JP6931566B2 - Glow plug - Google Patents

Glow plug Download PDF

Info

Publication number
JP6931566B2
JP6931566B2 JP2017145147A JP2017145147A JP6931566B2 JP 6931566 B2 JP6931566 B2 JP 6931566B2 JP 2017145147 A JP2017145147 A JP 2017145147A JP 2017145147 A JP2017145147 A JP 2017145147A JP 6931566 B2 JP6931566 B2 JP 6931566B2
Authority
JP
Japan
Prior art keywords
coil
tip
tube
rear end
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017145147A
Other languages
Japanese (ja)
Other versions
JP2018096670A (en
Inventor
紘文 岡田
紘文 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to EP17200876.5A priority Critical patent/EP3333483B1/en
Publication of JP2018096670A publication Critical patent/JP2018096670A/en
Application granted granted Critical
Publication of JP6931566B2 publication Critical patent/JP6931566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)

Description

本発明はグロープラグに関し、特に発熱温度を高温化できるグロープラグに関するものである。 The present invention relates to a glow plug, and more particularly to a glow plug capable of raising the heat generation temperature.

グロープラグは、圧縮着火方式によるディーゼルエンジン等の内燃機関の補助熱源として用いられる。グロープラグは、内燃機関の始動性を向上させるため、短時間で所定温度まで昇温させる性能(以下「急速昇温性」と称す)が要求される。また、グロープラグは、内燃機関の規制が厳格化される中、発熱温度の高温化も求められている。特許文献1には、中軸の先端にコイルが接合されたグロープラグにおいて、発熱温度の高温化の要求に応えるため、FeCrAl合金やNiCr合金よりも高融点のWやMoを主成分とする耐熱金属をコイルに用いる技術が開示されている。 Glow plugs are used as auxiliary heat sources for internal combustion engines such as diesel engines by compression ignition. Glow plugs are required to have the ability to raise the temperature to a predetermined temperature in a short time (hereinafter referred to as "rapid temperature rise") in order to improve the startability of the internal combustion engine. In addition, glow plugs are also required to have a high heat generation temperature as regulations on internal combustion engines become stricter. Patent Document 1 describes a heat-resistant metal containing W or Mo, which has a higher melting point than FeCrAl alloy or NiCr alloy, as a main component in order to meet the demand for higher heat generation temperature in a glow plug in which a coil is bonded to the tip of a central shaft. Is disclosed as a technique for using a coil.

国際公開第2014/206847号International Publication No. 2014/206847

しかしながら、WやMo等の耐熱金属の抵抗比はNiCr合金の抵抗比に比べて大きいので、上記従来の技術では、所定温度まで上昇させるためにコイルに一定電圧を印加すると、コイルの抵抗が急激に増加して電流値が急激に低下する。ここで、抵抗比とは、「コイルの20℃での抵抗値に対する1000℃での抵抗値の比」であり、抵抗比の値が大きくなるほど高温での抵抗値が大きくなる。そして、発熱量は電流値の2乗に比例するので、短時間で所定温度まで昇温させ難く、急速昇温性に欠けるという問題点がある。 However, since the resistivity ratio of heat-resistant metals such as W and Mo is larger than that of NiCr alloy, in the above-mentioned conventional technique, when a constant voltage is applied to the coil in order to raise the temperature to a predetermined temperature, the resistivity of the coil suddenly increases. And the current value drops sharply. Here, the resistance ratio is "the ratio of the resistance value at 1000 ° C. to the resistance value at 20 ° C. of the coil", and the larger the resistance ratio value, the larger the resistance value at high temperature. Since the calorific value is proportional to the square of the current value, it is difficult to raise the temperature to a predetermined temperature in a short time, and there is a problem that the rapid temperature rise is lacking.

これに対し、耐熱金属からなるコイル(先端コイル)の後端側に、耐熱金属の抵抗比よりも小さい抵抗比のFeCrAl合金やNiCr合金からなる後端コイルを接合することが考えられる。これにより、コイル全体の抵抗値を過度に増加させることなく先端コイルを所定温度まで上昇させることができ、急速昇温性を確保できる。 On the other hand, it is conceivable to join the rear end coil made of FeCrAl alloy or NiCr alloy having a resistance ratio smaller than the resistance ratio of the refractory metal to the rear end side of the coil made of refractory metal (tip coil). As a result, the tip coil can be raised to a predetermined temperature without excessively increasing the resistance value of the entire coil, and rapid temperature rise can be ensured.

しかしながら、所定温度に昇温したコイルの温度を飽和させるために印加電圧を下げると、コイルの熱が後端コイルに移動し、先端コイルの温度が一時的に大きく低下し易くなる。その結果、エンジンの燃焼が不安定になったり排気ガスのエミッションが増加したりする問題点がある。 However, when the applied voltage is lowered in order to saturate the temperature of the coil raised to a predetermined temperature, the heat of the coil is transferred to the rear end coil, and the temperature of the front end coil tends to be temporarily greatly lowered. As a result, there are problems that the combustion of the engine becomes unstable and the exhaust gas emission increases.

本発明は上述した問題点を解決するためになされたものであり、発熱温度の高温化および急速昇温性を確保しつつ、温度を飽和させるために印加電圧を下げたときの温度低下を抑制できるグロープラグを提供することを目的としている。 The present invention has been made to solve the above-mentioned problems, and suppresses a temperature drop when the applied voltage is lowered in order to saturate the temperature while ensuring a high heat generation temperature and a rapid temperature rise property. The purpose is to provide a glow plug that can be used.

この目的を達成するために本発明のグロープラグは、軸線方向に延びる金属製の中軸と、中軸の先端に電気的に接続するコイルと、コイル及び中軸の先端側を収容してコイルが電気的に接続されると共に先端が閉じた金属製のチューブと、を備える。コイルは、チューブの先端に電気的に接続されると共にWやMoを主成分とする先端コイルと、先端コイルの後端に電気的に接続される後端コイルと、を備える。先端コイルの20℃での抵抗値に対する1000℃での抵抗値の比である抵抗比R1と、後端コイルの20℃での抵抗値に対する1000℃での抵抗値の比である抵抗比R2とは、R1>R2の関係を満たす。そして、チューブの先端と先端コイルの後端との間の20℃における抵抗値に対する、チューブの先端から軸線方向の後端側に向かって4mmの位置における先端コイルとチューブの先端との間の20℃における抵抗値の割合が55〜80%である。 In order to achieve this object, the glow plug of the present invention accommodates a metal center pole extending in the axial direction, a coil electrically connected to the tip of the center pole, a coil and the tip side of the center pole, and the coil is electrically operated. It comprises a metal tube, which is connected to and has a closed tip. The coil includes a tip coil that is electrically connected to the tip of the tube and is mainly composed of W or Mo, and a rear end coil that is electrically connected to the rear end of the tip coil. The resistivity ratio R1 which is the ratio of the resistance value at 1000 ° C. to the resistance value at 20 ° C. of the front end coil and the resistance ratio R2 which is the ratio of the resistance value at 1000 ° C. to the resistance value at 20 ° C. of the rear end coil. Satisfies the relationship of R1> R2. Then, 20 between the tip coil and the tip of the tube at a position 4 mm from the tip of the tube toward the rear end side in the axial direction with respect to the resistance value at 20 ° C. between the tip of the tube and the rear end of the tip coil. The ratio of the resistance value at ° C. is 55 to 80%.

請求項1記載のグロープラグによれば、チューブの先端と先端コイルの後端との間の20℃における抵抗値に対する、チューブの先端から軸線方向の後端側に向かって4mmの位置における先端コイルとチューブの先端との間の20℃における抵抗値の割合が55〜80%なので、先端コイルの4mmまでの部分の発熱量を、先端コイルの残りの部分の発熱量よりも大きくできる。従って、先端コイルの4mmまでの部分を急速に昇温させることができ、急速昇温性を確保できる。 According to the glow plug according to claim 1, the tip coil at a position 4 mm from the tip of the tube toward the rear end side in the axial direction with respect to the resistance value at 20 ° C. between the tip of the tube and the rear end of the tip coil. Since the ratio of the resistance value at 20 ° C. between the tube and the tip of the tube is 55 to 80%, the calorific value of the portion of the tip coil up to 4 mm can be made larger than the calorific value of the remaining portion of the tip coil. Therefore, the temperature of the tip coil up to 4 mm can be rapidly raised, and the rapid temperature rising property can be ensured.

先端コイルの残りの部分は抵抗値の割合(20〜45%)に応じて発熱するので、印加電圧を下げたときに、先端コイルの4mmまでの部分から後端側へ移動する熱量を抑制できる。よって、温度を飽和させるために印加電圧を下げたときの温度低下を抑制できる。 Since the remaining part of the tip coil generates heat according to the ratio of the resistance value (20 to 45%), the amount of heat transferred from the part up to 4 mm of the tip coil to the rear end side can be suppressed when the applied voltage is lowered. .. Therefore, it is possible to suppress the temperature drop when the applied voltage is lowered in order to saturate the temperature.

