JP6929812B2 - 半導体装置及びメモリシステム - Google Patents

半導体装置及びメモリシステム Download PDF

Info

Publication number
JP6929812B2
JP6929812B2 JP2018047571A JP2018047571A JP6929812B2 JP 6929812 B2 JP6929812 B2 JP 6929812B2 JP 2018047571 A JP2018047571 A JP 2018047571A JP 2018047571 A JP2018047571 A JP 2018047571A JP 6929812 B2 JP6929812 B2 JP 6929812B2
Authority
JP
Japan
Prior art keywords
inverter
data
node
clock
electrically connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018047571A
Other languages
English (en)
Other versions
JP2019161522A (ja
Inventor
陽平 安田
陽平 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2018047571A priority Critical patent/JP6929812B2/ja
Priority to US16/116,363 priority patent/US10665274B2/en
Publication of JP2019161522A publication Critical patent/JP2019161522A/ja
Application granted granted Critical
Publication of JP6929812B2 publication Critical patent/JP6929812B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/065Differential amplifiers of latching type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/222Clock generating, synchronizing or distributing circuits within memory device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/01855Interface arrangements synchronous, i.e. using clock signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/3562Bistable circuits of the master-slave type
    • H03K3/35625Bistable circuits of the master-slave type using complementary field-effect transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1084Data input buffers, e.g. comprising level conversion circuits, circuits for adapting load
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1087Data input latches

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Dram (AREA)
  • Memory System (AREA)
  • Electronic Switches (AREA)

