JP6930634B2 - Nickel film forming method and nickel solution for use in the method - Google Patents

Nickel film forming method and nickel solution for use in the method Download PDF

Info

Publication number
JP6930634B2
JP6930634B2 JP2020095163A JP2020095163A JP6930634B2 JP 6930634 B2 JP6930634 B2 JP 6930634B2 JP 2020095163 A JP2020095163 A JP 2020095163A JP 2020095163 A JP2020095163 A JP 2020095163A JP 6930634 B2 JP6930634 B2 JP 6930634B2
Authority
JP
Japan
Prior art keywords
nickel
base material
film
solid electrolyte
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020095163A
Other languages
Japanese (ja)
Other versions
JP2020125548A (en
Inventor
祐規 佐藤
祐規 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017057862A external-priority patent/JP6760166B2/en
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020095163A priority Critical patent/JP6930634B2/en
Publication of JP2020125548A publication Critical patent/JP2020125548A/en
Application granted granted Critical
Publication of JP6930634B2 publication Critical patent/JP6930634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ニッケル皮膜の形成方法、及び当該方法に使用するためのニッケル溶液に関する。 The present invention relates to a method for forming a nickel film and a nickel solution for use in the method.

ニッケルは優れた物理的性質を有するため、様々な基材の表面にニッケル皮膜が形成されている。 Since nickel has excellent physical properties, nickel films are formed on the surfaces of various substrates.

例えば、特許文献1は、ステンレス鋼基材上にウッドストライクニッケルメッキを施し、形成されたウッドストライクニッケルメッキ層上にカチオン電着塗装を施すことを含む、塗装ステンレス鋼部材の製造方法を開示している。 For example, Patent Document 1 discloses a method for manufacturing a coated stainless steel member, which comprises applying wood strike nickel plating on a stainless steel base material and cation electrodeposition coating on the formed wood strike nickel plating layer. ing.

特許文献2は、ニッケル皮膜に限定されるものではないが、固体電解質及び金属イオンを含有する固体電解質膜を挟んで配置された陰極基材と陽極基材間に電圧を与えることにより金属イオンを還元して陰極基材上に金属を析出させる工程を含む金属膜形成方法を開示している。 Patent Document 2 is not limited to the nickel film, but metal ions are generated by applying a voltage between the cathode base material and the anode base material arranged so as to sandwich the solid electrolyte and the solid electrolyte film containing the metal ions. A metal film forming method including a step of reducing and precipitating a metal on a cathode substrate is disclosed.

特許文献3は、特許文献2の方法をニッケル溶液を用いて実施した際に生じる問題(即ち、固体電解質膜と基材との間における水素ガスの発生)を解決するために、所定のpHを有するニッケル溶液を用いて特許文献2の方法を実施することを開示している。 Patent Document 3 sets a predetermined pH in order to solve a problem (that is, generation of hydrogen gas between a solid electrolyte membrane and a base material) that occurs when the method of Patent Document 2 is carried out using a nickel solution. It is disclosed that the method of Patent Document 2 is carried out using a nickel solution having a nickel solution.

特開2013−253306号公報Japanese Unexamined Patent Publication No. 2013-253306 特開2012−219362号公報Japanese Unexamined Patent Publication No. 2012-219362 特開2015−92012号公報Japanese Unexamined Patent Publication No. 2015-92012

例えば特許文献2及び3のように、固体電解質膜を金属基材(特にアルミニウム基材)に接触させた状態で金属基材の表面にニッケル皮膜を形成しようとすると、金属基材に腐食が生じることが判明した。 For example, as in Patent Documents 2 and 3, when an attempt is made to form a nickel film on the surface of a metal base material in a state where the solid electrolyte film is in contact with a metal base material (particularly an aluminum base material), the metal base material is corroded. It has been found.

従って、本発明は、固体電解質膜を金属基材に接触させた状態で、金属基材の腐食を抑制しながら、金属基材の表面にニッケル皮膜を形成することを目的とする。 Therefore, an object of the present invention is to form a nickel film on the surface of a metal base material while suppressing corrosion of the metal base material in a state where the solid electrolyte film is in contact with the metal base material.

本発明者等は、金属基材の腐食の原因がニッケル溶液に含まれる塩化物イオンであることを発見した。一方、ニッケル溶液から塩化物イオンを除去すると、ニッケル皮膜の形成速度が著しく低下するということも判明した。そこで、本発明者等が、塩化物イオンの濃度について詳細に検討した結果、ニッケル皮膜の形成速度を維持又は向上させつつ、金属基材の腐食を抑制することのできる塩化物イオンの濃度を見出した。本発明者等が見出した塩化物イオンの濃度は、従来のニッケル皮膜の形成方法における濃度とは大きく異なる範囲であった。 The present inventors have discovered that the cause of corrosion of the metal substrate is chloride ions contained in the nickel solution. On the other hand, it was also found that when chloride ions were removed from the nickel solution, the rate of formation of the nickel film was significantly reduced. Therefore, as a result of detailed examination of the chloride ion concentration, the present inventors have found a chloride ion concentration capable of suppressing corrosion of the metal substrate while maintaining or improving the formation rate of the nickel film. rice field. The concentration of chloride ions found by the present inventors was in a range significantly different from the concentration in the conventional method for forming a nickel film.

