JP6935983B2 - Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery - Google Patents

Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery Download PDF

Info

Publication number
JP6935983B2
JP6935983B2 JP2014266268A JP2014266268A JP6935983B2 JP 6935983 B2 JP6935983 B2 JP 6935983B2 JP 2014266268 A JP2014266268 A JP 2014266268A JP 2014266268 A JP2014266268 A JP 2014266268A JP 6935983 B2 JP6935983 B2 JP 6935983B2
Authority
JP
Japan
Prior art keywords
secondary battery
ion secondary
positive electrode
negative electrode
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014266268A
Other languages
Japanese (ja)
Other versions
JP2016126896A (en
Inventor
博宣 深堀
博宣 深堀
圭介 野村
圭介 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2014266268A priority Critical patent/JP6935983B2/en
Priority to KR1020150141733A priority patent/KR20160079632A/en
Publication of JP2016126896A publication Critical patent/JP2016126896A/en
Application granted granted Critical
Publication of JP6935983B2 publication Critical patent/JP6935983B2/en
Priority to KR1020230078537A priority patent/KR20230093402A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/747Woven material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、巻回型リチウムイオン二次電池用正極、巻回型リチウムイオン二次電池用負極、及びこれらの正極および負極を用いた巻回型リチウムイオン二次電池に関する。 The present invention relates to a positive electrode for a wound lithium ion secondary battery, a negative electrode for a wound lithium ion secondary battery, and a wound lithium ion secondary battery using these positive electrodes and negative electrodes.

近年、スマートフォンやタブレット端末等の登場により、リチウムイオン二次電池の更なる高容量化が求められている。電池の容量を増加させる方法としては、容量の大きな活物質への改良、活物質の利用効率の向上等の他に、電極(活物質層)の厚型化による活物質の使用量の増加があげられる。ところが、電極を厚型化していくと、電極の深さ方向の集電性が低下し、リチウムイオンの移動距離も増加するため、高率放電特性が大幅に低下するという問題があった。 In recent years, with the advent of smartphones and tablet terminals, further increase in capacity of lithium ion secondary batteries is required. As a method of increasing the capacity of the battery, in addition to improving the active material having a large capacity and improving the utilization efficiency of the active material, the amount of the active material used is increased by thickening the electrode (active material layer). can give. However, as the electrode is made thicker, the current collecting property in the depth direction of the electrode is lowered and the moving distance of lithium ions is also increased, so that there is a problem that the high rate discharge characteristic is significantly lowered.

この問題を解決する手法として、例えば、特許文献1および2には、三次元網目構造を有する多孔体を集電体に用いることが開示されている。 As a method for solving this problem, for example, Patent Documents 1 and 2 disclose that a porous body having a three-dimensional network structure is used as a current collector.

特開2010−272425号公報Japanese Unexamined Patent Publication No. 2010-272425 特開2012−186139号公報Japanese Unexamined Patent Publication No. 2012-186139

しかしながら、このような三次元網目構造を有する多孔体を集電体に用いる場合、既存のリチウムイオン電池の塗工方式であるダイヘットコーティング、ドクターブレードを用いたコーティング等の塗布方式での塗工が極めて困難であるため、これに適した塗工方式(例えば、圧入法、浸漬法等)の設備を新規に導入する必要がある。 However, when a porous body having such a three-dimensional network structure is used for the current collector, the coating method is a coating method such as a die head coating, which is a coating method for an existing lithium ion battery, or a coating method using a doctor blade. Therefore, it is necessary to newly introduce equipment of a coating method (for example, press-fitting method, immersion method, etc.) suitable for this.

また、上記三次元網目構造を有する多孔体を集電体に用いた場合、ロールプレス加工時に多孔体の破断や崩壊が起き、集電体を含む合剤が脱落するという問題が発生していた。さらに、電極の巻回耐性も不十分であり、巻回時に集電体を含む合剤の脱落や電極破断が発生する等の不具合が生じていた。 Further, when the porous body having the above three-dimensional network structure is used for the current collector, there is a problem that the porous body breaks or collapses during the roll press processing and the mixture containing the current collector falls off. .. Further, the winding resistance of the electrode is also insufficient, and there are problems such as the mixture containing the current collector falling off and the electrode breaking at the time of winding.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、既存のリチウムイオン二次電池の塗布方式による塗工が可能であり、十分なプレス加工耐性および巻回耐性を有する集電体の適用により、電極の一層の厚型化を可能とし、高エネルギー密度で且つ高率放電特性に優れた二次電池を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is that coating by an existing lithium ion secondary battery coating method is possible, and that sufficient press processing resistance and sufficient press processing resistance are achieved. An object of the present invention is to provide a secondary battery having a high energy density and excellent high rate discharge characteristics by making it possible to make the electrode thicker by applying a current collector having winding resistance.

上記課題を解決するために、本発明のある観点によれば、無孔のアルミニウム箔の少なくとも片面に網状のアルミニウム多孔体を積層し一体化させた正極集電体を備えることを特徴とする、巻回型リチウムイオン二次電池用正極が提供される。 In order to solve the above problems, according to a certain viewpoint of the present invention, a positive electrode current collector in which a mesh-like aluminum porous body is laminated and integrated on at least one surface of a non-porous aluminum foil is provided. A positive electrode for a wound lithium ion secondary battery is provided.

この観点に係る巻回型リチウムイオン二次電池用正極では、正極集電体が無孔のアルミニウム箔の少なくとも片面に網状のアルミニウム多孔体を積層し一体化させた構造を有していることから、既存のリチウムイオン二次電池の塗布方式による塗工が可能であり、十分なロールプレス加工耐性および巻回耐性を有するとともに、電極の深さ方向の集電性の低下を抑えることができる。 In the positive electrode for a wound lithium ion secondary battery according to this viewpoint, the positive electrode current collector has a structure in which a net-like aluminum porous body is laminated and integrated on at least one surface of a non-porous aluminum foil. It is possible to apply by the coating method of the existing lithium ion secondary battery, and it has sufficient roll press processing resistance and winding resistance, and it is possible to suppress a decrease in current collecting property in the depth direction of the electrode.

したがって、本観点に係る負極集電体をリチウムイオン二次電池に適用することで、電極の一層の厚型化が可能となり、高エネルギー密度で且つ高率放電特性に優れた二次電池とすることができる。 Therefore, by applying the negative electrode current collector according to this viewpoint to the lithium ion secondary battery, the electrode can be made thicker, and the secondary battery has a high energy density and excellent high rate discharge characteristics. be able to.

ここで、網状のアルミニウム多孔体が、アルミニウム不織布またはアルミニウムエキスパンドメタルの少なくともいずれか一つからなっていてもよい。 Here, the reticulated aluminum porous body may consist of at least one of aluminum non-woven fabric and aluminum expanded metal.

この観点によれば、網状のアルミニウム多孔体が、アルミニウム不織布またはアルミニウムエキスパンドメタルの少なくともいずれか一つからなるので、プレス加工耐性および巻回耐性が更に向上する。 From this point of view, since the reticulated aluminum porous body is composed of at least one of aluminum non-woven fabric and aluminum expanded metal, press working resistance and winding resistance are further improved.

また、アルミニウム箔の厚みが、12μm以下であることが好ましい。 Further, the thickness of the aluminum foil is preferably 12 μm or less.

この観点によれば、アルミニウム箔の厚みが12μm以下と薄いので、エネルギー密度がさらに向上する。 From this point of view, since the thickness of the aluminum foil is as thin as 12 μm or less, the energy density is further improved.

また、正極集電体の厚みが、0.2mm以上0.5mm以下であることが好ましい。 Further, the thickness of the positive electrode current collector is preferably 0.2 mm or more and 0.5 mm or less.

この観点によれば、正極集電体の厚みが0.2mm以上0.5mm以下であるので、電極の深さ方向の集電性がさらに高まる。 From this viewpoint, since the thickness of the positive electrode current collector is 0.2 mm or more and 0.5 mm or less, the current collecting property in the depth direction of the electrode is further enhanced.

また、正極の空隙率が、60%以上87%以下であることが好ましい。 Further, the porosity of the positive electrode is preferably 60% or more and 87% or less.

この観点によれば、正極の空隙率が60%以上87%以下であるので、正極合剤の正極集電体に対する保持性、電解液の浸透性、およびエネルギー密度がさらに向上する。 From this viewpoint, since the void ratio of the positive electrode is 60% or more and 87% or less, the retention of the positive electrode mixture with respect to the positive electrode current collector, the permeability of the electrolytic solution, and the energy density are further improved.

本発明の他の観点によれば、無孔の金属箔の少なくとも片面に網状の金属多孔体を積層し一体化させた負極集電体を備えることを特徴とする、巻回型リチウムイオン二次電池用負極が提供される。 According to another aspect of the present invention, the wound lithium ion secondary is provided with a negative electrode current collector in which a mesh-like metal porous body is laminated and integrated on at least one surface of a non-porous metal foil. A negative electrode for a battery is provided.

この観点に係る巻回型リチウムイオン二次電池用負極では、負極集電体が無孔の金属箔の少なくとも片面に網状の金属多孔体を積層し一体化させた構造を有していることから、既存のリチウムイオン二次電池の塗布方式による塗工が可能であり、十分なロールプレス加工耐性および巻回耐性を有するとともに、電極の深さ方向の集電性の低下を抑えることができる。 In the negative electrode for a wound lithium ion secondary battery according to this viewpoint, the negative electrode current collector has a structure in which a mesh-like metal porous body is laminated and integrated on at least one surface of a non-porous metal foil. It is possible to apply by the coating method of the existing lithium ion secondary battery, and it has sufficient roll press processing resistance and winding resistance, and it is possible to suppress a decrease in current collecting property in the depth direction of the electrode.

したがって、本観点に係る負極集電体をリチウムイオン二次電池に適用することで、電極の一層の厚型化が可能となり、高エネルギー密度で且つ高率放電特性に優れた二次電池とすることができる。 Therefore, by applying the negative electrode current collector according to this viewpoint to the lithium ion secondary battery, the electrode can be made thicker, and the secondary battery has a high energy density and excellent high rate discharge characteristics. be able to.

ここで、網状金属多孔体が、銅不織布、ニッケル不織布、銅エキスパンドメタルまたはニッケルエキスパンドメタルの少なくともいずれか一つからなっていてもよい。 Here, the reticulated metal porous body may consist of at least one of a copper non-woven fabric, a nickel non-woven fabric, a copper expanded metal, and a nickel expanded metal.

