuring Unit 42 Transmittance Measuring Unit 44 Transmittance Recording Unit 46 Refractive Index Deriving Unit 50 Container 52 Front 54 Back 56

Claims (12)

所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体と、
被測定物および前記空隙配置構造体を収容する容器と、
を備え、
前記容器は、前記空隙部を通過する前記被測定物の特性を測定するために前記空隙部に照射される測定用電磁波を透過させ、
前記空隙部を前記測定用電磁波が透過できるように、前記空隙部の形状が定められている、
収容型構造体。
A gap arrangement structure in which a gap surrounded by a conductor is arranged in a predetermined plane;
A container for housing the object to be measured and the void arrangement structure;
With
The container transmits an electromagnetic wave for measurement irradiated to the gap in order to measure the characteristics of the measurement object passing through the gap ;
The shape of the gap is determined so that the measurement electromagnetic wave can pass through the gap.
Containment structure.
請求項1に記載の収容型構造体であって、
前記容器が、前記被測定物を含む液体または前記被測定物を含む気体を収容する、
収容型構造体。
The containment type structure according to claim 1,
The container contains a liquid containing the object to be measured or a gas containing the object to be measured.
Containment structure.
請求項2に記載の収容型構造体であって、
前記容器に前記液体または前記気体が注入および排出されている間に、前記測定用電磁波が照射される、
収容型構造体。
The containment structure according to claim 2,
While the liquid or gas is being injected and discharged from the container, the measurement electromagnetic wave is irradiated.
Containment structure.
請求項1ないし3のいずれか一項に記載の収容型構造体であって、
前記容器は、前記空隙部を透過した透過電磁波を透過させる、
収容型構造体。
The containment structure according to any one of claims 1 to 3,
The container transmits the transmitted electromagnetic wave that has passed through the gap.
Containment structure.
請求項1ないし4のいずれか一項に記載の収容型構造体であって、
前記空隙配置構造体は、同一形状の前記空隙部が所定の方向に一定の間隔で配置されている、
収容型構造体。
The containment type structure according to any one of claims 1 to 4,
In the gap arrangement structure, the gap portions having the same shape are arranged at predetermined intervals in a predetermined direction.
Containment structure.
請求項5に記載の収容型構造体であって、
前記空隙配置構造体は、導体を貫通する開口が縦方向および横方向に配列された二次元格子である、
収容型構造体。
The containment structure according to claim 5,
The gap arrangement structure is a two-dimensional lattice in which openings penetrating a conductor are arranged in a vertical direction and a horizontal direction.
Containment structure.
請求項1ないし6のいずれか一項に記載の収容型構造体に前記測定用電磁波を照射する測定用電磁波照射手段と、
照射された前記測定用電磁波に対する前記収容型構造体による応答である測定用応答電磁波を検出する測定用電磁波検出手段と、
前記空隙配置構造体に参照電磁波を照射する参照電磁波照射手段と、
照射された前記参照電磁波に対する前記空隙配置構造体による応答である参照応答電磁波を検出する参照電磁波検出手段と、
前記測定用電磁波検出手段の検出結果および前記参照電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定手段と、
を備えた測定装置。
An electromagnetic wave irradiation means for measurement that irradiates the electromagnetic wave for measurement to the containing structure according to any one of claims 1 to 6,
A measurement electromagnetic wave detection means for detecting a measurement response electromagnetic wave, which is a response by the containing structure to the irradiated measurement electromagnetic wave;
A reference electromagnetic wave irradiation means for irradiating the gap arrangement structure with a reference electromagnetic wave;
A reference electromagnetic wave detecting means for detecting a reference response electromagnetic wave which is a response by the gap arrangement structure to the irradiated reference electromagnetic wave;
Based on the detection result of the measurement electromagnetic wave detection means and the detection result of the reference electromagnetic wave detection means, characteristic measurement means for measuring the characteristics of the object to be measured;
Measuring device.
請求項7に記載の測定装置であって、
前記特性測定手段が、
前記測定用電磁波検出手段の検出結果および前記参照電磁波検出手段の検出結果に基づき、電磁波の透過率を測定する透過率測定手段と、
測定された前記透過率に基づき、前記被測定物の屈折率を導出する屈折率導出手段と、
を有する測定装置。
The measuring device according to claim 7,
The characteristic measuring means comprises:
Based on the detection result of the measurement electromagnetic wave detection means and the detection result of the reference electromagnetic wave detection means, transmittance measurement means for measuring the transmittance of electromagnetic waves,
A refractive index deriving means for deriving a refractive index of the object to be measured based on the measured transmittance;
Measuring device.