本発明の実施形態として以下のものを挙げることができる。
[1]陽極と、陰極として機能する金属基材と、ニッケルイオンと塩化物イオンとを含む溶液を含む固体電解質膜とを、前記固体電解質膜が前記陽極と前記金属基材との間に位置するように、且つ前記固体電解質膜が前記金属基材の表面に接触するように配置すること、及び
前記陽極と前記金属基材との間に電圧を印加することによって、前記固体電解質膜と接触した前記金属基材の表面にニッケル皮膜を形成すること、
を含む、ニッケル皮膜の形成方法であって、
前記塩化物イオンの濃度が0.002〜0.1 mol/Lである、ニッケル皮膜の形成方法。
[2]前記塩化物イオンの濃度が0.01〜0.06 mol/Lである、[1]に記載のニッケル皮膜の形成方法。
[3]前記溶液のpHが2.5〜4.25である、[1]又は[2]に記載のニッケル皮膜の形成方法。
[4]前記溶液のpHが3〜4である、[3]に記載のニッケル皮膜の形成方法。
[5]前記金属基材がアルミニウム基材である、[1]〜[4]のいずれかに記載のニッケル皮膜の形成方法。
[6]陽極と、陰極として機能する金属基材と、ニッケルイオンと塩化物イオンとを含む溶液を含む固体電解質膜とを、前記固体電解質膜が前記陽極と前記金属基材との間に位置するように、且つ前記固体電解質膜が前記金属基材の表面に接触するように配置すること、及び
前記陽極と前記金属基材との間に電圧を印加することによって、前記固体電解質膜と接触した前記金属基材の表面にニッケル皮膜を形成すること、
を含む、ニッケル皮膜の形成方法に使用するための、ニッケルイオンと塩化物イオンとを含む溶液であって、
前記塩化物イオンの濃度が0.002〜0.1 mol/Lである、溶液。
[7]前記塩化物イオンの濃度が0.01〜0.06 mol/Lである、[6]に記載の溶液。
[8]前記溶液のpHが2.5〜4.25である、[6]又は[7]に記載の溶液。
[9]前記溶液のpHが3〜4である、[8]に記載の溶液。
[10]前記金属基材がアルミニウム基材である、[6]〜[9]のいずれかに記載の溶液。
The following can be mentioned as an embodiment of the present invention.
[1] An anode, a metal base material functioning as a cathode, and a solid electrolyte membrane containing a solution containing nickel ions and chloride ions are located between the anode and the metal base material. By arranging the solid electrolyte membrane so as to be in contact with the surface of the metal base material, and by applying a voltage between the anode and the metal base material, the solid electrolyte membrane is brought into contact with the solid electrolyte membrane. To form a nickel film on the surface of the metal substrate,
A method for forming a nickel film, including
A method for forming a nickel film having a chloride ion concentration of 0.002 to 0.1 mol / L.
[2] The method for forming a nickel film according to [1], wherein the chloride ion concentration is 0.01 to 0.06 mol / L.
[3] The method for forming a nickel film according to [1] or [2], wherein the pH of the solution is 2.5 to 4.25.
[4] The method for forming a nickel film according to [3], wherein the pH of the solution is 3 to 4.
[5] The method for forming a nickel film according to any one of [1] to [4], wherein the metal base material is an aluminum base material.
[6] An anode, a metal substrate functioning as a cathode, and a solid electrolyte membrane containing a solution containing nickel ions and chloride ions are located between the anode and the metal substrate. By arranging the solid electrolyte membrane so as to be in contact with the surface of the metal base material, and by applying a voltage between the anode and the metal base material, the solid electrolyte membrane is brought into contact with the solid electrolyte membrane. To form a nickel film on the surface of the metal substrate,
A solution containing nickel ions and chloride ions for use in a method for forming a nickel film, which comprises.
A solution having a chloride ion concentration of 0.002-0.1 mol / L.
[7] The solution according to [6], wherein the chloride ion concentration is 0.01 to 0.06 mol / L.
[8] The solution according to [6] or [7], wherein the pH of the solution is 2.5 to 4.25.
[9] The solution according to [8], wherein the pH of the solution is 3 to 4.
[10] The solution according to any one of [6] to [9], wherein the metal base material is an aluminum base material.

本発明によれば、固体電解質膜を金属基材に接触させた状態で、金属基材の腐食を抑制しながら、金属基材の表面にニッケル皮膜を形成することができる。 According to the present invention, it is possible to form a nickel film on the surface of a metal base material while suppressing corrosion of the metal base material in a state where the solid electrolyte film is in contact with the metal base material.

