JP6928544B2 - Fluidized bed monitoring method and equipment - Google Patents

Fluidized bed monitoring method and equipment Download PDF

Info

Publication number
JP6928544B2
JP6928544B2 JP2017229177A JP2017229177A JP6928544B2 JP 6928544 B2 JP6928544 B2 JP 6928544B2 JP 2017229177 A JP2017229177 A JP 2017229177A JP 2017229177 A JP2017229177 A JP 2017229177A JP 6928544 B2 JP6928544 B2 JP 6928544B2
Authority
JP
Japan
Prior art keywords
fluidized bed
furnace
segment
flow
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017229177A
Other languages
Japanese (ja)
Other versions
JP2019100575A (en
Inventor
祐司 小川
祐司 小川
五十嵐 実
実 五十嵐
前川 勇
勇 前川
敬哲 清水
敬哲 清水
貞行 武藤
貞行 武藤
元 清瀧
元 清瀧
康二 福本
康二 福本
隆平 山田
隆平 山田
利紀 村岡
利紀 村岡
熊田 憲彦
憲彦 熊田
貴大 山口
貴大 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2017229177A priority Critical patent/JP6928544B2/en
Priority to CN201880076248.2A priority patent/CN111602004B/en
Priority to BR112020010705-0A priority patent/BR112020010705A2/en
Priority to PCT/JP2018/043806 priority patent/WO2019107422A1/en
Publication of JP2019100575A publication Critical patent/JP2019100575A/en
Application granted granted Critical
Publication of JP6928544B2 publication Critical patent/JP6928544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • F23C10/30Control devices specially adapted for fluidised bed, combustion apparatus for controlling the level of the bed or the amount of material in the bed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

本発明は、流動床炉の流動床の状態を監視する技術に関関する。 The present invention relates to a technique for monitoring the state of a fluidized bed in a fluidized bed furnace.

従来から、炉内下部に充填された流動媒体を炉底から吹き出す流動用ガスで流動させてなる流動床が形成された、流動床炉が知られている。流動床炉では、一般に、運転中の流動床の状態を目視確認することができない。そこで、流動床炉の運転中に、流動床の状態をセンサ等を用いて検出する技術が提案されている。 Conventionally, a fluidized bed furnace has been known in which a fluidized bed formed by flowing a fluidized medium filled in the lower part of the furnace with a fluidized gas blown from the bottom of the furnace is formed. In a fluidized bed furnace, it is generally not possible to visually check the state of the fluidized bed during operation. Therefore, a technique has been proposed in which the state of the fluidized bed is detected by using a sensor or the like during the operation of the fluidized bed furnace.

例えば、特許文献1では、炉内壁表面に沿って流動床の深さの異なる位置に圧力センサを2個以上配置し、それらの圧力センサで得られた測定値を基に、流動床の高さレベルを検出することが記載されている。 For example, in Patent Document 1, two or more pressure sensors are arranged at different positions along the surface of the inner wall of the furnace at different depths of the fluidized bed, and the height of the fluidized bed is based on the measured values obtained by the pressure sensors. It is stated to detect the level.

また、例えば、特許文献2では、流動床内で高さの異なる2点に圧力取出し孔を設け、その2点の圧力差を測定して、それらの値の時間的変化から流動材の粒子形状の増大(劣化)を間接的に予測することが記載されている。 Further, for example, in Patent Document 2, pressure outlet holes are provided at two points having different heights in the fluidized bed, the pressure difference between the two points is measured, and the particle shape of the fluidized material is determined from the temporal change of those values. It is described to indirectly predict the increase (deterioration) of.

また、例えば、特許文献3では、流動床内に、深さ方向に分散して配置された複数の温度センサと、炉下部に並べられた風箱の並び方向に分散して配置された複数の温度センサとを備え、それらの温度センサから得られる温度分布から流動床の局所的な流動不良部位を特定することが記載されている。 Further, for example, in Patent Document 3, a plurality of temperature sensors dispersedly arranged in the depth direction and a plurality of temperature sensors dispersedly arranged in the arrangement direction of the air boxes arranged in the lower part of the furnace in the fluidized bed. It is described that a temperature sensor is provided and a local flow failure site of the flow bed is identified from the temperature distribution obtained from the temperature sensors.