なお、「WやMoを主成分」とは、コイル材料の全体含有量に対するW又はMoの合計含有量が50wt%以上であることをいう。 The term "main component of W or Mo" means that the total content of W or Mo with respect to the total content of the coil material is 50 wt% or more.

請求項2記載のグロープラグによれば、チューブの先端と先端コイルの後端との間の抵抗値が0.13Ω以下なので、請求項1の効果に加え、コイルに過大な電圧を印加しなくても先端コイルに流れる電流値を確保し、先端コイルを発熱させることができる。 According to the glow plug according to claim 2, since the resistance value between the tip of the tube and the rear end of the tip coil is 0.13 Ω or less, in addition to the effect of claim 1, an excessive voltage is not applied to the coil. However, the current value flowing through the tip coil can be secured and the tip coil can be heated.

請求項3記載のグロープラグによれば、先端コイルは、自身の先端から後端まで組成が同一であり、先端側のピッチが後端側のピッチよりも小さい。よって、請求項1又は2の効果に加え、先端コイルの構造を簡素化できる。 According to the glow plug according to claim 3, the front end coil has the same composition from its own front end to the rear end, and the pitch on the front end side is smaller than the pitch on the rear end side. Therefore, in addition to the effect of claim 1 or 2, the structure of the tip coil can be simplified.

請求項4記載のグロープラグによれば、チューブの先端と後端コイルの後端との間の20℃における抵抗値が0.36Ω以下なので、先端コイルを流れる突入時の電流値を十分に確保できる。先端コイルの発熱量を確保できるので、請求項1から3のいずれかの効果に加え、急速昇温性を確保できる。 According to the glow plug according to claim 4, since the resistance value between the front end of the tube and the rear end of the rear end coil at 20 ° C. is 0.36 Ω or less, a sufficient current value at the time of plunge flowing through the front end coil is secured. can. Since the amount of heat generated by the tip coil can be ensured, in addition to the effect according to any one of claims 1 to 3, rapid temperature rise can be ensured.

請求項5記載のグロープラグによれば、チューブの先端から先端コイルの後端までの軸線方向の長さは、6mm以上11mm以下である。従って、請求項1から4のいずれかの効果に加え、先端コイルの4mmまでの部分の抵抗値の割合を設定し易くできる。 According to the glow plug according to claim 5, the axial length from the tip of the tube to the rear end of the tip coil is 6 mm or more and 11 mm or less. Therefore, in addition to the effect of any one of claims 1 to 4, it is possible to easily set the ratio of the resistance value of the portion of the tip coil up to 4 mm.

請求項6記載のグロープラグによれば、チューブの先端から軸線方向の後端側に向かって4mmの位置までのチューブの外径は3.5mm以下なので、先端コイルが配置されたチューブの先端近傍の熱容量が過大にならないようにできる。その結果、請求項1から5のいずれかの効果に加え、急速昇温性を確保し易くできる。 According to the glow plug according to claim 6, since the outer diameter of the tube from the tip of the tube to the position of 4 mm toward the rear end side in the axial direction is 3.5 mm or less, the vicinity of the tip of the tube in which the tip coil is arranged is provided. It is possible to prevent the heat capacity of the coil from becoming excessive. As a result, in addition to the effect of any one of claims 1 to 5, it is possible to easily secure the rapid temperature rise property.

グロープラグの片側断面図である。It is one side sectional view of the glow plug. 一部を拡大したグロープラグの断面図である。It is sectional drawing of the glow plug which enlarged a part. グロープラグに印加した電圧と発熱温度との関係を示す模式図である。It is a schematic diagram which shows the relationship between the voltage applied to a glow plug and the heat generation temperature.

以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1及び図2を参照して本発明の一実施の形態におけるグロープラグ10について説明する。図1はグロープラグ10の片側断面図であり、図2は一部を拡大したグロープラグ10の断面図である。図1及び図2では、紙面下側をグロープラグ10の先端側、紙面上側をグロープラグ10の後端側という。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The glow plug 10 according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a one-sided cross-sectional view of the glow plug 10, and FIG. 2 is a partially enlarged cross-sectional view of the glow plug 10. In FIGS. 1 and 2, the lower side of the paper surface is referred to as the front end side of the glow plug 10, and the upper side of the paper surface is referred to as the rear end side of the glow plug 10.

図1に示すようにグロープラグ10は中軸20、主体金具30、チューブ40及びコイル50を備えている。これらの部材はグロープラグ10の軸線Oに沿って組み付けられている。グロープラグ10は、ディーゼルエンジンを始めとする内燃機関(図示せず)の始動時などに用いられる補助熱源である。 As shown in FIG. 1, the glow plug 10 includes a center pole 20, a main metal fitting 30, a tube 40, and a coil 50. These members are assembled along the axis O of the glow plug 10. The glow plug 10 is an auxiliary heat source used when starting an internal combustion engine (not shown) such as a diesel engine.

中軸20は円柱形状の金属製の導体であり、コイル50に電力を供給するための部材である。中軸20は先端にコイル50が電気的に接続されている。中軸20は、後端が主体金具30から突出した状態で主体金具30に挿入されている。 The center pole 20 is a cylindrical metal conductor, and is a member for supplying electric power to the coil 50. A coil 50 is electrically connected to the tip of the center pole 20. The center pole 20 is inserted into the main metal fitting 30 with its rear end protruding from the main metal fitting 30.

中軸20は、本実施の形態では、後端に雄ねじからなる接続部21が形成されている。中軸20は、後端に、先端側から順に絶縁ゴム製のOリング22、合成樹脂製の筒状部材である絶縁体23、金属製の筒状部材であるリング24、金属製のナット25が組み付けられている。接続部21は、バッテリ等の電源から電力を供給するケーブルのコネクタ(図示せず)が接続される部位である。ナット25は、接続されたコネクタ(図示せず)を固定するための部材である。 In the present embodiment, the center pole 20 has a connecting portion 21 made of a male screw formed at the rear end thereof. The center pole 20 has an O-ring 22 made of insulating rubber, an insulator 23 which is a tubular member made of synthetic resin, a ring 24 which is a tubular member made of metal, and a metal nut 25 in order from the tip side at the rear end. It is assembled. The connection portion 21 is a portion to which a connector (not shown) of a cable for supplying power from a power source such as a battery is connected. The nut 25 is a member for fixing the connected connector (not shown).

主体金具30は炭素鋼等により形成される略円筒形状の部材である。主体金具30は、軸線Oに沿って軸孔31が貫通し、外周面にねじ部32が形成されている。主体金具30は、ねじ部32より後端側に工具係合部33が形成されている。軸孔31は中軸20が挿入される貫通孔である。軸孔31の内径は中軸20の外径より大きいので、中軸20と軸孔31との間に空隙が形成される。ねじ部32は、内燃機関(図示せず)に嵌まり合う雄ねじである。工具係合部33は、ねじ部32を内燃機関のねじ穴(図示せず)に嵌めたり外したりするときに用いる工具(図示せず)が関わり合う形状(例えば六角形)をなす部位である。 The main metal fitting 30 is a substantially cylindrical member made of carbon steel or the like. The main metal fitting 30 has a shaft hole 31 penetrating along the axis O, and a threaded portion 32 is formed on the outer peripheral surface. The main metal fitting 30 has a tool engaging portion 33 formed on the rear end side of the screw portion 32. The shaft hole 31 is a through hole into which the center pole 20 is inserted. Since the inner diameter of the shaft hole 31 is larger than the outer diameter of the center pole 20, a gap is formed between the center pole 20 and the shaft hole 31. The screw portion 32 is a male screw that fits into an internal combustion engine (not shown). The tool engaging portion 33 is a portion having a shape (for example, a hexagon) in which a tool (not shown) used for fitting or disengaging the screw portion 32 into or disengaging a screw hole (not shown) of an internal combustion engine is involved. ..

主体金具30は、軸孔31の後端側において、Oリング22及び絶縁体23を介して中軸20を保持する。絶縁体23にリング24が接した状態で中軸20にリング24が加締められることで、絶縁体23は軸方向の位置が固定される。絶縁体23によって主体金具30の後端側とリング24とが絶縁される。主体金具30は、軸孔31の先端側にチューブ40が固定されている。 The main metal fitting 30 holds the center pole 20 on the rear end side of the shaft hole 31 via the O-ring 22 and the insulator 23. By crimping the ring 24 to the center pole 20 with the ring 24 in contact with the insulator 23, the position of the insulator 23 in the axial direction is fixed. The insulator 23 insulates the rear end side of the main metal fitting 30 from the ring 24. In the main metal fitting 30, the tube 40 is fixed to the tip end side of the shaft hole 31.