図1Aは、成膜装置1Aの模式的断面図を示す。FIG. 1A shows a schematic cross-sectional view of the film forming apparatus 1A. 図1Bは、図1Aの成膜装置1Aを用いて、金属基材の表面にニッケル皮膜を形成する工程を示す。FIG. 1B shows a step of forming a nickel film on the surface of a metal substrate by using the film forming apparatus 1A of FIG. 1A. 比較例1において得られたニッケル皮膜の写真及び状態図を示す。A photograph and a phase diagram of the nickel film obtained in Comparative Example 1 are shown. 比較例2において得られたニッケル皮膜の写真及び状態図を示す。A photograph and a phase diagram of the nickel film obtained in Comparative Example 2 are shown. 実施例1において得られたニッケル皮膜の写真及び状態図を示す。The photograph and the phase diagram of the nickel film obtained in Example 1 are shown. 実施例2において得られたニッケル皮膜の写真及び状態図を示す。The photograph and the phase diagram of the nickel film obtained in Example 2 are shown. 実施例3において得られたニッケル皮膜の写真及び状態図を示す。The photograph and the phase diagram of the nickel film obtained in Example 3 are shown. 実施例4において得られたニッケル皮膜の写真及び状態図を示す。The photograph and the phase diagram of the nickel film obtained in Example 4 are shown. 実施例5において得られたニッケル皮膜の写真及び状態図を示す。The photograph and the phase diagram of the nickel film obtained in Example 5 are shown. ニッケル溶液の塩化物イオン濃度と正常なニッケル皮膜の面積率との関係を示す。The relationship between the chloride ion concentration of the nickel solution and the area ratio of the normal nickel film is shown. ニッケル溶液のpHとニッケルの析出電流効率との関係を示す。The relationship between the pH of the nickel solution and the nickel precipitation current efficiency is shown. 比較例1及び実施例3において得られたニッケル皮膜の残留応力の結果を示す。The results of the residual stress of the nickel film obtained in Comparative Example 1 and Example 3 are shown.

本発明の一実施形態は、陽極と、陰極として機能する金属基材と、ニッケルイオン(Ni2+)と塩化物イオン(Cl-)とを含む溶液(以下「ニッケル溶液」ともいう。)を含む固体電解質膜とを、前記固体電解質膜が前記陽極と前記金属基材との間に位置するように、且つ前記固体電解質膜が前記金属基材の表面に接触するように配置すること;及び前記陽極と前記金属基材との間に電圧を印加することによって、前記固体電解質膜と接触した前記金属基材の表面にニッケル皮膜を形成すること;を含む、ニッケル皮膜を形成する方法、並びに当該方法に使用するためのニッケル溶液に関する。本実施形態において、ニッケル溶液に含まれる塩化物イオンの濃度は、0.002〜0.1 mol/Lである。 In one embodiment of the present invention, a solution containing an anode, a metal substrate functioning as a cathode, nickel ions (Ni 2+ ) and chloride ions (Cl ) (hereinafter, also referred to as “nickel solution”) is used. The solid electrolyte membrane containing the solid electrolyte membrane is arranged so that the solid electrolyte membrane is located between the anode and the metal base material, and the solid electrolyte membrane is in contact with the surface of the metal base material; A method for forming a nickel film, including forming a nickel film on the surface of the metal substrate in contact with the solid electrolyte membrane by applying a voltage between the anode and the metal substrate; It relates to a nickel solution for use in the method. In the present embodiment, the concentration of chloride ions contained in the nickel solution is 0.002 to 0.1 mol / L.

本実施形態では、陽極と金属基材(陰極)との間に電圧を印加することによって、固体電解質膜に含まれるニッケルイオンが、固体電解質膜と接触した金属基材の表面において還元される。その結果、金属基材の表面にニッケルが析出し、ニッケル皮膜が形成される。その際、塩化物イオンの濃度を0.002〜0.1 mol/Lに設定することによって、金属基材の腐食を抑制することができる。 In the present embodiment, by applying a voltage between the anode and the metal base material (cathode), nickel ions contained in the solid electrolyte membrane are reduced on the surface of the metal base material in contact with the solid electrolyte membrane. As a result, nickel is deposited on the surface of the metal base material to form a nickel film. At that time, by setting the chloride ion concentration to 0.002 to 0.1 mol / L, corrosion of the metal substrate can be suppressed.

なお、ニッケル皮膜を形成するために慣用されてきたワット浴には、塩化物イオンが1 mol/L程度含まれている。しかしながら、従来、ワット浴を使用してニッケル皮膜を形成しても、金属基材に腐食が生じることはなかった。一方、本実施形態のように、固体電解質膜を金属基材に接触させた状態でニッケル皮膜を形成しようとすると、金属基材に腐食が生じてしまう。そのため、この腐食現象は、固体電解質膜を金属基材に接触させる方法に特有の現象であると想定される。また、この腐食現象の原因としては、金属基材に固体電解質膜が接触することによって、金属基材の表面が活性化すること等が想定される。 The watt bath that has been commonly used to form a nickel film contains about 1 mol / L of chloride ions. However, conventionally, even if a nickel film is formed by using a watt bath, the metal substrate has not been corroded. On the other hand, when an attempt is made to form a nickel film in a state where the solid electrolyte film is in contact with the metal base material as in the present embodiment, the metal base material is corroded. Therefore, this corrosion phenomenon is presumed to be a phenomenon peculiar to the method of bringing the solid electrolyte membrane into contact with the metal substrate. Further, it is assumed that the cause of this corrosion phenomenon is that the surface of the metal base material is activated by the contact of the solid electrolyte membrane with the metal base material.