特開平3−105193号公報Japanese Unexamined Patent Publication No. 3-105193 特開平7−19413号公報Japanese Unexamined Patent Publication No. 7-19413 特開2007−271203号公報Japanese Unexamined Patent Publication No. 2007-271203

ところで、上記のような流動床炉において、流動床内の空気比を例えば0.2〜0.6の低空気比条件として、流動床内で燃料を部分燃焼(ガス化)させるものがある。このような低空気比条件の燃焼では、流動床内に燃料の燃え残りである未燃チャー(未燃炭素)が多く発生する。一般に、未燃チャーの比重は流動媒体(例えば、珪砂など)の比重より小さいため、流動床中の未燃チャーの割合が増大すると、流動床の体積が膨張して密度が低下し、流動特性が悪化するおそれがある。 By the way, in the above-mentioned fluidized bed furnace, the fuel is partially burned (gasified) in the fluidized bed under a low air ratio condition of, for example, 0.2 to 0.6. In combustion under such a low air ratio condition, a large amount of unburned char (unburned carbon), which is unburned fuel, is generated in the fluidized bed. In general, the specific gravity of unburned char is smaller than the specific gravity of a fluidized medium (for example, silica sand), so when the proportion of unburned char in the fluidized bed increases, the volume of the fluidized bed expands and the density decreases, resulting in flow characteristics. May worsen.

また、流動床炉において、流動媒体として、イルメナイト(Fe系)などの酸素吸蔵放出材料と、Ni鉱石などの炭素のガス化促進材料とを含む複数の材料の混合物を使用する場合、流動床内のガス化促進材料の割合が過剰となると、流動床の体積が膨張して密度が低下し、流動特性が悪化するおそれがある。 Further, in a fluidized bed furnace, when a mixture of a plurality of materials including an oxygen occlusion / release material such as ylmenite (Fe-based) and a carbon gasification promoting material such as Ni ore is used as a fluidized bed, the fluidized bed is used. If the proportion of the gasification promoting material in the above is excessive, the volume of the fluidized bed expands, the density decreases, and the fluidized characteristics may deteriorate.

また、流動床炉において、流動媒体として、珪砂と、珪砂のアルカリ成分を吸収する材料(ゼオライトやカルシウム酸化物などの多孔質物質)からなる凝集防止剤とを含む複数の材料の混合物を使用する場合、流動床内の凝集防止剤の割合が過剰となると、流動床の体積が膨張して密度が低下し、流動特性が悪化するおそれがある。 Further, in a fluidized bed furnace, a mixture of a plurality of materials including silica sand and an anti-aggregation agent composed of a material (porous substance such as zeolite or calcium oxide) that absorbs an alkaline component of silica sand is used as a fluidized bed. In this case, if the proportion of the antiaggregating agent in the fluidized bed becomes excessive, the volume of the fluidized bed expands, the density decreases, and the fluidized characteristics may deteriorate.

上記のように、流動床に含まれる未燃炭素、ガス化促進材料、凝集防止剤などの流動阻害因子の増加(過剰)によって流動床の流動特性が悪化することがわかっており、それを回避するために、流動床における流動阻害因子の割合を監視することは有用である。そこで、本発明では、流動床炉の流動床に含まれる流動阻害因子の割合を監視する装置及び方法を提案する。 As described above, it is known that the flow characteristics of the fluidized bed deteriorate due to the increase (excess) of flow-inhibiting factors such as unburned carbon, gasification promoting material, and anti-aggregation agent contained in the fluidized bed, and it is avoided. To this end, it is useful to monitor the proportion of fluidized beds in the fluidized bed. Therefore, the present invention proposes an apparatus and a method for monitoring the ratio of flow-inhibiting factors contained in the fluidized bed of a fluidized bed furnace.

本発明の一態様に係る流動床監視方法は、炉内下部に充填された流動媒体を炉底から吹き出す流動用ガスで流動させてなる流動床が形成された流動床炉において、前記流動床の状態を監視する流動床監視方法であって、
前記流動床内に高さ方向のセグメントを規定し、そのセグメントの上端レベルと下端レベルとの圧力差を検出し、
検出された前記圧力差に基づいて、前記セグメントに含まれる、前記流動床の密度を低下させることにより当該流動床の流動性を低下させる流動阻害因子の割合を求め、
前記流動床炉の運転中に前記流動阻害因子の割合を監視することを特徴としている。
The fluidized bed monitoring method according to one aspect of the present invention is a method for monitoring a fluidized bed in a fluidized bed furnace in which a fluidized bed formed by flowing a fluidized bed filled in the lower part of the furnace with a fluidized gas blown from the bottom of the furnace. A fluidized bed monitoring method that monitors the condition,
A segment in the height direction is defined in the fluidized bed, and the pressure difference between the upper end level and the lower end level of the segment is detected.
Based on the detected pressure difference, the proportion of the flow inhibitor contained in the segment, which reduces the fluidity of the fluidized bed by reducing the density of the fluidized bed, was determined.
It is characterized in that the ratio of the fluidized bed factor is monitored during the operation of the fluidized bed furnace.