チューブ40は先端41が閉じた金属製の筒状体である。チューブ40は軸孔31に圧入されることで、主体金具30に固定される。チューブ40の材料は、例えばニッケル基合金、ステンレス鋼などの耐熱合金が挙げられる。 The tube 40 is a metal tubular body with a closed tip 41. The tube 40 is fixed to the main metal fitting 30 by being press-fitted into the shaft hole 31. Examples of the material of the tube 40 include heat-resistant alloys such as nickel-based alloys and stainless steel.

チューブ40は中軸20の先端側が挿入されている。チューブ40の内径は中軸20の外径より大きいので、中軸20とチューブ40との間に空隙が形成される。シール材42は、中軸20の先端側とチューブ40の後端との間に挟まれた円筒形状の絶縁部材である。シール材42は中軸20とチューブ40との間隔を維持し、中軸20とチューブ40との間を密閉する。コイル50は軸線Oに沿ってチューブ40に収容されている。絶縁粉末60はチューブ40に充填されている。 The tip side of the center pole 20 is inserted into the tube 40. Since the inner diameter of the tube 40 is larger than the outer diameter of the center pole 20, a gap is formed between the center pole 20 and the tube 40. The sealing material 42 is a cylindrical insulating member sandwiched between the tip end side of the center pole 20 and the rear end end of the tube 40. The sealing material 42 maintains a distance between the center pole 20 and the tube 40, and seals between the center pole 20 and the tube 40. The coil 50 is housed in the tube 40 along the axis O. The insulating powder 60 is filled in the tube 40.

図2に示すようにコイル50は螺旋状に形成されており、通電により発熱する。コイル50は、チューブ40の先端41に接合された先端コイル51と、中軸20の先端に接合された後端コイル52とを備えている。 As shown in FIG. 2, the coil 50 is formed in a spiral shape and generates heat when energized. The coil 50 includes a tip coil 51 joined to the tip 41 of the tube 40 and a rear end coil 52 joined to the tip of the center pole 20.

先端コイル51は、先端が溶接によりチューブ40の先端41に接合されている。先端コイル51の材料としては、W,Moを主成分とする高融点金属からなる。なお、これらの元素の単体、又は、これらの元素のいずれかを主成分とする合金を先端コイル51として用いることができる。先端コイル51は、後端が溶接によって後端コイル52に接合されている。先端コイル51と後端コイル52との間に、溶接で溶けて溶接金属が固まった溶融部53が形成されている。 The tip of the tip coil 51 is joined to the tip 41 of the tube 40 by welding. The material of the tip coil 51 is made of a refractory metal containing W and Mo as main components. A simple substance of these elements or an alloy containing any of these elements as a main component can be used as the tip coil 51. The rear end of the tip coil 51 is joined to the rear end coil 52 by welding. A molten portion 53 is formed between the front end coil 51 and the rear end coil 52, which is melted by welding and the weld metal is solidified.

後端コイル52は溶融部53を介して先端コイル51と直列に接続される部材である。後端コイル52は、先端コイル51の抵抗比R1より小さい抵抗比R2をもつ導電材料で形成されている。後端コイル52の材料としては、例えばFeCrAl合金、NiCr合金などが挙げられる。後端コイル52は軸線Oに沿ってチューブ40に収容されており、後端が溶接により中軸20の先端に接合されている。中軸20は後端コイル52及び先端コイル51を介してチューブ40と電気的に接続されている。 The rear end coil 52 is a member connected in series with the front end coil 51 via a melting portion 53. The rear end coil 52 is made of a conductive material having a resistivity R2 smaller than the resistivity R1 of the front coil 51. Examples of the material of the rear end coil 52 include FeCrAl alloy and NiCr alloy. The rear end coil 52 is housed in the tube 40 along the axis O, and the rear end is joined to the tip of the center pole 20 by welding. The center pole 20 is electrically connected to the tube 40 via the rear end coil 52 and the tip coil 51.

絶縁粉末60は電気絶縁性を有し、且つ、高温下で熱伝導性を有する粉末である。絶縁粉末60は、コイル50とチューブ40との間、中軸20とチューブ40との間、コイル50の内側に充填される。絶縁粉末60は、コイル50からチューブ40へ熱を移動させる機能、コイル50とチューブ40との短絡を防ぐ機能、コイル50を振動し難くして断線を防ぐ機能がある。絶縁粉末60としては、例えばMgO、Al等の酸化物粉末が挙げられる。MgO、Al等の酸化物粉末に加え、CaO,ZrO及びSiO,Si等の粉末を添加できる。本実施の形態では、絶縁粉末60は絶縁粉末60の全質量に対してMgO粉末を85質量%以上100質量%未満含有し、Si粉末も含有する。 The insulating powder 60 is a powder having electrical insulation and thermal conductivity at a high temperature. The insulating powder 60 is filled inside the coil 50 between the coil 50 and the tube 40, between the center pole 20 and the tube 40. The insulating powder 60 has a function of transferring heat from the coil 50 to the tube 40, a function of preventing a short circuit between the coil 50 and the tube 40, and a function of making the coil 50 difficult to vibrate and preventing disconnection. The insulating powder 60, for example MgO, include oxide powders such as Al 2 O 3. In addition to oxide powders such as MgO and Al 2 O 3 , powders such as CaO, ZrO 2 and SiO 2 and Si can be added. In the present embodiment, the insulating powder 60 contains 85% by mass or more and less than 100% by mass of MgO powder with respect to the total mass of the insulating powder 60, and also contains Si powder.

先端コイル51は、チューブ40の先端41から軸線O方向の後端側に向かって4mm離れた位置までの第1部54、及び、第1部54の後端(チューブ40の先端41から軸線O方向の後端側に向かって4mm離れた位置)から溶融部53までの第2部55からなる。先端コイル51は、チューブ40の先端41と先端コイル51の後端(溶融部53)との間の20℃における抵抗値が0.13Ω以下に設定されている。なお、抵抗値は4端子法により測定される値のことをいう。 The tip coil 51 includes a first portion 54 from the tip 41 of the tube 40 to a position 4 mm away from the rear end side in the axis O direction, and a rear end of the first portion 54 (the axis O from the tip 41 of the tube 40). It is composed of a second portion 55 from a position (position 4 mm away from the rear end side in the direction) to the melting portion 53. The tip coil 51 has a resistance value of 0.13 Ω or less at 20 ° C. between the tip 41 of the tube 40 and the rear end (melted portion 53) of the tip coil 51. The resistance value is a value measured by the four-terminal method.

先端コイル51は、チューブ40の先端41と先端コイル51の後端(溶融部53)との間の20℃における抵抗値に対する、第1部54の20℃における抵抗値の割合が55〜80%、第2部55の20℃における抵抗値の割合が20〜45%に設定されている。 In the tip coil 51, the ratio of the resistance value of the first portion 54 at 20 ° C. to the resistance value at 20 ° C. between the tip end 41 of the tube 40 and the rear end (melted portion 53) of the tip coil 51 is 55 to 80%. , The ratio of the resistance value of Part 2 55 at 20 ° C. is set to 20 to 45%.

コイル50は、チューブ40の先端41と後端コイル52の後端(後端コイル52と中軸20との溶接部)との間の20℃における抵抗値が0.36Ω以下に設定されている。本実施の形態では、チューブ40の先端41と後端コイル52の後端との間の20℃における抵抗値が0.29Ω以上に設定されている。 The resistance value of the coil 50 between the tip 41 of the tube 40 and the rear end of the rear end coil 52 (the welded portion between the rear end coil 52 and the center pole 20) at 20 ° C. is set to 0.36 Ω or less. In the present embodiment, the resistance value at 20 ° C. between the front end 41 of the tube 40 and the rear end of the rear end coil 52 is set to 0.29Ω or more.

また、先端コイル51は、チューブ40の先端41から溶融部53までの軸線O方向の長さ、即ち第1部54の軸線O方向の長さと第2部55の軸線O方向の長さとを加えた全長が、6mm以上11mm以下に設定されている。 Further, the tip coil 51 adds the length in the axis O direction from the tip 41 of the tube 40 to the melting portion 53, that is, the length in the axis O direction of the first part 54 and the length in the axis O direction of the second part 55. The total length is set to 6 mm or more and 11 mm or less.

本実施の形態では、先端コイル51は、チューブ40の先端41及び溶融部53の溶接金属を除いて、先端41から溶融部53まで組成が同一であり、先端コイル51の先端側のピッチを後端側のピッチよりも小さくすることにより、第1部54及び第2部55の抵抗値の割合が設定されている。これにより、先端コイル51の構造を簡素化できる。 In the present embodiment, the tip coil 51 has the same composition from the tip 41 to the melt 53 except for the weld metal of the tip 41 of the tube 40 and the melt 53, and the pitch on the tip side of the tip coil 51 is rearranged. By making the pitch smaller than the pitch on the end side, the ratio of the resistance values of the first part 54 and the second part 55 is set. This makes it possible to simplify the structure of the tip coil 51.