本実施形態では、陽極として、例えば、ニッケル陽極、硫黄添加ニッケル陽極、炭素添加ニッケル陽極、デポラライズドニッケル陽極を挙げることができる。陽極は、溶解性陽極であってもよいし、不溶性陽極であってもよい。 In the present embodiment, examples of the anode include a nickel anode, a sulfur-added nickel anode, a carbon-added nickel anode, and a depolarized nickel anode. The anode may be a soluble anode or an insoluble anode.

本実施形態では、金属基材(陰極)としては、例えば、卑金属基材を挙げることができる。卑金属としては、例えば、アルミニウム、亜鉛、鉄を挙げることができる。本実施形態では、特に限定するものではないが、アルミニウム基材を対象とする。アルミニウム基材を使用した場合、腐食現象が特に顕著に生じるためである。なお、卑金属基材は、少なくともその表面に卑金属を有していればよい。 In the present embodiment, examples of the metal base material (cathode) include a base metal base material. Examples of the base metal include aluminum, zinc, and iron. In this embodiment, an aluminum base material is targeted, although not particularly limited. This is because the corrosion phenomenon occurs particularly remarkably when an aluminum base material is used. The base metal base material may have at least a base metal on its surface.

本実施形態では、固体電解質膜として、例えば、デュポン社製のナフィオン(登録商標)等のフッ素系樹脂;炭化水素系樹脂;ポリアミック酸樹脂;旭硝子社製のセレミオン(CMV、CMD、CMFシリーズ)等の陽イオン交換機能を有する樹脂を挙げることができる。 In the present embodiment, as the solid electrolyte film, for example, a fluorine-based resin such as Nafion (registered trademark) manufactured by DuPont; a hydrocarbon-based resin; a polyamic acid resin; a selemion (CMV, CMD, CMF series) manufactured by Asahi Glass Co., Ltd., etc. Examples of the resin having a cation exchange function of the above.

本実施形態では、固体電解質膜の厚さとして、例えば、50〜400μm、100〜200μmを挙げることができる。 In the present embodiment, the thickness of the solid electrolyte membrane can be, for example, 50 to 400 μm or 100 to 200 μm.

本実施形態では、固体電解質膜はニッケルイオンと塩化物イオンとを含むニッケル溶液を含む。 In this embodiment, the solid electrolyte membrane contains a nickel solution containing nickel ions and chloride ions.

本実施形態では、ニッケル溶液に含まれるニッケルイオンの濃度として、例えば、0.1〜8 mol/L、0.3〜4 mol/L、0.5〜2 mol/Lを挙げることができる。ニッケルイオン源としては、例えば、ニッケル塩(例えば、塩化ニッケル、硫酸ニッケル、酢酸ニッケル)を挙げることができる。また、ニッケル陽極が溶解して生じたニッケルイオンを利用してもよい。 In the present embodiment, examples of the concentration of nickel ions contained in the nickel solution include 0.1 to 8 mol / L, 0.3 to 4 mol / L, and 0.5 to 2 mol / L. Examples of the nickel ion source include nickel salts (for example, nickel chloride, nickel sulfate, nickel acetate). Further, nickel ions generated by dissolving the nickel anode may be used.

本実施形態では、ニッケル溶液に含まれる塩化物イオンの濃度は0.002〜0.1 mol/Lであるが、好ましくは0.01〜0.06 mol/Lである。このような濃度に設定することによって、正常に形成されるニッケル皮膜の領域を拡大することができる。塩化物イオン源としては、例えば、塩化ニッケル、塩酸、塩化ナトリウム、塩化カリウムを挙げることができる。 In the present embodiment, the concentration of chloride ions contained in the nickel solution is 0.002 to 0.1 mol / L, preferably 0.01 to 0.06 mol / L. By setting such a concentration, the region of the nickel film normally formed can be expanded. Examples of the chloride ion source include nickel chloride, hydrochloric acid, sodium chloride, and potassium chloride.

本実施形態では、ニッケル溶液のpHは、好ましくは2.5〜4.25であり、特に好ましくは3〜4である。このようなpHに設定することによって、ニッケルの析出電流効率を向上させることができる。 In this embodiment, the pH of the nickel solution is preferably 2.5 to 4.25, particularly preferably 3 to 4. By setting such a pH, the nickel precipitation current efficiency can be improved.

本実施形態では、ニッケル溶液は、ニッケルイオン及び塩化物イオンに加えて、任意の他の成分を含んでいてもよい。ニッケル溶液は、例えば、溶媒、pH緩衝剤を含んでいてもよい。溶媒としては、例えば、水、エタノールを挙げることができる。pH緩衝剤としては、例えば、酢酸−酢酸ニッケル、コハク酸−コハク酸ニッケルを挙げることができる。 In this embodiment, the nickel solution may contain any other components in addition to the nickel ions and chloride ions. The nickel solution may contain, for example, a solvent and a pH buffer. Examples of the solvent include water and ethanol. Examples of the pH buffer include nickel acetate-nickel acetate and nickel succinate-nickel succinate.

固体電解質膜を金属基材(陰極)に接触させた状態で、陽極と金属基材との間に電圧を印加することによって、金属基材の表面に金属皮膜を形成する方法及び装置は既に報告されている。例えば、特開2012−219362号公報、特開2015−92012号公報、特開2014−051701号公報に開示された方法及び装置を利用して、本実施形態に係る方法を実施することができる。 Methods and devices for forming a metal film on the surface of a metal substrate by applying a voltage between the anode and the metal substrate while the solid electrolyte membrane is in contact with the metal substrate (cathode) have already been reported. Has been done. For example, the method according to the present embodiment can be carried out by using the methods and devices disclosed in JP-A-2012-219362, JP-A-2015-92012, and JP-A-2014-051701.

また、図1A及び図1Bに示す装置を利用して本実施形態に係る方法を実施することもできる。 Further, the method according to the present embodiment can also be implemented by using the devices shown in FIGS. 1A and 1B.

図1Aは、成膜装置1Aの模式的断面図である。成膜装置1Aは、陽極11と、陰極として機能する金属基材Bと、陽極11と金属基材Bとの間に配置された固体電解質膜13と、陽極11と金属基材Bとの間に電圧を印加する電源部16とを備えている。 FIG. 1A is a schematic cross-sectional view of the film forming apparatus 1A. The film forming apparatus 1A is located between the anode 11, the metal base material B functioning as a cathode, the solid electrolyte film 13 arranged between the anode 11 and the metal base material B, and between the anode 11 and the metal base material B. A power supply unit 16 for applying a voltage to the cathode is provided.

成膜装置1Aは、ハウジング20を更に備えている。ハウジング20には、陽極11と固体電解質膜13との間にニッケル溶液Lが配置されるように、ニッケル溶液Lを収容する第1収容室21が形成されている。第1収容室21に収容されたニッケル溶液Lは、固体電解質膜13と陽極11に接触している。 The film forming apparatus 1A further includes a housing 20. The housing 20 is formed with a first storage chamber 21 for accommodating the nickel solution L so that the nickel solution L is arranged between the anode 11 and the solid electrolyte membrane 13. The nickel solution L contained in the first storage chamber 21 is in contact with the solid electrolyte membrane 13 and the anode 11.

第1収容室21には、金属基材Bの表面Baの大きさよりも大きい第1開口部22が形成されている。第1開口部22は、固体電解質膜13で覆われており、ニッケル溶液Lは、第1収容室21内に流動可能な状態で封止されている。 The first storage chamber 21 is formed with a first opening 22 that is larger than the size of the surface Ba of the metal base material B. The first opening 22 is covered with the solid electrolyte membrane 13, and the nickel solution L is sealed in the first storage chamber 21 in a fluid state.

成膜装置1Aは、金属基材Bを載置する載置台40を更に備えている。載置台40には、表面Baと反対側に位置する裏面Bbに、薄膜43を介して流体45が配置されるように、流体45を収容する第2収容室41が形成されている。 The film forming apparatus 1A further includes a mounting table 40 on which the metal base material B is placed. The mounting table 40 is formed with a second storage chamber 41 for accommodating the fluid 45 so that the fluid 45 is arranged via the thin film 43 on the back surface Bb located on the opposite side of the front surface Ba.

第2収容室41には、裏面Bbの大きさよりも大きい第2開口部42が形成されている。第2開口部42は、薄膜43で覆われており、流体45は、第2収容室41内に流動可能な状態で封止されている。 The second storage chamber 41 is formed with a second opening 42 that is larger than the size of the back surface Bb. The second opening 42 is covered with the thin film 43, and the fluid 45 is sealed in the second storage chamber 41 in a fluid state.

成膜装置1Aは、ハウジング20の上部に押圧部30Aを更に備えている。 The film forming apparatus 1A further includes a pressing portion 30A on the upper portion of the housing 20.

図1Bは、図1Aの成膜装置1Aを用いて、金属基材Bの表面Baにニッケル皮膜Fを形成する工程を説明するものである。 FIG. 1B describes a step of forming a nickel film F on the surface Ba of the metal base material B by using the film forming apparatus 1A of FIG. 1A.

図1Bに示す通り、金属基材Bを載置台40に載置した状態で、載置台40とハウジング20とを相対的に移動させて、固体電解質膜13と薄膜43との間に金属基材Bを挟み込み、固体電解質膜13を介してニッケル溶液Lを金属基材Bの表面Baに配置する。 As shown in FIG. 1B, with the metal base material B mounted on the mounting table 40, the mounting table 40 and the housing 20 are relatively moved, and the metal base material is placed between the solid electrolyte membrane 13 and the thin film 43. B is sandwiched and the nickel solution L is placed on the surface Ba of the metal base material B via the solid electrolyte membrane 13.

次に、電源部16によって、陽極11と金属基材Bとの間に電圧を印加し、固体電解質膜13に含まれるニッケルイオンを金属基材Bの表面Baで還元し、表面Baにニッケルを析出させて、ニッケル皮膜Fを形成する。 Next, a voltage is applied between the anode 11 and the metal base material B by the power supply unit 16, nickel ions contained in the solid electrolyte membrane 13 are reduced on the surface Ba of the metal base material B, and nickel is applied to the surface Ba. It is precipitated to form a nickel film F.

以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the technical scope of the present invention is not limited thereto.

<ニッケル皮膜の形成>
図1A及び1Bに示す製膜装置を用いてニッケル皮膜を形成した。製膜条件は表1に示す通りである。
<Formation of nickel film>
A nickel film was formed using the film forming apparatus shown in FIGS. 1A and 1B. The film forming conditions are as shown in Table 1.

Figure 0006930634
Figure 0006930634

各実施例及び各比較例において使用したニッケル溶液の詳細は表2及び表3に示す通りである。 Details of the nickel solutions used in each Example and each Comparative Example are as shown in Tables 2 and 3.

Figure 0006930634
Figure 0006930634

Figure 0006930634
Figure 0006930634

<ニッケル皮膜の評価方法1>
正常なニッケル皮膜の面積率を、以下の式に基づき決定した。

Figure 0006930634
<Evaluation method 1 for nickel film>
The area ratio of the normal nickel film was determined based on the following formula.
Figure 0006930634

「異常なニッケル皮膜の面積」とは、以下の(1)〜(4)等のニッケル皮膜が正常に形成されていない領域の合計面積を意味する。
(1)ニッケル皮膜と密着して固体電解質膜が離れない領域(以下「密着領域」という。)。
(2)水酸化物等の異常析出によって変色している領域(以下「変色領域」という。)。
(3)ニッケル皮膜が形成(析出)していない領域(以下「未析出領域」という。)。
(4)金属基材が腐食している領域(以下「腐食領域」という。)。
The "abnormal nickel film area" means the total area of the areas where the nickel film is not normally formed, such as (1) to (4) below.
(1) A region in which the solid electrolyte membrane adheres to the nickel film and does not separate (hereinafter referred to as "adhesion region").
(2) Regions that are discolored due to abnormal precipitation of hydroxides, etc. (hereinafter referred to as "discolored regions").
(3) A region in which a nickel film is not formed (precipitated) (hereinafter referred to as "non-precipitated region").
(4) Area where the metal base material is corroded (hereinafter referred to as "corroded area").

ニッケルの析出電流効率を、以下の式に基づき決定した。

Figure 0006930634
The nickel precipitation current efficiency was determined based on the following formula.
Figure 0006930634

実析出重量は、析出したニッケル皮膜を硝酸に全て溶解し、誘導結合プラズマ(ICP)発光分光分析装置によって、硝酸溶液中のニッケル濃度を測定し、重量に換算した。 The actual precipitated weight was converted to weight by dissolving all the precipitated nickel film in nitric acid, measuring the nickel concentration in the nitric acid solution with an inductively coupled plasma (ICP) emission spectroscopic analyzer.

理論析出重量は、以下の式(ファラデーの電気分解の公式)から算出した。

Figure 0006930634
The theoretical precipitation weight was calculated from the following formula (Faraday's electrolysis formula).
Figure 0006930634

<評価結果1>
比較例1及び2並びに実施例1〜5において得られたニッケル皮膜の写真及び状態図を図2A〜図2Gに示す。
<Evaluation result 1>
Photographs and phase diagrams of the nickel films obtained in Comparative Examples 1 and 2 and Examples 1 to 5 are shown in FIGS. 2A to 2G.

比較例1(塩化物イオン濃度:1.9 mol/L)では、図2Aに示す通り、腐食領域、密着領域、及び変色領域が広く、ニッケル皮膜を正常に形成することは困難であった。 In Comparative Example 1 (chloride ion concentration: 1.9 mol / L), as shown in FIG. 2A, the corrosion region, the adhesion region, and the discoloration region were wide, and it was difficult to normally form the nickel film.

比較例2(塩化物イオン濃度:1 mol/L)では、図2Bに示す通り、腐食領域が大幅に増加し、ニッケル皮膜を正常に形成することは困難であった。 In Comparative Example 2 (chloride ion concentration: 1 mol / L), as shown in FIG. 2B, the corroded region was significantly increased, and it was difficult to form a nickel film normally.

実施例1(塩化物イオン濃度:0.1 mol/L)では、図2Cに示す通り、腐食領域、及び密着領域が存在するものの、正常に形成されたニッケル皮膜の面積が増加した。 In Example 1 (chloride ion concentration: 0.1 mol / L), as shown in FIG. 2C, although there were a corroded region and an adhesion region, the area of the normally formed nickel film increased.

実施例2(塩化物イオン濃度:0.06 mol/L)、実施例3(塩化物イオン濃度:0.02 mol/L)、及び実施例4(塩化物イオン濃度:0.01 mol/L)では、それぞれ図2D〜図2Fに示す通り、正常に形成されたニッケル皮膜の面積が大幅に増加した。 In Example 2 (chloride ion concentration: 0.06 mol / L), Example 3 (chloride ion concentration: 0.02 mol / L), and Example 4 (chloride ion concentration: 0.01 mol / L), FIG. 2D, respectively. As shown in FIG. 2F, the area of the normally formed nickel film increased significantly.