請求項8に記載の測定装置であって、
前記屈折率導出手段は、周波数Aにおける前記測定用電磁波検出手段の検出結果に基づき測定された透過率と、周波数Bにおける前記参照電磁波検出手段の検出結果に基づき測定された透過率とが等しい場合に、前記被測定物の屈折率をAおよびBに基づき導出する、
測定装置。
The measuring device according to claim 8,
When the refractive index deriving unit has a transmittance measured based on the detection result of the measurement electromagnetic wave detecting unit at the frequency A equal to a transmittance measured based on the detection result of the reference electromagnetic wave detecting unit at the frequency B The refractive index of the object to be measured is derived based on A and B.
measuring device.
請求項9に記載の測定装置であって、
周波数特性調整部材を備え、
前記周波数Bの近傍において、前記透過率の周波数に対する傾きが、前記周波数特性調整部材が無い場合よりも大きくなる、測定装置。
The measuring device according to claim 9,
With a frequency characteristic adjustment member,
In the vicinity of the frequency B, the measurement apparatus in which the slope of the transmittance with respect to the frequency is larger than when the frequency characteristic adjusting member is not provided.
請求項1ないし6のいずれか一項に記載の収容型構造体に前記測定用電磁波を照射する測定用電磁波照射工程と、
照射された前記測定用電磁波に対する前記収容型構造体による応答である測定用応答電磁波を検出する測定用電磁波検出工程と、
前記空隙配置構造体に参照電磁波を照射する参照電磁波照射工程と、
照射された前記参照電磁波に対する前記空隙配置構造体による応答である参照応答電磁波を検出する参照電磁波検出工程と、
前記測定用電磁波検出工程の検出結果および前記参照電磁波検出工程の検出結果に基づき、前記被測定物の特性を測定する特性測定工程と、
を備えた測定方法。
An electromagnetic wave irradiation step for measurement, which irradiates the electromagnetic wave for measurement to the containment structure according to any one of claims 1 to 6,
A measurement electromagnetic wave detection step for detecting a measurement response electromagnetic wave, which is a response by the containing structure to the irradiated measurement electromagnetic wave;
A reference electromagnetic wave irradiation step of irradiating the void arrangement structure with a reference electromagnetic wave;
A reference electromagnetic wave detection step of detecting a reference response electromagnetic wave that is a response by the gap arrangement structure to the irradiated reference electromagnetic wave;
Based on the detection result of the measurement electromagnetic wave detection step and the detection result of the reference electromagnetic wave detection step, a characteristic measurement step of measuring the characteristics of the object to be measured,
Measuring method.
請求項1ないし6のいずれか一項に記載の収容型構造体に前記測定用電磁波を照射する測定用電磁波照射手段と、
照射された前記測定用電磁波に対する前記収容型構造体による応答である測定用応答電磁波を検出する測定用電磁波検出手段と、
前記空隙配置構造体に参照電磁波を照射する参照電磁波照射手段と、
照射された前記参照電磁波に対する前記空隙配置構造体による応答である参照応答電磁波を検出する参照電磁波検出手段と、
を備えた測定装置における測定処理をコンピュータに実行させるためのプログラムであって、
前記測定用電磁波検出手段の検出結果および前記参照電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定処理をコンピュータに実行させるためのプログラム。
An electromagnetic wave irradiation means for measurement that irradiates the electromagnetic wave for measurement to the containing structure according to any one of claims 1 to 6,
A measurement electromagnetic wave detection means for detecting a measurement response electromagnetic wave, which is a response by the containing structure to the irradiated measurement electromagnetic wave;
A reference electromagnetic wave irradiation means for irradiating the gap arrangement structure with a reference electromagnetic wave;
A reference electromagnetic wave detecting means for detecting a reference response electromagnetic wave which is a response by the gap arrangement structure to the irradiated reference electromagnetic wave;
A program for causing a computer to execute a measurement process in a measurement apparatus comprising:
A program for causing a computer to execute a characteristic measurement process for measuring characteristics of the object to be measured based on a detection result of the measurement electromagnetic wave detection means and a detection result of the reference electromagnetic wave detection means.
JP2005356486A 2005-12-09 2005-12-09 Contained structure, measuring device, method and program Expired - Fee Related JP4911964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005356486A JP4911964B2 (en) 2005-12-09 2005-12-09 Contained structure, measuring device, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005356486A JP4911964B2 (en) 2005-12-09 2005-12-09 Contained structure, measuring device, method and program