なお、第1部54及び第2部55の抵抗値の割合を設定する手段は、先端コイル51のピッチを調節する手段に限られない。抵抗値の割合を設定する他の手段としては、例えば、先端コイル51の先端側の線径を後端側の線径よりも小さくする手段、20℃における比抵抗の異なる材料で作られた2つのコイルを直列に接合して先端コイル51を作り、比抵抗の高い方のコイルをチューブ40の先端41に接合する手段などが挙げられる。これらの場合も先端コイル51の先端側の抵抗値を後端側の抵抗値よりも高くできるので、第1部54の抵抗値の割合を第2部55の抵抗値の割合より大きくできる。 The means for setting the ratio of the resistance values of the first part 54 and the second part 55 is not limited to the means for adjusting the pitch of the tip coil 51. Other means for setting the ratio of the resistance values include, for example, a means for making the wire diameter on the front end side of the tip coil 51 smaller than the wire diameter on the rear end side, and a material made of a material having a different specific resistance at 20 ° C. 2 Examples thereof include means in which two coils are joined in series to form a tip coil 51, and the coil having the higher specific resistance is joined to the tip 41 of the tube 40. In these cases as well, the resistance value on the front end side of the front end coil 51 can be made higher than the resistance value on the rear end side, so that the ratio of the resistance value of the first part 54 can be made larger than the ratio of the resistance value of the second part 55.

次に図3を参照して、グロープラグ10に印加した電圧Vとグロープラグ10の発熱温度Tとの関係を説明する。図3は電圧Vとグロープラグ10の発熱温度Tとの関係を示す模式図である。図3は横軸に時間(秒)をとり、実線は発熱温度Tを示し、破線は電圧Vを示す。 Next, with reference to FIG. 3, the relationship between the voltage V applied to the glow plug 10 and the heat generation temperature T of the glow plug 10 will be described. FIG. 3 is a schematic view showing the relationship between the voltage V and the heat generation temperature T of the glow plug 10. In FIG. 3, the horizontal axis represents time (seconds), the solid line indicates the heat generation temperature T, and the broken line indicates the voltage V.

グロープラグ10の接続部21と主体金具30との間に電圧Vを印加すると、先端コイル51の抵抗値R及び後端コイル52の抵抗値Rの和R+Rで電圧Vを除した電流Iが、コイル50に流れる。単位時間当たりの先端コイル51の発熱量はR・Iであり、単位時間当たりの後端コイル52の発熱量はR・Iである。 When a voltage V is applied between the connection portion 21 of the glow plug 10 and the main metal fitting 30, the voltage V is divided by the sum R 1 + R 2 of the resistance value R 1 of the front coil 51 and the resistance value R 2 of the rear end coil 52. The generated current I flows through the coil 50. The calorific value of the front end coil 51 per unit time is R 1 · I 2 , and the calorific value of the rear end coil 52 per unit time is R 2 · I 2 .

先端コイル51の20℃における抵抗値Rは0.13Ω以下なので、接続部21と主体金具30との間に印加する電圧を過大にしなくても、発熱時に先端コイル51を流れる電流Iを確保できる。よって、先端コイル51の発熱量を確保できる。なお、コイル50は、後端コイル52の20℃における抵抗値Rが、先端コイル51の20℃における抵抗値Rよりも大きい値(具体的には0.06Ω以上)に設定されている。常温においてコイル50に流れる電流I(突入電流)を確保し、コイル50を発熱させるためである。 Since the resistance value R 1 of the tip coil 51 at 20 ° C. is 0.13 Ω or less, the current I flowing through the tip coil 51 during heat generation is secured without excessively applying the voltage between the connection portion 21 and the main metal fitting 30. can. Therefore, the amount of heat generated by the tip coil 51 can be secured. The coil 50 is set so that the resistance value R 2 of the rear end coil 52 at 20 ° C. is larger than the resistance value R 1 of the front end coil 51 at 20 ° C. (specifically, 0.06 Ω or more). .. This is to secure the current I (inrush current) flowing through the coil 50 at room temperature and to heat the coil 50.

後端コイル52は先端コイル51の抵抗比R1よりも小さい抵抗比R2をもつので、コイル50の発熱による温度上昇に伴い、先端コイル51の抵抗値Rが後端コイル52の抵抗値Rよりも大きくなる。その結果、先端コイル51の単位時間当たりの発熱量R・Iを、後端コイル52の単位時間当たりの発熱量R・Iより大きくできる。 Since the rear end coil 52 has a resistivity R2 smaller than the resistance ratio R1 of the front end coil 51, the resistance value R 1 of the front end coil 51 becomes the resistance value R 2 of the rear end coil 52 as the temperature rises due to the heat generation of the coil 50. Will be larger than. As a result, the heating value R 1 · I 2 per unit time of the tip coil 51, can be greater than the heating value R 2 · I 2 per unit time of the rear coil 52.

先端コイル51はW,Moを主成分とする高融点金属により形成されているので、発熱温度Tを高温化できる。グロープラグ10は、先端コイル51の20℃における抵抗値Rに対する、先端コイル51のうち第1部54の20℃における抵抗値の割合が55〜80%なので、第1部54の発熱量を第2部55の発熱量よりも大きくできる。従って、所望する温度(例えば1000℃)まで第1部54の発熱温度Tを急速に昇温させることができ、急速昇温性を確保できる。 Since the tip coil 51 is formed of a refractory metal containing W and Mo as main components, the heat generation temperature T can be increased. Glow plug 10, to the resistance value R 1 at 20 ° C. of the tip coil 51, 55 to 80% proportion of resistance value at 20 ° C. of the first unit 54 so out of the tip coil 51, the heating value of the first portion 54 It can be larger than the calorific value of Part 2 55. Therefore, the heat generation temperature T of the first part 54 can be rapidly raised to a desired temperature (for example, 1000 ° C.), and the rapid temperature rise property can be ensured.

所望する温度(ここでは1000℃)に発熱温度Tが到達した後、発熱温度Tを安定時の飽和温度(例えば1100℃)にするため、グロープラグ10に印加する電圧Vを低下させる。後端コイル52の発熱量は先端コイル51の発熱量より小さいので、電圧Vを低下させる遷移時に、先端コイル51の熱量が後端コイル52へ移動する。その結果、先端コイル51の依存度の高い発熱温度Tが、一時的に温度Dだけ低下する。温度Dが大きくなり発熱温度Tが大きく低下すると、エンジンの燃焼が不安定になったり排気ガスのエミッションが増加したりする。 After the heat generation temperature T reaches a desired temperature (here, 1000 ° C.), the voltage V applied to the glow plug 10 is lowered in order to bring the heat generation temperature T to the stable saturation temperature (for example, 1100 ° C.). Since the heat generation amount of the rear end coil 52 is smaller than the heat generation amount of the front end coil 51, the heat generation amount of the front end coil 51 moves to the rear end coil 52 at the transition when the voltage V is lowered. As a result, the heat generation temperature T, which is highly dependent on the tip coil 51, temporarily decreases by the temperature D. When the temperature D increases and the heat generation temperature T decreases significantly, the combustion of the engine becomes unstable and the exhaust gas emission increases.

これを防ぐため、グロープラグ10は、先端コイル51のうち第2部55の20℃における抵抗値の割合が20〜45%に設定されている。第2部55は、先端コイル51に対する抵抗値の割合(20〜45%)に応じて発熱するので、飽和状態へ遷移させるために電圧Vを下げたときに、第1部54から第2部55へ移動する熱量を抑制できる。よって、発熱温度Tを飽和させるために電圧Vを下げたときの遷移時の温度低下(温度D)を抑制できる。その結果、発熱温度Tの高温化および急速昇温性を確保しつつ、発熱温度Tを飽和させるために電圧Vを下げたときの温度低下を抑制できる。従って、グロープラグ10はエンジンの燃焼を補助し、始動後のエンジンのアイドル運転を安定化できると共に、排気ガスのエミッションを減少できる。 In order to prevent this, in the glow plug 10, the ratio of the resistance value of the second part 55 of the tip coil 51 at 20 ° C. is set to 20 to 45%. Since the second part 55 generates heat according to the ratio of the resistance value to the tip coil 51 (20 to 45%), when the voltage V is lowered to make the transition to the saturated state, the first part 54 to the second part The amount of heat transferred to 55 can be suppressed. Therefore, it is possible to suppress the temperature drop (temperature D) at the time of transition when the voltage V is lowered in order to saturate the heat generation temperature T. As a result, it is possible to suppress the temperature decrease when the voltage V is lowered in order to saturate the heat generation temperature T, while ensuring the high temperature of the heat generation temperature T and the rapid temperature rise property. Therefore, the glow plug 10 can assist the combustion of the engine, stabilize the idle operation of the engine after starting, and can reduce the emission of exhaust gas.