ここで、例えば、前記流動床に燃料が供給されていない状態の前記セグメントの上端レベルと下端レベルとの圧力差である圧力差基準値と、検出された前記圧力差との差から、前記流動阻害因子の割合を求めることができる。 Here, for example, the flow is based on the difference between the detected pressure difference and the pressure difference reference value, which is the pressure difference between the upper end level and the lower end level of the segment in a state where fuel is not supplied to the fluidized bed. The proportion of the inhibitor can be determined.

また、本発明の一態様に係る流動床監視装置は、炉内下部に充填された流動媒体を炉底から吹き出す流動用ガスで流動させてなる流動床が形成された流動床炉において、前記流動床の状態を監視する流動床監視装置であって、
前記流動床内に高さ方向のセグメントが規定され、
前記流動床と接触している前記流動床炉の内壁に設けられ、前記セグメントの上端レベルと下端レベルとの圧力差を検出する圧力センサと、
検出された前記圧力差に基づいて、前記セグメントに含まれる、前記流動床の密度を低下させることにより当該流動床の流動性を低下させる流動阻害因子の割合を求める演算部と、
前記流動床炉の運転中に前記流動阻害因子の割合を監視する監視部とを、備えることを特徴としている。
Further, the fluidized bed monitoring device according to one aspect of the present invention is the fluidized bed furnace in which a fluidized bed formed by flowing a fluidized medium filled in the lower part of the furnace with a fluidized gas blown from the bottom of the furnace. A fluidized bed monitoring device that monitors the condition of the floor.
A segment in the height direction is defined in the fluidized bed.
A pressure sensor provided on the inner wall of the fluidized bed furnace in contact with the fluidized bed to detect the pressure difference between the upper end level and the lower end level of the segment.
Based on the detected pressure difference, a calculation unit for obtaining the ratio of a flow inhibitor containing in the segment to reduce the fluidity of the fluidized bed by reducing the density of the fluidized bed, and
It is characterized by including a monitoring unit that monitors the ratio of the fluidized bed factor during the operation of the fluidized bed furnace.

ここで、例えば、前記演算部は、前記流動床に燃料が供給されていない状態の前記セグメントの上端レベルと下端レベルとの圧力差である圧力差基準値と、検出された前記圧力差との差から、前記流動阻害因子の割合を求めることができる。 Here, for example, the calculation unit determines the pressure difference reference value, which is the pressure difference between the upper end level and the lower end level of the segment in a state where fuel is not supplied to the fluidized bed, and the detected pressure difference. From the difference, the ratio of the flow inhibitory factor can be obtained.

上記流動床監視方法及び装置によれば、流動床炉の運転中に、流動床中の未燃炭素(未燃チャーを含む)などの流動阻害因子の割合を監視することができる。そして、流動床中の流動阻害因子の割合の変化に基づいて、流動床中の流動阻害因子の割合の増大に起因する流動床の流動特性の悪化を予測することができる。これにより、流動床の流動特性が悪化する前に適切な処理を行って、流動床の流動特性の悪化を回避することができる。 According to the above-mentioned fluidized bed monitoring method and apparatus, it is possible to monitor the ratio of flow-inhibiting factors such as unburned carbon (including unburned char) in the fluidized bed during operation of the fluidized bed furnace. Then, based on the change in the ratio of the fluidized bed in the fluidized bed, it is possible to predict the deterioration of the flow characteristics of the fluidized bed due to the increase in the ratio of the fluidized bed in the fluidized bed. As a result, it is possible to perform appropriate treatment before the deterioration of the flow characteristics of the fluidized bed and avoid the deterioration of the flow characteristics of the fluidized bed.

上記流動床監視方法において、前記流動阻害因子の割合を、高さレベルの異なる2以上の前記セグメントで求め、前記流動床炉の運転中に2以上の前記セグメントの前記流動阻害因子の割合を監視してよい。 In the fluidized bed monitoring method, the proportion of the fluidized bed factor is determined in two or more segments having different height levels, and the proportion of the fluidized bed factor in the two or more segments is monitored during the operation of the fluidized bed furnace. You can do it.