Description

本実施形態は、半導体装置及びメモリシステムに関する。
半導体装置は、2つのデータを受けて、2つのデータを合成して内部回路で使用するためのデータを生成することがある。このとき、合成後のデータが内部回路で適正に使用されるためには、合成されたデータのデューティ比が適正であることが望まれる。
特開2014−187416号公報
一つの実施形態は、2つのデータを適正なディーティ比で合成できる半導体装置及びメモリシステムを提供することを目的とする。
一つの実施形態によれば、第1のクロックドインバータと第2のクロックドインバータと第1のインバータと第2のインバータと第3のクロックドインバータと第4のクロックドインバータと第3のインバータと第4のインバータと比較回路とを有する半導体装置が提供される。第1のクロックドインバータは、第1のノードに電気的に接続されている。第1のノードは、第1のデータが入力される。第1のクロックドインバータは、基準クロックの立ち上がりに対応している。第2のクロックドインバータは、第2のノードに電気的に接続されている。第2のノードは、第2のデータが入力される。第2のクロックドインバータは、基準クロックの立ち下がりに対応している。第1のインバータは、第1のノードに電気的に接続されている。第2のインバータは、第2のノードに電気的に接続されている。第3のクロックドインバータは、第1のインバータの出力ノードに電気的に接続されている。第3のクロックドインバータは、基準クロックの立ち上がりに対応している。第4のクロックドインバータは、第2のインバータの出力ノードに電気的に接続されている。第4のクロックドインバータは、基準クロックの立ち下がりに対応している。第3のインバータは、第1のクロックドインバータの出力ノード及び第2のクロックドインバータの出力ノードに電気的に接続されている。第4のインバータは、第3のクロックドインバータの出力ノード及び第4のクロックドインバータの出力ノードに電気的に接続されている。比較回路は、第3のインバータの出力ノード及び第4のインバータの出力ノードに電気的に接続されている。
図1は、実施形態に係る半導体装置の構成を示す回路図である。 図2は、実施形態に係る半導体装置の動作を示す波形図である。 図3は、実施形態に係る半導体装置の動作を示す波形図である。 図4は、実施形態におけるクロックドインバータ及びインバータの構成を示す回路図である。 図5は、実施形態の変形例に係る半導体装置の構成を示す回路図である。 図6は、実施形態の他の変形例に係る半導体装置の構成を示す回路図である。 図7は、実施形態のさらに他の変形例に係る半導体装置の構成を示す回路図である。 図8は、実施形態に係る半導体装置が適用されたメモリシステムの構成を示す図である。
以下に添付図面を参照して、実施形態にかかる半導体装置を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。
(実施形態)
実施形態に係る半導体装置は、高速でデータを転送することを考慮してDDR(Double−Data−Rate)などの規格に応じて構成される。DDR(Double−Data−Rate)規格によれば、クロックの立ち上がりおよび立ち下がりのダブルエッジでデータの取り込みを行うことで、クロックの立ち上がり又は立ち下りのみでデータを取り込む場合に比べて2倍の転送速度(ダブルデータレート)を実現できる。
例えば、クロックにおける偶数番目のエッジ(例えば、クロックの立ち下がり)で取り込まれたデータφD_EVとクロックにおける奇数番目のエッジ(例えば、クロックの立ち上がり)で取り込まれたデータφD_ODとがそれぞれ転送されてきた場合、半導体装置は、この2つのデータを受けて、2つのデータを合成して内部回路で使用するためのデータを生成する。
このとき、半導体装置に含まれる複数の素子の間でその製造過程におけるばらつきによる動作のバランスのばらつきが生じると、2つのデータの波形の立ち上がり又は立ち下がりが遅延し、合成後のデータのデューティ比が適正な範囲から逸脱することがある。これにより、DCD(Duty Cycle Distortion)が増大し、データのセットアップ時間及び/又はホールド時間が要求される仕様を満たさなくなることなどにより、合成後のデータが内部回路で適正に使用できなくなる可能性がある。
そこで、本実施形態では、半導体装置において、2つのデータから2つの逆相のデータを生成し、2つのデータにおける一方のデータと他方のデータから生成された逆相のデータとを比較回路で合成することで、合成後のデータにおけるDCDの低減化を図る。
具体的には、半導体装置1は、図1に示すように構成される。図1は、半導体装置1の構成を示す回路図である。半導体装置1は、データφD_EVをノード1aで受け、データφD_ODをノード1bで受け、基準クロックφCKをノード1cで受け、基準クロックφCKを用いてデータφD_EV及びデータφD_ODを合成し、合成後のデータφDoutをノード1dから出力する。
半導体装置1は、生成回路40、ラッチ回路50、ラッチ回路60、セレクタ10、インバータIV1、インバータIV2、セレクタ20、及び比較回路30を有する。
生成回路40は、基準クロックφCKをノード40a(ノード1c)で受け、基準クロックφCKを反転させたクロック(第1のクロック)φCKcと基準クロックφCKに対応するクロック(第2のクロック)φCKtとを生成する。生成回路40は、フェイズスプリッタとして構成され、例えば、チェーン回路41及びチェーン回路42を有する。チェーン回路41は、インバータIV41、インバータIV45、インバータIV46が順にチェーン状に直列接続されインバータIV45及びインバータIV46を接続するラインLに容量素子Cの一端が接続された構成を有する。容量素子Cの他端は、グランド電位に接続され得る。これにより、チェーン回路41は、基準クロックφCKを奇数段のインバータIV41,IV45,IV46に通してクロックφCKcを生成する。
例えば、図2及び図3に示すように、チェーン回路41は、デューティ比が略50%である基準クロックφCKを受け、基準クロックφCKに対して論理反転されるとともにエッジタイミングが若干遅延されたクロックφCKcを生成する。図2及び図3は、半導体装置1の動作を示す波形図である。生成後のクロックφCKcは、デューティ比が略50%である。
図1に示すチェーン回路42は、インバータIV41、インバータIV42、インバータIV43、インバータIV44が順にチェーン状に直列接続された構成を有する。これにより、チェーン回路42は、基準クロックφCKを偶数段のインバータIV41〜IV44に通してクロックφCKtを生成する。
例えば、図2及び図3に示すように、チェーン回路42は、デューティ比が略50%である基準クロックφCKを受け、基準クロックφCKに対してエッジタイミングが若干遅延されたクロックφCKtを生成する。生成後のクロックφCKtは、デューティ比が略50%である。
図1に示す生成回路40は、クロックφCKcをノード40cからラッチ回路50、セレクタ10、セレクタ20へそれぞれ供給し、クロックφCKtをノード40bからラッチ回路60、セレクタ10、セレクタ20へそれぞれ供給する。
ラッチ回路50は、データ入力端子Dがノード1aに電気的に接続され、クロック端子CLKが生成回路40のノード40cに電気的に接続され、出力端子Qがノード1eを介してセレクタ10及びインバータIV1に電気的に接続されている。ノード1a,1eは、それぞれ、データφD_EVに対応したノードである。データφD_EVは、元のデータφDTに対して、クロックにおける偶数番目のエッジ(クロックの立ち下がり)で取り込まれたデータである。元のデータφDTは、例えば、図2にその一部を示すように、半クロックの周期でA→B→C→Dと遷移するデータである。ここで、A,B,C,Dはそれぞれデータの論理値「0」又は「1」を示し、論理値「0」はLレベルの信号波形で伝達され得、論理値「1」はHレベルの信号波形で伝達され得る。データφD_EVは、例えば、図2に示すように、1クロック周期でA→Cと遷移するデータである。
ラッチ回路50は、外部(ホスト、又はメモリシステムにおける信号処理回路)からデータφD_EVを受け、生成回路40からクロックφCKcを受ける。ラッチ回路50は、クロックφCKcのレベル又はエッジに応じて、データφD_EVのレベルを通過又は保持した論理値をセレクタ10及びインバータIV1へ供給する。
例えば、図2及び図3に示すように、ラッチ回路50は、クロックφCKcがHレベルの期間に、データφD_EVを通過させてセレクタ10及びインバータIV1へ供給する。ラッチ回路50は、クロックφCKcがLレベルの期間に、データφD_EVを通過させずクロックφCKcがHレベル→Lレベルになったタイミングに保持したデータφD_EVのレベルをセレクタ10及びインバータIV1へ供給する。
図1に示すラッチ回路60は、データ入力端子Dがノード1bに電気的に接続され、クロック端子CLKが生成回路40のノード40bに電気的に接続され、出力端子Qがノード1fを介してセレクタ10及びインバータIV2に電気的に接続されている。ノード1b,1fは、それぞれ、データφD_ODに対応したノードである。データφD_ODは、元のデータφDTに対して、クロックにおける奇数番目のエッジ(クロックの立ち上がり)で取り込まれたデータである。データφD_ODは、例えば、図2に示すように、1クロック周期でB→Dと遷移するデータである。
ラッチ回路60は、外部(ホスト、又はメモリシステムにおける信号処理回路)からデータφD_ODを受け、生成回路40からクロックφCKtを受ける。ラッチ回路60は、クロックφCKtのレベル又はエッジに応じて、データφD_ODを通過又は保持した論理値をセレクタ10及びインバータIV2へ供給する。
例えば、図2及び図3に示すように、ラッチ回路60は、クロックφCKtがHレベルの期間に、データφD_ODを通過させてセレクタ10及びインバータIV2へ供給する。ラッチ回路60は、クロックφCKtがLレベルの期間に、データφD_ODを通過させずクロックφCKtがHレベル→Lレベルになったタイミングに保持したデータφD_ODのレベルをセレクタ10及びインバータIV2へ供給する。
セレクタ10は、ラッチ回路50及びラッチ回路60と比較回路30との間に電気的に挿入されている。セレクタ10は、入力ノード10a,10b、クロックノード10c1,10c2,10c3,10c4、及び出力ノード10dを有する。入力ノード10aは、ラッチ回路50の出力端子Qに電気的に接続されている。入力ノード10bは、ラッチ回路60の出力端子Qに電気的に接続されている。クロックノード10c1及びクロックノード10c4は、生成回路40の出力ノード40cに電気的に接続されている。クロックノード10c2及びクロックノード10c3は、生成回路40の出力ノード40bに電気的に接続されている。出力ノード10dは、比較回路30に電気的に接続されている。
セレクタ10は、ラッチ回路50からデータφD_EVを受け、ラッチ回路60からデータφD_ODを受け、生成回路40からクロックφCKt,φCKcを受ける。セレクタ10は、クロックφCKt,φCKcを用いて動作するが、等価的に基準クロックφCKをセレクト信号として動作すると見なすこともできる。すなわち、セレクタ10は、基準クロックφCKがHレベルの期間にデータφD_EVを選択してデータφDpreとして出力し、基準クロックφCKがLレベルの期間にデータφD_ODを選択してデータφDpreとして出力する。
セレクタ10は、クロックドインバータCI1、クロックドインバータCI2、及びインバータIV3を有する。クロックドインバータCI1は、ラッチ回路50及びインバータIV3の間に電気的に挿入されている。クロックドインバータCI2は、ラッチ回路60及びインバータIV3の間に電気的に挿入されている。インバータIV3は、クロックドインバータCI1及びクロックドインバータCI2と比較回路30との間に電気的に挿入されている。
クロックドインバータCI1は、入力ノードが入力ノード10a経由でノード1eに電気的に接続され、P側(第1の側)のクロックノード10c1がノード40cに電気的に接続され、N側(第2の側)のクロックノード10c2がノード40bに電気的に接続され、出力ノードがインバータIV3の入力ノードに電気的に接続されている。クロックドインバータCI1は、基準クロックφCKの立ち上がりに対応している。
クロックドインバータCI1は、例えば、図4に示すように構成される。図4は、クロックドインバータCI1,CI2及びインバータIV3の構成を示す回路図である。クロックドインバータCI1は、PMOSトランジスタPM1、PMOSトランジスタPM2、NMOSトランジスタNM1、及びNMOSトランジスタNM2を有する。PMOSトランジスタPM1は、ゲートが入力ノード10aに電気的に接続され、ソースが電源電位に電気的に接続され、ドレインがPMOSトランジスタPM2のソースに電気的に接続されている。PMOSトランジスタPM2は、ゲートがクロックノード10c1に電気的に接続され、ソースがPMOSトランジスタPM1のドレインに電気的に接続され、ドレインがクロックドインバータCI1の出力ノードに電気的に接続されている。NMOSトランジスタNM2は、ゲートがクロックノード10c2に電気的に接続され、ソースがNMOSトランジスタNM1のドレインに電気的に接続され、ドレインがクロックドインバータCI1の出力ノードに電気的に接続されている。NMOSトランジスタNM1は、ゲートが入力ノード10aに電気的に接続され、ソースがグランド電位に電気的に接続され、ドレインがNMOSトランジスタNM2のソースに電気的に接続されている。すなわち、PMOSトランジスタPM2のドレインとNMOSトランジスタNM2のドレインとは接続されている。
図4に示す構成により、クロックドインバータCI1は、クロックφCKcがLレベルであり且つクロックφCKtがHレベルである期間に、データφD_EVを反転させたデータφD_EV ̄を、出力ノードを介してインバータIV3へ出力し、クロックφCKcがHレベルであり且つクロックφCKtがLレベルである期間に、動作しない。等価的に見た場合、図1に示すクロックドインバータCI1は、基準クロックφCKがHレベルの期間にデータφD_EVを反転させたデータφD_EV ̄を、出力ノードを介してインバータIV3へ出力し、基準クロックφCKがLレベルの期間に動作しない。
図1に示すように、クロックドインバータCI2は、入力ノードが入力ノード10b経由でノード1fに電気的に接続され、P側(第1の側)のクロックノード10c3がノード40bに電気的に接続され、クロックノード10c4がノード40cに電気的に接続され、出力ノードがインバータIV3の入力ノードに電気的に接続されている。クロックドインバータCI2は、基準クロックφCKの立ち下がりに対応している。
クロックドインバータCI2は、例えば、図4に示すように構成される。クロックドインバータCI2は、PMOSトランジスタPM3、PMOSトランジスタPM4、NMOSトランジスタNM3、及びNMOSトランジスタNM4を有する。PMOSトランジスタPM3は、ゲートが入力ノード10bに電気的に接続され、ソースが電源電位に電気的に接続され、ドレインがPMOSトランジスタPM4のソースに電気的に接続されている。PMOSトランジスタPM4は、ゲートがクロックノード10c3に電気的に接続され、ソースがPMOSトランジスタPM3のドレインに電気的に接続され、ドレインがクロックドインバータCI2の出力ノードに電気的に接続されている。NMOSトランジスタNM4は、ゲートがクロックノード10c4に電気的に接続され、ソースがNMOSトランジスタNM3のドレインに電気的に接続され、ドレインがクロックドインバータCI2の出力ノードに電気的に接続されている。NMOSトランジスタNM3は、ゲートが入力ノード10bに電気的に接続され、ソースがグランド電位に電気的に接続され、ドレインがNMOSトランジスタNM4のソースに電気的に接続されている。すなわち、PMOSトランジスタPM4のドレインとNMOSトランジスタNM4のドレインとは接続されている。
図4に示す構成により、クロックドインバータCI2は、クロックφCKcがHレベルであり且つクロックφCKtがLレベルである期間に、データφD_ODを反転させたデータφD_OD ̄を、出力ノードを介してインバータIV3へ出力し、クロックφCKcがLレベルであり且つクロックφCKtがHレベルである期間に、動作しない。等価的に見た場合、図1に示すクロックドインバータCI2は、基準クロックφCKがLレベルの期間にデータφD_ODを反転させたデータφD_OD ̄を、出力ノードを介してインバータIV3へ出力し、基準クロックφCKがHレベルの期間に動作しない。
図1にも示すように、インバータIV3は、入力ノードがクロックドインバータCI1の出力ノード及びクロックドインバータCI2の出力ノードに電気的に接続され、出力ノード10dが比較回路30の入力ノード30aに電気的に接続されている。
インバータIV3は、例えば、図4に示すように構成される。インバータIV3は、PMOSトランジスタPM5及びNMOSトランジスタNM5を有する。PMOSトランジスタPM5は、ゲートがインバータIV3の入力ノードに電気的に接続され、ソースが電源電位に電気的に接続され、ドレインがインバータIV3の出力ノードに電気的に接続されている。NMOSトランジスタNM5は、ゲートがインバータIV3の入力ノードに電気的に接続され、ソースがグランド電位に電気的に接続され、ドレインがインバータIV3の出力ノードに電気的に接続されている。すなわち、PMOSトランジスタPM5のドレインとNMOSトランジスタNM5のドレインとは接続されている。
図1、図4に示す構成により、インバータIV3は、クロックドインバータCI1からデータφD_EV ̄を受けた場合、データφD_EV ̄を反転させてデータφDpreとして出力する。また、インバータIV3は、クロックドインバータCI2からデータφD_OD ̄を受けた場合、データφD_OD ̄を反転させてデータφDpreとして出力する。
ここで、セレクタ10内のクロックドインバータCI1、クロックドインバータCI2、インバータIV3におけるPMOSトランジスタとNMOSトランジスタとは、互いに駆動力が均等になるように設計されるが、その製造ばらつきにより駆動力がアンバランスになることがある。
例えば、クロックドインバータCI1、クロックドインバータCI2、インバータIV3におけるPMOSトランジスタの駆動力がNMOSトランジスタの駆動力より小さい場合、データφDpreの波形は、図2に実線で示すように、立ち上がりが立ち下がりに比べて遅くなり、そのデューティ比が50%から減衰する傾向にある。
あるいは、クロックドインバータCI1、クロックドインバータCI2、インバータIV3におけるPMOSトランジスタの駆動力がNMOSトランジスタの駆動力より大きい場合、データφDpreの波形は、図3に実線で示すように、立ち下がりが立ち上がりに比べて遅くなり、そのデューティ比が50%から減衰する傾向にある。
図1に示すように、インバータIV1は、ラッチ回路50及びセレクタ20の間に電気的に挿入されている。インバータIV1は、入力ノードがノード1e経由でラッチ回路50の出力端子Qに電気的に接続され、出力ノードがセレクタ20の入力ノード20aに電気的に接続されている。インバータIV1は、ラッチ回路50からデータφD_EVを受け、データφD_EVを論理反転したデータφD_EV ̄をセレクタ20へ出力する。
インバータIV2は、ラッチ回路60及びセレクタ20の間に電気的に挿入されている。インバータIV2は、入力ノードがノード1f経由でラッチ回路60の出力端子Qに電気的に接続され、出力ノードがセレクタ20の入力ノード20bに電気的に接続されている。インバータIV2は、ラッチ回路60からデータφD_ODを受け、データφD_ODを論理反転したデータφD_OD ̄をセレクタ20へ出力する。
セレクタ20は、ラッチ回路50及びラッチ回路60と比較回路30との間に電気的に挿入されると共にセレクタ10に対して並列に配されている。セレクタ20は、入力ノード20a,20b、クロックノード20c1,20c2,20c3,20c4、及び出力ノード20dを有する。入力ノード20aは、インバータIV1の出力ノードに電気的に接続されている。入力ノード20bは、インバータIV2の出力ノードに電気的に接続されている。クロックノード20c1及びクロックノード20c4は、生成回路40の出力ノード40cに電気的に接続されている。クロックノード20c2及びクロックノード20c3は、生成回路40の出力ノード40bに電気的に接続されている。出力ノード20dは、比較回路30に電気的に接続されている。
セレクタ20は、インバータIV1からデータφD_EV ̄を受け、インバータIV2からデータφD_OD ̄を受け、生成回路40からクロックφCKt,φCKcを受ける。セレクタ20は、クロックφCKt,φCKcを用いて動作するが、等価的に基準クロックφCKをセレクト信号として動作すると見なすこともできる。すなわち、セレクタ20は、基準クロックφCKがHレベルの期間にデータφD_EV ̄を選択してデータφBDpreとして出力し、基準クロックφCKがLレベルの期間にデータφD_OD ̄を選択してデータφBDpreとして出力する。
セレクタ20は、クロックドインバータCI3、クロックドインバータCI4、及びインバータIV4を有する。クロックドインバータCI3は、インバータIV1及びインバータIV4の間に電気的に挿入されている。クロックドインバータCI4は、インバータIV2及びインバータIV3の間に電気的に挿入されている。インバータIV3は、クロックドインバータCI3及びクロックドインバータCI4と比較回路30との間に電気的に挿入されている。
クロックドインバータCI3は、入力ノードがインバータIV1の出力ノードに電気的に接続され、P側(第1の側)のクロックノード20c1がノード40cに電気的に接続され、N側(第2の側)のクロックノード20c2がノード40bに電気的に接続され、出力ノードがインバータIV3の入力ノードに電気的に接続されている。クロックドインバータCI3は、基準クロックφCKの立ち上がりに対応している。
クロックドインバータCI3の構成は、例えば、図4に示すクロックドインバータCI1の構成と同様である。この構成により、クロックドインバータCI3は、クロックφCKcがLレベルであり且つクロックφCKtがHレベルである期間に、データφD_EV ̄を論理反転させたデータφD_EVを、出力ノードを介してインバータIV4へ出力し、クロックφCKcがHレベルであり且つクロックφCKtがLレベルである期間に、動作しない。等価的に見た場合、図1に示すクロックドインバータCI3は、基準クロックφCKがHレベルの期間にデータφD_EV ̄を論理反転させたデータφD_EVを、出力ノードを介してインバータIV4へ出力し、基準クロックφCKがLレベルの期間に動作しない。
図1に示すように、クロックドインバータCI4は、入力ノードがインバータIV2の出力ノードに電気的に接続され、P側(第1の側)のクロックノード20c3がノード40bに電気的に接続され、N側(第2の側)のクロックノード20c4がノード40cに電気的に接続され、出力ノードがインバータIV4の入力ノードに電気的に接続されている。クロックドインバータCI4は、基準クロックφCKの立ち下がりに対応している。
クロックドインバータCI4の構成は、例えば、図4に示すクロックドインバータCI2の構成と同様である。この構成により、クロックドインバータCI4は、クロックφCKcがHレベルであり且つクロックφCKtがLレベルである期間に、データφD_OD ̄を論理反転させたデータφD_ODを、出力ノードを介してインバータIV4へ出力し、クロックφCKcがLレベルであり且つクロックφCKtがHレベルである期間に、動作しない。等価的に見た場合、図1に示すクロックドインバータCI4は、基準クロックφCKがLレベルの期間にデータφD_OD ̄を論理反転させたデータφD_ODを、出力ノードを介してインバータIV4へ出力し、基準クロックφCKがHレベルの期間に動作しない。
インバータIV4は、入力ノードがクロックドインバータCI3の出力ノード及びクロックドインバータCI4の出力ノードに電気的に接続され、出力ノード20dが比較回路30の入力ノード30bに電気的に接続されている。
インバータIV4の構成は、例えば、図4に示すインバータIV3の構成と同様である。この構成により、インバータIV4は、クロックドインバータCI3からデータφD_EVを受けた場合、データφD_EVを反転させてデータφBDpreとして出力する。また、インバータIV4は、クロックドインバータCI4からデータφD_ODを受けた場合、データφD_ODを反転させてデータφBDpreとして出力する。
ここで、セレクタ20内のクロックドインバータCI3、クロックドインバータCI4、インバータIV4におけるPMOSトランジスタとNMOSトランジスタとは、互いに駆動力が均等になるように設計されるが、その製造ばらつきにより駆動力がアンバランスになることがある。
例えば、クロックドインバータCI3、クロックドインバータCI4、インバータIV4におけるPMOSトランジスタの駆動力がNMOSトランジスタの駆動力より小さい場合、データφBDpreの波形は、図2に破線で示すように、立ち上がりが立ち下がりに比べて遅くなり、そのデューティ比が50%から減衰する傾向にある。
あるいは、クロックドインバータCI1、クロックドインバータCI2、インバータIV3におけるPMOSトランジスタの駆動力がNMOSトランジスタの駆動力より大きい場合、データφBDpreの波形は、図3に破線で示すように、立ち下がりが立ち上がりに比べて遅くなり、そのデューティ比が50%から減衰する傾向にある。
比較回路30は、セレクタ10及びセレクタ20と半導体装置1の出力ノード1dとの間に電気的に挿入されている。比較回路30は、入力ノード30a、入力ノード30b、及び出力ノード30cを有する。入力ノード30aは、セレクタ10の出力ノード10dに電気的に接続されている。入力ノード30bは、セレクタ20の出力ノード20dに電気的に接続されている。比較回路30の出力ノード30cは、半導体装置1の出力ノード1dとして機能する。
比較回路30は、セレクタ10からデータφDpreを受け、セレクタ20からデータφBDpreを受ける。比較回路30は、データφDpreとデータφBDpreとを比較し、比較結果として、データφDpre及びデータφBDpreが合成されたデータφDoutを出力する。データφDoutは、例えば、図2に示すように、元のデータφDTに対応したデータであり、半クロック周期でA→B→C→Dと遷移するデータである。ここで、A,B,C,Dはそれぞれデータの論理値「0」又は「1」を示し、論理値「0」はLレベルの信号波形で伝達され得、論理値「1」はHレベルの信号波形で伝達され得る。図2では、A=「0」、B=「1」、C=「0」、D=「1」の場合が例示されている。
比較回路30は、コンパレータCPを有する。コンパレータCPとしては、入出力間にフィードバックを掛けないように(コンパレート動作するように)構成された差動増幅器が用いられ得る。コンパレータCPは、セレクタ10及びセレクタ20と半導体装置1の出力ノード1dとの間に電気的に挿入されている。コンパレータCPは、非反転入力端子(+)が入力ノード30a経由でセレクタ10の出力ノード10dに電気的に接続され、反転入力端子(−)が入力ノード30b経由でセレクタ20の出力ノード20dに電気的に接続され、出力端子が出力ノード30c(出力ノード1d)に電気的に接続されている。
コンパレータCPは、セレクタ10からデータφDpreを受け、セレクタ20からデータφBDpreを受ける。コンパレータCPは、データφDpreとデータφBDpreとを比較し、データφDpreのレベルがデータφBDpreのレベルより高ければ、Hレベルを比較結果(データφDout)として出力し、データφDpreのレベルがデータφBDpreのレベルより低ければ、Lレベルを比較結果(データφDout)として出力する。これにより、コンパレータCPは、データφDpre及びデータφBDpreが合成されたデータφDoutを出力する。
例えば、セレクタ10及びセレクタ20のそれぞれにおけるPMOSトランジスタの駆動力がNMOSトランジスタの駆動力より小さい場合、データφDpreの波形は、図2に実線で示すように、立ち上がりが立ち下がりに比べて遅くなり、データφBDpreの波形は、図2に破線で示すように、立ち上がりが立ち下がりに比べて遅くなる。2つのデータφDpre,φBDpreを見ると、いずれも、Lレベルのパルス幅は、ディーティ比50%に対応した幅で確保され得ることが分かる。すなわち、コンパレータCPが、データφDpreのレベルがデータφBDpreのレベルより高ければHレベルをデータφDoutとして出力し、データφDpreのレベルがデータφBDpreのレベルより低ければLレベルをデータφDoutとして出力することで、デューティ比が略50%であるデータφDoutが合成され得る。
あるいは、セレクタ10及びセレクタ20のそれぞれにおけるNMOSトランジスタの駆動力がPMOSトランジスタの駆動力より小さい場合、データφDpreの波形は、図3に実線で示すように、立ち下がりが立ち上がりに比べて遅くなり、データφBDpreの波形は、図3に破線で示すように、立ち下がりが立ち上がりに比べて遅くなる。2つのデータφDpre,φBDpreを見ると、いずれも、Lレベルのパルス幅は、ディーティ比50%に対応した幅で確保され得ることが分かる。すなわち、コンパレータCPが、データφDpreのレベルがデータφBDpreのレベルより高ければHレベルをデータφDoutとして出力し、データφDpreのレベルがデータφBDpreのレベルより低ければLレベルをデータφDoutとして出力することで、デューティ比が略50%であるデータφDoutが合成され得る。
以上のように、実施形態では、半導体装置1において、2つのデータφD_EV,φD_ODから2つの逆相のデータφD_EV ̄,φD_OD ̄を生成し、2つのデータにおける一方のデータと他方のデータから生成された逆相のデータとを比較回路で合成してデータφDoutとして出力する。これにより、合成後のデータφDoutをデューティ比が略50%であるデータとすることができ、合成後のデータφDoutにおけるDCDを容易に低減できる。
なお、比較回路30と2つのセレクタ10,20との接続の極性を逆にすることができる。例えば、比較回路30の入力ノード30a(コンパレータCPの非反転入力端子(+))をセレクタ20の出力ノード20dに接続し、比較回路30の入力ノード30b(コンパレータCPの反転入力端子(−))をセレクタ10の出力ノード10dに接続することで、比較回路30と2つのセレクタ10,20との接続の極性を逆にすることができる。このような構成によっても、実施形態と同様な効果を実現可能である。
あるいは、図5に示すように、半導体装置1iにおいて消費電力を低減するための工夫が加えられてもよい。半導体装置1iにおいて、比較回路30iは、図1に示したコンパレータCP(差動増幅器)に代えて「Back to Back」構成の複数のインバータを用いても構成され得る。図5は、実施形態の変形例に係る半導体装置1iの構成を示す回路図である。
比較回路30iは、複数のインバータIV5,IV6,IV7,IV8を有する。インバータIV6は、入力ノードが入力ノード30b経由でセレクタ20の出力ノード20dに電気的に接続され、出力ノードがラインL2に電気的に接続されている。ラインL2は、インバータIV6の出力側に配されている。ラインL2は、インバータIV6の出力ノードと比較回路30iの出力ノード30c(半導体装置1iの出力ノード1d)とを電気的に接続している。出力ノード30c(出力ノード1d)には、比較回路30iからデータφDoutが出力され得る。
インバータIV5は、入力ノードが入力ノード30a経由でセレクタ10の出力ノード10dに電気的に接続され、出力ノードがラインL1に電気的に接続されている。ラインL1は、インバータIV5の出力側に配されている。ラインL1は、インバータIV5の出力ノードと比較回路30iの出力ノード30d(半導体装置1iの出力ノード1e)とを電気的に接続している。出力ノード30d(出力ノード1e)には、比較回路30iからデータφBDoutが出力され得る。データφBDoutは、データφDoutを論理反転させたデータである。
インバータIV7は、ラインL1とラインL2との間に第1の極性で電気的に挿入されている。第1の極性は、例えば、インバータIV7の入力ノードがラインL1に電気的に接続されインバータIV7の出力ノードがラインL2に電気的に接続される極性とすることができる。
インバータIV8は、ラインL1とラインL2との間に第2の極性で電気的に挿入されている。第2の極性は、第1の極性と逆の極性であり、例えば、インバータIV8の出力ノードがラインL1に電気的に接続されインバータIV8の入力ノードがラインL2に電気的に接続される極性とすることができる。
このように、半導体装置1iにおいて、比較回路30iを「Back to Back」構成の複数のインバータを用いて構成する。これにより、電力消費が比較的大きい構成(例えば、差動増幅器における電流源等)を省略でき、半導体装置1iの消費電力を容易に低減できる。
あるいは、図6に示すように、半導体装置1jにおいてデューティ比の調整を高精度化するための工夫が加えられてもよい。半導体装置1jにおいて、比較回路30iは、図1に示したコンパレータCP(差動増幅器)に代えて「Back to Back」構成を2段で実現する複数のインバータを用いても構成され得る。図6は、実施形態の他の変形例に係る半導体装置1jの構成を示す回路図である。
比較回路30jは、比較回路30i(図5参照)に対して、複数のインバータIV9,IV10,IV11,IV12をさらに有する。インバータIV9は、入力ノードがラインL1経由でインバータIV5の出力ノードに電気的に接続され、出力ノードがラインL3に電気的に接続されている。ラインL3は、インバータIV9の出力側に配されている。ラインL3は、インバータIV9の出力ノードと比較回路30jの出力ノード30d(半導体装置1iの出力ノード1e)とを電気的に接続している。出力ノード30d(出力ノード1e)には、比較回路30jからデータφDoutが出力され得る。
インバータIV10は、入力ノードがラインL2経由でインバータIV6の出力ノードに電気的に接続され、出力ノードがラインL4に電気的に接続されている。ラインL4は、インバータIV10の出力側に配されている。ラインL4は、インバータIV10の出力ノードと比較回路30jの出力ノード30c(半導体装置1iの出力ノード1d)とを電気的に接続している。出力ノード30c(出力ノード1d)には、比較回路30jからデータφBDoutが出力され得る。データφBDoutは、データφDoutを論理反転させたデータである。
インバータIV11は、ラインL3とラインL4との間に第1の極性で電気的に挿入されている。第1の極性は、例えば、インバータIV11の入力ノードがラインL3に電気的に接続されインバータIV11の出力ノードがラインL4に電気的に接続される極性とすることができる。
インバータIV12は、ラインL3とラインL4との間に第2の極性で電気的に挿入されている。第2の極性は、第1の極性と逆の極性であり、例えば、インバータIV12の出力ノードがラインL3に電気的に接続されインバータIV12の入力ノードがラインL4に電気的に接続される極性とすることができる。
このように、半導体装置1jにおいて、比較回路30jを「Back to Back」構成を2段で実現する複数のインバータを用いて構成する。これにより、比較回路30jにおける比較動作の精度を向上できるので、合成後のデータφDoutのデューティ比を容易に略50%に近づけることができ、データφDoutのディーティ比を高精度に調整できる。
あるいは、図7に示すように、半導体装置1kにおいて回路面積を低減するための工夫が加えられてもよい。半導体装置1kにおいて、比較回路30kは、セレクタ10,20とインバータIV3,IV4を共有しながら、「Back to Back」構成を実現する。図7は、実施形態のさらに他の変形例に係る半導体装置1kの構成を示す回路図である。
比較回路30kは、比較回路30i(図5参照)に対して、複数のインバータIV5,IV6が省略されている。インバータIV3は、出力ノードがラインL1kに電気的に接続されている。ラインL1kは、インバータIV3の出力側に配されている。ラインL1kは、インバータIV3の出力ノードと比較回路30kの出力ノード30d(半導体装置1kの出力ノード1e)とを電気的に接続している。出力ノード30d(出力ノード1e)には、比較回路30kからデータφDoutが出力され得る。
インバータIV4は、出力ノードがラインL2kに電気的に接続されている。ラインL2kは、インバータIV4の出力側に配されている。ラインL2kは、インバータIV4の出力ノードと比較回路30kの出力ノード30c(半導体装置1kの出力ノード1d)とを電気的に接続している。出力ノード30c(出力ノード1d)には、比較回路30kからデータφBDoutが出力され得る。データφBDoutは、データφDoutを論理反転させたデータである。
インバータIV7は、ラインL1kとラインL2kとの間に第1の極性で電気的に挿入されている。第1の極性は、例えば、インバータIV7の入力ノードがラインL1kに電気的に接続されインバータIV7の出力ノードがラインL2kに電気的に接続される極性とすることができる。
インバータIV8は、ラインL1kとラインL2kとの間に第2の極性で電気的に挿入されている。第2の極性は、第1の極性と逆の極性であり、例えば、インバータIV8の出力ノードがラインL1kに電気的に接続されインバータIV8の入力ノードがラインL2kに電気的に接続される極性とすることができる。
このように、半導体装置1kにおいて、比較回路30kをセレクタ10,20とインバータIV3,IV4を共有させながら「Back to Back」構成で実現する。これにより、半導体装置1kをより少ない個数のインバータで構成でき、半導体装置1kの回路面積を容易に低減できる。
次に、レベルシフト回路が適用されるメモリシステム100について図8を用いて説明する。図8は、実施形態又はその変形例に係る半導体装置が適用されたメモリシステム100の構成を示す図である。
メモリシステム100は、ホスト200に接続可能であり、ホスト200の外部記憶媒体として機能し得る。ホスト200は、例えば、パーソナルコンピュータであり、メモリシステム100は、例えば、SSDである。メモリシステム100は、コントローラ110及び半導体メモリ120を有する。コントローラ110は、ハードウェアとしての回路であり、ホストインターフェース(ホストI/F)111、信号処理回路112、メモリインターフェース(メモリI/F)113を有する。
例えば、ホストI/F111は、半導体装置1aを有する。半導体装置1aは、実施形態又はその変形例に係る半導体装置のいずれも適用可能である。ホストI/F111は、所定のデータをホスト200から受ける。ホストI/F111は、所定のデータから、クロックにおける偶数番目のエッジ(クロックの立ち下がり)で取り込まれたデータφD_EVとクロックにおける奇数番目のエッジ(クロックの立ち上がり)で取り込まれたデータφD_ODとを生成して半導体装置1aへ転送する。半導体装置1aは、基準クロックφCKが入力され、基準クロックφCKを用いて、転送された2つのデータ(データφD_EV及びデータφD_OD)を合成して信号処理回路112又は半導体メモリ120で使用するためのデータを生成する。これにより、合成後のデータが信号処理回路112又は半導体メモリ120で適正に使用され得る。
また、メモリI/F113は、半導体装置1bを有する。半導体装置1bは、実施形態又はその変形例に係る半導体装置のいずれも適用可能である。メモリI/F113は、所定のデータを信号処理回路112から受ける。メモリI/F113は、所定のデータから、クロックにおける偶数番目のエッジ(クロックの立ち下がり)で取り込まれたデータφD_EVとクロックにおける奇数番目のエッジ(クロックの立ち上がり)で取り込まれたデータφD_ODとを生成して半導体装置1bへ転送する。半導体装置1bは、基準クロックφCKが入力され、基準クロックφCKを用いて2つのデータを合成して半導体メモリ120で使用するためのデータを生成する。これにより、合成後のデータが半導体メモリ120で適正に使用され得る。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1,1i,1j,1k 半導体装置、100 メモリシステム。

Claims (7)

  1. 第1のデータが入力される第1のノードに電気的に接続され、基準クロックの立ち上がりに対応した第1のクロックドインバータと、
    第2のデータが入力される第2のノードに電気的に接続され、前記基準クロックの立ち下がりに対応した第2のクロックドインバータと、
    前記第1のノードに電気的に接続された第1のインバータと、
    前記第2のノードに電気的に接続された第2のインバータと、
    前記第1のインバータの出力ノードに電気的に接続され、前記基準クロックの立ち上がりに対応した第3のクロックドインバータと、
    前記第2のインバータの出力ノードに電気的に接続され、前記基準クロックの立ち下がりに対応した第4のクロックドインバータと、
    前記第1のクロックドインバータの出力ノード及び前記第2のクロックドインバータの出力ノードに電気的に接続された第3のインバータと、
    前記第3のクロックドインバータの出力ノード及び前記第4のクロックドインバータの出力ノードに電気的に接続された第4のインバータと、
    前記第3のインバータの出力ノード及び前記第4のインバータの出力ノードに電気的に接続された比較回路と、
    を備えた半導体装置。
  2. 前記比較回路は、前記第3のインバータの出力ノードに電気的に接続された非反転入力端子と前記第4のインバータの出力ノードに電気的に接続された反転入力端子とを有するコンパレータを含む
    請求項1に記載の半導体装置。
  3. 前記比較回路は、
    前記第3のインバータの出力ノードに電気的に接続された第5のインバータと、
    前記第4のインバータの出力ノードに電気的に接続された第6のインバータと、
    前記第5のインバータの出力側に配された第1のラインと前記第6のインバータの出力側に配された第2のラインとの間に第1の極性で電気的に挿入された第7のインバータと、
    前記第1のラインと前記第2のラインとの間に前記第1の極性と逆の第2の極性で電気的に挿入された第8のインバータと、
    を有する
    請求項1に記載の半導体装置。
  4. 前記比較回路は、
    前記第1のラインに電気的に接続された第9のインバータと、
    前記第2のラインに電気的に接続された第10のインバータと、
    前記第9のインバータの出力側に配された第3のラインと前記第10のインバータの出力側に配された第4のラインとの間に前記第1の極性で電気的に挿入された第11のインバータと、
    前記第3のラインと前記第4のラインとの間に前記第2の極性で電気的に挿入された第12のインバータと、
    をさらに含む
    請求項3に記載の半導体装置。
  5. 前記比較回路は、
    前記第3のインバータの出力側に配された第1のラインと前記第4のインバータの出力側に配された第2のラインとの間に第1の極性で電気的に挿入された第5のインバータと、
    前記第1のラインと前記第2のラインとの間に前記第1の極性と逆の第2の極性で電気的に挿入された第6のインバータと、
    を有する
    請求項1に記載の半導体装置。
  6. 前記基準クロックを反転させた第1のクロックと前記基準クロックを反転させない第2のクロックとを生成する生成回路をさらに備え、
    前記第1のクロックドインバータは、前記第1のクロックを受ける第1の側のクロックノードと前記第2のクロックを受ける第2の側のクロックノードとをさらに有し、
    前記第2のクロックドインバータは、前記第2のクロックを受ける前記第1の側のクロックノードと前記第1のクロックを受ける前記第2の側のクロックノードとを有し、
    前記第3のクロックドインバータは、前記第1のクロックを受ける前記第1の側のクロックノードと前記第2のクロックを受ける前記第2の側のクロックノードとを有し、
    前記第4のクロックドインバータは、前記第2のクロックを受ける前記第1の側のクロックノードと前記第1のクロックを受ける前記第2の側のクロックノードとを有する
    請求項1から5のいずれか1項に記載の半導体装置。
  7. 半導体メモリと、
    請求項1から6のいずれか1項に記載の半導体装置を含むインターフェース回路を有し、前記半導体メモリを制御するコントローラと、
    を備えたメモリシステム。
JP2018047571A 2018-03-15 2018-03-15 半導体装置及びメモリシステム Active JP6929812B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018047571A JP6929812B2 (ja) 2018-03-15 2018-03-15 半導体装置及びメモリシステム
US16/116,363 US10665274B2 (en) 2018-03-15 2018-08-29 Semiconductor device and memory system for combining reversed-phase data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047571A JP6929812B2 (ja) 2018-03-15 2018-03-15 半導体装置及びメモリシステム