なお、グロープラグ10は、チューブ40の先端41と後端コイル52の後端との間(コイル50)の20℃における抵抗値が0.36Ω以下に設定されているので、先端コイル51を流れる電流値を確保できる。先端コイル51の発熱量を確保できるので、急速昇温性を確保できる。 Since the resistance value of the glow plug 10 between the tip 41 of the tube 40 and the rear end of the rear end coil 52 (coil 50) at 20 ° C. is set to 0.36 Ω or less, the glow plug 10 flows through the tip coil 51. The current value can be secured. Since the amount of heat generated by the tip coil 51 can be secured, rapid temperature rise can be ensured.

グロープラグ10は、突入時は電圧の印加によって先端コイル51の第1部54が急速に発熱し、さらに飽和状態に遷移するときの第1部54の温度低下を抑制できる。従って、グロープラグ10の省電力化を実現できる。 The glow plug 10 can suppress a temperature drop of the first part 54 when the tip coil 51 is rapidly heated by applying a voltage at the time of rushing and further transitions to a saturated state. Therefore, the power saving of the glow plug 10 can be realized.

また、チューブ40の先端41と後端コイル52の後端との間(コイル50)の20℃における抵抗値が0.29Ω以上に設定されているので、突入時の電流値を規制できる。その結果、グロープラグ10を制御するコントローラ(図示せず)に過大な突入電流が流れないようにできるので、コントローラを保護できる。 Further, since the resistance value at 20 ° C. between the front end 41 of the tube 40 and the rear end of the rear end coil 52 (coil 50) is set to 0.29Ω or more, the current value at the time of plunge can be regulated. As a result, an excessive inrush current can be prevented from flowing to the controller (not shown) that controls the glow plug 10, so that the controller can be protected.

なお、コントローラに流れる突入電流を抑制するために、グロープラグ10とは別に保護抵抗を設けることは当然可能である。保護抵抗を設ける場合には、グロープラグ10の20℃における抵抗値を0.29Ω以上に設定しなくても良い。しかし、グロープラグ10の20℃における抵抗値を0.29Ω以上に設定することにより、保護抵抗を省略できるので、その分だけ部品点数を削減できる。 Of course, it is possible to provide a protective resistor separately from the glow plug 10 in order to suppress the inrush current flowing through the controller. When a protective resistor is provided, the resistance value of the glow plug 10 at 20 ° C. does not have to be set to 0.29Ω or more. However, by setting the resistance value of the glow plug 10 at 20 ° C. to 0.29Ω or more, the protection resistance can be omitted, so that the number of parts can be reduced accordingly.

先端コイル51は、チューブ40の先端41から溶融部53までの軸線O方向の長さ、即ち第1部54の軸線O方向の長さと第2部55の軸線O方向の長さとを加えた全長が、6mm以上11mm以下に設定されている。これにより、先端コイル51の展開長さを適度に設定できる。その結果、先端コイル51の抵抗値が過大にならないようにしつつ、先端コイル51の抵抗値に対する第1部54の抵抗値の割合を設定し易くできる。 The tip coil 51 has a total length obtained by adding the length in the axis O direction from the tip 41 of the tube 40 to the melting portion 53, that is, the length in the axis O direction of the first part 54 and the length in the axis O direction of the second part 55. Is set to 6 mm or more and 11 mm or less. Thereby, the unfolding length of the tip coil 51 can be appropriately set. As a result, it is possible to easily set the ratio of the resistance value of the first part 54 to the resistance value of the tip coil 51 while preventing the resistance value of the tip coil 51 from becoming excessive.

絶縁粉末60はSi粉末を含有するので、絶縁粉末60の全てがMgO粉末の場合に比べて、絶縁粉末60の熱伝導性を悪化させることができる。その結果、絶縁粉末60の熱伝導による第1部54の熱放散を抑制できるので、チューブ40の先端41から発熱させることにより、突入時の急速昇温性の確保と遷移時の温度低下の抑制とを絶縁粉末60が助長する。 Since the insulating powder 60 contains Si powder, the thermal conductivity of the insulating powder 60 can be deteriorated as compared with the case where all of the insulating powder 60 is MgO powder. As a result, the heat dissipation of the first part 54 due to the heat conduction of the insulating powder 60 can be suppressed. And the insulating powder 60 promotes.

グロープラグ10は、例えば、次のようにして製造される。まず、所定の組成を有する抵抗発熱線をコイル状に加工し、先端コイル51及び後端コイル52をそれぞれ製造する。次いで、先端コイル51と後端コイル52との端部同士を溶接により接合し、コイル50とする。次いで、コイル50のうち後端コイル52を中軸20の先端に接合する。 The glow plug 10 is manufactured, for example, as follows. First, a resistance heating wire having a predetermined composition is processed into a coil shape to manufacture a front end coil 51 and a rear end coil 52, respectively. Next, the ends of the front end coil 51 and the rear end coil 52 are joined by welding to form the coil 50. Next, the rear end coil 52 of the coil 50 is joined to the tip of the center pole 20.

一方、所定の組成を有する金属鋼管をチューブ40の最終寸法よりも大径に形成し、かつ、その先端を他の部分よりも減径させて、先端が開口した先窄まり状のチューブ前駆体を製造する。チューブ前駆体の内部に中軸20と一体となったコイル50を挿入し、チューブ前駆体の先窄まり状の開口部にコイル50の先端を配置する。チューブ前駆体の開口部とコイル50の先端部分とを溶接によって溶融し、チューブ前駆体の先端部分を閉塞し、内部にコイル50が収容されたヒータ前駆体を形成する。 On the other hand, a metal steel pipe having a predetermined composition is formed to have a diameter larger than the final size of the tube 40, and the tip thereof is reduced in diameter from other parts, so that the tip is open and the tip is a constricted tube precursor. To manufacture. The coil 50 integrated with the center pole 20 is inserted into the tube precursor, and the tip of the coil 50 is arranged in the narrowed opening of the tube precursor. The opening of the tube precursor and the tip of the coil 50 are melted by welding to close the tip of the tube precursor to form a heater precursor in which the coil 50 is housed.

次いで、ヒータ前駆体のチューブ40内に絶縁粉末60を充填した後、チューブ40の後端の開口部と中軸20との間にシール材42を挿入して、チューブ40を封止する。次に、チューブ40が所定の外径になるまでチューブ40にスウェージング加工を施す。 Next, after filling the tube 40 of the heater precursor with the insulating powder 60, the sealing material 42 is inserted between the opening at the rear end of the tube 40 and the center pole 20 to seal the tube 40. Next, the tube 40 is swagged until the tube 40 has a predetermined outer diameter.

次に、スウェージング加工後のチューブ40を主体金具30の軸孔31に圧入固定し、中軸20の後端から主体金具30と中軸20との間にOリング22及び絶縁体23を嵌め込む。リング24で中軸20を加締めてグロープラグ10を得る。 Next, the swaging-processed tube 40 is press-fitted and fixed into the shaft hole 31 of the main metal fitting 30, and the O-ring 22 and the insulator 23 are fitted between the main metal fitting 30 and the central shaft 20 from the rear end of the central shaft 20. The center pole 20 is crimped with the ring 24 to obtain the glow plug 10.

本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。 The present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

<サンプル1〜10の作成>
タングステンを主成分とする合金で作られた線径Φ0.20mmの線材を用い、巻き数、ピッチ及び全長を調整して、第1部54及び第2部55の20℃における抵抗値が種々の割合に設定された全長が6〜11mmの先端コイル51を作成した。同様に、NiCr合金で作られた線材を用いて種々の後端コイル52を作成した。溶接により後端コイル52を先端コイル51に接合して、後端コイル52及び先端コイル51が直列に接続された種々のコイル50を作成した。
<Creation of samples 1 to 10>
Using a wire rod with a wire diameter of Φ0.20 mm made of an alloy containing tungsten as the main component, the number of turns, pitch and overall length are adjusted, and the resistance values of the first part 54 and the second part 55 at 20 ° C. are various. A tip coil 51 having a total length of 6 to 11 mm set to a ratio was prepared. Similarly, various rear end coils 52 were made using wire rods made of NiCr alloy. The rear end coil 52 was joined to the tip coil 51 by welding to create various coils 50 in which the rear end coil 52 and the tip coil 51 were connected in series.

このコイル50を用いて、図1に示すグロープラグ10と同様の構造を有するグロープラグを前述のとおりに製造し、表1に示すサンプル1〜10におけるグロープラグを得た。なお、サンプル1〜10におけるグロープラグは、0.2質量%のSi粉末を含有するMgO粉末を絶縁粉末60とした。 Using this coil 50, a glow plug having a structure similar to that of the glow plug 10 shown in FIG. 1 was manufactured as described above, and the glow plugs in Samples 1 to 10 shown in Table 1 were obtained. For the glow plugs in Samples 1 to 10, MgO powder containing 0.2% by mass of Si powder was used as the insulating powder 60.

なお、サンプル1〜10におけるグロープラグは、チューブ40の外径をΦ3.5mm以下(つまり、チューブ40のうちコイル50の第1部54の外側の部分(チューブ40の先端41から後端側に向かって4mmの位置までの部分)の外径をΦ3.5mm以下)とした。 The glow plugs in the samples 1 to 10 have an outer diameter of the tube 40 of Φ3.5 mm or less (that is, the outer portion of the tube 40 outside the first portion 54 of the coil 50 (from the tip 41 to the rear end side of the tube 40). The outer diameter of the portion up to the position of 4 mm was set to Φ3.5 mm or less).

Figure 0006931566
各サンプルのチューブ40の先端41から軸線O方向に2mm離れたチューブ40の表面の位置にPR熱電対を接合し、チューブ40の先端41付近の温度を測定した。なお、PR熱電対の代わりに放射温度計を用いても良い。
Figure 0006931566
A PR thermocouple was joined to the surface of the tube 40 2 mm away from the tip 41 of the tube 40 in the axial direction of each sample, and the temperature near the tip 41 of the tube 40 was measured. A radiation thermometer may be used instead of the PR thermocouple.

<突入時の温度>
各サンプルの接続部21と主体金具30との間に11Vの直流電圧を印加し、電圧を印加してから2秒後のチューブ40の先端41付近の温度を測定した。評価は、温度が900℃以上のサンプルは「◎:特に優れている」、温度が850℃以上900℃未満のサンプルは「〇:優れている」、温度が800℃以上850℃未満のサンプルは「△:良い」、温度が800℃未満のサンプルは「×:劣る」とした。結果は表1の「突入時の温度」の欄に記した。
<Temperature at the time of entry>
A DC voltage of 11 V was applied between the connection portion 21 of each sample and the main metal fitting 30, and the temperature near the tip 41 of the tube 40 was measured 2 seconds after the voltage was applied. The evaluation was "◎: particularly excellent" for samples with a temperature of 900 ° C or higher, "○: excellent" for samples with a temperature of 850 ° C or higher and lower than 900 ° C, and "excellent" for samples with a temperature of 800 ° C or higher and lower than 850 ° C. “Δ: Good” and samples with a temperature of less than 800 ° C. were evaluated as “×: inferior”. The results are shown in the "Temperature at the time of entry" column in Table 1.

<遷移時の温度低下>
電圧を印加してから2秒後のチューブ40の先端41付近の温度が1000℃になるように、各サンプルの接続部21と主体金具30との間に直流電圧を2秒間印加した後、印加電圧を下げた。このときの印加電圧は、チューブ40の先端41付近の温度が1100℃に飽和する定格電圧とした。印加電圧を下げるとチューブ40の温度は一時的に低下し、時間の経過につれて1100℃の飽和温度に向かって上昇した(図3参照)。急速昇温時のチューブ40の最高温度と、印加電圧を下げた遷移時のチューブ40の温度と、の温度差(図3に示す温度D)を測定した。
<Temperature drop during transition>
A DC voltage is applied between the connection portion 21 of each sample and the main metal fitting 30 for 2 seconds so that the temperature near the tip 41 of the tube 40 becomes 1000 ° C. 2 seconds after the voltage is applied. I lowered the voltage. The applied voltage at this time was a rated voltage at which the temperature near the tip 41 of the tube 40 was saturated at 1100 ° C. When the applied voltage was lowered, the temperature of the tube 40 temporarily dropped and increased toward a saturation temperature of 1100 ° C. over time (see FIG. 3). The temperature difference (temperature D shown in FIG. 3) between the maximum temperature of the tube 40 at the time of rapid temperature rise and the temperature of the tube 40 at the time of transition when the applied voltage was lowered was measured.

評価は、温度差が30℃未満のサンプルは「◎:特に優れている」、温度差が30℃以上50℃未満のサンプルは「〇:優れている」、温度差が50℃以上80℃未満のサンプルは「△:良い」、温度差が80℃以上のサンプルは「×:劣る」とした。結果は表1の「遷移時の温度低下」の欄に記した。 The evaluation was "◎: particularly excellent" for samples with a temperature difference of less than 30 ° C, "○: excellent" for samples with a temperature difference of 30 ° C or more and less than 50 ° C, and a temperature difference of 50 ° C or more and less than 80 ° C. The sample was "Δ: good", and the sample with a temperature difference of 80 ° C. or more was "x: inferior". The results are shown in the column of "Temperature drop during transition" in Table 1.

<総合評価>
高い「突入時の温度」と小さい「遷移時の温度低下」を両立できるグロープラグが要求される。従って「突入時の温度」の評価、「遷移時の温度低下」の評価の低い方を表1の「総合」の欄に記した。
<Comprehensive evaluation>
A glow plug that can achieve both a high "temperature at the time of entry" and a small "temperature drop at the time of transition" is required. Therefore, the one with the lower evaluation of "temperature at the time of entry" and "temperature drop at the time of transition" is shown in the "Comprehensive" column of Table 1.

<抵抗値の測定>
温度の測定を終えた各サンプルのチューブ40を軸線O方向に切り開き、チューブ40内に充填した絶縁粉末60を取り除いて、チューブ40の先端41と中軸20とに両端が接合した状態のコイル50を露出させた。4端子法により、以下の(1)〜(4)の部分の20℃における抵抗値を測定した。(1)チューブ40の先端41と溶融部53との間の先端コイル51、(2)チューブ40の先端41とチューブ40の先端41から軸線O方向に4mm離れた位置との間の第1部54、(3)チューブ40の先端41から軸線O方向に4mm離れた位置と溶融部53との間の第2部55、(4)チューブ40の先端41と後端コイル52の後端(中軸20の先端)との間のコイル50。
<Measurement of resistance value>
The tube 40 of each sample whose temperature has been measured is cut open in the direction of the axis O, the insulating powder 60 filled in the tube 40 is removed, and the coil 50 in a state where both ends are joined to the tip 41 and the center pole 20 of the tube 40 is provided. Exposed. The resistance values of the following parts (1) to (4) at 20 ° C. were measured by the four-terminal method. (1) The tip coil 51 between the tip 41 of the tube 40 and the melting portion 53, (2) The first part between the tip 41 of the tube 40 and the position 4 mm away from the tip 41 of the tube 40 in the axis O direction. 54, (3) Second part 55 between the melting part 53 and a position 4 mm away from the tip 41 of the tube 40 in the axis O direction, (4) The tip 41 of the tube 40 and the rear end (center pole) of the rear end coil 52. Coil 50 between the tip of 20).

抵抗値の測定後、チューブ40の先端41と先端コイル51の後端(溶融部53)との間の20℃における抵抗値に対する、第1部54の20℃における抵抗値の割合、及び、第2部55の20℃における抵抗値の割合を求めた。結果は表1に記した。なお、全てのサンプルのコイル50の20℃における抵抗値は0.33Ωであった。 After measuring the resistance value, the ratio of the resistance value of the first part 54 at 20 ° C. to the resistance value at 20 ° C. between the tip end 41 of the tube 40 and the rear end (melting portion 53) of the tip coil 51, and the first The ratio of the resistance value of the second part 55 at 20 ° C. was determined. The results are shown in Table 1. The resistance value of the coil 50 of all the samples at 20 ° C. was 0.33Ω.

<結果>
表1に示すように、先端コイル51の抵抗値が0.13Ωのサンプル1〜8において、第1部54の抵抗値の割合が80%を超え、第2部55の抵抗値の割合が20%未満のサンプル1及び2は、突入時の温度は評価基準を満たすが、遷移時の温度低下の評価基準は満たさなかった。サンプル1及び2は第2部55の発熱量が小さいので、印加電圧を下げると、第1部54から第2部55への熱伝導により第1部54の熱量が一時的に小さくなり、チューブ40の温度が低下したと推察された。
<Result>
As shown in Table 1, in the samples 1 to 8 in which the resistance value of the tip coil 51 is 0.13 Ω, the ratio of the resistance value of the first part 54 exceeds 80%, and the ratio of the resistance value of the second part 55 is 20. Samples 1 and 2 of less than% met the evaluation criteria for the temperature at the time of entry, but did not meet the evaluation criteria for the temperature decrease at the time of transition. Since the calorific value of the second part 55 is small in the samples 1 and 2, when the applied voltage is lowered, the heat amount of the first part 54 is temporarily reduced due to the heat conduction from the first part 54 to the second part 55, and the tube. It was speculated that the temperature of 40 had dropped.