同様に、上記流動床監視装置において、前記演算部は、前記流動阻害因子の割合を、高さレベルの異なる2以上の前記セグメントで求め、前記監視部は、前記流動床炉の運転中に2以上の前記セグメントの前記流動阻害因子の割合を監視してよい。 Similarly, in the fluidized bed monitoring device, the calculation unit obtains the ratio of the fluidized bed factor in two or more of the segments having different height levels, and the monitoring unit obtains 2 during the operation of the fluidized bed furnace. The proportion of the fluidized bed factor in the above segment may be monitored.

上記流動床監視方法及び装置によれば、流動床の高さレベルの異なる複数位置において、流動床の流動阻害因子の割合を監視することができる。 According to the above-mentioned fluidized bed monitoring method and apparatus, it is possible to monitor the ratio of fluidized bed flow-inhibiting factors at a plurality of positions having different height levels of the fluidized bed.

上記流動床監視方法において、2以上の前記セグメントの前記流動阻害因子の割合から、前記流動床における局所的な前記流動阻害因子の割合の増大がみつかると、所定の処理を行ってよい。 In the fluidized bed monitoring method, if a local increase in the proportion of the fluidized bed in the fluidized bed is found from the proportion of the fluidized bed in the two or more segments, a predetermined treatment may be performed.

同様に、上記流動床監視装置において、前記監視部は、2以上の前記セグメントの前記流動阻害因子の割合から、前記流動床における局所的な前記流動阻害因子の割合の増大がみつかると、所定の処理を行ってよい。 Similarly, in the fluidized bed monitoring device, the monitoring unit determines that a local increase in the proportion of the fluidized bed in the fluidized bed is found from the proportion of the fluidized bed in the two or more segments. Processing may be performed.

上記流動床監視方法及び装置によれば、流動床における局所的な流動阻害因子の割合が増大を検出して、その状況に応じた対処を行うことにより、流動床の流動特性の悪化を防ぐことができる。 According to the above-mentioned fluidized bed monitoring method and apparatus, it is possible to prevent deterioration of the fluidized bed's flow characteristics by detecting an increase in the proportion of local fluidized bed in the fluidized bed and taking measures according to the situation. Can be done.

上記流動床監視方法において、2以上の前記セグメントの前記流動阻害因子の割合から、前記流動床の全体的な前記流動阻害因子の割合の増大がみつかると、所定の処理を行ってよい。 In the fluidized bed monitoring method, if an increase in the overall proportion of the fluidized bed of the fluidized bed is found from the proportion of the fluidized bed in the two or more segments, a predetermined treatment may be performed.

同様に、上記流動床監視装置において、前記監視部は、2以上の前記セグメントの前記流動阻害因子の割合から、前記流動床の全体的な前記流動阻害因子の割合の増大がみつかると、所定の処理を行ってよい。 Similarly, in the fluidized bed monitoring device, the monitoring unit determines that an increase in the overall proportion of the fluidized bed of the fluidized bed is found from the proportion of the fluidized bed in the two or more segments. Processing may be performed.

上記流動床監視方法及び装置によれば、流動床における全体的な流動阻害因子の割合が増大を検出して、その状況に応じた対処を行うことにより、流動床の流動特性の悪化を防ぐことができる。 According to the above-mentioned fluidized bed monitoring method and apparatus, it is possible to prevent deterioration of the fluidized bed's flow characteristics by detecting an increase in the proportion of the overall fluidized bed in the fluidized bed and taking measures according to the situation. Can be done.

本発明によれば、流動床炉の流動床に含まれる流動阻害因子の割合を監視することができる。 According to the present invention, the ratio of the fluidized bed contained in the fluidized bed of the fluidized bed furnace can be monitored.

図1は、本発明の一実施形態に係る流動床炉を含む燃焼システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a combustion system including a fluidized bed furnace according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る流動床炉の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a fluidized bed furnace according to an embodiment of the present invention. 図3は、流動床炉の流動床部の拡大図である。FIG. 3 is an enlarged view of the fluidized bed portion of the fluidized bed furnace. 図4は、流動床監視装置の構成を示す図である。FIG. 4 is a diagram showing a configuration of a fluidized bed monitoring device. 図5は、或るセグメントにおける未燃炭素濃度と差圧との関係を示す図表である。FIG. 5 is a chart showing the relationship between the unburned carbon concentration and the differential pressure in a certain segment.

〔燃焼システム100の構成〕
まず、本発明の一実施形態に係る流動床炉1を含む燃焼システム100の構成について説明する。図1に示す燃焼システム100は、石炭、バイオマス、RDF、都市ごみ、産業廃棄物などの燃料(燃焼対象物)を燃焼して、その排熱を回収するシステムである。
[Combustion system 100 configuration]
First, the configuration of the combustion system 100 including the fluidized bed furnace 1 according to the embodiment of the present invention will be described. The combustion system 100 shown in FIG. 1 is a system that burns fuel (combustion target) such as coal, biomass, RDF, municipal waste, and industrial waste, and recovers the exhaust heat thereof.