実施例5(塩化物イオン濃度:0.002 mol/L)では、図2Gに示す通り、変色領域の割合が増加した。変色領域は、塩化物イオン濃度の低下により、陽極(純ニッケル箔)の溶解が不十分となったことが推定される。 In Example 5 (chloride ion concentration: 0.002 mol / L), as shown in FIG. 2G, the proportion of the discolored region increased. In the discolored region, it is presumed that the anode (pure nickel foil) was insufficiently dissolved due to the decrease in chloride ion concentration.

ニッケル溶液の塩化物イオン濃度と正常なニッケル皮膜の面積率との関係を図3に示す。図3に示す通り、ニッケル溶液の塩化物イオン濃度が0.002〜0.1 mol/L、特に0.01〜0.06 mol/Lであると、正常に形成されるニッケル皮膜の面積が増加する。 FIG. 3 shows the relationship between the chloride ion concentration of the nickel solution and the area ratio of the normal nickel film. As shown in FIG. 3, when the chloride ion concentration of the nickel solution is 0.002 to 0.1 mol / L, particularly 0.01 to 0.06 mol / L, the area of the normally formed nickel film increases.

ニッケル溶液のpHとニッケルの析出電流効率との関係を図4に示す。図4に示す通り、ニッケル溶液のpHが2.5〜4.25、特に3〜4であると、ニッケルの析出電流効率が向上する。 The relationship between the pH of the nickel solution and the precipitation current efficiency of nickel is shown in FIG. As shown in FIG. 4, when the pH of the nickel solution is 2.5 to 4.25, particularly 3 to 4, the nickel precipitation current efficiency is improved.

<ニッケル皮膜の評価方法2>
ニッケル皮膜の残留応力を、日本接着学会誌, Vol. 39, No. 1, pp. 24-29 (2003)に記載された方法に従い、以下の式に基づき決定した。

Figure 0006930634
<Nickel film evaluation method 2>
The residual stress of the nickel film was determined based on the following formula according to the method described in Journal of the Japanese Society of Adhesion, Vol. 39, No. 1, pp. 24-29 (2003).
Figure 0006930634

σrは、残留応力を示し、
Esds/12・F(m,n)/n(n+1)は、皮膜/基材の剛性比を示し、
1/Ra-1/Rbは、曲率半径を示す。
σ r indicates residual stress
E s d s / 12 · F (m, n) / n (n + 1) indicates the rigidity ratio of the film / substrate.
1 / R a- 1 / R b indicates the radius of curvature.

<評価結果2>
比較例1及び実施例3において得られたニッケル皮膜の残留応力の結果を図5に示す。なお、熱応力は、製膜時の温度と室温との温度差(55℃)と、ニッケル皮膜の線膨張係数と金属基材の線膨張係数との差とから算出した。図5に示す通り、比較例1(塩化物イオン濃度:1.9 mol/L)では、残留応力が296 MPaであったのに対し、実施例3(塩化物イオン濃度:0.02 mol/L)では、残留応力が169 MPaであった。ニッケル溶液の塩化物イオン濃度を低くすることによって、残留応力を減少させることが可能である。
<Evaluation result 2>
The results of the residual stress of the nickel film obtained in Comparative Example 1 and Example 3 are shown in FIG. The thermal stress was calculated from the temperature difference (55 ° C.) between the temperature at the time of film formation and room temperature, and the difference between the linear expansion coefficient of the nickel film and the linear expansion coefficient of the metal substrate. As shown in FIG. 5, in Comparative Example 1 (chloride ion concentration: 1.9 mol / L), the residual stress was 296 MPa, whereas in Example 3 (chloride ion concentration: 0.02 mol / L), the residual stress was 296 MPa. The residual stress was 169 MPa. Residual stress can be reduced by lowering the chloride ion concentration of the nickel solution.

1A:成膜装置、11:陽極、13:固体電解質膜、16:電源部、20:ハウジング、21:第1収容室、22:第1開口部、30A:押圧部、40:載置台、41:第2収容室、42:第2開口部、43:薄膜、45:流体、L:ニッケル溶液、B:金属基材(陰極)、Ba:金属基材の表面、Bb:金属基材の裏面、F:ニッケル皮膜、 1A: film forming apparatus, 11: anode, 13: solid electrolyte film, 16: power supply section, 20: housing, 21: first storage chamber, 22: first opening, 30A: pressing section, 40: mounting table, 41 : 2nd storage chamber, 42: 2nd opening, 43: thin film, 45: fluid, L: nickel solution, B: metal base material (anode), Ba: front surface of metal base material, Bb: back surface of metal base material , F: Nickel film,

Claims (5)

