JP2010013684A - Stainless steel for conductive component having low contact electric resistance, and method for producing the same - Google Patents

Stainless steel for conductive component having low contact electric resistance, and method for producing the same Download PDF

Info

Publication number
JP2010013684A
JP2010013684A JP2008173047A JP2008173047A JP2010013684A JP 2010013684 A JP2010013684 A JP 2010013684A JP 2008173047 A JP2008173047 A JP 2008173047A JP 2008173047 A JP2008173047 A JP 2008173047A JP 2010013684 A JP2010013684 A JP 2010013684A
Authority
JP
Japan
Prior art keywords
stainless steel
passive film
electric resistance
contact electric
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008173047A
Other languages
Japanese (ja)
Other versions
JP5621186B2 (en
Inventor
Shin Ishikawa
伸 石川
Yasushi Kato
康 加藤
Takumi Ugi
工 宇城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008173047A priority Critical patent/JP5621186B2/en
Priority to US13/574,046 priority patent/US20130108945A1/en
Publication of JP2010013684A publication Critical patent/JP2010013684A/en
Application granted granted Critical
Publication of JP5621186B2 publication Critical patent/JP5621186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stainless steel for a conductive component which has excellent conductivity (namely, low contact electric resistance), and to provide a method for producing the same. <P>SOLUTION: A stainless steel is immersed into a fluorine ion-containing solution at a dissolution rate of 0.002 to <0.05 g/m<SP>2</SP>, and fluorine is incorporated into a passive film on the surface. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、接触電気抵抗の低い通電部品用ステンレス鋼およびその製造方法に関するものである。   The present invention relates to a stainless steel for current-carrying parts having a low contact electric resistance and a method for producing the same.

ステンレス鋼の優れた耐食性は、その製造過程で不動態皮膜が表面に形成されることによって発現される。不動態皮膜は、オキシ水酸化クロムを主体としているので導電性が劣る。そのため、通電部品として使用する場合には金めっき等を施して、接触電気抵抗を低減させる必要がある。
近年、各種の燃料電池(たとえば固体高分子形燃料電池等)が開発され、その燃料電池に装着されるセパレータにはステンレス鋼が広く使用されている。ステンレス鋼は耐食性を有するが、セパレータには耐食性のみならず導電性も求められるので、ステンレス鋼の導電性を改善してセパレータとして使用する技術が種々検討されている。
The excellent corrosion resistance of stainless steel is manifested by the formation of a passive film on the surface during the manufacturing process. Since the passive film is mainly composed of chromium oxyhydroxide, it has poor conductivity. Therefore, when used as a current-carrying component, it is necessary to reduce the contact electric resistance by performing gold plating or the like.
In recent years, various fuel cells (for example, polymer electrolyte fuel cells) have been developed, and stainless steel is widely used as a separator attached to the fuel cells. Although stainless steel has corrosion resistance, since the separator is required to have not only corrosion resistance but also conductivity, various techniques for improving the conductivity of stainless steel and using it as a separator have been studied.

特許文献1には、ステンレス鋼(たとえばSUS304等)の表面に金めっきを施して接触電気抵抗を低減させ、セパレータとして使用することによって、燃料電池の出力を向上させる技術が開示されている。しかし、金めっきが薄い場合にはピンホールが発生し易いので、金めっきの腐食が進行し、導電性を安定して維持できない。一方で、金めっきが厚い場合には、セパレータの製造コストが上昇する。   Patent Document 1 discloses a technique for improving the output of a fuel cell by applying gold plating to the surface of stainless steel (for example, SUS304) to reduce contact electric resistance and using it as a separator. However, when the gold plating is thin, pinholes are likely to occur, so that the corrosion of the gold plating proceeds and the conductivity cannot be stably maintained. On the other hand, when the gold plating is thick, the manufacturing cost of the separator increases.

特許文献2には、表面にカーボン粉末を分散付着させたフェライト系ステンレス鋼を用いることによって、セパレータの導電性を改善する技術が開示されている。しかし、カーボン粉末を付着させるためには複雑な処理が必要であり、セパレータの製造コストが上昇する。また、セパレータの製造工程あるいは燃料電池の組立て工程でカーボン粉末が剥離すると、導電性を改善する効果が得られない。   Patent Document 2 discloses a technique for improving the conductivity of a separator by using ferritic stainless steel having carbon powder dispersed and adhered on the surface. However, in order to adhere the carbon powder, a complicated process is required, which increases the manufacturing cost of the separator. Further, if the carbon powder is peeled off during the separator manufacturing process or the fuel cell assembling process, the effect of improving the conductivity cannot be obtained.