第1部54の抵抗値の割合が55%未満であり、第2部55の抵抗値の割合が45%を超えたサンプル7及び8は、遷移時の温度低下は評価基準を満たすが、突入時の温度は評価基準を満たさなかった。サンプル7及び8は第1部54の抵抗値の割合が小さいので、第1部54の急速昇温に必要な発熱量を確保できないと推察された。 Samples 7 and 8 in which the ratio of the resistance value of Part 1 54 was less than 55% and the ratio of the resistance value of Part 2 55 exceeded 45% met the evaluation criteria for the temperature drop at the transition, but rushed. The temperature at the time did not meet the evaluation criteria. Since the ratio of the resistance value of the first part 54 is small in the samples 7 and 8, it is presumed that the calorific value required for the rapid temperature rise of the first part 54 cannot be secured.

これに対し、第1部54の抵抗値の割合が55%〜80%、第2部55の抵抗値の割合が20%〜45%のサンプル3〜6は、突入時の温度および遷移時の温度低下の評価基準を満たした。サンプル3〜6は、第1部54の急速昇温に必要な発熱量を確保し、併せて第1部54から第2部55へ移動する熱量を抑制できたと推察された。 On the other hand, the samples 3 to 6 in which the ratio of the resistance value of the first part 54 is 55% to 80% and the ratio of the resistance value of the second part 55 is 20% to 45% are the temperature at the time of entry and the temperature at the time of transition. Satisfied the evaluation criteria for temperature drop. It was presumed that the samples 3 to 6 were able to secure the amount of heat required for the rapid temperature rise of the first part 54, and at the same time, suppress the amount of heat transferred from the first part 54 to the second part 55.

なお、サンプル9及び10は第1部54の抵抗値の割合が55%、第2部55の抵抗値の割合が45%であるが、突入時の温度は評価基準を満たさなかった。サンプル9及び10は先端コイル51の抵抗値が0.13Ωを超えているので、この実施例で印加した11Vの直流電圧では、先端コイル51の急速昇温に必要な電流値を確保できなかったと推察される。 In the samples 9 and 10, the ratio of the resistance value of the first part 54 was 55%, and the ratio of the resistance value of the second part 55 was 45%, but the temperature at the time of entry did not meet the evaluation criteria. Since the resistance value of the tip coil 51 exceeds 0.13Ω in the samples 9 and 10, it is said that the current value required for the rapid temperature rise of the tip coil 51 could not be secured with the DC voltage of 11V applied in this embodiment. Inferred.

従って、第1部54の抵抗値の割合を55%〜80%に設定することにより、急速昇温性を確保しつつ、遷移時の温度低下を抑制できることが明らかになった。さらに、先端コイル51の抵抗値を0.13Ω以下に設定することにより、11Vの直流電圧の印加によって発熱量を確保できることが明らかになった。また、チューブ40のうちチューブ40の先端41から後端側に向かって4mmの位置までの部分の外径をΦ3.5mm以下にすることにより、チューブ40の先端41近傍の熱容量が過大にならないようにすることができ、急速昇温性を確保できることがわかった。 Therefore, it was clarified that by setting the ratio of the resistance value of Part 1 54 to 55% to 80%, it is possible to suppress the temperature decrease at the time of transition while ensuring the rapid temperature rise property. Further, it has been clarified that the amount of heat generated can be secured by applying a DC voltage of 11 V by setting the resistance value of the tip coil 51 to 0.13 Ω or less. Further, by setting the outer diameter of the portion of the tube 40 from the tip 41 of the tube 40 to the position 4 mm toward the rear end side to Φ3.5 mm or less, the heat capacity in the vicinity of the tip 41 of the tube 40 is not excessive. It was found that the rapid temperature rise can be ensured.

<サンプル11〜14の作成>
サンプル3と同様にして先端コイル51を作成した。NiCr合金で作られた線材を用いて種々の後端コイル52を作成した。溶接により後端コイル52を先端コイル51に接合して、後端コイル52及び先端コイル51が直列に接続された種々のコイル50を作成した。後端コイル52の巻き数を調整して、コイル50の20℃における抵抗値を調整した。なお、抵抗値の測定方法はサンプル1〜10について説明したとおりであり、各サンプルの温度の測定を終えた後に抵抗値を測定した。
<Creation of samples 11-14>
The tip coil 51 was prepared in the same manner as in Sample 3. Various rear end coils 52 were made using wire rods made of NiCr alloy. The rear end coil 52 was joined to the tip coil 51 by welding to create various coils 50 in which the rear end coil 52 and the tip coil 51 were connected in series. The number of turns of the rear end coil 52 was adjusted to adjust the resistance value of the coil 50 at 20 ° C. The method for measuring the resistance value is as described for Samples 1 to 10, and the resistance value was measured after the temperature measurement of each sample was completed.

このコイル50を用いて、図1に示すグロープラグ10と同様の構造を有するグロープラグを前述のとおりに製造し、表2に示すサンプル11〜14におけるグロープラグを得た。なお、サンプル11〜14におけるグロープラグは、0.2質量%のSi粉末を含有するMgO粉末を絶縁粉末60とした。 Using this coil 50, a glow plug having a structure similar to that of the glow plug 10 shown in FIG. 1 was manufactured as described above, and the glow plugs in Samples 11 to 14 shown in Table 2 were obtained. For the glow plugs in Samples 11 to 14, MgO powder containing 0.2% by mass of Si powder was used as the insulating powder 60.

Figure 0006931566
各サンプルのチューブ40の先端41から軸線O方向に2mm離れたチューブ40の表面の位置にPR熱電対を接合し、チューブ40の先端41付近の温度を測定した。なお、PR熱電対の代わりに放射温度計を用いても良い。
Figure 0006931566
A PR thermocouple was joined to the surface of the tube 40 2 mm away from the tip 41 of the tube 40 in the axial direction of each sample, and the temperature near the tip 41 of the tube 40 was measured. A radiation thermometer may be used instead of the PR thermocouple.

<突入時の温度>
各サンプルの接続部21と主体金具30との間に11Vの直流電圧を印加し、電圧を印加してから2秒後のチューブ40の先端41付近の温度を測定した。評価は、温度が950℃以上のサンプルは「◎:特に優れている」、温度が900℃以上950℃未満のサンプルは「〇:優れている」、温度が850℃以上900℃未満のサンプルは「△:良い」とした。結果は表2の「突入時の温度」の欄に記した。
<Temperature at the time of entry>
A DC voltage of 11 V was applied between the connection portion 21 of each sample and the main metal fitting 30, and the temperature near the tip 41 of the tube 40 was measured 2 seconds after the voltage was applied. The evaluation was "◎: particularly excellent" for samples with a temperature of 950 ° C or higher, "○: excellent" for samples with a temperature of 900 ° C or higher and lower than 950 ° C, and samples with a temperature of 850 ° C or higher and lower than 900 ° C. "△: Good". The results are shown in the "Temperature at the time of entry" column in Table 2.

<結果>
表2に示すように、コイル50(チューブ40の先端41と後端コイル52の後端との間)の20℃における抵抗値が0.29Ω以上0.36Ω以下のサンプル11〜14は、抵抗値が小さくなるにつれて温度が高くなり、急速昇温性が向上することが確認された。これは、コイル50の20℃における抵抗値が小さくなるにつれて、先端コイル51を流れる突入時の電流値が大きくなるからであると推察される。その結果、先端コイル51の突入時の発熱量を大きくできるので、急速昇温性を向上できると推察される。
<Result>
As shown in Table 2, the samples 11 to 14 having a resistance value of 0.29 Ω or more and 0.36 Ω or less at 20 ° C. of the coil 50 (between the front end 41 of the tube 40 and the rear end of the rear end coil 52) have resistance. It was confirmed that the temperature increased as the value decreased, and the rapid temperature rise property improved. It is presumed that this is because the current value at the time of plunge flowing through the tip coil 51 increases as the resistance value of the coil 50 at 20 ° C. decreases. As a result, the amount of heat generated when the tip coil 51 rushes can be increased, and it is presumed that the rapid temperature rise can be improved.

以上、実施の形態および実施例に基づき本発明を説明したが、本発明は上記実施の形態および実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、チューブ40の形状は筒状である限り特に限定されず、軸線Oに直交する断面が円形状、楕円形状、多角形状等であってもよい。また、コイル50の線径や直径、チューブ40の厚さや直径は、コイル50やチューブ40の熱容量などを考慮して適宜設定できる。 Although the present invention has been described above based on the embodiments and examples, the present invention is not limited to the above-described embodiments and examples, and various improved modifications are made without departing from the spirit of the present invention. It is easy to infer that is possible. For example, the shape of the tube 40 is not particularly limited as long as it is cylindrical, and the cross section orthogonal to the axis O may be circular, elliptical, polygonal, or the like. Further, the wire diameter and diameter of the coil 50 and the thickness and diameter of the tube 40 can be appropriately set in consideration of the heat capacity of the coil 50 and the tube 40 and the like.