陽極と、陰極として機能する金属基材と、ニッケルイオンと塩化物イオンとを含む溶液を含む固体電解質膜とを、前記固体電解質膜が前記陽極と前記金属基材との間に位置するように、且つ前記固体電解質膜が前記金属基材の表面に接触するように配置すること、及び
前記陽極と前記金属基材との間に電圧を印加することによって、前記固体電解質膜と接触した前記金属基材の表面にニッケル皮膜を形成すること、
を含む、ニッケル皮膜の形成方法であって、
前記塩化物イオンの濃度が0.01〜0.02 mol/Lであり、
前記金属基材が、少なくともその表面に卑金属を有する卑金属基材である、ニッケル皮膜の形成方法。
An anode, a metal substrate functioning as a cathode, and a solid electrolyte membrane containing a solution containing nickel ions and chloride ions are provided so that the solid electrolyte membrane is located between the anode and the metal substrate. The metal in contact with the solid electrolyte membrane by arranging the solid electrolyte membrane so as to be in contact with the surface of the metal base material and applying a voltage between the anode and the metal base material. Forming a nickel film on the surface of the substrate,
A method for forming a nickel film, including
Wherein Ri concentration of chloride ions is 0.01 to 0.02 mol / L der,
A method for forming a nickel film, wherein the metal base material is a base metal base metal having at least a base metal on its surface.
前記溶液のpHが2.5〜4.25である、請求項1に記載のニッケル皮膜の形成方法。 The method for forming a nickel film according to claim 1, wherein the pH of the solution is 2.5 to 4.25. 前記溶液のpHが3〜4である、請求項2に記載のニッケル皮膜の形成方法。 The method for forming a nickel film according to claim 2, wherein the pH of the solution is 3 to 4. 前記金属基材がアルミニウム基材である、請求項1〜3のいずれか一項に記載のニッケル皮膜の形成方法。 The method for forming a nickel film according to any one of claims 1 to 3, wherein the metal base material is an aluminum base material. 前記卑金属が、アルミニウム、亜鉛、又は鉄である、請求項1〜3のいずれか一項に記載のニッケル皮膜の形成方法。The method for forming a nickel film according to any one of claims 1 to 3, wherein the base metal is aluminum, zinc, or iron.
JP2020095163A 2017-03-23 2020-06-01 Nickel film forming method and nickel solution for use in the method Active JP6930634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020095163A JP6930634B2 (en) 2017-03-23 2020-06-01 Nickel film forming method and nickel solution for use in the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057862A JP6760166B2 (en) 2017-03-23 2017-03-23 A method for forming a nickel film and a nickel solution for use in the method.
JP2020095163A JP6930634B2 (en) 2017-03-23 2020-06-01 Nickel film forming method and nickel solution for use in the method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017057862A Division JP6760166B2 (en) 2017-03-23 2017-03-23 A method for forming a nickel film and a nickel solution for use in the method.

Publications (2)

Publication Number Publication Date
JP2020125548A JP2020125548A (en) 2020-08-20
JP6930634B2 true JP6930634B2 (en) 2021-09-01

Family

ID=72083631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020095163A Active JP6930634B2 (en) 2017-03-23 2020-06-01 Nickel film forming method and nickel solution for use in the method

Country Status (1)

Country Link
JP (1) JP6930634B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510362B (en) * 2013-04-30 2015-12-01 Nippon Steel & Sumitomo Metal Corp Ni-plated steel sheet and production method thereof
JP6406309B2 (en) * 2016-04-28 2018-10-17 Jfeスチール株式会社 Method for producing electrogalvanized steel sheet

Also Published As

Publication number Publication date
JP2020125548A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
Lu et al. The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium
JP5646105B1 (en) Sn plated stainless steel sheet
KR101266096B1 (en) Fuel cell separator and method for producing same
EP3483967B1 (en) Metal sheet for separators of polymer electrolyte fuel cells
JP6014807B2 (en) FUEL CELL SEPARATOR OR FUEL CELL COLLECTING MEMBER AND METHOD FOR PRODUCING THE SAME
JP4494155B2 (en) Gold-plated structure and fuel cell separator comprising this gold-plated structure
US9799896B2 (en) Stainless steel foil for separators of polymer electrolyte fuel cells
JP2010013684A (en) Stainless steel for conductive component having low contact electric resistance, and method for producing the same
JP6930634B2 (en) Nickel film forming method and nickel solution for use in the method
JP6760166B2 (en) A method for forming a nickel film and a nickel solution for use in the method.
JP2008108490A (en) Manufacturing method of fuel cell separator, fuel cell separator, and fuel cell
JP4371111B2 (en) Corrosion-resistant aluminum conductive material and manufacturing method thereof
EP3241928A2 (en) Trivalent chromium plating formulations and processes
WO2022181300A1 (en) Structure and method for manufacturing structure
JP5937937B2 (en) Aluminum anodized film
JP5342482B2 (en) Fuel cell separator and method for producing the same
US10629917B2 (en) Separator for fuel cells, fuel cell, fuel cell stack, and method of manufacturing separator for fuel cells
CN110257878A (en) A method of preparing aluminium titanium composite panel micro-arc oxidation films
KR102080472B1 (en) Stainless steel sheet for fuel cell separators and method for producing the same
EP3252856B1 (en) Stainless steel sheet for separator of polymer electrolyte fuel cell
KR101709602B1 (en) Method of Aluminium Coating Layer with Anti-oxidation Using Micro arc Electrolytic Oxidation
WO2017002884A1 (en) Titanium material
JP7059698B2 (en) Method of manufacturing copper film
JP2018003072A (en) Tungsten film and manufacturing method of tungsten film
JP2005302669A (en) Manufacturing method of aluminum separator for fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R151 Written notification of patent or utility model registration

Ref document number: 6930634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151