Publications (2)

Publication Number Publication Date
JP2019161522A JP2019161522A (ja) 2019-09-19
JP6929812B2 true JP6929812B2 (ja) 2021-09-01

Family

ID=67905973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047571A Active JP6929812B2 (ja) 2018-03-15 2018-03-15 半導体装置及びメモリシステム

Country Status (2)

Country Link
US (1) US10665274B2 (ja)
JP (1) JP6929812B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10583617B2 (en) 2016-11-28 2020-03-10 General Electric Company Automatic systems and methods for stacking composite plies

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10152888A1 (de) 2001-10-26 2003-05-15 Infineon Technologies Ag Integrierter Analogmultiplexer
JP2004173168A (ja) * 2002-11-22 2004-06-17 Fujitsu Ltd マルチプレクサ回路
JP2011222080A (ja) * 2010-04-09 2011-11-04 Elpida Memory Inc 半導体装置
JP5491454B2 (ja) * 2011-06-09 2014-05-14 旭化成エレクトロニクス株式会社 パラレル−シリアル変換回路
US8872562B2 (en) 2013-03-21 2014-10-28 Kabushiki Kaisha Toshiba Semiconductor device
JP5814967B2 (ja) * 2013-03-21 2015-11-17 株式会社東芝 差動増幅器とデータ出力回路
JP2015159409A (ja) 2014-02-24 2015-09-03 アルプス電気株式会社 信号処理回路およびセンサシステム
JP6169050B2 (ja) * 2014-06-30 2017-07-26 株式会社東芝 フリップフロップ回路
US9755574B2 (en) * 2015-08-06 2017-09-05 Sony Corporation Injection-locked oscillator and method for controlling jitter and/or phase noise
US9679617B2 (en) 2015-09-09 2017-06-13 Kabushiki Kaisha Toshiba Amplifier

Also Published As

Publication number Publication date
US20190287580A1 (en) 2019-09-19
US10665274B2 (en) 2020-05-26
JP2019161522A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
TW577087B (en) Register controlled DLL for reducing current consumption
JP3993717B2 (ja) 半導体集積回路装置
KR100930415B1 (ko) 클럭 제어 회로 및 이를 포함하는 반도체 메모리 장치
US10312894B2 (en) Apparatuses and methods for providing a signal with a differential phase mixer
JP2007265621A (ja) 半導体メモリ素子の信号伝達制御装置
US9269412B2 (en) Memory device and method for driving the same
US6924686B2 (en) Synchronous mirror delay (SMD) circuit and method including a counter and reduced size bi-directional delay line
US8963606B2 (en) Clock control device
KR20080095613A (ko) 단일 신호-차동 신호 변환기 및 변환 방법
JP2011108300A (ja) 半導体装置及びその制御方法並びに半導体装置を備えたデータ処理システム
US8483005B2 (en) Internal signal generator for use in semiconductor memory device
JP6929812B2 (ja) 半導体装置及びメモリシステム
KR102034150B1 (ko) 지연 회로 및 이를 포함하는 반도체 장치
KR20130048632A (ko) 클럭 버퍼회로 및 이를 포함하는 데이터 출력회로
JP2007095256A (ja) 半導体メモリ素子のデータ入力装置
JP4229778B2 (ja) 半導体メモリ装置及びこの装置のデータリード方法。
US10985742B2 (en) Operation method of signal receiver, pulse width controller, and electronic device including the same
US6803792B2 (en) Input buffer circuit with constant response speed of output inversion
KR100299564B1 (ko) 펄스드라이버
US8643420B2 (en) Integrated circuit pulse generators
CN106559061B (zh) 占空比校正器
KR20210074657A (ko) 반도체 장치의 클럭 생성 회로
TWI810306B (zh) 放大器電路以及使用其的半導體裝置和半導體系統
US10868531B2 (en) Signal-multiplexing device
JP2010097660A (ja) 半導体装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210811

R150 Certificate of patent or registration of utility model

Ref document number: 6929812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150