特許文献3には、導電性を高める作用を有する析出物(たとえばM236型炭化物,M2B型硼化物等)を表面に析出させることによって、セパレータの導電性を改善する技術が開示されている。しかし、これらの析出物を得るためには、ステンレス鋼に炭素(C)や硼素(B)を添加しなければならないので、ステンレス鋼が硬化し、ステンレス鋼を鋼板として加工する際の製造性やセパレータの製造工程で成形性が著しく劣化する。しかも、ステンレス鋼中のクロム(Cr)がCやBと結合して析出物を生成するので、固溶Crが減少して、ステンレス鋼の耐食性が劣化する。
特開平10-228914号公報 特開2000-277133号公報 特開2000-214186号公報
Patent Document 3 discloses a technique for improving the conductivity of a separator by precipitating precipitates (for example, M 23 C 6 type carbide, M 2 B type boride, etc.) having an effect of enhancing conductivity on the surface. Has been. However, in order to obtain these precipitates, carbon (C) and boron (B) must be added to the stainless steel, so that the stainless steel hardens and the productivity when the stainless steel is processed as a steel plate Formability is significantly deteriorated in the manufacturing process of the separator. In addition, chromium (Cr) in the stainless steel combines with C and B to form precipitates, so that the solid solution Cr decreases and the corrosion resistance of the stainless steel deteriorates.
Japanese Patent Laid-Open No. 10-228914 JP 2000-277133 A JP 2000-214186 JP

本発明は、耐食性や成形性を損なうことなく、優れた導電性を有する(すなわち接触電気抵抗の低い)通電部品用ステンレス鋼、およびその製造方法を提供することを目的とする。   An object of the present invention is to provide stainless steel for current-carrying parts having excellent conductivity (that is, low contact electrical resistance) without impairing corrosion resistance and formability, and a method for producing the same.

発明者らは、ステンレス鋼の表面に形成される不動態皮膜の組成とステンレス鋼の接触電気抵抗との関係について鋭意研究を行なった。その結果、不動態皮膜にフッ素(F)を含有させることによって、接触電気抵抗を大幅に低減できることが分かった。さらに、Fを不動態皮膜に含有させるためには、Fイオンを含有した溶液にステンレス鋼を浸漬することが有効であることが分かった。なお、Fイオンを含有した溶液は、酸性水溶液であることが好ましく、その濃度や温度は、所定の溶解速度でステンレス鋼が溶解するように調整する必要があることが判明した。   The inventors have intensively studied the relationship between the composition of the passive film formed on the surface of stainless steel and the contact electric resistance of stainless steel. As a result, it was found that the contact electrical resistance can be greatly reduced by including fluorine (F) in the passive film. Furthermore, in order to contain F in the passive film, it has been found that it is effective to immerse stainless steel in a solution containing F ions. It has been found that the solution containing F ions is preferably an acidic aqueous solution, and the concentration and temperature need to be adjusted so that the stainless steel dissolves at a predetermined dissolution rate.

本発明は、これらの知見に基づいてなされたものである。
すなわち本発明は、接触電気抵抗の低い通電部品用ステンレス鋼であって、表面に不動態皮膜を有し、その不動態皮膜がフッ素を含有する通電部品用ステンレス鋼である。
また本発明は、接触電気抵抗の低い通電部品用ステンレス鋼の製造方法において、フッ素イオンを含有した溶液に、ステンレス鋼を溶解速度0.002g/m2秒以上0.05g/m2秒未満で浸漬する通電部品用ステンレス鋼の製造方法である。
The present invention has been made based on these findings.
That is, the present invention is a stainless steel for current-carrying parts having a low contact electric resistance, and has a passive film on the surface, and the passive film contains fluorine.
The present invention provides a method of manufacturing a low contact resistance energizing component stainless steel, to a solution containing fluorine ions, immersing stainless steel in dissolution rate 0.002 g / m less than 2 seconds or more 0.05 g / m 2 sec It is a manufacturing method of stainless steel for current-carrying parts.

本発明によれば、耐食性や成形性を損なうことなく、接触電気抵抗の低い通電部品用ステンレス鋼を得ることができる。その通電部品用ステンレス鋼は、各種の燃料電池(とりわけ固体高分子形燃料電池)のセパレータとして好適である。従来の燃料電池では高価なカーボンセパレータや金めっきセパレータを使用していたが、本発明の通電部品用ステンレス鋼を使用することによって、安価なセパレータを製造できる。   According to the present invention, stainless steel for current-carrying parts having low contact electric resistance can be obtained without impairing corrosion resistance and formability. The stainless steel for current-carrying parts is suitable as a separator for various fuel cells (especially polymer electrolyte fuel cells). In conventional fuel cells, expensive carbon separators and gold-plated separators are used. However, by using the stainless steel for current-carrying parts of the present invention, an inexpensive separator can be manufactured.

なお本発明の通電部品用ステンレス鋼は、燃料電池のセパレータのみならず、導電性を有するステンレス製電気部材として広く利用できる。   The stainless steel for current-carrying parts of the present invention can be widely used not only as a separator for fuel cells but also as a stainless steel electric member having conductivity.

本発明を適用するステンレス鋼の成分は、特に限定しない。ただし、クロム(Cr)を13質量%以上含有し、表面に形成される不動態皮膜にCrが含有されるステンレス鋼であることが好ましい。
そのステンレス鋼の不動態皮膜にフッ素(F)を含有させる。そのためには、Fイオンを含有した溶液にステンレス鋼を浸漬する。使用する溶液は、酸性水溶液(たとえばフッ酸と硝酸の混合液,フッ化ナトリウムと硝酸の混合液等)が好適である。
The components of stainless steel to which the present invention is applied are not particularly limited. However, it is preferably a stainless steel containing 13% by mass or more of chromium (Cr) and containing Cr in the passive film formed on the surface.
The stainless steel passive film contains fluorine (F). For this purpose, stainless steel is immersed in a solution containing F ions. The solution to be used is preferably an acidic aqueous solution (for example, a mixed solution of hydrofluoric acid and nitric acid, a mixed solution of sodium fluoride and nitric acid, etc.).

Fイオンを含有したステンレス鋼を浸漬することによって、Fが不動態皮膜を一旦破壊し、その後、不動態皮膜に取込まれる。ただし不動態皮膜にFを取込ませるためには、ステンレス鋼の溶解速度を所定の範囲内に維持する必要がある。
ステンレス鋼の溶解速度が0.002g/m2秒未満では、不動態皮膜の破壊が遅れるので、Fが不動態皮膜に取込まれるまでに長時間を要し、セパレータ等の部品の生産性の低下を招く。一方、0.05g/m2秒以上では、不動態皮膜が短時間で破壊されて溶解するので、Fが不動態皮膜に取込まれる現象が生じない。しかも溶解速度が速すぎると、ステンレス鋼中の析出物(たとえば炭化物,窒化物等)や溶液中のフッ化鉄を含むスマットが、ステンレス鋼の表面に付着し、導電性および耐食性を損なう惧れがある。したがって、ステンレス鋼の溶解速度は0.002g/m2秒以上0.05g/m2秒未満の範囲内とする。
By immersing the stainless steel containing F ions, F once destroys the passive film, and then taken into the passive film. However, in order to incorporate F into the passive film, it is necessary to maintain the dissolution rate of the stainless steel within a predetermined range.
The stainless steel of less than the dissolution rate 0.002 g / m 2 sec, the destruction of the passive film is delayed, F it takes a long time to be taken in the passive film and deteriorate the productivity of the separator, etc. Invite. On the other hand, at 0.05 g / m 2 sec or more, the passive film is broken and dissolved in a short time, so that the phenomenon that F is taken into the passive film does not occur. Moreover, if the dissolution rate is too fast, deposits in stainless steel (for example, carbides, nitrides, etc.) and smut containing iron fluoride in the solution may adhere to the surface of the stainless steel, impairing conductivity and corrosion resistance. There is. Therefore, the dissolution rate of stainless steel in the range of less than 0.002 g / m 2 seconds or more 0.05 g / m 2 sec.

ステンレス鋼の溶解速度の調整は、溶液中の酸化剤(たとえば硝酸等)の濃度あるいは溶液の温度を制御して行なう。
ステンレス鋼を溶液に浸漬する時間(以下、浸漬時間という)は、特に限定しない。ただし、不動態皮膜を破壊するためには、浸漬時間を30秒以上とすることが好ましい。浸漬時間が30秒以上であれば、ステンレス鋼の製造過程で強固な不動態皮膜が形成された場合でも、不動態皮膜を破壊することが可能である。一方、浸漬時間を過剰に長くしても、不動態皮膜に含有されるF量が飽和するので、接触電気抵抗の更なる低減を達成できず、しかもセパレータの生産性低下を招く。したがって、浸漬時間は30〜300秒の範囲内が一層好ましい。
The dissolution rate of stainless steel is adjusted by controlling the concentration of an oxidizing agent (for example, nitric acid) in the solution or the temperature of the solution.
The time for immersing the stainless steel in the solution (hereinafter referred to as the immersion time) is not particularly limited. However, in order to destroy the passive film, the immersion time is preferably 30 seconds or more. If the immersion time is 30 seconds or more, even when a strong passive film is formed during the manufacturing process of stainless steel, it is possible to break the passive film. On the other hand, even if the immersion time is excessively long, the amount of F contained in the passive film is saturated, so that the contact electric resistance cannot be further reduced, and the productivity of the separator is reduced. Therefore, the immersion time is more preferably in the range of 30 to 300 seconds.

このようにして、Fを含有する不動態皮膜が形成される。発明者らの研究によれば、X線光電子分光法(いわゆるXPS法)で不動態皮膜を分析して、Fが含有されていることが認められた場合に接触電気抵抗が大幅に低減された。
不動態皮膜にFを含有させることによってステンレス鋼の接触電気抵抗が低減されるメカニズムは明確ではない。不動態皮膜の主成分であるオキシ水酸化クロムは半導体であるから、Fを含有することによって電子構造が変化し、接触電気抵抗を低減する効果を発現すると推定される。
In this way, a passive film containing F is formed. According to the research of the inventors, when the passive film was analyzed by X-ray photoelectron spectroscopy (so-called XPS method), when it was found that F was contained, the contact electric resistance was greatly reduced. .
The mechanism by which the contact electrical resistance of stainless steel is reduced by containing F in the passive film is not clear. Since chromium oxyhydroxide, which is the main component of the passive film, is a semiconductor, it is presumed that the inclusion of F changes the electronic structure and exhibits the effect of reducing the contact electrical resistance.

なお本発明では、不動態皮膜に含有されるF含有量は特に限定しない。以上に説明したようにFイオンを含有した溶液にステンレス鋼を浸漬すれば、接触電気抵抗を低減するために必要かつ十分な量のFを不動態皮膜に含有させることができる。   In the present invention, the F content contained in the passive film is not particularly limited. As described above, if stainless steel is immersed in a solution containing F ions, an amount of F necessary and sufficient to reduce the contact electric resistance can be contained in the passive film.

板厚1mmのステンレス鋼板に酸洗およびスキンパスを施した後、正方形(1辺:30mm)の試験片を切り出した。使用したステンレス鋼板は、SUS316L(18%Cr−12%Ni−2%Mo:単位(%)は質量%)とSUS447J1(30%Cr−2%Mo:単位(%)は質量%)である。得られた試験片をアセトンで脱脂し、次いで下記の(A)〜(F)の酸性水溶液にそれぞれ4枚ずつ浸漬(温度:50℃,浸漬時間:1分)し、さらに純水で洗浄して冷風で乾燥した。
(A)20%硝酸
(B)7.5%硝酸+15%フッ酸
(C)5%硝酸+15%フッ酸
(D)5%硝酸+5%フッ酸
(E)1%硝酸+5%フッ酸
(F)0.5%硝酸+5%フッ酸
上記の(A)〜(F)に示す硝酸とフッ酸の濃度の単位(%)は質量%である。
A stainless steel plate having a thickness of 1 mm was pickled and skin-passed, and then a square (one side: 30 mm) test piece was cut out. The stainless steel plates used are SUS316L (18% Cr-12% Ni-2% Mo: unit (%) is mass%) and SUS447J1 (30% Cr-2% Mo: unit (%) is mass%). The test specimens obtained were degreased with acetone, and then immersed in four acidic aqueous solutions (A) to (F) below (temperature: 50 ° C., immersion time: 1 minute), and further washed with pure water. And dried with cold air.
(A) 20% nitric acid
(B) 7.5% nitric acid + 15% hydrofluoric acid
(C) 5% nitric acid + 15% hydrofluoric acid
(D) 5% nitric acid + 5% hydrofluoric acid
(E) 1% nitric acid + 5% hydrofluoric acid
(F) 0.5% nitric acid + 5% hydrofluoric acid The unit (%) of the concentration of nitric acid and hydrofluoric acid shown in (A) to (F) above is mass%.

これらの試験片を酸性水溶液に浸漬する前後の重量を測定し、その重量差から溶解速度を算出した。その平均値を表1に示す。
また、酸性水溶液に浸漬した後の試験片の不動態皮膜をX線光電子分光法で分析し、含有されるFの有無を調査した。X線光電子分光法では、Fe,Cr,F,Oについて得られたスペクトルから、各々の元素の積分強度を測定した。さらにスパッタリングによって試験片の表面を除去しながら、深さ方向にFe,Cr,F,Oの分布を測定した。こうして得られた各元素スペクトルを解析し、Fがピークとして確認できる試験片の不動態皮膜にFが含有されると判定した。その結果を表1に示す。
The weights before and after immersing these test pieces in an acidic aqueous solution were measured, and the dissolution rate was calculated from the difference in weight. The average value is shown in Table 1.
Moreover, the passive film of the test piece after being immersed in acidic aqueous solution was analyzed by the X ray photoelectron spectroscopy, and the presence or absence of F contained was investigated. In X-ray photoelectron spectroscopy, the integrated intensity of each element was measured from the spectra obtained for Fe, Cr, F, and O. Further, the distribution of Fe, Cr, F, and O in the depth direction was measured while removing the surface of the test piece by sputtering. Each element spectrum thus obtained was analyzed, and it was determined that F was contained in the passive film of the test piece in which F could be confirmed as a peak. The results are shown in Table 1.

なお、酸性水溶液に浸漬しない試験片についても、同様に不動態皮膜に含有されるFの有無を調査した。その結果を表1に併せて示す。
さらに、酸性水溶液に浸漬した試験片および浸漬しない試験片について、接触電気抵抗を測定した。接触電気抵抗の測定は、図1に示すように、2枚の試験片1を、両面から同じ大きさのカーボンペーパ2(東レ製TGP-H-120)で交互に挟み、さらに銅板に金めっきを施した電極3を接触させ、単位面積あたり196N/cm2(=20kgf/cm2)の圧力をかけて2枚の試験片1間の抵抗を測定し、接触面積を乗じ、さらに接触面数(=2)で除した値を接触電気抵抗値とした。このようにして、試験片1の組み合わせを変えて各々4回ずつ測定し、その平均値を表1に示す。
In addition, about the test piece which is not immersed in acidic aqueous solution, the presence or absence of F contained in a passive film was investigated similarly. The results are also shown in Table 1.
Furthermore, the contact electric resistance was measured about the test piece immersed in acidic aqueous solution, and the test piece which is not immersed. As shown in Fig. 1, contact electrical resistance is measured by sandwiching two test pieces 1 with carbon paper 2 of the same size from both sides (TGP-H-120 manufactured by Toray Industries, Inc.), and then plating the copper plate with gold Measure the resistance between two test pieces 1 by applying a pressure of 196 N / cm 2 (= 20 kgf / cm 2 ) per unit area, multiplying the contact area, and the number of contact surfaces The value divided by (= 2) was defined as the contact electric resistance value. In this way, the combination of the test pieces 1 was changed and measured four times each, and the average value is shown in Table 1.

また参考例として、グラファイト板(厚さ5mm)、および表面に厚さ0.1μmの金めっきを施したSUS304(厚さ0.3mm)についても同様に接触電気抵抗を測定した。その結果を表1に併せて示す。
表1に示す発明例は、Fイオンを溶解した酸性水溶液に浸漬した試験片1の溶解速度が0.001g/m2秒以上0.05g/m2秒未満の範囲内を満足し、不動態皮膜にFが含有される例である。比較例は、不動態皮膜にFが含有されない例である。
As a reference example, the contact electrical resistance was also measured in the same manner for a graphite plate (thickness 5 mm) and SUS304 (thickness 0.3 mm) whose surface was plated with gold of 0.1 μm. The results are also shown in Table 1.
Invention example shown in Table 1, the dissolution rate of the test piece 1 was immersed in an acidic aqueous solution containing F ions satisfy the range of less than 0.001 g / m 2 seconds or more 0.05 g / m 2 sec, the passive film This is an example in which F is contained. The comparative example is an example in which F is not contained in the passive film.

Figure 2010013684
Figure 2010013684

表1から明らかなように、SUS316Lでは、発明例の接触電気抵抗が6.0〜12.3mΩ・cm2であったのに対して、比較例は30.2〜186.3mΩ・cm2であった。SUS447J1では、発明例の接触電気抵抗が5.9〜11.6mΩ・cm2であったのに対して、比較例は35.1〜89.1mΩ・cm2であった。いずれの鋼種も、発明例の接触電気抵抗が大幅に低減された。
次に、上記の(B)の酸性水溶液に浸漬したSUS447J1の試験片(2枚)について、固体高分子形燃料電池のセパレータとして使用することを想定して、pH3の硫酸水溶液(温度:80℃)中で一定の電位(0.6V vs. Ag/AgCl)に1000時間保持した。その後、試験片を回収して不動態皮膜に含有されるFの有無をX線光電子分光法で調査した。調査方法は上記した通りであるから、説明を省略する。そのX線光電子分光法によって得られた結果を図2に示す。図2の横軸はスパッタリングの所要時間(以下、スパッタ時間という)であり、縦軸はスペクトルのピーク強度である。図2(a)は1000時間保持前、図2(b)は1000時間保持後の分析結果である。図2(a)(b)から明らかなように、いずれの試験片もスパッタ時間が60秒以下の範囲でFがピークとして確認された。一方、スパッタ時間が60秒を超えると、不動態皮膜が除去されてステンレス鋼板の基地におけるFを分析することになるが、Fのピーク強度は殆どゼロであった。つまり、固体高分子形燃料電池のセパレータとして使用されることを想定した処理を施した後も、不動態皮膜にFが含有されることが確認された。
As apparent from Table 1, in SUS316L, the contact electrical resistance of the inventive example was 6.0 to 12.3 mΩ · cm 2 , whereas the comparative example was 30.2 to 186.3 mΩ · cm 2 . In SUS447J1, the contact electrical resistance of the inventive example was 5.9 to 11.6 mΩ · cm 2 , whereas the comparative example was 35.1 to 89.1 mΩ · cm 2 . In any steel type, the contact electrical resistance of the inventive example was significantly reduced.
Next, SUS447J1 test pieces (2 pieces) immersed in the acidic aqueous solution (B) described above were used as a separator for a polymer electrolyte fuel cell, and a pH 3 sulfuric acid aqueous solution (temperature: 80 ° C.). ) At a constant potential (0.6 V vs. Ag / AgCl) for 1000 hours. Then, the test piece was collect | recovered and the presence or absence of F contained in a passive film was investigated by the X ray photoelectron spectroscopy. Since the investigation method is as described above, the description is omitted. The results obtained by the X-ray photoelectron spectroscopy are shown in FIG. The horizontal axis in FIG. 2 is the time required for sputtering (hereinafter referred to as sputtering time), and the vertical axis is the peak intensity of the spectrum. FIG. 2 (a) shows the analysis results before holding for 1000 hours, and FIG. 2 (b) shows the analysis results after holding for 1000 hours. As is clear from FIGS. 2 (a) and 2 (b), F was confirmed as a peak in any test piece within a sputtering time of 60 seconds or less. On the other hand, when the sputtering time exceeded 60 seconds, the passive film was removed and F at the base of the stainless steel plate was analyzed, but the peak intensity of F was almost zero. That is, it was confirmed that F was contained in the passive film even after the treatment intended to be used as a separator of a polymer electrolyte fuel cell.

さらに、上記の(B)の酸性水溶液に浸漬したSUS447J1の試験片(1枚)について、固体高分子形燃料電池のセパレータとして使用することを想定して、pH3の硫酸水溶液(温度:80℃)中で一定の電位(0.6V vs. Ag/AgCl)に1000時間保持した。その後、試験片を回収して接触電気抵抗を測定した。測定方法は上記した通りであるから、説明を省略する。その結果、接触電気抵抗は7.4mΩ・cm2であった。つまり、固体高分子形燃料電池のセパレータとして使用されることを想定した処理を施した後も、接触電気抵抗が低く保たれ、優れた導電性を有することが確認された。 Furthermore, assuming that the SUS447J1 test piece (one piece) immersed in the acidic aqueous solution (B) is used as a separator for a polymer electrolyte fuel cell, a sulfuric acid aqueous solution of pH 3 (temperature: 80 ° C.) In a constant potential (0.6 V vs. Ag / AgCl) for 1000 hours. Thereafter, the test piece was collected and the contact electric resistance was measured. Since the measurement method is as described above, the description is omitted. As a result, the contact electric resistance was 7.4 mΩ · cm 2 . In other words, it was confirmed that the contact electrical resistance was kept low and the film had excellent conductivity even after the treatment assuming that it was used as a separator for a polymer electrolyte fuel cell.

なお、ここではステンレス鋼板を浸漬する酸性水溶液として、上記の(B)〜(F)に示すようなフッ酸と硝酸との混合液を使用する例について説明したが、フッ酸の代わりにフッ化ナトリウム,フッ化カルシウム,フッ化リチウム等を用いても良い。
また、酸性水溶液の濃度,温度等は、浸漬するステンレス鋼板の成分に応じて、所定の溶解速度となるように調整すれば良い。
Here, an example in which a mixed solution of hydrofluoric acid and nitric acid as shown in (B) to (F) above is used as the acidic aqueous solution into which the stainless steel plate is immersed is described. Sodium, calcium fluoride, lithium fluoride, or the like may be used.
Moreover, what is necessary is just to adjust the density | concentration, temperature, etc. of acidic aqueous solution so that it may become a predetermined | prescribed dissolution rate according to the component of the stainless steel plate to immerse.

接触抵抗の測定方法を模式的に示す断面図である。It is sectional drawing which shows typically the measuring method of contact resistance. X線光電子分光法によって得られたスパッタ時間とピーク強度との関係を示すグラフである。It is a graph which shows the relationship between the sputter | spatter time obtained by X-ray photoelectron spectroscopy, and peak intensity.

符号の説明Explanation of symbols

1 試験片
2 カーボンペーパ
3 電極
1 Test piece 2 Carbon paper 3 Electrode

Claims (2)

接触電気抵抗の低い通電部品用ステンレス鋼であって、表面に不動態皮膜を有し、前記不動態皮膜がフッ素を含有することを特徴とする通電部品用ステンレス鋼。   Stainless steel for current-carrying parts having a low contact electric resistance, having a passive film on the surface, wherein the passive film contains fluorine. 接触電気抵抗の低い通電部品用ステンレス鋼の製造方法において、フッ素イオンを含有した溶液に、ステンレス鋼を溶解速度0.002g/m2秒以上0.05g/m2秒未満で浸漬することを特徴とする通電部品用ステンレス鋼の製造方法。
The method of manufacturing a contact electrical resistance low current component of stainless steel, to a solution containing fluorine ions, characterized by immersing the stainless steel in dissolution rate 0.002 g / m or more and less than 2 seconds 0.05 g / m 2 sec Manufacturing method of stainless steel for current-carrying parts.
JP2008173047A 2008-07-02 2008-07-02 Method for producing stainless steel for polymer electrolyte fuel cell separator Active JP5621186B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008173047A JP5621186B2 (en) 2008-07-02 2008-07-02 Method for producing stainless steel for polymer electrolyte fuel cell separator
US13/574,046 US20130108945A1 (en) 2008-07-02 2010-01-20 Stainless steel for conductive members with low contact electric resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173047A JP5621186B2 (en) 2008-07-02 2008-07-02 Method for producing stainless steel for polymer electrolyte fuel cell separator

Publications (2)

Publication Number Publication Date
JP2010013684A true JP2010013684A (en) 2010-01-21
JP5621186B2 JP5621186B2 (en) 2014-11-05

Family

ID=41700049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173047A Active JP5621186B2 (en) 2008-07-02 2008-07-02 Method for producing stainless steel for polymer electrolyte fuel cell separator

Country Status (1)

Country Link
JP (1) JP5621186B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098689A1 (en) 2011-01-17 2012-07-26 Jfeスチール株式会社 Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
WO2013018322A1 (en) * 2011-07-29 2013-02-07 Jfeスチール株式会社 Stainless steel for fuel cell separator
JP2013028849A (en) * 2011-07-29 2013-02-07 Jfe Steel Corp Stainless steel for fuel battery separator
JP2013093299A (en) * 2011-01-17 2013-05-16 Jfe Steel Corp Method for manufacturing stainless steel for fuel battery separators, stainless steel for fuel battery separators, fuel battery separator, and fuel battery
JP2017071219A (en) * 2015-10-05 2017-04-13 新日鉄住金マテリアルズ株式会社 Stainless steel sheet-carbon composite material and method for producing the same
JP2017071218A (en) * 2015-10-05 2017-04-13 新日鉄住金マテリアルズ株式会社 Stainless steel sheet-carbon composite material and method for producing the same
WO2017110656A1 (en) 2015-12-24 2017-06-29 Jfeスチール株式会社 Stainless steel sheet for fuel cell separators and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490999A (en) * 1967-09-26 1970-01-20 Israel Defence Electrolytic dissolution of metals from uranium
JPH11236971A (en) * 1997-12-02 1999-08-31 Tadahiro Omi Bellows applied with surface treatment
JP2000328260A (en) * 1999-05-24 2000-11-28 Nippon Kinzoku Co Ltd Passivation treated stainless steel and its production
JP2002237311A (en) * 2001-02-07 2002-08-23 Sinto Brator Co Ltd Manufacturing method of low contact resistance metal separator for fuel cell
JP2006302729A (en) * 2005-04-22 2006-11-02 Nisshin Steel Co Ltd Stainless steel separator for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2006302730A (en) * 2005-04-22 2006-11-02 Nisshin Steel Co Ltd Stainless steel separator for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2006302731A (en) * 2005-04-22 2006-11-02 Nisshin Steel Co Ltd Stainless steel separator for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2008277144A (en) * 2007-04-27 2008-11-13 Nippon Kinzoku Co Ltd Stainless steel-made conductive member and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490999A (en) * 1967-09-26 1970-01-20 Israel Defence Electrolytic dissolution of metals from uranium
JPH11236971A (en) * 1997-12-02 1999-08-31 Tadahiro Omi Bellows applied with surface treatment
JP2000328260A (en) * 1999-05-24 2000-11-28 Nippon Kinzoku Co Ltd Passivation treated stainless steel and its production
JP2002237311A (en) * 2001-02-07 2002-08-23 Sinto Brator Co Ltd Manufacturing method of low contact resistance metal separator for fuel cell
JP2006302729A (en) * 2005-04-22 2006-11-02 Nisshin Steel Co Ltd Stainless steel separator for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2006302730A (en) * 2005-04-22 2006-11-02 Nisshin Steel Co Ltd Stainless steel separator for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2006302731A (en) * 2005-04-22 2006-11-02 Nisshin Steel Co Ltd Stainless steel separator for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2008277144A (en) * 2007-04-27 2008-11-13 Nippon Kinzoku Co Ltd Stainless steel-made conductive member and its manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098689A1 (en) 2011-01-17 2012-07-26 Jfeスチール株式会社 Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
KR101873176B1 (en) * 2011-01-17 2018-06-29 제이에프이 스틸 가부시키가이샤 Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
US9653738B2 (en) 2011-01-17 2017-05-16 Jfe Steel Corporation Method for producing stainless steel for fuel cell separator, stainless steel for fuel cell separator, fuel cell separator, and fuel cell
KR20170026648A (en) 2011-01-17 2017-03-08 제이에프이 스틸 가부시키가이샤 Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
JP2013093299A (en) * 2011-01-17 2013-05-16 Jfe Steel Corp Method for manufacturing stainless steel for fuel battery separators, stainless steel for fuel battery separators, fuel battery separator, and fuel battery
CN103314475A (en) * 2011-01-17 2013-09-18 杰富意钢铁株式会社 Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
EP2667439A1 (en) 2011-01-17 2013-11-27 JFE Steel Corporation Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
EP2667439A4 (en) * 2011-01-17 2016-01-20 Jfe Steel Corp Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
JPWO2013018322A1 (en) * 2011-07-29 2015-03-05 Jfeスチール株式会社 Stainless steel for fuel cell separator
JP2013028849A (en) * 2011-07-29 2013-02-07 Jfe Steel Corp Stainless steel for fuel battery separator
EP2738277A1 (en) * 2011-07-29 2014-06-04 JFE Steel Corporation Stainless steel for fuel cell separator
CN103717769A (en) * 2011-07-29 2014-04-09 杰富意钢铁株式会社 Stainless steel for fuel cell separator
CN103717769B (en) * 2011-07-29 2016-04-27 杰富意钢铁株式会社 Fuel cell separator plate stainless steel
WO2013018320A1 (en) * 2011-07-29 2013-02-07 Jfeスチール株式会社 Stainless steel for fuel cell separator
WO2013018322A1 (en) * 2011-07-29 2013-02-07 Jfeスチール株式会社 Stainless steel for fuel cell separator
TWI474539B (en) * 2011-07-29 2015-02-21 Jfe Steel Corp Stainless steel for fuel cell separator
JP2017071218A (en) * 2015-10-05 2017-04-13 新日鉄住金マテリアルズ株式会社 Stainless steel sheet-carbon composite material and method for producing the same
JP2017071219A (en) * 2015-10-05 2017-04-13 新日鉄住金マテリアルズ株式会社 Stainless steel sheet-carbon composite material and method for producing the same
WO2017110656A1 (en) 2015-12-24 2017-06-29 Jfeスチール株式会社 Stainless steel sheet for fuel cell separators and method for producing same
TWI627790B (en) * 2015-12-24 2018-06-21 Jfe Steel Corp Stainless steel steel plate for fuel cell separator and manufacturing method thereof
KR20180087384A (en) 2015-12-24 2018-08-01 제이에프이 스틸 가부시키가이샤 Stainless steel sheet for separator of fuel cell and manufacturing method thereof
US10714764B2 (en) 2015-12-24 2020-07-14 Jfe Steel Corporation Stainless steel sheet for fuel cell separators and method for producing the same