この観点によれば、網状金属多孔体が、銅不織布、ニッケル不織布、銅エキスパンドメタルまたはニッケルエキスパンドメタルの少なくともいずれか一つからなるので、プレス加工耐性および巻回耐性が更に向上する。 From this point of view, since the reticulated metal porous body is composed of at least one of copper non-woven fabric, nickel non-woven fabric, copper expanded metal and nickel expanded metal, press working resistance and winding resistance are further improved.

また、金属箔の厚みが、6μm以下であることが好ましい。 Further, the thickness of the metal foil is preferably 6 μm or less.

この観点によれば、金属箔の厚みが6μm以下と薄いので、エネルギー密度がさらに向上する。 From this point of view, since the thickness of the metal foil is as thin as 6 μm or less, the energy density is further improved.

また、負極集電体の厚みが、0.2mm以上0.5mm以下であることが好ましい。 Further, the thickness of the negative electrode current collector is preferably 0.2 mm or more and 0.5 mm or less.

この観点によれば、負極集電体の厚みが0.2mm以上0.5mm以下であるので、電極の深さ方向の集電性がさらに高まる。 From this viewpoint, since the thickness of the negative electrode current collector is 0.2 mm or more and 0.5 mm or less, the current collecting property in the depth direction of the electrode is further enhanced.

また、負極の空隙率が、60%以上87%以下であることが好ましい。 Further, the porosity of the negative electrode is preferably 60% or more and 87% or less.

この観点によれば、負極の空隙率が60%以上87%以下であるので、負極合剤の負極集電体に対する保持性、電解液の浸透性、およびエネルギー密度がさらに向上する。 From this viewpoint, since the void ratio of the negative electrode is 60% or more and 87% or less, the retention of the negative electrode mixture with respect to the negative electrode current collector, the permeability of the electrolytic solution, and the energy density are further improved.

本発明の他の観点によれば、上述した巻回型リチウムイオン二次電池用正極と、上述した巻回型リチウムイオン二次電池用負極と、を備えることを特徴とする、巻回型リチウムイオン二次電池が提供される。 According to another aspect of the present invention, the wound lithium ion is characterized by comprising the above-mentioned positive electrode for a wound lithium ion secondary battery and the above-mentioned negative electrode for a wound lithium ion secondary battery. Ion secondary batteries are provided.

この観点に係る巻回型リチウムイオン二次電池は、既存のリチウムイオン二次電池の塗布方式による塗工が可能であり、十分なロールプレス加工耐性および巻回耐性を有するとともに、電極の深さ方向の集電性の低下を抑えることが可能な集電体を用いていることから、電極の一層の厚型化が可能となり、高エネルギー密度で且つ高率放電特性に優れる。 The wound type lithium ion secondary battery according to this viewpoint can be coated by the coating method of the existing lithium ion secondary battery, has sufficient roll press processing resistance and winding resistance, and has an electrode depth. Since a current collector capable of suppressing a decrease in current collection property in the direction is used, it is possible to make the electrode thicker, and it is excellent in high energy density and high rate discharge characteristics.

以上説明したように本発明によれば、正極集電体として、無孔のアルミニウム箔の少なくとも片面に網状のアルミニウム多孔体を積層し一体化させた集電体を用い、負極集電体として、無孔の金属箔の少なくとも片面に網状の金属多孔体を積層し一体化させた集電体を用いているので、既存のリチウムイオン二次電池の塗布方式による塗工が可能であり、集電体が十分なプレス加工耐性および巻回耐性を有し、これにより、電極の一層の厚型化を可能となる。よって、本発明の巻回型リチウムイオン二次電池は、高エネルギー密度で且つ高率放電特性に優れる。 As described above, according to the present invention, as the positive electrode current collector, a current collector in which a net-like aluminum porous body is laminated and integrated on at least one surface of a non-porous aluminum foil is used, and as a negative electrode current collector, Since a current collector is used in which a net-like metal porous body is laminated and integrated on at least one side of a non-perforated metal foil, it is possible to apply the existing lithium ion secondary battery coating method, and the current collection can be performed. The body has sufficient press processing resistance and winding resistance, which enables the electrode to be further thickened. Therefore, the wound lithium ion secondary battery of the present invention has a high energy density and is excellent in high rate discharge characteristics.

本発明の実施形態に係るリチウムイオン二次電池の概略構成を示す側断面図である。It is a side sectional view which shows the schematic structure of the lithium ion secondary battery which concerns on embodiment of this invention. 同実施形態に係る正極(負極)集電体および活物質層の詳細構成を示す説明図である。It is explanatory drawing which shows the detailed structure of the positive electrode (negative electrode) current collector and the active material layer which concerns on this embodiment.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

<リチウムイオン二次電池の構成>
まず、図1および図2に基づいて、本実施形態に係るリチウムイオン二次電池10の構成について説明する。
<Structure of lithium-ion secondary battery>
First, the configuration of the lithium ion secondary battery 10 according to the present embodiment will be described with reference to FIGS. 1 and 2.

図1に示すように、リチウムイオン二次電池10は、正極20と、負極30と、セパレータ層40とを備える。リチウムイオン二次電池10の充電到達電圧(酸化還元電位)は、例えば4.3V(vs.Li/Li)以上5.0V以下となる。本実施形態では、セパレータ層40を正極20と負極30とで挟んだ電極構造体が巻回型のものであれば、リチウムイオン二次電池10の形態は、特に限定されない。即ち、リチウムイオン二次電池10は、巻回型構造を有する電極構造体を収容できるものであれば、円筒形、角形等のいずれであってもよい。 As shown in FIG. 1, the lithium ion secondary battery 10 includes a positive electrode 20, a negative electrode 30, and a separator layer 40. The charge reaching voltage (oxidation-reduction potential) of the lithium ion secondary battery 10 is, for example, 4.3 V (vs. Li / Li +) or more and 5.0 V or less. In the present embodiment, the form of the lithium ion secondary battery 10 is not particularly limited as long as the electrode structure in which the separator layer 40 is sandwiched between the positive electrode 20 and the negative electrode 30 is a winding type. That is, the lithium ion secondary battery 10 may be cylindrical, square, or the like as long as it can accommodate an electrode structure having a wound structure.

[正極20]
正極20は、正極集電体21と、正極活物質層22とを備える。
[Positive electrode 20]
The positive electrode 20 includes a positive electrode current collector 21 and a positive electrode active material layer 22.

(正極集電体21)
正極集電体21は、図2に示すように、無孔のアルミニウム箔211を支持体とし、当該無孔のアルミニウム箔211の少なくとも片面に網状のアルミニウム多孔体を積層し、これらを一体化させたものである。ただし、図示しているように、無孔のアルミニウム箔211の両面に網状のアルミニウム多孔体213a、213bを積層して一体化した方が、集電体のプレス加工耐性および巻回耐性がより高まる。
(Positive Current Collector 21)
As shown in FIG. 2, the positive electrode current collector 21 uses a non-perforated aluminum foil 211 as a support, and a net-like porous aluminum body is laminated on at least one surface of the non-perforated aluminum foil 211 to integrate them. It is a thing. However, as shown in the figure, when the mesh-like porous aluminum bodies 213a and 213b are laminated and integrated on both sides of the non-perforated aluminum foil 211, the press working resistance and the winding resistance of the current collector are further enhanced. ..

ここで、網状のアルミニウム多孔体213a、213bとしては、アルミニウム不織布またはアルミニウムエキスパンドメタル等の少なくともいずれか一つ(いずれか一つまたは組み合わせ)が挙げられる。組み合わせの例としては、片面のアルミニウム多孔体213aをアルミニウム不織布とし、もう片面のアルミニウム多孔体213bをアルミニウムエキスパンドメタルとするような場合等がある。一方、特許文献1に挙げられているようなアルミ多孔質焼結体や、特許文献2に挙げられているような樹脂多孔質体にアルミメッキを施しその後樹脂を除去して得られるアルミ多孔体は、その比表面積が高く集電性には優れるものの、既存のリチウムイオン二次電池の塗工方式(例えば、ダイヘットコーティングやドクターブレードを用いた塗布等)による塗工が困難である点、およびプレス加工耐性、巻回耐性が低く、破断や崩壊のおそれがあることから、本実施形態に係る網状アルミニウム多孔体213a、213bとしては好適でない。この理由として本発明者らは、これらのアルミ多孔質焼結体や樹脂多孔質体にアルミメッキを施しその後樹脂を除去して得られるアルミ多孔体の構造上、圧縮や引っ張りに対する強度が低く、プレスや曲げ加工に対する追従性が低いためだと考えている。一方、本実施形態で用いる不織布やエキスパンドベタルは、プレスや曲げ加工時の圧縮、引っ張りに対しても十分な追従性を示すために耐性を確保できると考えている。 Here, examples of the reticulated aluminum porous bodies 213a and 213b include at least one (any one or combination) of aluminum non-woven fabric, aluminum expanded metal, and the like. As an example of the combination, there is a case where the aluminum porous body 213a on one side is an aluminum non-woven fabric and the aluminum porous body 213b on the other side is an aluminum expanded metal. On the other hand, an aluminum porous body as described in Patent Document 1 or a resin porous body as described in Patent Document 2 is plated with aluminum and then the resin is removed to obtain an aluminum porous body. Although its specific surface area is high and its current collection property is excellent, it is difficult to apply it by the existing lithium ion secondary battery coating method (for example, die-head coating or coating using a doctor blade). In addition, the reticulated aluminum porous bodies 213a and 213b according to the present embodiment are not suitable because they have low press processing resistance and winding resistance and may break or collapse. The reason for this is that the present inventors have low strength against compression and tensile strength due to the structure of the aluminum porous body obtained by plating these aluminum porous sintered bodies and resin porous bodies with aluminum and then removing the resin. I think this is because it has low followability to pressing and bending. On the other hand, it is considered that the non-woven fabric and expanded betal used in the present embodiment can secure resistance because they show sufficient followability to compression and pulling during pressing and bending.