燃焼システム100は、燃料を燃焼する流動床炉1を備えている。流動床炉1の燃焼排ガス系統3には、熱交換装置31、サイクロン式集塵機32、バグフィルタ33、及び誘引ファンである誘引ブロワ34が設けられている。流動床炉1の燃焼排ガスは、熱交換装置31で排熱が回収され、サイクロン式集塵機32及びバグフィルタ33で塵が分離され、その一部が誘引ブロワ34によって図示されない煙突を通じて系外へ排出される。 The combustion system 100 includes a fluidized bed furnace 1 that burns fuel. The combustion exhaust gas system 3 of the fluidized bed furnace 1 is provided with a heat exchange device 31, a cyclone type dust collector 32, a bag filter 33, and an attraction blower 34 which is an attraction fan. Exhaust heat from the combustion exhaust gas of the fluidized bed furnace 1 is recovered by the heat exchange device 31, dust is separated by the cyclone type dust collector 32 and the bag filter 33, and a part of the dust is discharged to the outside of the system through a chimney (not shown) by the attraction blower 34. Will be done.

燃焼排ガス系統3のバグフィルタ33の下流側には排ガス再循環系統4が接続されている。排ガス再循環系統4には、ガス再循環ブロワ40が設けられており、このガス再循環ブロワ40によって燃焼排ガス系統3の燃焼排ガスの一部が、流動床炉1へ戻される。排ガス再循環系統4によって流動床炉1へ戻された燃焼排ガスは、流動用ガス(一次燃焼ガス)、二次燃焼用ガス、及び三次燃焼用ガスとして利用される。 An exhaust gas recirculation system 4 is connected to the downstream side of the bug filter 33 of the combustion exhaust gas system 3. The exhaust gas recirculation system 4 is provided with a gas recirculation blower 40, and a part of the combustion exhaust gas of the combustion exhaust gas system 3 is returned to the fluidized bed furnace 1 by the gas recirculation blower 40. The combustion exhaust gas returned to the flow bed furnace 1 by the exhaust gas recirculation system 4 is used as a flow gas (primary combustion gas), a secondary combustion gas, and a tertiary combustion gas.

〔流動床炉1の構成〕
次に、本発明の一実施形態に係る流動床炉1の構成について説明する。図2に示す流動床炉1は、炉下部の流動床部11及びその上方のフリーボード部12からなる燃焼室が設けられた炉本体10と、流動床炉1の運転を制御する運転制御装置15と、流動床監視装置9とを備えている。フリーボード部12の下部には、燃焼室の余の部分と比較してガス通路断面積が絞られた絞り部13が存在する。フリーボード部12では、燃焼ガスが下から上に向かって流れ、フリーボード部12の上部に接続された煙道には、熱交換装置31を構成する伝熱管が設置されている。
[Structure of fluidized bed furnace 1]
Next, the configuration of the fluidized bed furnace 1 according to the embodiment of the present invention will be described. The fluidized bed furnace 1 shown in FIG. 2 has a furnace body 10 provided with a combustion chamber including a fluidized bed portion 11 at the bottom of the furnace and a freeboard portion 12 above the fluidized bed portion 11, and an operation control device for controlling the operation of the fluidized bed furnace 1. A fluidized bed monitoring device 9 and a fluidized bed monitoring device 9 are provided. At the lower part of the freeboard portion 12, there is a throttle portion 13 in which the cross-sectional area of the gas passage is narrowed as compared with the remaining portion of the combustion chamber. In the freeboard section 12, the combustion gas flows from the bottom to the top, and a heat transfer tube constituting the heat exchange device 31 is installed in the flue connected to the upper part of the freeboard section 12.

図3は、流動床部11の拡大図である。図2及び図3に示すように、流動床部11には珪砂などの流動媒体が充填された流動層51と、流動層51へその底部から流動用ガスを供給する流動用ガス供給装置52と、流動層51を3つのセル61,62,63に仕切る仕切壁41,42とによって、内部循環流動床が形成されている。 FIG. 3 is an enlarged view of the fluidized bed portion 11. As shown in FIGS. 2 and 3, the fluidized bed portion 11 is filled with a fluidized bed 51 such as silica sand, and a fluidized gas supply device 52 that supplies fluidized gas to the fluidized bed 51 from the bottom thereof. An internal circulating fluidized bed is formed by partition walls 41, 42 that partition the fluidized bed 51 into three cells 61, 62, 63.

第1仕切壁41は、流動床部11を含む炉本体10の下部分を、燃焼領域53と熱回収領域54とに仕切っている。第2仕切壁42は、熱回収領域54において、第1仕切壁41に近接し、且つ、第1仕切壁41と平行に設けられている。これらの仕切壁41,42によって、流動床部11は、炉本体10の第1側壁10aと第1仕切壁41との間に形成された「燃焼セル61」、第1仕切壁41と第2仕切壁42との間に形成された「循環セル62」、及び、第2仕切壁42と炉本体10の第2側壁10bとの間に形成された「収熱セル63」の3つのセルに仕切られている。収熱セル63には、過熱器管又は蒸発器管などの伝熱管64が設けられている。この伝熱管64を通過する熱媒体により熱回収が行われる。 The first partition wall 41 partitions the lower portion of the furnace body 10 including the fluidized bed portion 11 into a combustion region 53 and a heat recovery region 54. The second partition wall 42 is provided in the heat recovery region 54 in the vicinity of the first partition wall 41 and in parallel with the first partition wall 41. By these partition walls 41 and 42, the fluidized bed portion 11 is a "combustion cell 61" formed between the first side wall 10a of the furnace body 10 and the first partition wall 41, and the first partition wall 41 and the second. In three cells, a "circulation cell 62" formed between the partition wall 42 and a "heat collecting cell 63" formed between the second partition wall 42 and the second side wall 10b of the furnace body 10. It is partitioned. The heat collecting cell 63 is provided with a heat transfer tube 64 such as a superheater tube or an evaporator tube. Heat recovery is performed by the heat medium passing through the heat transfer tube 64.

燃焼領域53の上方には、鉛直方向に直線状に延びる燃焼室が形成されている。一方、熱回収領域54の上方には、熱回収領域54の上部を塞ぐ天井壁43が設けられている。第1仕切壁41の上端は天井壁43に近接しており、第1仕切壁41の上端と天井壁43との間に未燃ガス供給口68となる上部連通口が形成されている。第1仕切壁41の下端は第2仕切壁42の下端よりも高く、これにより、第1仕切壁41の下部に流動媒体が流通する下部連通口55が形成されている。また、第2仕切壁42の上部及び下部には、循環セル62と収熱セル63とを連通し、流動媒体が流通する連通口56,57が形成されている。 Above the combustion region 53, a combustion chamber extending linearly in the vertical direction is formed. On the other hand, above the heat recovery area 54, a ceiling wall 43 that closes the upper part of the heat recovery area 54 is provided. The upper end of the first partition wall 41 is close to the ceiling wall 43, and an upper communication port serving as an unburned gas supply port 68 is formed between the upper end of the first partition wall 41 and the ceiling wall 43. The lower end of the first partition wall 41 is higher than the lower end of the second partition wall 42, whereby a lower communication port 55 through which the flow medium flows is formed below the first partition wall 41. Further, at the upper and lower portions of the second partition wall 42, communication ports 56 and 57 are formed in which the circulation cell 62 and the heat collecting cell 63 are communicated with each other and the flow medium is circulated.

流動用ガス供給装置52は、燃焼セル61、循環セル62、及び収熱セル63の各々に独立して流量が調整された流動用ガスを供給する。燃焼セル61、循環セル62、及び収熱セル63の各セルの底部には、側方へ向けて開口した多数の吹出口を有する一又は複数の散気管80が設けられている。各散気管80は、第1仕切壁41及び第2仕切壁42の下端よりも下方に配置されている。但し、流動用ガス供給装置52は、散気管80の代わりに、各セル61,62,63の底部に配置された風箱と、風箱の上部を塞ぐように設けられたガス分散板とを備えていてもよい(いずれも図示略)。 The flow gas supply device 52 supplies the flow gas whose flow rate is adjusted independently to each of the combustion cell 61, the circulation cell 62, and the heat collection cell 63. At the bottom of each of the combustion cell 61, the circulation cell 62, and the heat collecting cell 63, one or more air diffusers 80 having a large number of air outlets opened sideways are provided. Each air diffuser 80 is arranged below the lower ends of the first partition wall 41 and the second partition wall 42. However, the flow gas supply device 52 replaces the air diffuser pipe 80 with a wind box arranged at the bottom of each cell 61, 62, 63 and a gas dispersion plate provided so as to close the upper part of the wind box. It may be provided (all are not shown).

散気管80はセル61,62,63ごとにヘッダで連結されており、各ヘッダにはダンパ(又はバルブ)等の流量調整手段81a,82a,83a及び流量計81b,82b,83bを備えた流動用ガス供給配管81,82,83が接続されている。燃焼セル61の底部に配置される散気管80と接続される流動用ガス供給配管81、及び、循環セル62の底部に配置される散気管80と接続される流動用ガス供給配管82へは、押込ブロワ79によって空気が供給される。また、収熱セル63の底部に配置される散気管80と接続される流動用ガス供給配管83には排ガス再循環系統4が接続されている。 The air diffuser pipe 80 is connected to each cell 61, 62, 63 by a header, and each header is provided with flow rate adjusting means 81a, 82a, 83a such as a damper (or valve) and a flow meter 81b, 82b, 83b. Gas supply pipes 81, 82, 83 are connected. To the flow gas supply pipe 81 connected to the air diffuser pipe 80 arranged at the bottom of the combustion cell 61 and the flow gas supply pipe 82 connected to the air diffuser pipe 80 arranged at the bottom of the circulation cell 62. Air is supplied by the indentation blower 79. Further, the exhaust gas recirculation system 4 is connected to the flow gas supply pipe 83 connected to the air diffuser pipe 80 arranged at the bottom of the heat collecting cell 63.

運転制御装置15は、流動層51において燃焼セル61及び収熱セル63の温度を検出する温度センサ(図示略)及び流量計81b,82b,83bなどの検出値に基づいて、各流動用ガス供給配管81,82,83の流動用ガスの流量を調整するように、流量調整手段81a,82a,83aを動作させる。燃焼セル61及び循環セル62の底部からは、流動用ガスとして空気が吹き出し、収熱セル63の底部からは、流動用ガスとして燃焼排ガスが吹き出す。 The operation control device 15 supplies each fluidized gas based on the detected values of the temperature sensor (not shown) and the flowmeters 81b, 82b, 83b, etc. that detect the temperatures of the combustion cell 61 and the heat collecting cell 63 in the fluidized bed 51. The flow rate adjusting means 81a, 82a, 83a are operated so as to adjust the flow rate of the fluidized gas in the pipes 81, 82, 83. Air is blown out as a flowing gas from the bottoms of the combustion cell 61 and the circulation cell 62, and combustion exhaust gas is blown out as a flowing gas from the bottom of the heat collecting cell 63.

ここで、燃焼セル61の流動用ガスの空塔速度は収熱セル63の流動用ガスの空塔速度よりも大きく、且つ、循環セル62の流動用ガスの空塔速度は、燃焼セル61の流動用ガスの空塔速度及び収熱セル63の流動用ガスの空塔速度よりも大きくなるように、流動用ガスの流量が調整される。これにより、燃焼セル61の流動媒体は第1仕切壁41の下部連通口55を通って循環セル62へ移動し、循環セル62の流動媒体は第2仕切壁42の上部連通口56を通って収熱セル63へ移動し、収熱セル63の流動媒体は第2仕切壁42の下部連通口57を通って燃焼セル61及び循環セル62へ循環するような、流動媒体の流れが生じる。このような流動媒体の循環によって、燃焼セル61で高温となった流動媒体の持つ熱エネルギーが、収熱セル63において外部へ取り出され、温度が低下した流動媒体が燃焼セル61へ戻されることによって、燃焼セル61の流動媒体の温度上昇が抑制される。 Here, the superficial velocity of the flow gas in the combustion cell 61 is larger than the superficial velocity of the flow gas in the heat collecting cell 63, and the superficial velocity of the flow gas in the circulation cell 62 is that of the combustion cell 61. The flow rate of the flow gas is adjusted so as to be larger than the superficial velocity of the flow gas and the superficial velocity of the flow gas in the heat collecting cell 63. As a result, the flow medium of the combustion cell 61 moves to the circulation cell 62 through the lower communication port 55 of the first partition wall 41, and the flow medium of the circulation cell 62 passes through the upper communication port 56 of the second partition wall 42. A flow of the flow medium is generated so as to move to the heat collection cell 63 and the flow medium of the heat collection cell 63 circulates to the combustion cell 61 and the circulation cell 62 through the lower communication port 57 of the second partition wall 42. By such circulation of the fluid medium, the heat energy of the fluid medium that has become hot in the combustion cell 61 is taken out in the heat collecting cell 63, and the fluid medium whose temperature has decreased is returned to the combustion cell 61. , The temperature rise of the flow medium of the combustion cell 61 is suppressed.