Publications (2)

Publication Number Publication Date
JP2007163170A JP2007163170A (en) 2007-06-28
JP4911964B2 true JP4911964B2 (en) 2012-04-04

Family

ID=38246241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005356486A Expired - Fee Related JP4911964B2 (en) 2005-12-09 2005-12-09 Contained structure, measuring device, method and program

Country Status (1)

Country Link
JP (1) JP4911964B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288047A (en) * 2008-05-29 2009-12-10 Epson Toyocom Corp Liquid cell for terahertz spectroscopic analysis and method for manufacturing liquid cell for terahertz spectroscopic analysis
JP5384648B2 (en) 2009-08-21 2014-01-08 株式会社村田製作所 Method for measuring the characteristics of the object to be measured
US8330110B2 (en) * 2009-09-10 2012-12-11 Advantest Corporation Container, container positioning method, and measuring method
WO2012165052A1 (en) 2011-06-01 2012-12-06 株式会社村田製作所 Measurement method for object to be measured
KR20140041910A (en) * 2011-09-06 2014-04-04 가부시키가이샤 무라타 세이사쿠쇼 Measurement device and feature measurement method of object to be measured employing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142613B2 (en) * 1991-10-14 2001-03-07 ジーイー横河メディカルシステム株式会社 RF drive circuit in MR device
JP2002277393A (en) * 2001-03-15 2002-09-25 Tochigi Nikon Corp Measuring method and instrument, and imaging method and device
JP2004085528A (en) * 2002-07-05 2004-03-18 Kansai Tlo Kk Method and apparatus for detecting protein association by change in diffusion constant
US6882460B2 (en) * 2002-08-23 2005-04-19 Energy Conversion Devices, Inc. Phase angle controlled stationary elements for long wavelength electromagnetic radiation
JP2004117703A (en) * 2002-09-25 2004-04-15 Osaka Industrial Promotion Organization Optical retardation plate
WO2005017570A2 (en) * 2003-08-06 2005-02-24 University Of Pittsburgh Surface plasmon-enhanced nano-optic devices and methods of making same
JP2005337771A (en) * 2004-05-25 2005-12-08 National Institute For Materials Science Optical element comprising integrated pillar structure having nanostructure

Also Published As

Publication number Publication date
JP2007163170A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP4724822B2 (en) Integrated structure, measuring apparatus, method and program
US10928313B2 (en) Optical absorption spectroscopy based gas analyzer systems and methods
De Cumis et al. Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring
US8039801B2 (en) Detection apparatus for detecting electromagnetic wave passed through object
Spagnolo et al. Mid-infrared fiber-coupled QCL-QEPAS sensor
Theuer et al. Terahertz time‐domain spectroscopy of gases, liquids, and solids
KR101002357B1 (en) Terahertz waveguide device and detection method using the same
JP4911965B2 (en) Measuring structure, measuring apparatus, method and program
JP6394920B2 (en) External cavity laser absorption spectroscopy method and apparatus
JP2006234810A (en) Method for measuring wavelength of light with high accuracy
JP4911964B2 (en) Contained structure, measuring device, method and program
Das et al. Very long optical path-length from a compact multi-pass cell
KR102237233B1 (en) Particle characterization in open optical resonator cavities
JP2016109687A (en) Measurement device, and measurement method using the same
AU2015327741B2 (en) Cavity enhanced spectroscopy using off-axis paths
Li et al. Piezoelectric effect-based detector for spectroscopic application
Northern et al. Multi-species detection using multi-mode absorption spectroscopy (MUMAS)
US5640245A (en) Spectroscopic method with double modulation
JP2012185116A (en) Optical characteristics evaluation device and optical characteristics evaluation method
JP2011169638A (en) Terahertz spectroscopic device, method for manufacturing the same, and terahertz spectrometer
O’Hagan et al. Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers
JP2010210543A (en) Sensor unit, terahertz spectral measurement apparatus, and terahertz spectral measurement method
US8953168B2 (en) Optical sensing devices and methods for detecting samples using the same
JP2013011440A (en) Measuring apparatus for measuring characteristics of object to be measured and measuring method for the same
Luo et al. Study of a periodic spectral fluctuation existing in a fibered optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4911964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees