JP2016134296A - Separator integral type electrode, manufacturing method for the same and lithium ion secondary battery using the same - Google Patents

Separator integral type electrode, manufacturing method for the same and lithium ion secondary battery using the same Download PDF

Info

Publication number
JP2016134296A
JP2016134296A JP2015008314A JP2015008314A JP2016134296A JP 2016134296 A JP2016134296 A JP 2016134296A JP 2015008314 A JP2015008314 A JP 2015008314A JP 2015008314 A JP2015008314 A JP 2015008314A JP 2016134296 A JP2016134296 A JP 2016134296A
Authority
JP
Japan
Prior art keywords
active material
sheet
region
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015008314A
Other languages
Japanese (ja)
Inventor
菊池 剛
Takeshi Kikuchi
剛 菊池
充康 今▲崎▼
Mitsuyasu Imazaki
充康 今▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2015008314A priority Critical patent/JP2016134296A/en
Publication of JP2016134296A publication Critical patent/JP2016134296A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a lithium ion secondary battery that can contribute to reduction of the weight of a battery obtained by using no current collector foil, is not required to separately prepare a separator and can be simplified in battery configuration.SOLUTION: In a sheet type electrode for a secondary battery that contains a positive electrode, a negative electrode and electrolyte sandwiched between the positive and negative electrodes, a metal thin film is formed on the surface of a support body sheet which comprises a porous sheet having a median diameter of 0.5 to 20 μm based on a cavity mercury press-in method and is impregnated with active-material-contained material containing active material. The sheet type electrode contains, in the following order, a separation area serving as a laminar separator area which separates a positive electrode active material containing layer provided to the positive electrode and a negative electrode active material containing layer provided to the negative electrode over the whole surfaces of these layers with no defect, and in which ions contributing to battery reaction in the electrolyte are movable, an active material containing area serving as the positive electrode material containing layer or the negative electrode active material containing layer, and a current collector area comprising the metal thin film.SELECTED DRAWING: None

Description

本発明は、集電箔を使用せず得られる電池の軽量化に貢献できるセパレータ一体型電極、並びにこれを有するリチウムイオン二次電池用電極に関する。   The present invention relates to a separator-integrated electrode that can contribute to weight reduction of a battery obtained without using a current collector foil, and an electrode for a lithium ion secondary battery having the same.

近年、携帯機器、ハイブリット自動車、電気自動車、家庭用蓄電用途にリチウムイオン二次電池の研究開発が盛んに行われている。リチウムイオン二次電池は正極、負極、セパレータ、電解液からなる電池要素を金属缶やラミネートフィルムで密封した構成となっている。上記正極、負極といった電極は、集電箔としての金属箔上に活物質含有層を設けた構成をとるのが一般的である。   In recent years, research and development of lithium ion secondary batteries have been actively conducted for portable devices, hybrid vehicles, electric vehicles, and household power storage applications. A lithium ion secondary battery has a configuration in which battery elements including a positive electrode, a negative electrode, a separator, and an electrolyte are sealed with a metal can or a laminate film. The electrodes such as the positive electrode and the negative electrode generally have a configuration in which an active material-containing layer is provided on a metal foil as a current collector foil.

従来のリチウムイオン二次電池に使用される集電箔は10〜20μmといった薄い厚みであり、電池セル一個当たりに占める重量は小さいものであるため、携帯機器に使用される場合には特に問題は無い。しかし、自動車、家庭用蓄電器用途としては高電圧、高容量が必要となるため、数百個の電池セルを直列/並列に接続した状態で使用される。また、セル一個当たりのサイズも携帯機器用途より大きいため、集電箔の重量の影響が無視できないレベルとなる。また、コストの観点から部材の使用量は可能な限り抑えたい。   The current collector foil used in the conventional lithium ion secondary battery has a thin thickness of 10 to 20 μm, and the weight occupied per battery cell is small. No. However, since a high voltage and a high capacity are required for automobiles and household electric storage devices, several hundred battery cells are used in a state of being connected in series / parallel. Moreover, since the size per cell is larger than that for portable devices, the influence of the weight of the current collector foil is at a level that cannot be ignored. In addition, from the viewpoint of cost, it is desirable to suppress the amount of members used as much as possible.

これに対し、金属コーティングした不織布を集電体として使用して、その内部に活物質層を形成する検討がなされている(特許文献1参照)が、金属コーティングした不織布では集電機能の点で不十分である。また、従来の電池構成と同様にセパレータが必要となっており、電池構成の簡略化という点でも不十分である。一方、多孔質骨格体の内部に活物質含有層を形成し、導電薄膜で集電させる検討がなされている(特許文献2参照)。この手法では特許文献1に対して集電機能の向上という点では改善されているが、やはりセパレータは必要となっており、電池構成の簡略化という点では不十分である。   On the other hand, using a metal-coated non-woven fabric as a current collector, studies have been made to form an active material layer therein (see Patent Document 1), but metal-coated non-woven fabric has a current collecting function. It is insufficient. In addition, a separator is required as in the conventional battery configuration, which is insufficient in terms of simplifying the battery configuration. On the other hand, studies have been made to form an active material-containing layer inside a porous skeleton and collect current with a conductive thin film (see Patent Document 2). Although this method is improved with respect to Patent Document 1 in terms of improving the current collecting function, it still requires a separator, and is insufficient in terms of simplifying the battery configuration.

特開2010−9905号公報JP 2010-9905 A 特開2013−84422号公報JP2013-84422A

従来の手法では金属箔を代替する材料の提案はなされているものの、電池構成の軽量化、簡略化という視点での取り組みではないため従来通りセパレータを別途使用することが前提となっており、材料コスト低減や製造工程の簡便化という点では依然として課題があった。   Although the conventional method has proposed a material that replaces the metal foil, it is not an approach from the viewpoint of weight reduction and simplification of the battery configuration. There were still problems in terms of cost reduction and simplification of the manufacturing process.

このような従来技術の課題について検討した結果、本発明者は、セパレータを支持体として活物質層を一部含浸させて形成し、その上に形成した金属薄膜層を集電体として機能させることで、金属箔が不要として電池セルの軽量化を達成しつつ、セパレータを別途用意する必要が無く電池構成も簡略化できることを見出した。   As a result of examining such problems of the prior art, the present inventor has formed a part of the active material layer impregnated with the separator as a support, and the metal thin film layer formed thereon functions as a current collector. Thus, the present inventors have found that it is possible to simplify the battery configuration without requiring a separate separator while achieving a reduction in the weight of the battery cell by eliminating the need for a metal foil.

このような技術思想に基づく本発明のシート型電極は、正極および負極と、これらに挟持された電解質とを含む二次電池用の、シート型電極であって、空隙の水銀圧入法によるメディアン径が0.5〜20μmの多孔質シートである支持体シートであって、活物質を含有する活物質含有材料が含浸された支持体シートの表面に金属薄膜が形成されてなり、該正極が備える正極活物質含有層、及び該負極が備える負極活物質含有層を、これらの層の全面に亘って欠陥なく分離するための層状セパレータ領域であって、該電解質の中の電池反応に関与するイオンが移動可能な層状セパレータ領域となる分離領域と、該正極活物質含有層又は該負極活物質含有層である活物質含有領域と、該金属薄膜からなる集電領域と、をこの順に備えるシート型電極により実現できる。   The sheet-type electrode of the present invention based on such a technical idea is a sheet-type electrode for a secondary battery including a positive electrode and a negative electrode, and an electrolyte sandwiched between them, and a median diameter by a mercury intrusion method of voids. Is a support sheet which is a porous sheet having a thickness of 0.5 to 20 μm, and a metal thin film is formed on the surface of the support sheet impregnated with an active material-containing material containing an active material, and the positive electrode is provided A layered separator region for separating the positive electrode active material-containing layer and the negative electrode active material-containing layer included in the negative electrode over the entire surface of these layers without defects, and ions involved in the battery reaction in the electrolyte A sheet type comprising a separation region that becomes a movable layered separator region, an active material-containing region that is the positive electrode active material-containing layer or the negative electrode active material-containing layer, and a current collecting region that is formed of the metal thin film in this order It can be realized by the pole.

また、本発明はこのようなシート型電極を用いた二次電池であり、一方の主面が前記集電領域であり、他方の主面が前記分離領域である、前記シート型電極を、該一方の主面を内側にして折り畳むことで得られる、前記分離領域を両方の主面とし、かつ、該両主面に挟持された前記集電領域を含む集電プレートを備える電極プレートを含み、前記正極活物質含有層を含む該電極プレートである正極プレートと、前記負極活物質含有層を含む該電極プレートである負極プレートとを、交互に積層した積層構造を含む二次電池に関する。   Further, the present invention is a secondary battery using such a sheet-type electrode, wherein the sheet-type electrode, wherein one main surface is the current collecting region and the other main surface is the separation region, Obtained by folding with one main surface inside, the electrode plate comprising a current collecting plate including the current collecting region sandwiched between the two main surfaces and the separation region as both main surfaces; The present invention relates to a secondary battery including a stacked structure in which a positive electrode plate that is the electrode plate including the positive electrode active material-containing layer and a negative electrode plate that is the electrode plate including the negative electrode active material-containing layer are alternately stacked.

本発明によれば、セパレータが一体となった電極が得られるため、電池構成が簡略化できる。また、得られたシート型電極はセパレータ一体型であるため、単独で捲回や九十九折に供することが出来、取扱い性に優れる。金属箔を使用していないため、電池とした際の重量面でも優位である。   According to the present invention, since an electrode in which a separator is integrated is obtained, the battery configuration can be simplified. Moreover, since the obtained sheet-type electrode is a separator-integrated type, it can be used alone for winding and ninety-nine folds, and is easy to handle. Since no metal foil is used, the battery is advantageous in terms of weight.

本発明の一実施形態について説明すると以下の通りであるが、本発明はこれに限定されるものではない。   An embodiment of the present invention will be described as follows, but the present invention is not limited to this.

本発明のシート型電極は、空隙の水銀圧入法によるメディアン径が0.5〜20μmの多孔質シートである支持体シートを用い、活物質を含有する活物質含有材料が含浸された支持体シートの表面に金属薄膜が形成されてなる。   The sheet-type electrode of the present invention is a support sheet impregnated with an active material-containing material containing an active material, using a support sheet that is a porous sheet having a median diameter of 0.5 to 20 μm by a mercury intrusion method. A metal thin film is formed on the surface.

<支持体シート>
本発明に係る支持体シートは、空隙の水銀圧入法によるメディアン径が0.5〜20μmの多孔質シートである。空隙のメディアン径が小さすぎると活物質含有材料が含浸されにくくなる。逆に大きすぎると支持体シートの厚みに対する空隙のメディアン径の比が大きくなり、支持体シートの機械強度が不十分となる。
<Support sheet>
The support sheet according to the present invention is a porous sheet having a median diameter of 0.5 to 20 μm by a mercury intrusion method for voids. When the median diameter of the void is too small, the active material-containing material is hardly impregnated. On the other hand, if it is too large, the ratio of the median diameter of the gap to the thickness of the support sheet becomes large, and the mechanical strength of the support sheet becomes insufficient.

ここで、支持体シートの空隙のメディアン径は水銀圧入法による細孔径分布から求めることが出来る。メディアン径は、累積頻度が50%での細孔径である。   Here, the median diameter of the voids in the support sheet can be determined from the pore diameter distribution by the mercury intrusion method. The median diameter is a pore diameter at a cumulative frequency of 50%.

多孔質シートは、微細な繊維が集合して形成されたものが好ましい。ここでいう微細な繊維とは、繊維径が10μm未満の樹脂繊維を示し、樹脂の材質は特に限定されない。例としては、セルロース、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリフッ化ビニリデン(PVdF)などが挙げられる。これらの樹脂は単独で用いても良いし、複数の材質の樹脂を組み合わせて用いても良い。これら樹脂繊維を織り込んでシートとしても良いし、繊維を絡みあわせて不織布シートとしても良い。不織布の方が製造コストの点で優れるが、得られるシートの機械的強度の点で劣るため、後述する活物質含有材料の含浸条件を考慮して最適なシートを適宜選択すれば良い。繊維の作製方法としても、電界紡糸、溶融紡糸など従来公知の方法を用いることが出来る。   The porous sheet is preferably formed by aggregation of fine fibers. Here, the fine fiber means a resin fiber having a fiber diameter of less than 10 μm, and the material of the resin is not particularly limited. Examples include cellulose, polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyvinylidene fluoride (PVdF), and the like. These resins may be used alone or in combination with a plurality of resins. These resin fibers may be woven into a sheet, or the fibers may be entangled to form a non-woven sheet. The nonwoven fabric is superior in terms of production cost, but is inferior in terms of the mechanical strength of the obtained sheet. Therefore, an optimal sheet may be appropriately selected in consideration of the impregnation conditions for the active material-containing material described later. As a method for producing the fiber, a conventionally known method such as electrospinning or melt spinning can be used.

支持体シートの厚みは特に限定されないが、薄すぎると機械強度が極端に低くなり、成形時に破断する場合がある。また、活物質含有材料が支持体シートの全域に含浸されてしまい、セパレータとして機能する領域が無くなってしまう。逆に厚すぎると、正極と負極の距離が遠くなるために得られる電池のレート特性などが低下する場合がある。支持体シートの厚みとしては、10〜30μmの範囲内とすることが好ましい。また、活物質含有材料の含浸や得られる電池の性能に影響を与えない範囲で、耐熱層コーティングや接着層コーティングを施した支持体シートを用いても良い。   The thickness of the support sheet is not particularly limited, but if it is too thin, the mechanical strength becomes extremely low and may break during molding. Moreover, the active material-containing material is impregnated in the entire area of the support sheet, and the region functioning as a separator is lost. On the other hand, if the thickness is too large, the distance between the positive electrode and the negative electrode is increased, which may deteriorate the rate characteristics of the battery obtained. The thickness of the support sheet is preferably in the range of 10 to 30 μm. In addition, a support sheet coated with a heat-resistant layer coating or an adhesive layer coating may be used as long as it does not affect the impregnation of the active material-containing material and the performance of the obtained battery.

<活物質含有材料>
本発明に係る活物質含有材料は、正極もしくは負極としての機能を果たす活物質を含有する。活物質の種類としては特に限定されず、所望の電池容量を発現する活物質の組み合わせを適宜選択すれば良い。但し、本発明で使用する微細な繊維が集合した支持体シートは孔径が比較的大きいため、一般的に使用されている炭素系負極活物質では電極脱落や、過充電によるリチウム析出により短絡が発生する場合があり、電池の安全性の面で課題がある。従って、負極用活物質として炭素系活物質よりも電位の高いチタン酸リチウムを使用することが好ましい。チタン酸リチウムは短絡が発生しても表面が絶縁化するため短絡電流を遮断する効果があり、またリチウム析出電位よりも十分に高い電位で作動するため過充電によるリチウム析出が発生しない。
<Active material-containing material>
The active material-containing material according to the present invention contains an active material that functions as a positive electrode or a negative electrode. The type of the active material is not particularly limited, and a combination of active materials that express a desired battery capacity may be appropriately selected. However, since the support sheet in which the fine fibers used in the present invention are gathered has a relatively large pore size, a commonly used carbon-based negative electrode active material causes a short circuit due to electrode dropping or lithium deposition due to overcharge. There is a problem in terms of battery safety. Therefore, it is preferable to use lithium titanate having a higher potential than the carbon-based active material as the negative electrode active material. Lithium titanate has the effect of interrupting the short-circuit current because the surface is insulated even when a short circuit occurs, and does not cause lithium deposition due to overcharging because it operates at a potential sufficiently higher than the lithium deposition potential.

正極活物質粒子、負極活物質粒子のメディアン径はいずれも0.3μm以上30μm以下であることが好ましく、0.5μm以上20μm以下であることが取り扱いの観点からより好ましい。   The median diameter of each of the positive electrode active material particles and the negative electrode active material particles is preferably 0.3 μm or more and 30 μm or less, and more preferably 0.5 μm or more and 20 μm or less from the viewpoint of handling.

支持体シートの空隙のメディアン径と活物質粒子のメディアン径の比(空隙メディアン径/粒子メディアン径)は0.025〜10であること好ましく、0.05〜5であることがより好ましい。両者の比が0.025よりも小さい場合、活物質が支持体シートの孔に比べて極端に大きくなるため、活物質を含浸させることが難しくなり、活物質が支持体シートから脱落しやすくなる可能性がある。逆に両者の比が10よりも大きい場合、活物質が支持体シートの孔に比べて極端に小さくなり、活物質が支持体シートの奥まで染み込むことにより、短絡したりセパレータとして機能する領域が無くなってしまう可能性がある。   The ratio of the median diameter of the voids of the support sheet to the median diameter of the active material particles (void median diameter / particle median diameter) is preferably 0.025 to 10, and more preferably 0.05 to 5. When the ratio between the two is smaller than 0.025, the active material becomes extremely larger than the pores of the support sheet, so that it becomes difficult to impregnate the active material, and the active material easily falls off the support sheet. there is a possibility. On the contrary, when the ratio of both is larger than 10, the active material becomes extremely small compared to the holes of the support sheet, and the active material soaks into the back of the support sheet, so that there is a region that short-circuits or functions as a separator. There is a possibility of disappearing.

活物質含有材料には、活物質粒子同士を結合させるため、バインダーを使用しても良い。バインダーとしては、特に限定されないが、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム、ポリイミドおよびそれらの誘導体からなる群から選ばれる少なくとも一種を用いることができる。バインダーの量は、活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。   A binder may be used for the active material-containing material in order to bond the active material particles to each other. The binder is not particularly limited, and for example, at least one selected from the group consisting of polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber, polyimide, and derivatives thereof can be used. The amount of the binder is preferably 1 to 30 parts by weight, more preferably 2 to 15 parts by weight, with respect to 100 parts by weight of the active material.

活物質含有材料には、電極とした際の導電性を向上させるため、導電助剤を使用しても良い。導電助材の材質としては特に限定されないが、金属材料、炭素材料が好ましい。金属材料の場合は、銅、およびニッケルなど、炭素材料の場合は天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、およびファーネスブラックなどが挙げられる。これら導電助材は一種類でも良いし、二種類以上用いても良い。導電助材の量は、活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。   For the active material-containing material, a conductive additive may be used in order to improve the conductivity when used as an electrode. The material of the conductive additive is not particularly limited, but a metal material and a carbon material are preferable. Examples of the metal material include copper and nickel, and examples of the carbon material include natural graphite, artificial graphite, vapor grown carbon fiber, carbon nanotube, acetylene black, ketjen black, and furnace black. One type of these conductive aids may be used, or two or more types may be used. The amount of the conductive additive is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the active material.

活物質含有材料を支持体シートへ含浸させる手法としては公知の手段を用いることが可能であるが、大きく分けてスラリーを支持体シートへ塗布・乾燥する方法と、シート化した活物質含有材料を支持体シートへ圧着させる方法が挙げられる。   As a method of impregnating the active material-containing material into the support sheet, known means can be used. However, a method of roughly applying and drying the slurry to the support sheet, and a sheeted active material-containing material The method of crimping | bonding to a support body sheet | seat is mentioned.

スラリーを支持体シートへ塗布・乾燥する方法について説明する。本発明に係るスラリーは、活物質を溶媒中に分散させたものである。このスラリーは正極と負極どちらにも適用し得る。従って、使用する活物質は正極用、負極用それぞれ一般的に用いられているものを適宜選択すれば良い。また、複数の活物質を組み合わせて用いても良い。必要に応じて上記バインダーと導電助剤を添加しても良い。溶媒としては、非水溶媒または水が用いられ得る。非水溶媒は、特に限定されないが、例えば、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、酢酸エチル、およびテトラヒドロフランなどを挙げることができる。これらに分散剤、増粘剤を加えても良い。沸点の高い溶媒は乾燥に必要な温度も高くなるため、支持体シートの耐熱性によっては乾燥時の熱で支持体シートが変形したり、繊維が溶融して空孔が塞がってしまう場合がある。可能であれば、出来るだけ沸点の低い溶媒を使用することが好ましい。耐環境性も考慮に入れると、水を使用することが好ましい。   A method for applying and drying the slurry to the support sheet will be described. The slurry according to the present invention is obtained by dispersing an active material in a solvent. This slurry can be applied to both positive and negative electrodes. Therefore, the active material to be used may be appropriately selected from those generally used for the positive electrode and the negative electrode. A plurality of active materials may be used in combination. You may add the said binder and a conductive support agent as needed. As the solvent, a non-aqueous solvent or water can be used. The non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran. You may add a dispersing agent and a thickener to these. Since a solvent having a high boiling point also requires a high temperature for drying, depending on the heat resistance of the support sheet, the support sheet may be deformed by heat during drying, or the fibers may melt and block the pores. . If possible, it is preferable to use a solvent having a boiling point as low as possible. In view of environmental resistance, it is preferable to use water.

本発明に係るスラリーは上記活物質ならびに必要に応じてバインダーと導電助剤を、溶媒中に分散させることにより得られる。溶媒への分散方法は特に限定されず、溶媒に上記成分を全て添加して分散する方法、予めバインダーを溶媒に溶解・分散させておいて活物質と導電助剤を添加して分散する方法、活物質と導電助剤を固体で練り合わせながらバインダーを溶媒に溶解・分散させたものを徐々に添加して分散する方法、などが挙げられる。分散に使用する装置も、従来公知のものを使用すれば良い。   The slurry according to the present invention is obtained by dispersing the above active material and, if necessary, a binder and a conductive additive in a solvent. The dispersion method in the solvent is not particularly limited, a method in which all of the above components are added to the solvent and dispersed, a method in which the binder is dissolved and dispersed in advance and the active material and the conductive auxiliary agent are added and dispersed, For example, a method in which a binder is dissolved and dispersed in a solvent while the active material and the conductive aid are kneaded together as a solid is gradually added and dispersed. As a device used for dispersion, a conventionally known device may be used.

スラリーの粘度も適宜調整され得るが、粘度が低すぎると活物質含有材料が支持体シートの全域に含浸されてしまい、セパレータとして機能する領域が無くなってしまう。支持体シートの厚みに対して半分程度の深さまでに含浸が収まるよう、スラリーの粘度は適宜調整する。   The viscosity of the slurry can also be adjusted as appropriate. However, if the viscosity is too low, the active material-containing material is impregnated in the entire area of the support sheet, and there is no region that functions as a separator. The viscosity of the slurry is appropriately adjusted so that the impregnation is settled to a depth of about half the thickness of the support sheet.

支持体シートへのスラリーの塗布・乾燥については、生産性の観点からロール・トゥー・ロールで連続して行うことが好ましい。使用される装置はロール・トゥー・ロールでの加工が可能であれば特に限定されず、従来公知の装置が用いられ得る。塗布方式としてはダイコーター、コンマコーターが一般的であり、どちらを用いても良い。塗布後のスラリーの乾燥手段としては特に限定されず、熱風方式、赤外線方式など従来公知の手段が用いられ得るが、上記の通り乾燥温度が高すぎると支持体シートに不具合が発生する場合があるため、赤外線方式は避けた方が良い。複数の乾燥手段を組み合わせて使用しても良い。   About application | coating and drying of the slurry to a support body sheet | seat, it is preferable to carry out by roll-to-roll continuously from a viewpoint of productivity. The apparatus used is not particularly limited as long as it can be processed by roll-to-roll, and a conventionally known apparatus can be used. As a coating method, a die coater or a comma coater is generally used, and either one may be used. The means for drying the slurry after coating is not particularly limited, and conventionally known means such as a hot air method and an infrared method can be used. However, if the drying temperature is too high as described above, a problem may occur in the support sheet. Therefore, it is better to avoid the infrared method. A plurality of drying means may be used in combination.

次に、シート化した活物質含有材料を支持体シートへ圧着させる方法について説明する。上記スラリーよりも溶媒の比率を大きく下げたものを調製し、一対の圧延ロールや三本ロール等を通してシート状に連続成形する。得られたシート状活物質含有材料を支持体シートと積層・圧縮して活物質含有材料の一部を支持体シートに充填(含浸)させ、必要に応じて加熱を行い残留溶媒の除去を行う。生産性の観点から、活物質含有材料のシート成形と支持体シートとの積層・圧縮は連続して行うことが好ましい。シート成形に使用する圧延ロール、三本ロールは、活物質含有材料シートのロールからの剥離性等を考慮して、適宜加熱を行っても良い。   Next, a method for pressure bonding the sheet-formed active material-containing material to the support sheet will be described. A solvent having a solvent ratio lower than that of the slurry is prepared, and continuously formed into a sheet through a pair of rolling rolls, three rolls, or the like. The obtained sheet-like active material-containing material is laminated and compressed with the support sheet to fill (impregnate) a part of the active material-containing material into the support sheet, and heated as necessary to remove the residual solvent. . From the viewpoint of productivity, it is preferable to continuously perform sheet molding of the active material-containing material and lamination / compression of the support sheet. The rolling roll and the three rolls used for forming the sheet may be appropriately heated in consideration of the peelability of the active material-containing material sheet from the roll.

上記いずれの方法においても、支持体シートの片面に活物質含有材料を含浸させても良いし、正極用と負極用の異なる活物質含有材料を両面にそれぞれ含浸させても良い。   In any of the above methods, one surface of the support sheet may be impregnated with an active material-containing material, or different active material-containing materials for positive electrode and negative electrode may be impregnated on both surfaces.

<金属薄膜>
本発明のシート型電極は、活物質含有材料が含浸された支持体シートの表面に金属薄膜が形成される。該金属薄膜は、一般的なリチウムイオン二次電池に使用される集電箔の役目を果たす。従って、活物質含有材料の表面に形成される。一方で、集電箔とは異なり、該金属薄膜は支持体としての機能は有さないため、集電に必要な最低限の厚みを有していれば良い。金属薄膜の厚みは0.05〜2.0μmとすることが好ましい。
<Metal thin film>
In the sheet-type electrode of the present invention, a metal thin film is formed on the surface of a support sheet impregnated with an active material-containing material. The metal thin film serves as a current collector foil used in a general lithium ion secondary battery. Therefore, it is formed on the surface of the active material-containing material. On the other hand, unlike the current collector foil, the metal thin film does not have a function as a support, and therefore may have a minimum thickness necessary for current collection. The thickness of the metal thin film is preferably 0.05 to 2.0 μm.

金属薄膜の形成方法としては、蒸着、スパッタ、めっきなど従来公知の方法が使用できる。但し、めっきについては薬液が支持体シートの空隙中に残留して電池反応を阻害する場合があるため、蒸着かスパッタがより好適に用いられる。金属の種類としては、充放電時に曝される電位に対して安定な材料を用いれば良く、特に限定されない。   As a method for forming the metal thin film, a conventionally known method such as vapor deposition, sputtering, or plating can be used. However, for plating, since chemicals may remain in the gaps of the support sheet and inhibit the battery reaction, vapor deposition or sputtering is more preferably used. The type of metal is not particularly limited as long as it is a material that is stable with respect to the potential exposed during charging and discharging.

金属薄膜には集電の機能を果たすため、リードを接続する。リードにはさらに電池外部に導出して外部端子と接続するためのタブを接続する。リード、タブの材質としては、アルミニウム、チタン、ニッケル、銅、SUS等の金属が挙げられるが特に限定されず、使用する電池電位に対して溶解しないものを用いれば良い。もちろん、上記金属の合金を用いても良いし、複数の金属層からなる構成のものを用いても良い。また、電池の外装材としてラミネートフィルムを使用する場合、該ラミネートフィルムの熱融着層への密着性を向上させるためにタブ表面にカップリング剤処理を行ったり、ラミネートフィルムの熱融着層に対する密着性が高い部材をタブに接着しておいても良い。   Leads are connected to the metal thin film in order to perform the current collecting function. The lead is further connected to a tab for leading out of the battery and connecting to the external terminal. Examples of the material of the lead and the tab include metals such as aluminum, titanium, nickel, copper, and SUS, but are not particularly limited, and a material that does not dissolve with respect to the battery potential to be used may be used. Needless to say, an alloy of the above metals may be used, or a structure composed of a plurality of metal layers may be used. Further, when using a laminate film as a battery exterior material, the surface of the tab is treated with a coupling agent in order to improve the adhesion of the laminate film to the heat fusion layer, A member having high adhesion may be bonded to the tab.

リード、タブの接続方法としては、超音波方式、抵抗加熱方式等の従来公知の方法が用いられ得る。リード、タブの材質等に応じて適宜選択すれば良い。   As a method for connecting the lead and the tab, a conventionally known method such as an ultrasonic method or a resistance heating method can be used. What is necessary is just to select suitably according to the material of a lead, a tab, etc.

<電池>
上記のようにして得られたシート型電極は、支持体シートに含浸された活物質含有材料が正極もしくは負極として機能し、支持体シート中の活物質含有材料が含浸していない部位が層状セパレータとして機能する。層状セパレータは活物質含有材料の層を全面に亘って欠陥なく分離する分離領域であり、電解質の中の電池反応に関与するイオンが移動可能となっている。また、活物質含有材料の表面に設けられた金属薄膜が集電体として機能する。従って、当該シート型電極を組み合わせて蓄電素子とし、電解液と共に封止することでリチウムイオン二次電池が得られる。
<Battery>
In the sheet-type electrode obtained as described above, the active material-containing material impregnated in the support sheet functions as a positive electrode or a negative electrode, and the portion of the support sheet that is not impregnated with the active material-containing material is a layered separator Function as. The layered separator is a separation region that separates the layer of the active material-containing material over the entire surface without any defects, and ions involved in the battery reaction in the electrolyte can move. Further, a metal thin film provided on the surface of the active material-containing material functions as a current collector. Therefore, a lithium ion secondary battery can be obtained by combining the sheet-type electrode to form a power storage element and sealing it together with the electrolytic solution.

蓄電素子の作製方法としては、正極活物質含有材料を片面に含浸したシート型電極と負極活物質含有材料を片面に含浸したシート型電極を所定サイズにカットして、必要に応じて活物質含有材料が含浸されている面を内側にして折り畳み、それらを交互に所定枚数積み重ね、正極、負極のタブをそれぞれリードに接続する手法が挙げられる。シート型電極を正極、負極それぞれ一枚ずつとし、それらを重ねて、九十九折のように折り畳んで一体化しても良い。   As a method for producing a storage element, a sheet-type electrode impregnated on one side with a positive electrode active material-containing material and a sheet-type electrode impregnated on one side with a negative electrode active material-containing material are cut into a predetermined size, and an active material is contained if necessary. Folding with the surface impregnated with the material inside, a predetermined number of sheets are alternately stacked, and the positive electrode and negative electrode tabs are connected to the leads. One sheet type electrode may be used for each of the positive electrode and the negative electrode, and they may be stacked and integrated by folding like ninety-nine folds.

蓄電素子の別の作製方法としては、正極活物質含有材料を片面に含浸したシート型電極と負極活物質含有材料を片面に含浸したシート型電極を重ねて、さらに捲回した後、タブをそれぞれリードに接続する手法が挙げられる。   As another method for producing a power storage element, a sheet-type electrode impregnated on one side with a positive electrode active material-containing material and a sheet-type electrode impregnated on one side with a negative electrode active material-containing material are stacked and further wound, and each tab is There is a method of connecting to the lead.

蓄電素子のさらに別の作製方法としては、支持体シートの片側に正極活物質含有材料を含浸し、反対側に負極活物質含有材料を含浸したシート型電極をそのまま用い、タブをそれぞれリードに接続する手法が挙げられる。   As another method for producing the storage element, a sheet-type electrode impregnated with a positive electrode active material-containing material on one side of the support sheet and a negative electrode active material-containing material on the opposite side is used as it is, and the tabs are connected to the leads. The technique to do is mentioned.

いずれの方法においても、使用する非水電解質は、特に限定されないが、非水溶媒に溶質を溶解させた非水電解液、非水溶媒に溶質を溶解させた電解液を高分子に含浸させたゲル電解質などを用いることができる。非水溶媒としては、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましい。環状の非プロトン性溶媒としては、環状カーボネート、環状エステル、環状スルホン及び環状エーテルなどが例示される。鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、鎖状エーテル、及びアセトニトリルなどの一般的に非水電解質の溶媒として用いられる溶媒を用いても良い。より具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチルラクトン、1,2−ジメトキシエタン、スルホラン、ジオキソラン、プロピオン酸メチルなどを用いることができる。これら溶媒は1種類で用いても良いし、2種類以上混合しても用いても良いが、後述の溶質を溶解させやすさ、リチウムイオンの伝導性の高さから、2種類以上混合した溶媒を用いることが好ましい。   In any of the methods, the nonaqueous electrolyte to be used is not particularly limited, but the polymer is impregnated with a nonaqueous electrolytic solution in which a solute is dissolved in a nonaqueous solvent, or an electrolytic solution in which a solute is dissolved in a nonaqueous solvent. A gel electrolyte or the like can be used. The non-aqueous solvent preferably includes a cyclic aprotic solvent and / or a chain aprotic solvent. Examples of the cyclic aprotic solvent include cyclic carbonates, cyclic esters, cyclic sulfones and cyclic ethers. As the chain aprotic solvent, a solvent generally used as a solvent for nonaqueous electrolytes such as a chain carbonate, a chain carboxylic acid ester, a chain ether, and acetonitrile may be used. More specifically, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyl lactone, 1,2-dimethoxyethane, sulfolane, dioxolane, propion For example, methyl acid can be used. These solvents may be used alone or as a mixture of two or more. However, in view of the ease of dissolving the solute described below and the high conductivity of lithium ions, a mixture of two or more of these solvents. Is preferably used.

前記溶質は、特に限定されないが、例えば、LiClO、LiBF、LiPF、LiAsF、LiCFSO、LiBOB(Lithium Bis (Oxalato) Borate)、LiN(SOCFなどは溶媒に溶解しやすいことから好ましい。電解液に含まれる溶質の濃度は、0.5mol/L以上2.0mol/L以下であることが好ましい。0.5mol/L未満では所望のリチウムイオン伝導性が発現しない場合があり、一方、2.0mol/Lより高いと、溶質がそれ以上溶解しない場合がある。 The solute is not particularly limited. For example, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), LiN (SO 2 CF 3 ) 2, and the like are used as a solvent. It is preferable because it is easily dissolved. The concentration of the solute contained in the electrolytic solution is preferably 0.5 mol / L or more and 2.0 mol / L or less. If it is less than 0.5 mol / L, the desired lithium ion conductivity may not be exhibited. On the other hand, if it is higher than 2.0 mol / L, the solute may not be dissolved any more.

また、蓄電素子と電解液を封止する外装材についても特に限定されず、ラミネートフィルム、金属缶など従来公知のものが用いられ得る。電池のサイズや用途、使用環境に応じて適宜選択すれば良い。蓄電素子を容器に収容した後、電解液を注液し、その後にタブを容器から導出した状態で容器を封止することで二次電池を得ることができる。   Moreover, it does not specifically limit about the exterior material which seals an electrical storage element and electrolyte solution, Conventionally well-known things, such as a laminate film and a metal can, can be used. What is necessary is just to select suitably according to the size of a battery, a use, and use environment. After the storage element is accommodated in the container, the secondary battery can be obtained by injecting an electrolytic solution and then sealing the container in a state where the tab is led out from the container.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更可能である。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these Examples, In the range which does not change the summary, it can change suitably.

実施例、比較例で電池の評価は、次の方法により行った。   In the examples and comparative examples, the batteries were evaluated by the following methods.

(電池の充放電試験)
実施例ならびに比較例で作製した電池について、下記サイクル条件で、最初に充電から実施し、放電および充電を下記充電条件1および放電条件1にて繰り返し、最後に放電することで実施した。以下に記載する電圧は、リチウム基準ではなく、非水電解質二次電池の電圧である。
(Battery charge / discharge test)
About the battery produced by the Example and the comparative example, it implemented from charging first by the following cycle conditions, discharging and charging were repeated on the following charging conditions 1 and discharging conditions 1, and it discharged by the last. The voltage described below is not based on lithium, but is a voltage of a nonaqueous electrolyte secondary battery.

サイクル条件
電池環境温度:60℃
単位サイクル:充電1回及び放電1回を1サイクルとする。
繰り返しサイクル数:400サイクル
充放電条件
充電条件1:電圧が2.7Vに達するまでは1.0Cの定電流で充電し、その後、2.7Vを維持して定電圧で充電し、その後、電流が0.02Cとなった時点で充電を終了する。
放電条件1:電圧が2.0Vまで減少するまでは1.0Cの定電流で放電し、2.0Vとなった時点で放電を終了する。
放電1サイクル目の放電容量を100とし、400サイクル目における放電容量の相対量を放電容量維持率(%)として算出した。
Cycle conditions Battery environmental temperature: 60 ° C
Unit cycle: One charge and one discharge are defined as one cycle.
Number of repetitive cycles: 400 cycles Charging / discharging conditions Charging condition 1: Charging at a constant current of 1.0 C until the voltage reaches 2.7 V, then charging at a constant voltage while maintaining 2.7 V, and then current When the battery reaches 0.02C, charging is terminated.
Discharge condition 1: Discharge at a constant current of 1.0 C until the voltage decreases to 2.0 V, and terminate the discharge when it reaches 2.0 V.
The discharge capacity at the first cycle of discharge was taken as 100, and the relative amount of discharge capacity at the 400th cycle was calculated as the discharge capacity retention rate (%).

(スラリーAの作製)
メディアン径18μmのスピネル型のマンガン酸リチウム(Li1.1Al0.1Mn1.8)と、導電助材(アセチレンブラック)、およびバインダー(PVdF)を、それぞれ固形分濃度で88重量部、6重量部、および6重量部の混合物のスラリーを作製した。なお、バインダーは固形分濃度5wt%のN−メチル−2−ピロリドン(NMP)溶液に調整したものを使用した。
(Preparation of slurry A)
88 wt.% Of spinel-type lithium manganate (Li 1.1 Al 0.1 Mn 1.8 O 4 ) having a median diameter of 18 μm, a conductive additive (acetylene black), and a binder (PVdF) in a solid content concentration of 88 wt. Parts, 6 parts by weight, and 6 parts by weight of a mixture slurry. The binder used was adjusted to an N-methyl-2-pyrrolidone (NMP) solution having a solid content concentration of 5 wt%.

(スラリーBの作製)
メディアン径10μmのスピネル型のチタン酸リチウム(LiTi12)を用いた。この負極活物質、導電助材(アセチレンブラック)、およびバインダー(PVdF)を、それぞれ固形分濃度で100重量部、5重量部、および5重量部の混合物のスラリーを作製した。なお、バインダーは固形分濃度5wt%のNMP溶液に調製したものを使用した。
(Preparation of slurry B)
Spinel type lithium titanate (Li 4 Ti 5 O 12 ) having a median diameter of 10 μm was used. A slurry of a mixture of 100 parts by weight, 5 parts by weight, and 5 parts by weight of each of the negative electrode active material, the conductive additive (acetylene black), and the binder (PVdF) in solid concentration was prepared. The binder used was an NMP solution prepared with a solid content concentration of 5 wt%.

(実施例1)
空隙の水銀圧入法によるメディアン径15μm、厚み20μmのセルロース系不織布の片面にスラリーAをダイコーターにて連続して塗布を行った。スラリーが塗布されたセルロース不織布はそのまま100℃、120℃、150℃に設定された乾燥炉の中を通過させた。乾燥炉通過後に巻き取ったロールを150℃の真空オーブン中で1時間減圧乾燥させることによって、セルロース系不織布に正極活物質が一部含浸された厚み50μmの複合シートを得た。得られた複合シートの活物質含有材料層の表面に蒸着によりアルミ層を形成し、正極用シート型電極を得た。
Example 1
Slurry A was continuously applied on one side of a cellulose-based nonwoven fabric having a median diameter of 15 μm and a thickness of 20 μm by a mercury intrusion method using a die coater. The cellulose nonwoven fabric coated with the slurry was directly passed through a drying furnace set at 100 ° C, 120 ° C, and 150 ° C. The roll wound up after passing through the drying furnace was dried under reduced pressure in a vacuum oven at 150 ° C. for 1 hour to obtain a composite sheet having a thickness of 50 μm in which a cellulosic nonwoven fabric was partially impregnated with a positive electrode active material. An aluminum layer was formed on the surface of the active material-containing material layer of the obtained composite sheet by vapor deposition to obtain a positive electrode sheet type electrode.

スラリーAの代わりにスラリーBを使用すること以外は上記と同様の操作を行い、負極用シート型電極を得た。   The same operation as described above was performed except that the slurry B was used instead of the slurry A to obtain a negative electrode sheet-type electrode.

上記正極用シート型電極と負極用シート型電極をそれぞれ打ち抜き、それぞれのアルミ蒸着面にアルミ製リードを超音波溶接で接合した。それぞれのシート型電極をアルミ蒸着面が内側になるように折り畳み、これを正極と負極交互に複数重ね合わせ、得られた積層体の四隅をテープで固定した。正極、負極それぞれのリードをまとめて正極用アルミ製タブ、負極用アルミ製タブにそれぞれ超音波接合した。   The positive electrode sheet-type electrode and the negative electrode sheet-type electrode were each punched out, and aluminum leads were joined to the respective aluminum deposition surfaces by ultrasonic welding. Each sheet-type electrode was folded so that the aluminum deposition surface was on the inside, a plurality of the positive and negative electrodes were alternately stacked, and the four corners of the obtained laminate were fixed with tape. The leads of the positive electrode and the negative electrode were put together and ultrasonically bonded to the aluminum tab for positive electrode and the aluminum tab for negative electrode, respectively.

この積層体をタブが外部に導出するように上下から二枚のアルミラミネートフィルムで挟んだ。タブ導出部以外の辺を180℃×7秒で二回ヒートシールして融着させた後、非水電解質(エチレンカーボネート/プロピレンカーボネート/エチルメチルカーボネート=15/15/70vol%、LiPF 1mol/L)を入れた後に、減圧しながらタブの導出辺を180℃×7秒で二回ヒートシールした。これによりリチウムイオン二次電池を得た。 This laminate was sandwiched between two aluminum laminate films from above and below so that the tabs were led out. After the sides other than the tab lead-out portion were heat-sealed twice at 180 ° C. for 7 seconds and fused, a non-aqueous electrolyte (ethylene carbonate / propylene carbonate / ethyl methyl carbonate = 15/15/70 vol%, LiPF 6 1 mol / After inserting L), the derivation side of the tab was heat-sealed twice at 180 ° C. for 7 seconds while reducing the pressure. Thereby, a lithium ion secondary battery was obtained.

(実施例2)
実施例1と同様にして得られた正極用シート型電極、負極用シート型電極のアルミ蒸着面の複数箇所にアルミ製リードをそれぞれ超音波溶接で接合した。負極用シート型電極のアルミ蒸着面に正極用シート型電極の不織布面が重なるように配置し、捲回した。正極、負極それぞれのリードをまとめてアルミ製タブを超音波接合した。
(Example 2)
Aluminum leads were joined by ultrasonic welding to a plurality of locations on the aluminum deposition surface of the positive electrode sheet-type electrode and negative electrode sheet-type electrode obtained in the same manner as in Example 1. It arrange | positioned so that the nonwoven fabric surface of the sheet type electrode for positive electrodes might overlap with the aluminum vapor deposition surface of the sheet type electrode for negative electrodes, and it wound. The lead of each of the positive electrode and the negative electrode was put together and an aluminum tab was ultrasonically bonded.

この捲回体をタブが外部に導出するように上下から二枚のアルミラミネートフィルムで挟んだ。タブ導出部以外の辺を180℃×7秒で二回ヒートシールして融着させた後、非水電解質(エチレンカーボネート/プロピレンカーボネート/エチルメチルカーボネート=15/15/70vol%、LiPF 1mol/L)を入れた後に、減圧しながらタブの導出辺を180℃×7秒で二回ヒートシールした。これによりリチウムイオン二次電池を得た。 The wound body was sandwiched between two aluminum laminate films from above and below so that the tab was led out. After the sides other than the tab lead-out portion were heat-sealed twice at 180 ° C. for 7 seconds and fused, a non-aqueous electrolyte (ethylene carbonate / propylene carbonate / ethyl methyl carbonate = 15/15/70 vol%, LiPF 6 1 mol / After inserting L), the derivation side of the tab was heat-sealed twice at 180 ° C. for 7 seconds while reducing the pressure. Thereby, a lithium ion secondary battery was obtained.

(実施例3)
実施例1と同様にして得られた正極用シート型電極、負極用シート型電極のアルミ蒸着面の複数箇所にアルミ製リードをそれぞれ超音波溶接で接合した。負極用シート型電極のアルミ蒸着面に正極用シート型電極の不織布面が重なるように配置し、九十九折状に折り畳んだ。正極、負極それぞれのリードをまとめてアルミ製タブを超音波接合した。
Example 3
Aluminum leads were joined by ultrasonic welding to a plurality of locations on the aluminum deposition surface of the positive electrode sheet-type electrode and negative electrode sheet-type electrode obtained in the same manner as in Example 1. It arrange | positioned so that the nonwoven fabric surface of the sheet type electrode for positive electrodes might overlap with the aluminum vapor deposition surface of the sheet type electrode for negative electrodes, and it folded in ninety-nine fold shape. The lead of each of the positive electrode and the negative electrode was put together and an aluminum tab was ultrasonically bonded.

この積層体をタブが外部に導出するように上下から二枚のアルミラミネートフィルムで挟んだ。タブ導出部以外の辺を180℃×7秒で二回ヒートシールして融着させた後、非水電解質(エチレンカーボネート/プロピレンカーボネート/エチルメチルカーボネート=15/15/70vol%、LiPF 1mol/L)を入れた後に、減圧しながらタブの導出辺を180℃×7秒で二回ヒートシールした。これによりリチウムイオン二次電池を得た。 This laminate was sandwiched between two aluminum laminate films from above and below so that the tabs were led out. After the sides other than the tab lead-out portion were heat-sealed twice at 180 ° C. for 7 seconds and fused, a non-aqueous electrolyte (ethylene carbonate / propylene carbonate / ethyl methyl carbonate = 15/15/70 vol%, LiPF 6 1 mol / After inserting L), the derivation side of the tab was heat-sealed twice at 180 ° C. for 7 seconds while reducing the pressure. Thereby, a lithium ion secondary battery was obtained.

(実施例4)
空隙の水銀圧入法によるメディアン径20μm、厚み30μmのセルロース系不織布の片面にスラリーAをダイコーターにて連続して塗布を行った。スラリーが塗布されたセルロース不織布はそのまま100℃、120℃、150℃に設定された乾燥炉の中を通過させた。続いて、反対側の面にスラリーBをダイコーターにて連続して塗布を行い、同様に乾燥炉を通過させた。乾燥炉通過後に巻き取ったロールを150℃の真空オーブン中で3時間減圧乾燥させることによって、セルロース系不織布の片側に正極活物質、反対側に負極活物質が一部含浸された厚み80μmの複合シートを得た。得られた複合シートの両面に蒸着によりアルミ層を形成し、正極・負極一体型シート型電極を得た。
Example 4
Slurry A was continuously applied on one side of a cellulose-based nonwoven fabric having a median diameter of 20 μm and a thickness of 30 μm by a mercury intrusion method using a die coater. The cellulose nonwoven fabric coated with the slurry was directly passed through a drying furnace set at 100 ° C, 120 ° C, and 150 ° C. Subsequently, slurry B was continuously applied to the opposite surface with a die coater, and similarly passed through a drying furnace. The roll wound up after passing through the drying furnace is dried under reduced pressure in a vacuum oven at 150 ° C. for 3 hours, whereby a composite of 80 μm thickness in which a positive electrode active material is partially impregnated on one side and a negative electrode active material is partially impregnated on the other side. A sheet was obtained. Aluminum layers were formed by vapor deposition on both surfaces of the obtained composite sheet to obtain a positive electrode / negative electrode integrated sheet-type electrode.

それぞれのアルミ蒸着面の複数箇所にアルミ製リードを超音波溶接で接合し、実施例3と同様にして九十九折状に折り畳み、アルミラミネートフィルムに封入してリチウムイオン二次電池を得た。   Aluminum leads were joined by ultrasonic welding to a plurality of locations on the respective aluminum vapor deposition surfaces, folded into ninety-nine folds in the same manner as in Example 3, and sealed in an aluminum laminate film to obtain a lithium ion secondary battery. .

(実施例5)
セルロース系不織布の代わりに空隙の水銀圧入法によるメディアン径15μmのPET不織布を使用する以外は実施例1と同様の操作を行い、リチウムイオン二次電池を得た。
(Example 5)
A lithium ion secondary battery was obtained in the same manner as in Example 1 except that a PET nonwoven fabric having a median diameter of 15 μm by a mercury intrusion method for voids was used instead of the cellulose nonwoven fabric.

(実施例6)
セルロース系不織布の代わりに空隙の水銀圧入法によるメディアン径15μmのPET不織布を使用する以外は実施例2と同様の操作を行い、リチウムイオン二次電池を得た。
(Example 6)
A lithium ion secondary battery was obtained in the same manner as in Example 2 except that a PET nonwoven fabric having a median diameter of 15 μm by a mercury intrusion method for voids was used instead of the cellulose nonwoven fabric.

(実施例7)
セルロース系不織布の代わりに空隙の水銀圧入法によるメディアン径15μmのPET不織布を使用する以外は実施例3と同様の操作を行い、リチウムイオン二次電池を得た。
(Example 7)
A lithium ion secondary battery was obtained in the same manner as in Example 3 except that a PET nonwoven fabric having a median diameter of 15 μm by a mercury intrusion method for voids was used instead of the cellulose nonwoven fabric.

(実施例8)
セルロース系不織布の代わりに空隙の水銀圧入法によるメディアン径15μmのPET不織布を使用する以外は実施例4と同様の操作を行い、リチウムイオン二次電池を得た。
(Example 8)
A lithium ion secondary battery was obtained in the same manner as in Example 4 except that a PET nonwoven fabric having a median diameter of 15 μm by a mercury intrusion method was used instead of the cellulose nonwoven fabric.

(比較例1)
空隙の水銀圧入法によるメディアン径0.1μm、厚み20μmのポリプロピレン製多孔質フィルムの片面にスラリーAをダイコーターにて連続して塗布を行った。スラリーが塗布されたセルロース不織布はそのまま100℃、120℃に設定された乾燥炉の中を通過させた。乾燥炉通過後に巻き取ったロールを120℃の真空オーブン中で5時間減圧乾燥させることによって、ポリプロピレン製多孔質フィルムに正極活物質が一部含浸された厚み50μmの複合シートを得た。得られた複合シートの活物質含有材料層の表面に蒸着によりアルミ層を形成し、正極用シート型電極を得た。
(Comparative Example 1)
Slurry A was continuously applied to one side of a polypropylene porous film having a median diameter of 0.1 μm and a thickness of 20 μm by a mercury intrusion method using a die coater. The cellulose nonwoven fabric coated with the slurry was directly passed through a drying furnace set at 100 ° C and 120 ° C. The roll wound up after passing through the drying furnace was dried under reduced pressure in a 120 ° C. vacuum oven for 5 hours to obtain a composite sheet having a thickness of 50 μm in which a positive electrode active material was partially impregnated into a polypropylene porous film. An aluminum layer was formed on the surface of the active material-containing material layer of the obtained composite sheet by vapor deposition to obtain a positive electrode sheet type electrode.

スラリーAの代わりにスラリーBを使用すること以外は上記と同様の操作を行い、負極用シート型電極を得た。   The same operation as described above was performed except that the slurry B was used instead of the slurry A to obtain a negative electrode sheet-type electrode.

上記正極用シート型電極と負極用シート型電極をそれぞれ打ち抜き、それぞれのアルミ蒸着面にアルミ製リードを超音波溶接で接合した。それぞれのシート型電極をアルミ蒸着面が内側になるように折り畳み、これを正極と負極交互に複数重ね合わせ、得られた積層体の四隅をテープで固定した。正極、負極それぞれのリードをまとめて正極用アルミ製タブ、負極用アルミ製タブにそれぞれ超音波接合した。なお、アルミ蒸着時と電極打ち抜き時に活物質含有材料層の一部脱落が確認された。   The positive electrode sheet-type electrode and the negative electrode sheet-type electrode were each punched out, and aluminum leads were joined to the respective aluminum deposition surfaces by ultrasonic welding. Each sheet-type electrode was folded so that the aluminum deposition surface was on the inside, a plurality of the positive and negative electrodes were alternately stacked, and the four corners of the obtained laminate were fixed with tape. The leads of the positive electrode and the negative electrode were put together and ultrasonically bonded to the aluminum tab for positive electrode and the aluminum tab for negative electrode, respectively. Part of the active material-containing material layer was confirmed to drop off during aluminum deposition and electrode punching.

この積層体をタブが外部に導出するように上下から二枚のアルミラミネートフィルムで挟んだ。タブ導出部以外の辺を180℃×7秒で二回ヒートシールして融着させた後、非水電解質(エチレンカーボネート/プロピレンカーボネート/エチルメチルカーボネート=15/15/70vol%、LiPF 1mol/L)を入れた後に、減圧しながらタブの導出辺を180℃×7秒で二回ヒートシールした。これによりリチウムイオン二次電池を得た。 This laminate was sandwiched between two aluminum laminate films from above and below so that the tabs were led out. After the sides other than the tab lead-out portion were heat-sealed twice at 180 ° C. for 7 seconds and fused, a non-aqueous electrolyte (ethylene carbonate / propylene carbonate / ethyl methyl carbonate = 15/15/70 vol%, LiPF 6 1 mol / After inserting L), the derivation side of the tab was heat-sealed twice at 180 ° C. for 7 seconds while reducing the pressure. Thereby, a lithium ion secondary battery was obtained.

(比較例2)
比較例1と同様にして得られた正極用シート型電極、負極用シート型電極のアルミ蒸着面の複数箇所にアルミ製リードをそれぞれ超音波溶接で接合した。負極用シート型電極のアルミ蒸着面に正極用シート型電極の不織布面が重なるように配置し、捲回した。正極、負極それぞれのリードをまとめてアルミ製タブを超音波接合した。なお、アルミ蒸着時と捲回時に活物質含有材料層の一部脱落が確認された。
(Comparative Example 2)
Aluminum leads were joined by ultrasonic welding to a plurality of locations on the aluminum vapor deposition surface of the positive electrode sheet type electrode and the negative electrode sheet type electrode obtained in the same manner as in Comparative Example 1, respectively. It arrange | positioned so that the nonwoven fabric surface of the sheet type electrode for positive electrodes might overlap with the aluminum vapor deposition surface of the sheet type electrode for negative electrodes, and it wound. The lead of each of the positive electrode and the negative electrode was put together and an aluminum tab was ultrasonically bonded. Part of the active material-containing material layer was confirmed during aluminum deposition and winding.

この捲回体をタブが外部に導出するように上下から二枚のアルミラミネートフィルムで挟んだ。タブ導出部以外の辺を180℃×7秒で二回ヒートシールして融着させた後、非水電解質(エチレンカーボネート/プロピレンカーボネート/エチルメチルカーボネート=15/15/70vol%、LiPF 1mol/L)を入れた後に、減圧しながらタブの導出辺を180℃×7秒で二回ヒートシールした。これによりリチウムイオン二次電池を得た。 The wound body was sandwiched between two aluminum laminate films from above and below so that the tab was led out. After the sides other than the tab lead-out portion were heat-sealed twice at 180 ° C. for 7 seconds and fused, a non-aqueous electrolyte (ethylene carbonate / propylene carbonate / ethyl methyl carbonate = 15/15/70 vol%, LiPF 6 1 mol / After inserting L), the derivation side of the tab was heat-sealed twice at 180 ° C. for 7 seconds while reducing the pressure. Thereby, a lithium ion secondary battery was obtained.

(比較例3)
比較例1と同様にして得られた正極用シート型電極、負極用シート型電極のアルミ蒸着面の複数箇所にアルミ製リードをそれぞれ超音波溶接で接合した。負極用シート型電極のアルミ蒸着面に正極用シート型電極の不織布面が重なるように配置し、九十九折状に折り畳んだ。正極、負極それぞれのリードをまとめてアルミ製タブを超音波接合した。なお、アルミ蒸着時と九十九折時に活物質含有材料層の一部脱落が確認された。
(Comparative Example 3)
Aluminum leads were joined by ultrasonic welding to a plurality of locations on the aluminum vapor deposition surface of the positive electrode sheet type electrode and the negative electrode sheet type electrode obtained in the same manner as in Comparative Example 1, respectively. It arrange | positioned so that the nonwoven fabric surface of the sheet type electrode for positive electrodes might overlap with the aluminum vapor deposition surface of the sheet type electrode for negative electrodes, and it folded in ninety-nine fold shape. The lead of each of the positive electrode and the negative electrode was put together and an aluminum tab was ultrasonically bonded. Part of the active material-containing material layer was confirmed to be dropped during aluminum deposition and during the 99th folding.

この積層体をタブが外部に導出するように上下から二枚のアルミラミネートフィルムで挟んだ。タブ導出部以外の辺を180℃×7秒で二回ヒートシールして融着させた後、非水電解質(エチレンカーボネート/プロピレンカーボネート/エチルメチルカーボネート=15/15/70vol%、LiPF 1mol/L)を入れた後に、減圧しながらタブの導出辺を180℃×7秒で二回ヒートシールした。これによりリチウムイオン二次電池を得た。 This laminate was sandwiched between two aluminum laminate films from above and below so that the tabs were led out. After the sides other than the tab lead-out portion were heat-sealed twice at 180 ° C. for 7 seconds and fused, a non-aqueous electrolyte (ethylene carbonate / propylene carbonate / ethyl methyl carbonate = 15/15/70 vol%, LiPF 6 1 mol / After inserting L), the derivation side of the tab was heat-sealed twice at 180 ° C. for 7 seconds while reducing the pressure. Thereby, a lithium ion secondary battery was obtained.

(比較例4)
空隙の水銀圧入法によるメディアン径0.2μm、厚み30μmのポリプロピレン製多孔質フィルムの片面にスラリーAをダイコーターにて連続して塗布を行った。スラリーが塗布されたポリプロピレン製多孔質フィルムはそのまま100℃、120℃に設定された乾燥炉の中を通過させた。続いて、反対側の面にスラリーBをダイコーターにて連続して塗布を行い、同様に乾燥炉を通過させた。乾燥炉通過後に巻き取ったロールを120℃の真空オーブン中で7時間減圧乾燥させることによって、ポリプロピレン製多孔質フィルムの片側に正極活物質、反対側に負極活物質が一部含浸された厚み80μmの複合シートを得た。得られた複合シートの両面に蒸着によりアルミ層を形成し、正極・負極一体型シート型電極を得た。
(Comparative Example 4)
Slurry A was continuously applied to one side of a polypropylene porous film having a median diameter of 0.2 μm and a thickness of 30 μm by a mercury intrusion method using a die coater. The polypropylene porous film coated with the slurry was directly passed through a drying furnace set at 100 ° C. and 120 ° C. Subsequently, slurry B was continuously applied to the opposite surface with a die coater, and similarly passed through a drying furnace. The roll wound after passing through the drying furnace is dried under reduced pressure in a 120 ° C. vacuum oven for 7 hours, whereby a positive electrode active material is partially impregnated on one side of a polypropylene porous film and a thickness of 80 μm is partially impregnated on the other side A composite sheet was obtained. Aluminum layers were formed by vapor deposition on both surfaces of the obtained composite sheet to obtain a positive electrode / negative electrode integrated sheet-type electrode.

それぞれのアルミ蒸着面の複数箇所にアルミ製リードを超音波溶接で接合し、実施例3と同様にして九十九折状に折り畳み、アルミラミネートフィルムに封入してリチウムイオン二次電池を得た。なお、アルミ蒸着時と電極打ち抜き時に活物質含有材料層の一部脱落が確認された。   Aluminum leads were joined by ultrasonic welding to a plurality of locations on the respective aluminum vapor deposition surfaces, folded into ninety-nine folds in the same manner as in Example 3, and sealed in an aluminum laminate film to obtain a lithium ion secondary battery. . Part of the active material-containing material layer was confirmed to drop off during aluminum deposition and electrode punching.

(比較例5)
スラリーAとスラリーBをNMPで希釈したものを用いて実施例1と同様にしてシート型電極を作製した。活物質含有材料が支持体シートの厚み方向ほぼ全域にわたって含浸されており、短絡してしまうため電池の作製を行うことは出来なかった。
(Comparative Example 5)
A sheet-type electrode was produced in the same manner as in Example 1 using slurry A and slurry B diluted with NMP. The active material-containing material was impregnated over almost the entire thickness direction of the support sheet, and the battery could not be manufactured because of a short circuit.

実施例1〜8、比較例1〜4で得られたリチウムイオン二次電池の充放電試験の結果を表1に示す。   Table 1 shows the results of the charge / discharge test of the lithium ion secondary batteries obtained in Examples 1 to 8 and Comparative Examples 1 to 4.

Figure 2016134296
Figure 2016134296

実施例のリチウムイオン二次電池は良好な放電容量維持率を示した一方で、比較例の電池は放電容量維持率が低い結果となった。比較例の電池は空隙の水銀圧入法によるメディアン径0.2μm以下のポリプロピレン性多孔質フィルムを使用しており、孔径が小さいために活物質含有材料層が含浸されにくい。実際に、電池作製中に活物質材料含有層の一部脱落が確認されている。つまり、電池試験中にも活物質材料含有層が脱落し、電池反応に寄与できる活物質量が減少したため、放電容量維持率が低下したと考えられる。   While the lithium ion secondary battery of the example showed a good discharge capacity maintenance rate, the battery of the comparative example resulted in a low discharge capacity maintenance rate. The battery of the comparative example uses a polypropylene porous film having a median diameter of 0.2 μm or less by the mercury intrusion method for the voids, and the active material-containing material layer is difficult to be impregnated because the pore diameter is small. Actually, part of the active material material-containing layer has been confirmed to fall off during battery fabrication. That is, the active material material-containing layer dropped during the battery test, and the amount of the active material that can contribute to the battery reaction was reduced, so that the discharge capacity retention rate was considered to have decreased.

また、脱落した活物質がセパレータ領域を通過して対極表面に到達した場合、短絡発生の恐れがある。本実施例、比較例で使用した負極活物質はチタン酸リチウムであったため短絡に起因する異常現象は確認されなかったが、炭素系負極活物質では最悪の場合、発火の可能性がある。   Further, when the dropped active material passes through the separator region and reaches the surface of the counter electrode, there is a risk of occurrence of a short circuit. Since the negative electrode active material used in this example and comparative example was lithium titanate, no abnormal phenomenon due to short circuit was confirmed, but in the worst case, the carbon-based negative electrode active material may ignite.

以上の結果から、空隙の水銀圧入法によるメディアン径が0.5〜20μmの多孔質シートである支持体シートを使用し、これに活物質含有材料層を含浸させたシート型電極を使用することで、金属箔集電体を使用しなくても良好な放電容量維持率を示し、電池製造工程の簡略化、電池システムの軽量化にも貢献できるリチウムイオン二次電池が得られることが明らかとなった。   Based on the above results, use a support sheet that is a porous sheet having a median diameter of 0.5 to 20 μm by a mercury intrusion method, and use a sheet-type electrode impregnated with an active material-containing material layer. Thus, it is clear that a lithium ion secondary battery can be obtained that exhibits a good discharge capacity maintenance ratio without using a metal foil current collector, and that can contribute to simplification of the battery manufacturing process and weight reduction of the battery system. became.