また、無孔のアルミニウム箔211と網状アルミニウム多孔体213a、213bとを一体化させる方法としては、接着や溶接等により一体化可能な方法であれば特に制限されるものではないが、例えば、導電性樹脂による接着、スポット溶接による部分的接合等を用いることができる。導電性樹脂としては、電池材料として使われる一般的な導電材料とバインダの組み合わせが挙げられる。例えば、導電材料としては、グラファイト、カーボンブラック、カーボンナノチューブ、グラフェン等が挙げられ、バインダとしては、H−NBR、PVdF、CMC(カルボキシメチルセルロース)等が挙げられる。 Further, the method of integrating the non-perforated aluminum foil 211 and the reticulated aluminum porous bodies 213a and 213b is not particularly limited as long as it can be integrated by adhesion, welding, or the like, but for example, conductivity. Adhesion with a sex resin, partial joining by spot welding, or the like can be used. Examples of the conductive resin include a combination of a general conductive material used as a battery material and a binder. For example, examples of the conductive material include graphite, carbon black, carbon nanotubes, graphene and the like, and examples of the binder include H-NBR, PVdF, CMC (carboxymethyl cellulose) and the like.

無孔のアルミニウム箔211の厚みは、強度を確保できる範囲であれば、エネルギー密度の観点から薄い方が好ましい。具体的には、無孔のアルミニウム箔211の厚みは、正極集電体21の強度(高いプレス加工耐性および巻回耐性)を確保できる範囲として6μm以上であることが好ましい。一方、正極集電体21のエネルギー密度を高くするという観点から12μm以下であることが好ましい。 The thickness of the non-perforated aluminum foil 211 is preferably thin from the viewpoint of energy density as long as the strength can be secured. Specifically, the thickness of the non-perforated aluminum foil 211 is preferably 6 μm or more as long as the strength of the positive electrode current collector 21 (high press working resistance and winding resistance) can be ensured. On the other hand, it is preferably 12 μm or less from the viewpoint of increasing the energy density of the positive electrode current collector 21.

また、正極集電体21全体の厚みは、電極の深さ方向の集電性を確保するため、0.2mm以上0.5mm以下であることが好ましい。 Further, the thickness of the entire positive electrode current collector 21 is preferably 0.2 mm or more and 0.5 mm or less in order to secure the current collecting property in the depth direction of the electrode.

さらに、正極20の空隙率は、60%以上87%以下であることが好ましい。空隙率がこの範囲にあることにより、正極活物質、導電剤、およびバインダ等を含む正極合剤の正極集電体21に対する保持性、電解液の浸透性、および正極20のエネルギー密度を向上させることができる。なお、ここでいう正極20の空隙率とは、正極体積に占める正極内に存在する空隙の割合のことを意味し、例えば水銀圧入法により測定することができる。 Further, the porosity of the positive electrode 20 is preferably 60% or more and 87% or less. When the void ratio is in this range, the retention of the positive electrode mixture containing the positive electrode active material, the conductive agent, the binder and the like with respect to the positive electrode current collector 21, the permeability of the electrolytic solution, and the energy density of the positive electrode 20 are improved. be able to. The porosity of the positive electrode 20 referred to here means the ratio of voids existing in the positive electrode to the volume of the positive electrode, and can be measured by, for example, a mercury press-fitting method.

以上のような正極集電体21を用いることで、既存のリチウムイオン二次電池の一般的な塗工方式での正極合剤の塗布が可能であり、且つ、プレス加工時及び巻回時の集電体の破断、集電体を含む合剤の脱落を防止することができる。また、三次元的な集電構造の構築により、電極を厚型化した場合における電極の深さ方向の集電性が改善され、電極を厚型化した際に起こる電池の高率放電特性の低下が抑制されるため、より一層の電極の厚型化とそれによる電池の高エネルギー密度化が可能となる。 By using the positive electrode current collector 21 as described above, it is possible to apply the positive electrode mixture by the general coating method of the existing lithium ion secondary battery, and at the time of pressing and winding. It is possible to prevent the current collector from breaking and the mixture containing the current collector from falling off. In addition, by constructing a three-dimensional current collection structure, the current collection property in the depth direction of the electrode when the electrode is thickened is improved, and the high rate discharge characteristic of the battery that occurs when the electrode is thickened. Since the decrease is suppressed, it is possible to further increase the thickness of the electrode and thereby increase the energy density of the battery.

(正極活物質層22)
正極活物質層22は、網状アルミ多孔体213a、213bの網目部分に保持されており、少なくとも正極活物質を含み、導電剤と、バインダとをさらに含んでいてもよい。正極活物質は、例えばリチウムを含む遷移金属酸化物または固溶体酸化物であるが、電気化学的にリチウムイオンを吸蔵及び放出することができる物質であれば特に制限されない。リチウムを含む遷移金属酸化物としては、例えば、LiCoO等のLi・Co系複合酸化物、LiNiCoMn等のLi・Ni・Co・Mn系複合酸化物、LiNiO等のLi・Ni系複合酸化物、LiMn等のLi・Mn系複合酸化物等が考えられる。固溶体酸化物は、例えば、LiMnCoNi(1.150≦a≦1.430、0.45≦x≦0.6、0.10≦y≦0.15、0.20≦z≦0.28)、LiMnCoNi(0.3≦x≦0.85、0.10≦y≦0.3、0.10≦z≦0.3)、LiMn1.5Ni0.5となる。正極活物質の含有比(含有量)は、特に制限されず、リチウムイオン二次電池の正極活物質層に適用可能な含有比であればよい。また、これらの化合物を単独又は複数混合して用いてもよい。
(Positive electrode active material layer 22)
The positive electrode active material layer 22 is held in the mesh portion of the mesh-like aluminum porous bodies 213a and 213b, contains at least the positive electrode active material, and may further contain a conductive agent and a binder. The positive electrode active material is, for example, a transition metal oxide containing lithium or a solid solution oxide, but is not particularly limited as long as it is a substance capable of electrochemically occluding and releasing lithium ions. The transition metal oxide containing lithium, for example, Li · Co-based composite oxide such as LiCoO 2, LiNi x Co y Mn z O Li · Ni · Co · Mn -based composite oxide such as 2, such as LiNiO 2 Li / Ni-based composite oxides, Li / Mn-based composite oxides such as LiMn 2 O 4 and the like can be considered. Solid solution oxides, for example, Li a Mn x Co y Ni z O 2 (1.150 ≦ a ≦ 1.430,0.45 ≦ x ≦ 0.6,0.10 ≦ y ≦ 0.15,0. 20 ≦ z ≦ 0.28), LiMn x Co y Ni z O 2 (0.3 ≦ x ≦ 0.85,0.10 ≦ y ≦ 0.3,0.10 ≦ z ≦ 0.3), LiMn It becomes 1.5 Ni 0.5 O 4. The content ratio (content) of the positive electrode active material is not particularly limited, and may be any content ratio applicable to the positive electrode active material layer of the lithium ion secondary battery. Further, these compounds may be used alone or in combination of two or more.

導電剤は、例えば、ケッチェンブラック、アセチレンブラック等のカーボンブラック、天然黒鉛、人造黒鉛、カーボンナノチューブ、カーボンナノファイバ等の繊維状炭素及びこれら繊維状炭素とカーボンブラックとの複合体、グラフェン等であるが、正極の導電性を高めるためのものであれば特に制限されない。導電剤の含有比は特に制限されず、リチウムイオン二次電池の正極活物質層に適用可能な含有比であればよい。 The conductive agent is, for example, carbon black such as Ketjen black or acetylene black, fibrous carbon such as natural graphite, artificial graphite, carbon nanotubes, carbon nanofibers, a composite of these fibrous carbon and carbon black, graphene, or the like. However, there is no particular limitation as long as it is for increasing the conductivity of the positive electrode. The content ratio of the conductive agent is not particularly limited, and may be any content ratio applicable to the positive electrode active material layer of the lithium ion secondary battery.

バインダは、例えば、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、フッ化ビニリデンとテトラフルオロエチレンとの共重合体、水素化アクリロニトリルブタジエンゴム、フッ素ゴム、ポリメチルメタクリレート、ポリエチレン、及びこれらの誘導体等であるが、正極活物質及び導電剤を集電体20上に結着させることができ正極の高電位に耐える耐酸化性及び電解液安定性を有するものであれば、特に制限されない。バインダの含有比も特に制限されず、リチウムイオン二次電池の正極活物質層に適用可能な含有比であればよい。正極活物質層22の厚さも特に制限されず、リチウムイオン二次電池の正極活物質層に適用可能な厚さであればよい。本実施形態では、この正極活物質層22を厚くしても、エネルギー密度が高く、且つ高率放電特性に優れたリチウムイオン二次電池10を得ることができる。 Binders include, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, a copolymer of vinylidene fluoride and tetrafluoroethylene, hydride acrylonitrile butadiene rubber, fluororubber, polymethylmethacrylate, polyethylene, and the like. And derivatives of these, especially if the positive electrode active material and the conductive agent can be bound onto the current collector 20 and have oxidation resistance and electrolyte stability that can withstand the high potential of the positive electrode. Not limited. The content ratio of the binder is also not particularly limited, and may be any content ratio applicable to the positive electrode active material layer of the lithium ion secondary battery. The thickness of the positive electrode active material layer 22 is not particularly limited as long as it is applicable to the positive electrode active material layer of the lithium ion secondary battery. In the present embodiment, even if the positive electrode active material layer 22 is thickened, a lithium ion secondary battery 10 having a high energy density and excellent high rate discharge characteristics can be obtained.

正極活物質層22は、例えば、正極活物質、導電剤、及びバインダを乾式混合することで正極合剤を形成し、この正極合剤を適当な有機溶媒に分散させることで正極合剤スラリーを形成し、この正極合剤スラリーを正極集電体21上に塗工し、乾燥、プレスすることで形成される。 The positive electrode active material layer 22 forms a positive electrode mixture by, for example, dry-mixing the positive electrode active material, the conductive agent, and the binder, and disperses the positive electrode mixture in an appropriate organic solvent to form a positive electrode mixture slurry. It is formed by coating the positive electrode mixture slurry on the positive electrode current collector 21, drying and pressing.

[負極30]
負極30は、負極集電体31と、負極活物質層32とを含む。
[Negative electrode 30]
The negative electrode 30 includes a negative electrode current collector 31 and a negative electrode active material layer 32.

(負極集電体31)
負極集電体31は、図2に示すように、無孔の金属箔311の少なくとも片面に網状の金属多孔体を積層し、これらを一体化させたものである。ただし、図示しているように、無孔の金属箔311の両面に網状の金属多孔体313a、313bを積層して一体化した方が、集電体のプレス加工耐性および巻回耐性がより高まる。また、金属箔311としては、例えば、銅箔、ニッケル箔、ステンレス箔等を用いることができる。
(Negative electrode current collector 31)
As shown in FIG. 2, the negative electrode current collector 31 is formed by laminating a net-like metal porous body on at least one surface of a non-perforated metal foil 311 and integrating them. However, as shown in the figure, the press working resistance and winding resistance of the current collector are further enhanced by laminating and integrating the mesh-like metal porous bodies 313a and 313b on both sides of the non-perforated metal foil 311. .. Further, as the metal foil 311, for example, a copper foil, a nickel foil, a stainless steel foil or the like can be used.

ここで、網状の金属多孔体313a、313bとしては、銅不織布、ニッケル不織布、ステンレス鋼不織布、銅エキスパンドメタル、ニッケルエキスパンドメタル、またはステンレス鋼エキスパンドメタル等の少なくともいずれか一つ(いずれか一つまたは組み合わせ)が挙げられる。組み合わせの例としては、片面の金属多孔体313aを銅不織布とし、もう片面の金属多孔体313bをステンレスエキスパンドメタルとするような場合等がある。なお、金属多孔体313a、313bとしては、上述した例に限られず、通常リチウムイオン二次電池の負極集電体に用いられる金属の不織布やエキスパンドメタル等が挙げられる。一方、特許文献1に挙げられているような多孔質金属焼結体や、特許文献2に挙げられているような樹脂多孔質体に金属メッキを施しその後樹脂を除去して得られる金属多孔体は、その比表面積が高く集電性には優れるものの、既存のリチウムイオン二次電池の塗工方式(例えば、ダイヘットコーティングやドクターブレードを用いた塗布等)による塗工が困難である点、およびプレス加工耐性、巻回耐性が低く、破断や崩壊のおそれがあることから、本実施形態に係る網状金属多孔体313a、313bとしては好適でない。この理由は、正極集電体21の場合と同様である。 Here, the reticulated metal porous bodies 313a and 313b include at least one (any one or one) of copper non-woven fabric, nickel non-woven fabric, stainless steel non-woven fabric, copper expanded metal, nickel expanded metal, stainless steel expanded metal and the like. Combination). As an example of the combination, there is a case where the metal porous body 313a on one side is made of a copper non-woven fabric and the metal porous body 313b on the other side is made of stainless expanded metal. The metal porous bodies 313a and 313b are not limited to the above-mentioned examples, and examples thereof include metal non-woven fabrics and expanded metals usually used for the negative electrode current collector of a lithium ion secondary battery. On the other hand, a porous metal sintered body as described in Patent Document 1 or a metal porous body obtained by subjecting a resin porous body as described in Patent Document 2 to metal plating and then removing the resin. Although its specific surface area is high and its current collection property is excellent, it is difficult to apply it by the existing lithium ion secondary battery coating method (for example, coating using a die-head coating or a doctor blade). Moreover, it is not suitable as the reticulated metal porous body 313a or 313b according to the present embodiment because it has low press processing resistance and winding resistance and may break or collapse. The reason for this is the same as in the case of the positive electrode current collector 21.

また、無孔の金属箔311と網状金属多孔体313a、313bとを一体化させる方法としては、正極集電体21と同様に、例えば、導電性樹脂による接着、スポット溶接による部分的接合等を用いることができる。 Further, as a method of integrating the non-perforated metal foil 311 and the reticulated metal porous bodies 313a and 313b, as in the case of the positive electrode current collector 21, for example, bonding with a conductive resin, partial joining by spot welding, or the like is performed. Can be used.

無孔の金属箔311の厚みは、強度を確保できる範囲であれば、エネルギー密度の観点から薄い方が好ましい。具体的には、例えば、無孔の金属箔311が銅箔の場合の厚みは、負極集電体31の強度(高いプレス加工耐性および巻回耐性)を確保できる範囲として4μm以上であることが好ましい。一方、負極集電体31のエネルギー密度を高くするという観点から6μm以下であることが好ましい。 The thickness of the non-perforated metal foil 311 is preferably thin from the viewpoint of energy density as long as the strength can be secured. Specifically, for example, when the non-perforated metal foil 311 is a copper foil, the thickness is 4 μm or more as a range in which the strength of the negative electrode current collector 31 (high press working resistance and winding resistance) can be ensured. preferable. On the other hand, it is preferably 6 μm or less from the viewpoint of increasing the energy density of the negative electrode current collector 31.

また、負極集電体31全体の厚みは、電極の深さ方向の集電性を確保するため、0.2mm以上0.5mm以下であることが好ましい。 Further, the thickness of the entire negative electrode current collector 31 is preferably 0.2 mm or more and 0.5 mm or less in order to secure the current collecting property in the depth direction of the electrode.

さらに、負極30の空隙率は、60%以上87%以下であることが好ましい。空隙率がこの範囲にあることにより、負極活物質、導電剤、およびバインダ等を含む負極合剤の負極集電体31に対する保持性、電解液の浸透性、および負極30のエネルギー密度を向上させることができる。なお、ここでいう負極30の空隙率の定義および測定方法は、正極20と同様である。 Further, the porosity of the negative electrode 30 is preferably 60% or more and 87% or less. When the void ratio is in this range, the retention of the negative electrode mixture containing the negative electrode active material, the conductive agent, the binder and the like with respect to the negative electrode current collector 31, the permeability of the electrolytic solution, and the energy density of the negative electrode 30 are improved. be able to. The definition and measurement method of the porosity of the negative electrode 30 referred to here are the same as those of the positive electrode 20.

以上のような負極集電体31を用いることで、既存のリチウムイオン二次電池の一般的な塗工方式での負極合剤の塗布が可能であり、且つ、プレス加工時及び巻回時の集電体の破断、集電体を含む合剤の脱落を防止することができる。また、三次元的な集電構造の構築により、電極を厚型化した場合における電極の深さ方向の集電性が改善され、電極を厚型化した際に起こる電池の高率放電特性の低下が抑制されるため、より一層の電極の厚型化とそれによる電池の高エネルギー密度化が可能となる。 By using the negative electrode current collector 31 as described above, it is possible to apply the negative electrode mixture by the general coating method of the existing lithium ion secondary battery, and at the time of press working and winding. It is possible to prevent the current collector from breaking and the mixture containing the current collector from falling off. In addition, by constructing a three-dimensional current collection structure, the current collection property in the depth direction of the electrode when the electrode is thickened is improved, and the high rate discharge characteristic of the battery that occurs when the electrode is thickened. Since the decrease is suppressed, it is possible to further increase the thickness of the electrode and thereby increase the energy density of the battery.

(負極活物質層32)
負極活物質層32は、網状金属多孔体313a、313bの網目部分に保持されており、リチウムイオン二次電池の負極活物質層として使用されるものであれば、どのようなものであってもよい。例えば、負極活物質層32は、負極活物質を含み、バインダをさらに含んでいてもよい。負極活物質は、例えば、黒鉛活物質(人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、人造黒鉛を被覆した天然黒鉛等)、ケイ素もしくはスズもしくはそれらの酸化物の微粒子と黒鉛活物質との混合物、ケイ素もしくはスズの微粒子、ケイ素もしくはスズを基本材料とした合金、及びLiTi12等の酸化チタン系化合物等が考えられる。ケイ素の酸化物は、SiO(0≦x≦2)で表される。負極活物質としては、これらの他に、例えば金属リチウム等が挙げられる。バインダは、正極活物質層22を構成するバインダと同様のものでもある。正極活物質とバインダとの質量比は特に制限されず、従来のリチウムイオン二次電池で採用される質量比が本実施形態でも適用可能である。
(Negative electrode active material layer 32)
The negative electrode active material layer 32 is held in the mesh portion of the reticulated metal porous bodies 313a and 313b, and can be used as the negative electrode active material layer of the lithium ion secondary battery. good. For example, the negative electrode active material layer 32 contains a negative electrode active material and may further contain a binder. The negative electrode active material is, for example, graphite active material (artificial graphite, natural graphite, mixture of artificial graphite and natural graphite, natural graphite coated with artificial graphite, etc.), fine particles of silicon or tin or their oxides, and graphite active material. Mixtures with, fine particles of silicon or tin, alloys based on silicon or tin, titanium oxide compounds such as Li 4 Ti 5 O 12 and the like are conceivable. The oxide of silicon is represented by SiO x (0 ≦ x ≦ 2). In addition to these, examples of the negative electrode active material include metallic lithium and the like. The binder is also the same as the binder constituting the positive electrode active material layer 22. The mass ratio of the positive electrode active material to the binder is not particularly limited, and the mass ratio adopted in the conventional lithium ion secondary battery is also applicable to this embodiment.

負極活物質層32は、例えば、負極活物質、及びバインダを乾式混合することで負極合剤を形成する。ついで、負極合剤を適当な溶媒に分散させることで負極合剤スラリー(slurry)を形成し、この負極合剤スラリーを負極集電体31上に塗工し、乾燥、プレスすることで負極活物質層32が形成される。 The negative electrode active material layer 32 forms a negative electrode mixture by, for example, dry-mixing the negative electrode active material and the binder. Then, a negative electrode mixture slurry is formed by dispersing the negative electrode mixture in an appropriate solvent, and this negative electrode mixture slurry is applied onto the negative electrode current collector 31, dried, and pressed to activate the negative electrode. The material layer 32 is formed.

[セパレータ層40]
セパレータ層40は、セパレータと、電解液とを含む。セパレータは、特に制限されず、リチウムイオン二次電池のセパレータとして使用されるものであれば、どのようなものであってもよい。セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
[Separator layer 40]
The separator layer 40 contains a separator and an electrolytic solution. The separator is not particularly limited, and may be any separator as long as it is used as a separator for a lithium ion secondary battery. As the separator, it is preferable to use a porous membrane, a non-woven fabric, or the like exhibiting excellent high-rate discharge performance alone or in combination. Examples of the material constituting the separator for a non-aqueous electrolyte battery include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, foot Vinylidene-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene Examples thereof include a copolymer, a vinylidene fluoride-ethylene-tetrafluoroethylene copolymer and the like.

電解液は、従来からリチウム二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。電解液は、非水溶媒に電解質塩を含有させた組成を有する。非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。 As the electrolytic solution, the same non-aqueous electrolytic solution conventionally used for a lithium secondary battery can be used without particular limitation. The electrolytic solution has a composition in which an electrolyte salt is contained in a non-aqueous solvent. Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, diethyl carbonate, etc. Chain carbonates such as ethyl methyl carbonate; Chain esters such as methyl formate, methyl acetate, methyl butyrate; tetrahydrofuran or its derivatives; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1 , 4-Dibutoxyethane, ethers such as methyl diglime; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sulton or derivatives thereof, etc. alone or a mixture of two or more thereof. It can be mentioned, but it is not limited to these.

また、電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−CNClO,(n−CNI,(C2HN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。なお、電解質塩の濃度は、従来のリチウム二次電池で使用される非水電解液と同様でよく、特に制限はない。本実施形態では、適当なリチウム化合物(電解質塩)を0.1〜5mol/L程度の濃度で含有させた電解液を使用することができる。 Examples of the electrolyte salt include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4. , KSCN and other inorganic ionic salts containing one of lithium (Li), sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9) ) 4 NI, (C2H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) 4 N-phrate, lithium stearyl sulfonate, lithium octyl sulfonate, lithium dodecylbenzene sulfonate And the like, and these ionic compounds can be used alone or in combination of two or more. The concentration of the electrolyte salt may be the same as that of the non-aqueous electrolyte solution used in the conventional lithium secondary battery, and is not particularly limited. In the present embodiment, an electrolytic solution containing an appropriate lithium compound (electrolyte salt) at a concentration of about 0.1 to 5 mol / L can be used.

<リチウムイオン二次電池の製造方法>
次に、リチウムイオン二次電池10の製造方法について説明する。リチウムイオン二次電池10の製造方法は特に制限されず、任意の製造方法が適用可能である。
<Manufacturing method of lithium ion secondary battery>
Next, a method of manufacturing the lithium ion secondary battery 10 will be described. The manufacturing method of the lithium ion secondary battery 10 is not particularly limited, and any manufacturing method can be applied.

[正極20の製造]
例えば、正極20は、以下のように製造される。
[Manufacturing of positive electrode 20]
For example, the positive electrode 20 is manufactured as follows.

(正極集電体21の作製)
まず、無孔のアルミニウム箔211の少なくとも片面に網状アルミニウム多孔体213a、213bをそれぞれ積層する。次いで、無孔のアルミニウム箔211と網状アルミニウム多孔体213a、213bとを上述した導電性樹脂により接着するか、あるいは、スポット溶接により部分的に接合する等することで、無孔のアルミニウム箔211と網状アルミニウム多孔体213a、213bとを一体化する。これにより、正極集電体21が作製される。
(Preparation of positive electrode current collector 21)
First, the reticulated aluminum porous bodies 213a and 213b are laminated on at least one surface of the non-perforated aluminum foil 211, respectively. Next, the non-perforated aluminum foil 211 and the reticulated aluminum porous bodies 213a and 213b are bonded to the non-perforated aluminum foil 211 by the above-mentioned conductive resin or partially joined by spot welding. The reticulated aluminum porous bodies 213a and 213b are integrated. As a result, the positive electrode current collector 21 is produced.

(正極活物質層22の形成)
まず、正極活物質、導電剤、及びバインダを混合した正極合剤を、有機溶媒(例えばN−メチル−2−ピロリドン)に分散させることで正極合剤スラリーを形成する。次いで、正極合剤スラリーを集電体21上に形成(例えば塗工)し、乾燥させることで、正極活物質層22を形成する。なお、塗工の方法は、特に限定されない。塗工の方法としては、既存の方法を用いることができ、例えば、ダイヘットコーティングやドクターブレードを用いた塗布方法を用いることができる。以下の各塗工工程も同様の方法により行われる。次いで、プレス機により正極活物質層22をプレスし、その後真空乾燥を行う。これにより、正極20が作製される。
(Formation of positive electrode active material layer 22)
First, a positive electrode mixture slurry in which a positive electrode active material, a conductive agent, and a binder are mixed is dispersed in an organic solvent (for example, N-methyl-2-pyrrolidone) to form a positive electrode mixture slurry. Next, the positive electrode mixture slurry is formed (for example, coated) on the current collector 21 and dried to form the positive electrode active material layer 22. The coating method is not particularly limited. As the coating method, an existing method can be used, and for example, a coating method using a die head coating or a doctor blade can be used. Each of the following coating steps is also performed by the same method. Next, the positive electrode active material layer 22 is pressed by a press machine, and then vacuum dried. As a result, the positive electrode 20 is produced.

[負極30の製造]
負極30も、正極20と同様に製造される。
[Manufacturing of negative electrode 30]
The negative electrode 30 is also manufactured in the same manner as the positive electrode 20.

(負極集電体31の作製)
まず、無孔の金属箔311の少なくとも片面に網状金属多孔体313a、313bをそれぞれ積層する。次いで、無孔の金属箔311と網状金属多孔体313a、313bとを上述した導電性樹脂により接着するか、あるいは、スポット溶接により部分的に接合する等することで、無孔の金属箔311と網状金属多孔体313a、313bとを一体化する。これにより、負極集電体31が作製される。
(Preparation of negative electrode current collector 31)
First, the reticulated metal porous bodies 313a and 313b are laminated on at least one surface of the non-perforated metal foil 311. Next, the non-perforated metal leaf 311 and the reticulated metal porous bodies 313a and 313b are bonded to the non-perforated metal foil 311 by the above-mentioned conductive resin or partially bonded by spot welding. The reticulated metal porous body 313a and 313b are integrated. As a result, the negative electrode current collector 31 is manufactured.

(負極活物質層32の形成)
まず、負極活物質、及びバインダを混合したものを、溶媒(例えばN−メチル−2−ピロリドン、水)に分散させることでスラリーを作製する。次いで、スラリーを負極集電体31上に形成(例えば塗工)し、乾燥させることで、負極活物質層32を作製する。塗工の方法としては、正極20と同様に、既存の方法を用いることができ、例えば、ダイヘットコーティングやドクターブレードを用いた塗布方法を用いることができる。次いで、プレス機により負極活物質層32をプレスし、その後真空乾燥を行う。これにより、負極30が作製される。
(Formation of Negative Electrode Active Material Layer 32)
First, a slurry is prepared by dispersing a mixture of a negative electrode active material and a binder in a solvent (for example, N-methyl-2-pyrrolidone, water). Next, the slurry is formed (for example, coated) on the negative electrode current collector 31 and dried to prepare the negative electrode active material layer 32. As the coating method, an existing method can be used as in the case of the positive electrode 20, and for example, a coating method using a die head coating or a doctor blade can be used. Next, the negative electrode active material layer 32 is pressed by a press machine, and then vacuum dried. As a result, the negative electrode 30 is manufactured.

[リチウムイオン二次電池10の組み立て]
次いで、セパレータ層40を正極20及び負極30で挟むことで、平板状の電極構造体を作製する。次いで、この平板状の電極構造体を巻き回し、電極構造体を所望の形態(例えば、円筒形、角形等)に加工し、当該形態の容器に挿入する。次いで、当該容器内に上記組成の電解液を注入することで、セパレータ内の各気孔に電解液を含浸させ、封口する。これにより、リチウムイオン二次電池10が作製される。
[Assembly of lithium ion secondary battery 10]
Next, the separator layer 40 is sandwiched between the positive electrode 20 and the negative electrode 30 to produce a flat electrode structure. Next, the flat plate-shaped electrode structure is wound around, the electrode structure is processed into a desired shape (for example, cylindrical shape, square shape, etc.), and the electrode structure is inserted into the container of the desired shape. Next, by injecting an electrolytic solution having the above composition into the container, each pore in the separator is impregnated with the electrolytic solution and sealed. As a result, the lithium ion secondary battery 10 is manufactured.

次に、本実施形態の実施例について説明する。以下の処理により実施例1、2および比較例1〜3に係るリチウムイオン二次電池を作製した。 Next, an example of this embodiment will be described. The lithium ion secondary batteries according to Examples 1 and 2 and Comparative Examples 1 to 3 were produced by the following treatments.

<リチウムイオン二次電池の作製>
[実施例1]
(正極集電体の作製)
厚さ12μmの無孔のアルミニウム箔(以下、「無孔アルミ箔」)を支持体とし、この支持体上に導電性樹脂を塗布した。導電性樹脂としては、多層カーボンナノチューブ(CNT):カルボキシメチルセルロース(CMC)=2:1(質量比)で水に分散させた導電材ペーストを用いた。次いで、無孔アルミ箔の両面に加工後の厚さが180μmのアルミニウムエキスパンドメタルを積層し、導電材ペースト中の溶剤を揮発させ、無孔アルミ箔とアルミニウムエキスパンドメタルとを接着により一体化させることで、正極集電体を作製した。
<Manufacturing of lithium-ion secondary battery>
[Example 1]
(Preparation of positive electrode current collector)
A non-perforated aluminum foil having a thickness of 12 μm (hereinafter, “non-perforated aluminum foil”) was used as a support, and a conductive resin was applied onto the support. As the conductive resin, a conductive material paste dispersed in water with multi-walled carbon nanotubes (CNT): carboxymethyl cellulose (CMC) = 2: 1 (mass ratio) was used. Next, aluminum expanded metal having a thickness of 180 μm after processing is laminated on both sides of the non-perforated aluminum foil, the solvent in the conductive material paste is volatilized, and the non-perforated aluminum foil and the aluminum expanded metal are integrated by adhesion. To prepare a positive current collector.

(正極の作製)
正極活物質としての平均粒径15〜20μmのLi・Co系複合酸化物(LiCoO)と、導電材としてのカーボンブラック(CB)と、バインダとしてのPVdFとを98:1:1の割合で混合することで、正極合剤を作製した。ついで、正極合剤に溶媒であるN−メチルピロリドン(NMP)を適量加えて混合、分散することにより正極合剤スラリーを得た。次に、作製した正極合剤スラリーを、ドクターブレード法により上記で作製した正極集電体の両面に塗布した。このとき、各面における合剤固形分の面積密度(正極面積密度)が90mg/cmとなるように塗布した。その後、NMP蒸気を排気しながら80℃に保った恒温槽中で乾燥させることでNMPを揮発させた。次いで、乾燥したシートを、空隙率が80%になるまでロールプレス機を用いてプレスし、さらにこれを100℃で真空乾燥させることにより正極を得た。また、正極のプレス加工時の合剤の脱落の有無や集電体の破断・破損の有無を目視にて確認したところ、合剤の脱落や集電体の破断・破損は無かった。
(Preparation of positive electrode)
A Li / Co composite oxide (LiCoO 2 ) having an average particle size of 15 to 20 μm as a positive electrode active material, carbon black (CB) as a conductive material, and PVdF as a binder at a ratio of 98: 1: 1. By mixing, a positive electrode mixture was prepared. Then, an appropriate amount of N-methylpyrrolidone (NMP) as a solvent was added to the positive electrode mixture, mixed and dispersed to obtain a positive electrode mixture slurry. Next, the prepared positive electrode mixture slurry was applied to both sides of the positive electrode current collector prepared above by the doctor blade method. At this time, the coating was applied so that the area density (positive electrode area density) of the mixture solid content on each surface was 90 mg / cm 2. Then, NMP was volatilized by drying in a constant temperature bath kept at 80 ° C. while exhausting NMP steam. Next, the dried sheet was pressed using a roll press until the porosity became 80%, and this was further vacuum dried at 100 ° C. to obtain a positive electrode. In addition, when the presence or absence of the mixture falling off and the presence or absence of breakage or breakage of the current collector during the press working of the positive electrode were visually confirmed, there was no dropout of the mixture or breakage or breakage of the current collector.

(負極集電体の作製)
厚さ6μmの無孔の銅箔(以下、「無孔銅箔」)を支持体とし、この支持体上に導電性樹脂を塗布した。導電性樹脂としては、多層カーボンナノチューブ(CNT):水素化ニトリルブチルゴム(H−NBR)=2:1(質量比)で溶剤中に分散させた導電材ペーストを用いた。次いで、無孔銅箔の両面に厚さ180μmのニッケルエキスパンドメタルを積層し、導電材ペースト中の溶剤を揮発させ、無孔銅箔とニッケルエキスパンドメタルとを接着により一体化させることで、負極集電体を作製した。
(Manufacturing of negative electrode current collector)
A non-perforated copper foil having a thickness of 6 μm (hereinafter, “non-perforated copper foil”) was used as a support, and a conductive resin was applied onto the support. As the conductive resin, a conductive material paste dispersed in a solvent with multi-walled carbon nanotubes (CNT): hydrogenated nitrile butyl rubber (H-NBR) = 2: 1 (mass ratio) was used. Next, nickel expanded metal having a thickness of 180 μm is laminated on both sides of the non-porous copper foil, the solvent in the conductive material paste is volatilized, and the non-porous copper foil and the nickel expanded metal are integrated by adhesion to collect negative electrodes. An electric body was produced.

(負極の作製)
人造黒鉛と、スチレンブタジエンゴムと、カルボキシメチルセルロース(CMC)とを98:1:1で混合することで、負極合剤を作製した。ついで、負極合剤に溶媒である水を適量加えて混練、分散することにより負極合剤スラリーを作製した。ついで、この負極合剤スラリーをドクターブレード法により上記で作製した負極集電体の両面に塗布した。その後、負極合剤スラリーが塗布された負極集電体を80℃に保った恒温槽中で乾燥することで水を揮発させた。乾燥後のシートを、体積密度が1.75g/cmになるようにロールプレス機を用いてプレスし、さらにこれを150℃で真空乾燥させることにより負極を得た。なお、負極合剤の塗布量は、正極に対向する有効負極活物質層の約95%を可逆的に使用するように設計し調整した。
(Preparation of negative electrode)
A negative electrode mixture was prepared by mixing artificial graphite, styrene-butadiene rubber, and carboxymethyl cellulose (CMC) at a ratio of 98: 1: 1. Then, an appropriate amount of water as a solvent was added to the negative electrode mixture, kneaded and dispersed to prepare a negative electrode mixture slurry. Then, this negative electrode mixture slurry was applied to both sides of the negative electrode current collector prepared above by the doctor blade method. Then, the negative electrode current collector coated with the negative electrode mixture slurry was dried in a constant temperature bath kept at 80 ° C. to volatilize the water. The dried sheet was pressed using a roll press machine so that the volume density was 1.75 g / cm 3 , and this was further vacuum dried at 150 ° C. to obtain a negative electrode. The amount of the negative electrode mixture applied was designed and adjusted so as to reversibly use about 95% of the effective negative electrode active material layer facing the positive electrode.

(電解液の作製)
エチレンカーボネート(EC)及びジメチルカーボネート(DMC)を体積比3:7で混合した溶媒に対し、LiPFを1.3Mとなるように溶解することでLiPF溶液を作製した。ついで、LiPF溶液90質量部に対し10質量部のフルオロエチレンカーボネート(FEC)を混合することで電解液を得た。
(Preparation of electrolytic solution)
A LiPF 6 solution was prepared by dissolving LiPF 6 in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 3: 7 so as to be 1.3 M. Then, 10 parts by mass of fluoroethylene carbonate (FEC) was mixed with 90 parts by mass of LiPF 6 solution to obtain an electrolytic solution.

(巻回素子及び電池の製造方法)
上記の方法で作製した正極および負極を用い、正極、セパレータ、負極、セパレータをこの順に積層することで電極積層体を作製した。セパレータとしては、ND314(旭化成イーマテリアルズ株式会社製)からなる厚さ14μmのセパレータを使用した。ついで、上記で作製した電極積層体を巻回することにより、巻回素子を作製した。ついで、この巻回素子を押しつぶすことで扁平状の巻回素子を作製した。ついで、扁平状の巻回素子を上記方法で作製した電解液とともに外装体(ラミネートフィルム)に挿入し、外装体を封止することで、厚さ4.2mm、幅33mm、高さ32mmの実施例1のリチウムイオン二次電池を得た。なお、外装体を封止する際には、各集電体に導通する端子を外装体の外部に突出させた。
(Manufacturing method of winding element and battery)
Using the positive electrode and the negative electrode prepared by the above method, the positive electrode, the separator, the negative electrode, and the separator were laminated in this order to prepare an electrode laminate. As the separator, a separator having a thickness of 14 μm made of ND314 (manufactured by Asahi Kasei E-Materials Co., Ltd.) was used. Then, the winding element was manufactured by winding the electrode laminate prepared above. Then, by crushing this winding element, a flat winding element was produced. Then, a flat winding element is inserted into the exterior body (laminate film) together with the electrolytic solution produced by the above method, and the exterior body is sealed to achieve a thickness of 4.2 mm, a width of 33 mm, and a height of 32 mm. The lithium ion secondary battery of Example 1 was obtained. When sealing the exterior body, terminals conducting to each current collector were projected to the outside of the exterior body.

[実施例2]
正極集電体の作製において、アルミニウムエキスパンドメタルの代わりに、厚み180μmのアルミ不織布を用いた以外は実施例1と同様にして、実施例2のリチウムイオン二次電池を得た。なお、正極のプレス加工時の合剤の脱落の有無や集電体の破断・破損の有無を目視にて確認したところ、合剤の脱落や集電体の破断・破損は無かった。
[Example 2]
A lithium ion secondary battery of Example 2 was obtained in the same manner as in Example 1 except that an aluminum non-woven fabric having a thickness of 180 μm was used instead of the aluminum expanded metal in the production of the positive electrode current collector. When the presence or absence of the mixture falling off and the presence or absence of breakage or breakage of the current collector during the press working of the positive electrode were visually confirmed, there was no dropout of the mixture or breakage or breakage of the current collector.

[比較例1]
正極集電体として厚み12μmの無孔のアルミニウム箔を用い、正極面積密度を45mg/cmとして正極を作製し、負極集電体として厚み6μmの銅箔を用いて負極を作製した以外は実施例1と同様にして、比較例1のリチウムイオン二次電池を得た。なお、正極のプレス加工時の合剤の脱落の有無や集電体の破断・破損の有無を目視にて確認したところ、合剤の脱落や集電体の破断・破損は無かった。
[Comparative Example 1]
The positive electrode was prepared using a non-perforated aluminum foil with a thickness of 12 μm as the positive electrode current collector, the positive electrode area density was 45 mg / cm 2 , and the negative electrode was prepared using a copper foil with a thickness of 6 μm as the negative electrode current collector. A lithium ion secondary battery of Comparative Example 1 was obtained in the same manner as in Example 1. When the presence or absence of the mixture falling off and the presence or absence of breakage or breakage of the current collector during the press working of the positive electrode were visually confirmed, there was no dropout of the mixture or breakage or breakage of the current collector.

[比較例2]
正極集電体として厚み12μmの無孔のアルミニウム箔を用いて正極を作製した。なお、正極のプレス加工時の合剤の脱落の有無や集電体の破断・破損の有無を目視にて確認したところ、合剤の脱落や集電体の破断・破損は無かった。ただし、後述するように、比較例2では、平板状電極体の折り曲げ試験において、電極の破断や合剤の脱落等が生じたため、リチウムイオン二次電池は作製しなかった(電池性能の評価も行わなかった)。
[Comparative Example 2]
A positive electrode was prepared using a non-perforated aluminum foil having a thickness of 12 μm as a positive electrode current collector. When the presence or absence of the mixture falling off and the presence or absence of breakage or breakage of the current collector during the press working of the positive electrode were visually confirmed, there was no dropout of the mixture or breakage or breakage of the current collector. However, as will be described later, in Comparative Example 2, a lithium ion secondary battery was not manufactured because the electrode was broken or the mixture was dropped in the bending test of the flat electrode body (the evaluation of battery performance was also performed). Did not do).

[比較例3]
(正極の作製)
特許文献2の記載に従い、樹脂多孔質体である発泡ウレタンにアルミメッキを施しその後樹脂を除去して得られる三次元網目構造を有するアルミ多孔体を作製した。このアルミ多孔体の厚みは400μm、空孔率(実施例の空隙率に相当)は95%であった。次いで、得られたアルミ多孔体を、実施例1と同様にして調製した正極合剤スラリーに浸漬し、真空状態で正極合剤スラリーをアルミ多孔体に含浸させることで、合剤を充填した。その後、NMP蒸気を排気しながら80℃に保った恒温槽中で乾燥させることでNMPを揮発させた。次いで、乾燥したシートを、空隙率が80%になるまでロールプレス機を用いてプレスした。比較例3では、この正極のプレス加工時において、多孔体(集電体)の破断や崩壊により集電体を含む合剤が脱落する問題が発生したことが確認された。なお、後述するように、比較例3では、平板状電極体の折り曲げ試験において、電極の破断や合剤の脱落等が生じたため、リチウムイオン二次電池は作製しなかった(電池性能の評価も行わなかった)
[Comparative Example 3]
(Preparation of positive electrode)
According to the description of Patent Document 2, an aluminum porous body having a three-dimensional network structure obtained by plating urethane foam, which is a porous resin body, with aluminum and then removing the resin was produced. The thickness of this porous aluminum body was 400 μm, and the porosity (corresponding to the porosity of the examples) was 95%. Next, the obtained porous aluminum body was immersed in the positive electrode mixture slurry prepared in the same manner as in Example 1, and the aluminum porous body was impregnated with the positive electrode mixture slurry in a vacuum state to fill the mixture. Then, NMP was volatilized by drying in a constant temperature bath kept at 80 ° C. while exhausting NMP steam. The dried sheet was then pressed using a roll press until the porosity was 80%. In Comparative Example 3, it was confirmed that during the press working of the positive electrode, there was a problem that the mixture containing the current collector fell off due to breakage or collapse of the porous body (current collector). As will be described later, in Comparative Example 3, a lithium ion secondary battery was not manufactured because the electrode was broken or the mixture was dropped in the bending test of the flat electrode body (also for evaluation of battery performance). Did not do)

<折り曲げ試験>
実施例1、2および比較例1〜3で作製した平板状電極体について、折り曲げ試験により、折り曲げ時の電極の破断の有無を調査した。具体的には、MIT耐折度試験機(安田精機製)にて、折り曲げた際に電極が破断する荷重で評価した。折り曲げ試験にて荷重4Nで破断しなかったものを折り曲げ時の電極の破断無しと評価し、荷重4N以下で破断したものを折り曲げ時の電極の破断有りと評価した。その結果、比較例2および3については、折り曲げ時の電極の破断有りと評価された。折り曲げ試験にて4N以下で破断する電極は、電池作製時の巻回工程で破断すると考えられたため、リチウムイオン二次電池を作製せず、以下に説明する電池性能に関する評価を行わなかった。
<Bending test>
With respect to the flat electrode bodies produced in Examples 1 and 2 and Comparative Examples 1 to 3, the presence or absence of breakage of the electrodes during bending was investigated by a bending test. Specifically, it was evaluated by a MIT folding resistance tester (manufactured by Yasuda Seiki) based on the load at which the electrodes break when bent. In the bending test, those that did not break under a load of 4N were evaluated as having no breakage of the electrode during bending, and those that did not break under a load of 4N or less were evaluated as having breakage of the electrode during bending. As a result, it was evaluated that the electrodes of Comparative Examples 2 and 3 were broken at the time of bending. Since it was considered that the electrode that broke at 4 N or less in the bending test broke in the winding process at the time of battery production, a lithium ion secondary battery was not produced and the evaluation of the battery performance described below was not performed.

<活性化処理>
以上のようにして作製した実施例1、2および比較例1に係るリチウムイオン二次電池を電池電圧について、電池電圧が4.40Vとなるまで0.2Cの定電流定電圧充電を行い、その後、電池電圧が2.75Vとなるまで0.2Cの定電流放電を行う充放電サイクルを室温環境下で1回行った。これにより、リチウムイオン二次電池を十分に活性化させた。その後、リチウムイオン二次電池を以下の各評価に供した。
<Activation treatment>
The lithium ion secondary batteries according to Examples 1 and 2 and Comparative Example 1 produced as described above are charged with a constant current and constant voltage of 0.2 C until the battery voltage reaches 4.40 V, and then charged. A charge / discharge cycle of 0.2 C constant current discharge was performed once in a room temperature environment until the battery voltage reached 2.75 V. As a result, the lithium ion secondary battery was sufficiently activated. Then, the lithium ion secondary battery was subjected to each of the following evaluations.

<放電容量比の評価>
放電容量比の評価においては、電池電圧が4.40Vとなるまで0.1Cの定電流定電圧充電を行った。すなわち、電池電圧が4.40Vに到達するまでは0.1Cの定電流で充電を行い、電池電圧が4.40Vに到達した後は、電池電圧を4.40Vに維持したまま充電を行った。充電は、電流値が0.05Cまで下がった際に終止した。その後、電池電圧が2.75Vとなるまで0.1Cの定電流放電を行った。上記放電で得られた比較例及び実施例の放電容量について、比較例1の放電容量を100(%)としたときの実施例の放電容量の相対比率(%)を表1に示した。
<Evaluation of discharge capacity ratio>
In the evaluation of the discharge capacity ratio, constant current constant voltage charging of 0.1 C was performed until the battery voltage became 4.40 V. That is, charging was performed with a constant current of 0.1 C until the battery voltage reached 4.40V, and after the battery voltage reached 4.40V, charging was performed while maintaining the battery voltage at 4.40V. .. Charging was terminated when the current value dropped to 0.05C. Then, a constant current discharge of 0.1 C was performed until the battery voltage became 2.75 V. Table 1 shows the relative ratio (%) of the discharge capacity of the example when the discharge capacity of the comparative example 1 is 100 (%) with respect to the discharge capacity of the comparative example and the example obtained by the above discharge.

<高率放電特性の評価>
高率放電特性の評価指標としては、以下のように測定した容量維持率を使用した。1サイクル目では、電池電圧が4.40Vとなるまで0.1Cの定電流定電圧充電を行った。すなわち、電池電圧が4.40Vに到達するまでは0.1Cの定電流で充電を行い、電池電圧が4.40Vに到達した後は、電池電圧を4.40Vに維持したまま充電を行った。充電は、電流値が0.05Cまで下がった際に終止した。その後、電池電圧が2.75Vとなるまで0.1Cの定電流放電を行った。2サイクル目では、電池電圧が4.40Vとなるまで0.5Cの定電流定電圧充電を行った。すなわち、電池電圧が4.40Vに到達するまでは0.5Cの定電流で充電を行い、電池電圧が4.40Vに到達した後は、電池電圧を4.40Vに維持したまま充電を行った。充電は、電流値が0.05Cまで下がった際に終止した。その後、電池電圧が2.75Vとなるまで1.0Cの定電流放電を行った。そして、2サイクル目の放電容量を1サイクル目の放電容量で除算した値を、高率放電特性の評価値とした。なお、比較例1では、正極面積密度が低い(正極活物質層の厚みが薄い)ため、高率放電特性の評価を行っていない。
<Evaluation of high rate discharge characteristics>
As the evaluation index of the high rate discharge characteristic, the capacity retention rate measured as follows was used. In the first cycle, constant current and constant voltage charging of 0.1 C was performed until the battery voltage reached 4.40 V. That is, charging was performed with a constant current of 0.1 C until the battery voltage reached 4.40V, and after the battery voltage reached 4.40V, charging was performed while maintaining the battery voltage at 4.40V. .. Charging was terminated when the current value dropped to 0.05C. Then, a constant current discharge of 0.1 C was performed until the battery voltage became 2.75 V. In the second cycle, 0.5 C constant current constant voltage charging was performed until the battery voltage reached 4.40 V. That is, charging was performed with a constant current of 0.5C until the battery voltage reached 4.40V, and after the battery voltage reached 4.40V, charging was performed while maintaining the battery voltage at 4.40V. .. Charging was terminated when the current value dropped to 0.05C. Then, a constant current discharge of 1.0 C was performed until the battery voltage reached 2.75 V. Then, the value obtained by dividing the discharge capacity of the second cycle by the discharge capacity of the first cycle was used as the evaluation value of the high rate discharge characteristic. In Comparative Example 1, since the positive electrode area density is low (the thickness of the positive electrode active material layer is thin), the high rate discharge characteristics are not evaluated.

以上の結果を表1に示す。 The above results are shown in Table 1.

Figure 0006935983
Figure 0006935983

表1に示すように、比較例2の無孔の箔のみの集電体を用いた場合に比べ、実施例1、2のリチウムイオン二次電池では、電極深さ方向の集電性が優れ、電極を厚型化した際の高率放電特性が改善されることがわかった。 As shown in Table 1, the lithium ion secondary batteries of Examples 1 and 2 are superior in the current collecting property in the electrode depth direction as compared with the case of using the current collector having only the non-perforated foil of Comparative Example 2. , It was found that the high rate discharge characteristics when the electrode was thickened were improved.

また、比較例3の三次元網目構造を有する多孔体を正極集電体に用いた場合、既存のリチウムイオン電池の塗工方式であるダイヘットコーティング、ドクターブレードの適用は極めて困難であるが、本発明の実施例1、2の集電体を用いることで、厚さ方向の中心部は無孔の箔で仕切られ且つ合剤スラリーが容易に内部に浸透するため、既存の塗工方式による塗工が可能となる。 Further, when the porous body having the three-dimensional network structure of Comparative Example 3 is used for the positive electrode current collector, it is extremely difficult to apply the die head coating and the doctor blade, which are the coating methods of the existing lithium ion battery. By using the current collectors of Examples 1 and 2 of the present invention, the central portion in the thickness direction is partitioned by a non-perforated foil, and the mixture slurry easily penetrates into the inside. Coating becomes possible.

さらに、比較例3の三次元網目構造を有する多孔体を正極集電体に用いた場合、ロールプレス加工時に多孔体の破断、崩壊により集電体を含む合剤が脱落する問題が発生したのに対し、実施例1、2では集電体及び合剤の破断、脱落が起きることなくプレス加工が可能であった。 Further, when the porous body having the three-dimensional network structure of Comparative Example 3 was used for the positive current collector, there was a problem that the mixture containing the current collector fell off due to breakage and collapse of the porous body during roll press working. On the other hand, in Examples 1 and 2, press working was possible without breaking or dropping of the current collector and the mixture.

加えて、比較例2、3の電極は巻回耐性が十分でなく、合剤の脱落や集電体の破断が発生する等の不具合が生じたのに対し、本発明の実施例1、2では、電極の剛性と巻回耐性が確保されるため、合剤の脱落や支持体である無孔箔の破断が発生することなく巻回型リチウムイオン二次電池の作製が可能であることがわかった。 In addition, the electrodes of Comparative Examples 2 and 3 did not have sufficient winding resistance, and problems such as dropping of the mixture and breakage of the current collector occurred, whereas the electrodes of Examples 1 and 2 of the present invention occurred. Then, since the rigidity of the electrode and the winding resistance are ensured, it is possible to manufacture a wound lithium ion secondary battery without dropping the mixture or breaking the non-porous foil which is the support. all right.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical ideas described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.

例えば、本発明は、巻回構造を有する円型、楕円型あるいは多角形型の二次電池について適用することができる。また、上記実施の形態および実施例では、電解質として電解液を用いる場合について説明したが、電解液を高分子化合物などの保持体に保持させたゲル状の電解質を用いるようにしてもよい。さらに、上記実施の形態では、箔の少なくとも片面に網状の多孔体を積層し一体化させた電極を正極および負極の両方に用いているが、正極または負極のいずれ一方のみに用いても本発明の効果を得ることができる。 For example, the present invention can be applied to a circular, elliptical or polygonal secondary battery having a wound structure. Further, in the above-described embodiments and examples, the case where the electrolytic solution is used as the electrolyte has been described, but a gel-like electrolyte in which the electrolytic solution is held in a retainer such as a polymer compound may be used. Further, in the above embodiment, an electrode in which a mesh-like porous body is laminated and integrated on at least one surface of the foil is used for both the positive electrode and the negative electrode, but the present invention may be used for only one of the positive electrode and the negative electrode. The effect of can be obtained.

10 リチウムイオン二次電池
20 正極
21 正極集電体
22 正極活物質層
30 負極
31 負極集電体
32 負極活物質層
40 セパレータ層
211 アルミニウム箔
213a、213b 網状アルミニウム多孔体
311 銅箔
313a、313b 網状金属多孔体
10 Lithium-ion secondary battery 20 Positive electrode 21 Positive electrode current collector 22 Positive electrode active material layer 30 Negative electrode 31 Negative electrode current collector 32 Negative electrode active material layer 40 Separator layer 211 Aluminum foil 213a, 213b Reticulated aluminum porous body 311 Copper foil 313a, 313b Reticulated Porous metal

Claims (4)

無孔のアルミニウム箔の少なくとも片面に網状のアルミニウム多孔体を積層し一体化させた正極集電体を備えた巻回型リチウムイオン二次電池用正極であって
前記アルミニウム箔の厚みが、12μm以下であり、
前記正極集電体の厚みが、0.2mm以上0.5mm以下であり、
前記巻回型リチウムイオン二次電池用正極の空隙率が、60%以上87%以下であり、
前記無孔のアルミニウム箔と前記網状のアルミニウム多孔体との一体化は、前記無孔のアルミニウム箔の面内において前記無孔のアルミニウム箔と前記網状のアルミニウム多孔体とを導電性樹脂により接着するか、またはスポット溶接により接合することによってなされることを特徴とする、巻回型リチウムイオン二次電池用正極。
A positive electrode for a wound lithium ion secondary battery provided with a positive electrode current collector in which a mesh-like aluminum porous body is laminated and integrated on at least one surface of a non-porous aluminum foil.
The thickness of the aluminum foil is 12 μm or less.
The thickness of the positive electrode current collector is 0.2 mm or more and 0.5 mm or less.
The porosity of the positive electrode for the wound lithium ion secondary battery is 60% or more and 87% or less.
In the integration of the non-perforated aluminum foil and the net-like aluminum porous body, the non-perforated aluminum foil and the net-like aluminum porous body are adhered to each other by a conductive resin in the plane of the non-perforated aluminum foil. A positive electrode for a wound type lithium ion secondary battery, characterized in that it is formed by joining by spot welding.
前記網状のアルミニウム多孔体が、アルミニウム不織布またはアルミニウムエキスパンドメタルの少なくともいずれか一つからなることを特徴とする、請求項1に記載の巻回型リチウムイオン二次電池用正極。 The positive electrode for a wound lithium ion secondary battery according to claim 1, wherein the reticulated aluminum porous body is made of at least one of an aluminum non-woven fabric and an aluminum expanded metal. 無孔の金属箔の少なくとも片面に網状の金属多孔体を積層し一体化させた負極集電体を備えた巻回型リチウムイオン二次電池用負極であって
前記無孔の金属箔は、銅箔、ニッケル箔、またはステンレス箔の少なくともいずれか一つからなり、
前記網状の金属多孔体が、銅不織布、ニッケル不織布、ステンレス鋼不織布、銅エキスパンドメタル、ニッケルエキスパンドメタル、またはステンレス鋼エキスパンドメタルの少なくともいずれか一つからなり(前記無孔の金属箔と前記網状の金属多孔体とが何れも銅で構成される組み合わせを除く)、
前記金属箔の厚みが、6μm以下であり、
前記負極集電体の厚みが、0.2mm以上0.5mm以下であり、
前記巻回型リチウムイオン二次電池用負極の空隙率が、60%以上87%以下であり、
前記無孔の金属箔と前記網状の金属多孔体との一体化は、前記無孔の金属箔の面内において前記無孔の金属箔と前記網状の金属多孔体とを導電性樹脂により接着するか、またはスポット溶接により接合することによってなされることを特徴とする、巻回型リチウムイオン二次電池用負極。
A negative electrode for a wound lithium ion secondary battery provided with a negative electrode current collector in which a mesh-like metal porous body is laminated and integrated on at least one surface of a non-porous metal foil.
The non-perforated metal foil comprises at least one of copper foil, nickel foil, and stainless steel foil.
The net-like metal porous body is composed of at least one of a copper non-woven material, a nickel non-woven material, a stainless steel non-woven material, a copper expanded metal, a nickel expanded metal, and a stainless steel expanded metal (the non-perforated metal foil and the net-like metal foil). Except for combinations in which the metal porous body is composed of copper),
The thickness of the metal foil is 6 μm or less.
The thickness of the negative electrode current collector is 0.2 mm or more and 0.5 mm or less.
The porosity of the negative electrode for the wound lithium ion secondary battery is 60% or more and 87% or less.
In the integration of the non-perforated metal foil and the net-like metal porous body, the non-perforated metal foil and the net-like metal porous body are adhered to each other by a conductive resin in the plane of the non-perforated metal foil. A negative electrode for a wound lithium ion secondary battery, characterized in that it is formed by joining by spot welding.
請求項1または2に記載の巻回型リチウムイオン二次電池用正極と、
請求項に記載の巻回型リチウムイオン二次電池用負極と、
を備えることを特徴とする、巻回型リチウムイオン二次電池。
The positive electrode for a wound lithium ion secondary battery according to claim 1 or 2,
The negative electrode for a wound lithium ion secondary battery according to claim 3,
A wound lithium-ion secondary battery characterized by being equipped with.
JP2014266268A 2014-12-26 2014-12-26 Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery Active JP6935983B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014266268A JP6935983B2 (en) 2014-12-26 2014-12-26 Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery
KR1020150141733A KR20160079632A (en) 2014-12-26 2015-10-08 Positvie electrode for rechargeable lithium battery, negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
KR1020230078537A KR20230093402A (en) 2014-12-26 2023-06-19 Positvie electrode for rechargeable lithium battery, negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266268A JP6935983B2 (en) 2014-12-26 2014-12-26 Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016126896A JP2016126896A (en) 2016-07-11
JP6935983B2 true JP6935983B2 (en) 2021-09-15

Family

ID=56358093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266268A Active JP6935983B2 (en) 2014-12-26 2014-12-26 Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery

Country Status (2)

Country Link
JP (1) JP6935983B2 (en)
KR (2) KR20160079632A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180070969A (en) 2016-12-19 2018-06-27 현대자동차주식회사 Lithium ion secondary battery
JP2019091571A (en) * 2017-11-13 2019-06-13 古河電池株式会社 Lithium secondary battery
CN109509877B (en) * 2018-11-30 2020-12-11 清华大学深圳研究生院 Carbon-coated porous metal coating current collector, preparation method and lithium battery
CN112952101A (en) * 2021-02-09 2021-06-11 大连中比动力电池有限公司 Cylindrical lithium ion secondary battery and preparation method thereof
CN113707939A (en) * 2021-08-27 2021-11-26 河南省法恩莱特新能源科技有限公司 Low-impedance high-rate electrolyte

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223494B2 (en) * 2008-06-26 2013-06-26 株式会社豊田中央研究所 Lithium ion secondary battery
JP2012252961A (en) * 2011-06-06 2012-12-20 Hitachi Ltd Lithium ion secondary battery
JP5803634B2 (en) * 2011-12-07 2015-11-04 株式会社豊田自動織機 Electrode, power storage device, secondary battery, and vehicle
US10276873B2 (en) * 2012-05-09 2019-04-30 Korea Institute Of Machinery & Materials Current collector for battery comprising metal mesh layer and manufacturing method therefor

Also Published As

Publication number Publication date
JP2016126896A (en) 2016-07-11
KR20160079632A (en) 2016-07-06
KR20230093402A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP6267423B2 (en) Negative electrode active material layer for lithium ion secondary battery, lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, and method for producing negative electrode active material layer for lithium ion secondary battery
JP6469450B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6935983B2 (en) Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery
JP6310242B2 (en) A positive electrode for a secondary battery, and a secondary battery.
JP2011081931A (en) Lithium ion secondary battery
JP6395371B2 (en) Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery
JP6959010B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP5924925B2 (en) Positive electrode for secondary battery and secondary battery
WO2012111545A1 (en) Non-aqueous electrolyte secondary battery
WO2018025469A1 (en) Lithium ion secondary battery and method for manufacturing same
CN107431190B (en) Negative electrode for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP7088969B2 (en) Lithium ion separator for secondary batteries and lithium ion secondary batteries
WO2013084840A1 (en) Nonaqueous electrolyte secondary battery and assembled battery using same
JP2018170142A (en) Lithium ion secondary battery
JP2014022321A (en) Nonaqueous electrolyte secondary battery including scavenger
JP2016134296A (en) Separator integral type electrode, manufacturing method for the same and lithium ion secondary battery using the same
JP7345418B2 (en) Lithium ion secondary battery
JP2016126852A (en) Positive electrode active material layer for secondary battery, wound device, and secondary battery
JP2019169346A (en) Lithium ion secondary battery
JP2019079755A (en) Negative electrode for non-aqueous electrolyte, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP7244230B2 (en) Aqueous lithium ion battery
JP6552788B2 (en) Electrode and lithium ion secondary battery using the same
JP6870515B2 (en) Lithium ion capacitor and its manufacturing method
JP2017183048A (en) Positive electrode active material, positive electrode arranged by use thereof, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200827

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200903

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200907

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201106

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201116

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210517

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210628

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210802

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210826

R150 Certificate of patent or registration of utility model

Ref document number: 6935983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150