実施の形態では、先端41の部分を除き、チューブ40の全体を同一の外径にする場合について説明したが、必ずしもこれに限られるものではない。例えば、チューブ40のうち先端41から後端側に向かって4mmの位置の外径よりも、チューブ40のうち主体金具30の内側の部分の外径を大きくした異径のチューブ40を採用することは当然可能である。先端側の外径が小さい異径のチューブ40を採用することにより、チューブ40の先端41側の熱容量を小さくできるので、急速昇温性を確保し易くできる。 In the embodiment, the case where the entire tube 40 has the same outer diameter except for the portion of the tip 41 has been described, but the present invention is not necessarily limited to this. For example, a tube 40 having a different diameter is used, in which the outer diameter of the inner portion of the main metal fitting 30 of the tube 40 is larger than the outer diameter of the tube 40 at a position 4 mm from the tip 41 toward the rear end. Is of course possible. By adopting a tube 40 having a different diameter with a small outer diameter on the tip side, the heat capacity on the tip 41 side of the tube 40 can be reduced, so that rapid temperature rise can be easily ensured.

さらに、先端41側よりも外径の大きいチューブ40の後端側が主体金具30に圧入されるので、主体金具30の内径をチューブ40の先端41側の外径に応じて小さくしなくても良い。また、中軸20の先端はチューブ40の後端側に挿入されるので、中軸20の直径をチューブ40の後端側の内径に応じて小さくしなくても良い。即ち、中軸20の外径や主体金具30の内径をチューブ40の先端41側の外径と無関係に設定できるので、中軸20や主体金具30の設計の自由度を確保できる。 Further, since the rear end side of the tube 40 having a larger outer diameter than the tip 41 side is press-fitted into the main metal fitting 30, the inner diameter of the main metal fitting 30 does not have to be reduced according to the outer diameter of the tube 40 on the tip 41 side. .. Further, since the tip of the center pole 20 is inserted into the rear end side of the tube 40, the diameter of the center pole 20 does not have to be reduced according to the inner diameter of the rear end side of the tube 40. That is, since the outer diameter of the center pole 20 and the inner diameter of the main metal fitting 30 can be set independently of the outer diameter of the tube 40 on the tip 41 side, the degree of freedom in designing the center pole 20 and the main metal fitting 30 can be ensured.

10 グロープラグ
20 中軸
40 チューブ
41 先端
50 コイル
51 先端コイル
52 後端コイル
54 第1部(部分)
O 軸線
10 Glow plug 20 Center pole 40 Tube 41 Tip 50 Coil 51 Tip coil 52 Rear end coil 54 Part 1 (part)
O axis

Claims (6)

軸線方向に延びる金属製の中軸と、
前記中軸の先端に電気的に接続するコイルと、
前記コイル及び前記中軸の先端側を収容して前記コイルが電気的に接続されると共に先端が閉じた金属製のチューブと、を備えるグロープラグであって、
前記コイルは、前記チューブの前記先端に電気的に接続されると共にWやMoを主成分とする先端コイルと、前記先端コイルの後端に電気的に接続される後端コイルと、を有し、
前記先端コイルの20℃での抵抗値に対する1000℃での抵抗値の比である抵抗比R1と、前記後端コイルの20℃での抵抗値に対する1000℃での抵抗値の比である抵抗比R2とは、R1>R2の関係を満たし、
前記チューブの前記先端と前記先端コイルの前記後端との間の20℃における抵抗値に対する、前記チューブの前記先端から軸線方向の後端側に向かって4mmの位置における前記先端コイルと前記チューブの先端との間の20℃における抵抗値の割合が55〜80%であるグロープラグ。
A metal center pole that extends in the axial direction,
A coil that is electrically connected to the tip of the center pole,
A glow plug comprising the coil and a metal tube that accommodates the tip end side of the center pole and is electrically connected to the coil and has a closed tip.
The coil has a tip coil that is electrically connected to the tip of the tube and is mainly composed of W or Mo, and a rear end coil that is electrically connected to the rear end of the tip coil. ,
The resistance ratio R1 which is the ratio of the resistance value at 1000 ° C. to the resistance value at 20 ° C. of the front end coil and the resistance ratio which is the ratio of the resistance value at 1000 ° C. to the resistance value of the rear end coil at 20 ° C. R2 satisfies the relationship of R1> R2 and satisfies.
The tip coil and the tube at a position 4 mm from the tip of the tube toward the rear end side in the axial direction with respect to the resistance value at 20 ° C. between the tip of the tube and the rear end of the tip coil. A glow plug in which the ratio of the resistance value to the tip at 20 ° C. is 55 to 80%.
前記チューブの前記先端と前記先端コイルの前記後端との間の前記抵抗値が0.13Ω以下である請求項1記載のグロープラグ。 The glow plug according to claim 1, wherein the resistance value between the tip of the tube and the rear end of the tip coil is 0.13 Ω or less. 前記先端コイルは、自身の先端から前記後端まで組成が同一であり、先端側のピッチが後端側のピッチよりも小さい請求項1又は2に記載のグロープラグ。 The glow plug according to claim 1 or 2, wherein the tip coil has the same composition from its own tip to the rear end, and the pitch on the tip side is smaller than the pitch on the rear end side. 前記チューブの先端と前記後端コイルの後端との間の20℃における抵抗値が0.36Ω以下である請求項1から3のいずれかに記載のグロープラグ。 The glow plug according to any one of claims 1 to 3, wherein the resistance value between the front end of the tube and the rear end of the rear end coil at 20 ° C. is 0.36 Ω or less. 前記チューブの前記先端から前記先端コイルの前記後端までの軸線方向の長さは、6mm以上11mm以下である請求項1から4のいずれかに記載のグロープラグ。 The glow plug according to any one of claims 1 to 4, wherein the length in the axial direction from the tip of the tube to the rear end of the tip coil is 6 mm or more and 11 mm or less. 前記チューブの前記先端から軸線方向の後端側に向かって4mmの位置までの前記チューブの外径は3.5mm以下である請求項1から5のいずれかに記載のグロープラグ。 The glow plug according to any one of claims 1 to 5, wherein the outer diameter of the tube from the tip of the tube to a position 4 mm toward the rear end side in the axial direction is 3.5 mm or less.
JP2017145147A 2016-12-12 2017-07-27 Glow plug Active JP6931566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17200876.5A EP3333483B1 (en) 2016-12-12 2017-11-09 Glow plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016240059 2016-12-12
JP2016240059 2016-12-12

Publications (2)

Publication Number Publication Date
JP2018096670A JP2018096670A (en) 2018-06-21
JP6931566B2 true JP6931566B2 (en) 2021-09-08

Family

ID=62633348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017145147A Active JP6931566B2 (en) 2016-12-12 2017-07-27 Glow plug

Country Status (1)

Country Link
JP (1) JP6931566B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6997731B2 (en) * 2019-01-25 2022-01-18 日本特殊陶業株式会社 Glow plug

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218A (en) * 1983-06-17 1985-01-05 Ngk Spark Plug Co Ltd Self-regulating type ceramic glow plug
JP4086764B2 (en) * 2002-11-29 2008-05-14 日本特殊陶業株式会社 Glow plug
US6878903B2 (en) * 2003-04-16 2005-04-12 Fleming Circle Associates, Llc Glow plug
CN101365912A (en) * 2007-03-12 2009-02-11 日本特殊陶业株式会社 Glow plug manufacturing method and glow plug
WO2011162074A1 (en) * 2010-06-22 2011-12-29 日本特殊陶業株式会社 Glowplug, production method thereof and heating device
DE102013212283A1 (en) * 2013-06-26 2014-12-31 Robert Bosch Gmbh Glow tube for a controllable glow plug
JP6312542B2 (en) * 2014-07-15 2018-04-18 日本特殊陶業株式会社 Glow plug

Also Published As

Publication number Publication date
JP2018096670A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5255706B2 (en) Glow plug, manufacturing method thereof, and heating device
CN105308392A (en) Glow tube for a controllable sheathed glow plug
JP6931566B2 (en) Glow plug
WO2013157223A1 (en) Glow plug
JP6996848B2 (en) Glow plug
JP6525616B2 (en) Glow plug
JP4695536B2 (en) Glow plug
JP6946048B2 (en) Glow plug
EP3333483B1 (en) Glow plug
JP6997731B2 (en) Glow plug
JP7018265B2 (en) Glow plug
WO2013035429A1 (en) Ceramic heater type glow plug
JP2004061041A (en) Ceramic glow plug
JP6771985B2 (en) Glow plug
JP6592372B2 (en) Glow plug
JP6771964B2 (en) Glow plug manufacturing method and glow plug
JP4200045B2 (en) Glow plug
JP6965153B2 (en) Glow plug
EP3441672B1 (en) Glow plug
JP2019045109A (en) Glow plug
JP7045161B2 (en) Glow plug
JP6796957B2 (en) Glow plug
JPS642855B2 (en)
EP3163170B1 (en) Method of producing glow plug and the glow plug
JP2019032151A (en) Glow plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6931566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350