Claims (7)

正極および負極と、これらに挟持された電解質とを含む二次電池用の、シート型電極であって、
空隙の水銀圧入法によるメディアン径が0.5〜20μmの多孔質シートである支持体シートであって、活物質を含有する活物質含有材料が含浸された支持体シートの表面に金属薄膜が形成されてなり、
該正極が備える正極活物質含有層、及び該負極が備える負極活物質含有層を、これらの層の全面に亘って欠陥なく分離するための層状セパレータ領域であって、該電解質の中の電池反応に関与するイオンが移動可能な層状セパレータ領域となる分離領域と、
該正極活物質含有層又は該負極活物質含有層である活物質含有領域と、
該金属薄膜からなる集電領域と、
をこの順に備えるシート型電極。
A sheet-type electrode for a secondary battery comprising a positive electrode and a negative electrode, and an electrolyte sandwiched therebetween,
A metal sheet is formed on the surface of a support sheet, which is a porous sheet having a median diameter of 0.5 to 20 μm by a mercury intrusion method, and impregnated with an active material-containing material containing an active material Being
A layered separator region for separating the positive electrode active material-containing layer provided in the positive electrode and the negative electrode active material-containing layer provided in the negative electrode over the entire surface of these layers without defects, and a battery reaction in the electrolyte A separation region to be a layered separator region in which ions involved in movement can move,
An active material-containing region that is the positive electrode active material-containing layer or the negative electrode active material-containing layer;
A current collecting region comprising the metal thin film;
In this order.
請求項1に記載のシート型電極を含む二次電池であって、
一方の主面が前記集電領域であり、他方の主面が前記分離領域である、前記シート型電極を、該一方の主面を内側にして折り畳むことで得られる、前記分離領域を両方の主面とし、かつ、該両主面に挟持された前記集電領域を含む集電プレートを備える電極プレートを含み、
前記正極活物質含有層を含む該電極プレートである正極プレートと、前記負極活物質含有層を含む該電極プレートである負極プレートとを、交互に積層した積層構造を含む二次電池。
A secondary battery comprising the sheet-type electrode according to claim 1,
One main surface is the current collecting region and the other main surface is the separation region. The sheet-type electrode is obtained by folding the one main surface to the inside, and the separation region is both An electrode plate including a current collecting plate including a current collecting region including the current collecting region sandwiched between the main surface and the two main surfaces;
A secondary battery including a stacked structure in which a positive electrode plate that is the electrode plate including the positive electrode active material-containing layer and a negative electrode plate that is the electrode plate including the negative electrode active material-containing layer are alternately stacked.
請求項1に記載のシート型電極を含む二次電池であって、
一方の主面が前記集電領域であり、他方の主面が前記分離領域である、帯状の前記シート型電極を、前記正極活物質含有層を含む正極帯と、前記負極活物質含有層を含む負極帯として、重ねて、さらに、捲回した捲回構造、及び九十九折状に折り畳んだ九十九折構造からなる群のうちの少なくとも一つの構造を含む二次電池。
A secondary battery comprising the sheet-type electrode according to claim 1,
One of the main surfaces is the current collecting region, and the other main surface is the separation region. The strip-shaped sheet-type electrode includes a positive electrode band including the positive electrode active material-containing layer, and the negative electrode active material-containing layer. A secondary battery including at least one structure selected from the group consisting of a wound structure having a wound structure and a 99-fold structure folded into a 99-fold shape, as the negative electrode band.
請求項1に記載のシート型電極を含む二次電池であって、
両方の主面が前記集電領域であり、内側に向かって順に、前記正極活物質含有層である活物質含有領域、前記分離領域、前記負極活物質含有層である活物質含有領域を含む電池プレートを含む二次電池。
A secondary battery comprising the sheet-type electrode according to claim 1,
Both main surfaces are the said current collection area | regions, and the battery containing the active material containing area | region which is the active material containing area | region which is the said positive electrode active material content layer, the said isolation | separation area | region, and the said negative electrode active material content layer in order toward the inner side A secondary battery including a plate.
請求項1に記載のシート型電極の製造方法であって、順に、
前記支持体シート上に、前記活物質含有材料のスラリーを塗布・乾燥することで前記活物質含有領域を形成する、活物質含有領域形成工程、及び、
前記集電領域を形成する、集電領域形成工程を含む、シート型電極の製造方法。
It is a manufacturing method of the sheet type electrode according to claim 1, and in order,
On the support sheet, an active material-containing region forming step of forming the active material-containing region by applying and drying a slurry of the active material-containing material, and
A method for producing a sheet-type electrode, comprising a current collecting region forming step of forming the current collecting region.
前記集電領域形成工程における前記金属薄膜の形成方法が、スパッタ、蒸着、めっきのいずれかである、請求項5に記載のシート型電極の製造方法。   The method for producing a sheet-type electrode according to claim 5, wherein the method for forming the metal thin film in the current collecting region forming step is any one of sputtering, vapor deposition, and plating. 請求項2、又は3に記載の二次電池の製造方法であって、
前記金属薄膜層にリードを接続した後、前記積層、前記捲回又は前記九十九折状に折り畳み、タブをそれぞれ該リードに接続し、得られた前記積層構造、前記捲回構造又は前記九十九折構造を容器に収容し、その後、電解液を注液し、さらにその後に、該タブを該容器から導出した状態で該容器を封止することを特徴とする二次電池の製造方法。
It is a manufacturing method of the rechargeable battery according to claim 2 or 3,
After connecting the lead to the metal thin film layer, the laminate, the wound or folded into ninety-nine folds, the tabs are connected to the leads, respectively, and the obtained laminated structure, the wound structure or the nine A method for manufacturing a secondary battery, comprising: storing a nineteen-fold structure in a container; then, injecting an electrolyte; and then sealing the container with the tab being led out from the container .
JP2015008314A 2015-01-20 2015-01-20 Separator integral type electrode, manufacturing method for the same and lithium ion secondary battery using the same Pending JP2016134296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008314A JP2016134296A (en) 2015-01-20 2015-01-20 Separator integral type electrode, manufacturing method for the same and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008314A JP2016134296A (en) 2015-01-20 2015-01-20 Separator integral type electrode, manufacturing method for the same and lithium ion secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2016134296A true JP2016134296A (en) 2016-07-25

Family

ID=56464368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008314A Pending JP2016134296A (en) 2015-01-20 2015-01-20 Separator integral type electrode, manufacturing method for the same and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2016134296A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113273014A (en) * 2019-01-16 2021-08-17 株式会社Lg化学 Lithium secondary battery and method for manufacturing same
WO2023190871A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Secondary battery
KR102590994B1 (en) * 2023-01-04 2023-10-20 주식회사 대영알앤티 Multifunctional silicon anode in which a nanoscale silicon anode active material is infiltrated into a porous polymer matrix and Secondary battery using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243038A (en) * 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd Positive electrode plate and lithium secondary battery using it
WO2011089785A1 (en) * 2010-01-25 2011-07-28 東レ株式会社 Aromatic polyamide porous film and separator for capacitor or battery using the same
JP2013065471A (en) * 2011-09-16 2013-04-11 Nissan Motor Co Ltd Electrode and electric device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243038A (en) * 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd Positive electrode plate and lithium secondary battery using it
WO2011089785A1 (en) * 2010-01-25 2011-07-28 東レ株式会社 Aromatic polyamide porous film and separator for capacitor or battery using the same
JP2013065471A (en) * 2011-09-16 2013-04-11 Nissan Motor Co Ltd Electrode and electric device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113273014A (en) * 2019-01-16 2021-08-17 株式会社Lg化学 Lithium secondary battery and method for manufacturing same
WO2023190871A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Secondary battery
KR102590994B1 (en) * 2023-01-04 2023-10-20 주식회사 대영알앤티 Multifunctional silicon anode in which a nanoscale silicon anode active material is infiltrated into a porous polymer matrix and Secondary battery using the same

Similar Documents

Publication Publication Date Title
CN108780915B (en) Lithium secondary battery having lithium metal formed on positive electrode and method for manufacturing the same
JP6628289B2 (en) Negative electrode including mesh-type current collector, lithium secondary battery including the same, and method of manufacturing the same
JP5195341B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
US9601737B2 (en) Lithium-ion secondary battery separator
JP2015518643A (en) Secondary battery electrode, manufacturing method thereof, secondary battery including the same, and cable-type secondary battery
JP2007035770A (en) Manufacturing method of electrode for electrochemical element and manufacturing method of electrochemical element
JP2015069957A (en) Separator for lithium ion secondary battery and method for manufacturing the same, and lithium ion secondary battery and method for manufacturing the same
JP2016009677A (en) Lithium ion secondary battery and method for manufacturing the same
CN110265629B (en) Negative electrode and lithium ion secondary battery
KR102243458B1 (en) Non-aqueous electrolyte secondary battery, and method of producing non-aqueous electrolyte secondary battery
KR20230093402A (en) Positvie electrode for rechargeable lithium battery, negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
JP2012059396A (en) Negative electrode for power storage device and power storage device, and method of manufacturing them
JP5025936B2 (en) Method for producing electrode-porous sheet composite for electronic component
JP2020109773A (en) Separation membrane of electrode assembly
CN109565069A (en) Electrode assembly and its manufacturing method
JP2015060719A (en) Nonaqueous electrolyte battery
JP2016134296A (en) Separator integral type electrode, manufacturing method for the same and lithium ion secondary battery using the same
JP6875820B2 (en) Lithium ion secondary battery
WO2017213149A1 (en) Lithium-ion secondary battery and assembled battery
JP7302593B2 (en) lithium polymer battery
JP2018170142A (en) Lithium ion secondary battery
JP7009903B2 (en) Method for manufacturing laminated structure, lithium secondary battery and laminated structure
JP2017117739A (en) battery
JP7363443B2 (en) Lithium ion secondary battery
JP2006164883A (en) Winding electrode and its manufacturing method, and method of manufacturing battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190319