Also Published As

Publication number Publication date
JP5621186B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5621186B2 (en) Method for producing stainless steel for polymer electrolyte fuel cell separator
JP6726735B2 (en) Stainless steel for fuel cell separator and method of manufacturing the same
JP2008091225A (en) Separator for solid polymer fuel cell and its manufacturing method
KR101266096B1 (en) Fuel cell separator and method for producing same
WO2004019437A1 (en) Metal member for fuel cell and its manufacturing method, austenitic stainless steel for solid polymer fuel cell and metal member for fuel cell using same, material for solid polymer fuel cell and its manufacturing method, corrosion-resistance conductive member and its manufacturing method, and fuel cell
JPWO2018198685A1 (en) Stainless steel plate for fuel cell separator and method of manufacturing the same
KR101861032B1 (en) Titanium material or titanium alloy material that have surface conductivity, fuel cell separator using same, and fuel cell
TWI261947B (en) Titanium system material for fuel cell separator, and manufacturing method therefor
JP2006190643A (en) Titanium material for electrode and its manufacturing method
Weissbecker et al. Electrochemical corrosion study of metallic materials in phosphoric acid as bipolar plates for HT-PEFCs
JP2007027032A (en) Stainless steel separator for solid polymer type fuel cell, and fuel cell
JP2007026694A (en) Separator for solid polymer type fuel cell, and solid polymer type fuel cell
JP2011038166A (en) Energizing member for fuel cell and method for producing the same
JP6057033B1 (en) Ferritic stainless steel material, separator, polymer electrolyte fuel cell, and separator manufacturing method
CN102817033B (en) Stainless surface alloying
JP2004139951A (en) Separator for fuel cell and its manufacturing method
WO2011089730A1 (en) Stainless steel for current-carrying member having low electrical contact resistance, and process for production thereof
JP2006253107A (en) Separator made of stainless steel for polymer electrolyte fuel cell
JP5403642B2 (en) Corrosion resistant conductive material
JP5309385B2 (en) Stainless steel conductive member and manufacturing method thereof
JP2011149041A (en) Stainless steel for conductive component having low contact electric resistance, and method for producing the same
JP5288761B2 (en) Material for separator of polymer electrolyte fuel cell
JP2009231150A (en) Ferrite system roughened surface stainless steel plate for separator, and separator as well as polymer electrolyte fuel cell
JP4523234B2 (en) Fuel cell separator
JP2004265695A (en) Separator for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250