フリーボード部12において、運転時における流動床部11の表層部の直ぐ上方であって、第1側壁10aには、燃料投入口65が開口している。燃料投入口65は、絞り部13よりも燃焼ガスの流れの上流側に位置する。この燃料投入口65へ、図示されない燃料供給装置によって燃料が供給される。燃料投入口65から炉内へ投入された燃料は、流動床部11の燃焼セル61の上部に落下する。 In the freeboard portion 12, a fuel inlet 65 is opened in the first side wall 10a, which is immediately above the surface layer portion of the fluidized bed portion 11 during operation. The fuel inlet 65 is located on the upstream side of the flow of combustion gas with respect to the throttle portion 13. Fuel is supplied to the fuel inlet 65 by a fuel supply device (not shown). The fuel charged into the furnace from the fuel inlet 65 falls to the upper part of the combustion cell 61 of the fluidized bed portion 11.

フリーボード部12において、燃料投入口65よりも燃焼ガスの流れの下流側であって絞り部13のあたりの炉壁には、未燃ガス供給口68が開口している。未燃ガス供給口68からは、熱回収領域54の流動層51に配置された散気管80から流動層51内へ吹き出されて、流動層51を通過したあとの空気及び燃焼排ガスの混合気が、二次燃焼用ガスとして吹き出す。但し、未燃ガス供給口68の他に、二次燃焼用ガスを吹き出す供給口が設けられてもよい。 In the freeboard section 12, an unburned gas supply port 68 is opened in the furnace wall on the downstream side of the flow of combustion gas from the fuel inlet 65 and around the throttle section 13. From the unburned gas supply port 68, the air-fuel mixture of air and combustion exhaust gas is blown into the fluidized bed 51 from the air diffuser pipe 80 arranged in the fluidized bed 51 of the heat recovery region 54 and passed through the fluidized bed 51. , Blow out as a secondary combustion gas. However, in addition to the unburned gas supply port 68, a supply port for blowing out the secondary combustion gas may be provided.

フリーボード部12において、未燃ガス供給口68よりも燃焼ガスの流れの下流側の炉壁には複数の三次燃焼用ガス供給口69が開口している。複数の三次燃焼用ガス供給口69は、複数の高さ位置に分散して設けられている。また、それらの三次燃焼用ガス供給口69から吹き出した三次空気の拡散領域に含まれる炉壁には、温度センサ70が設けられている。 In the freeboard section 12, a plurality of tertiary combustion gas supply ports 69 are opened in the furnace wall on the downstream side of the combustion gas flow from the unburned gas supply port 68. The plurality of tertiary combustion gas supply ports 69 are dispersedly provided at a plurality of height positions. Further, a temperature sensor 70 is provided on the furnace wall included in the diffusion region of the tertiary air blown out from the tertiary combustion gas supply port 69.

三次燃焼用ガスの空気含有量は、空気に燃焼排ガスを混合させることにより調整される。そのために、三次燃焼用ガス供給口69への空気の供給路と燃焼排ガスの供給路とには、ダンパ(又はバルブ)等の流量調整手段88,89が設けられている。運転制御装置15は、或る箇所の温度センサ70で検出された温度が所定の範囲を超える場合は、三次燃焼用ガスの流量を所定流量に維持しながら、その箇所へ供給される三次燃焼用ガスの空気含有量が減るように、また、検出された温度が所定の範囲を下回る場合は、その箇所へ供給される三次燃焼用ガスの空気含有量が増えるように、流量調整手段88,89の開度を調整する。 The air content of the tertiary combustion gas is adjusted by mixing the combustion exhaust gas with the air. Therefore, flow rate adjusting means 88 and 89 such as dampers (or valves) are provided in the air supply path to the tertiary combustion gas supply port 69 and the combustion exhaust gas supply path. When the temperature detected by the temperature sensor 70 at a certain location exceeds a predetermined range, the operation control device 15 maintains the flow rate of the tertiary combustion gas at a predetermined flow rate and supplies the tertiary combustion gas to that location. Flow rate adjusting means 88, 89 so that the air content of the gas decreases and, when the detected temperature falls below a predetermined range, the air content of the tertiary combustion gas supplied to the location increases. Adjust the opening of.

〔流動床炉1の運転方法〕
ここで、上記構成の流動床炉1の運転方法について説明する。流動床炉1では、流動床部11において低空気比燃焼が行われる。より詳細には、流動床部11とフリーボード部12との総空気比を1よりも大きい値としながら、流動床部11の燃焼セル61の空気比(即ち、一次空気比)、及び燃料投入口65の周囲の空気比(二次空気比)がいずれも1未満の低空気比となるように、燃焼セル61への流動化空気及び二次燃焼用ガスの供給量、及び/又は、その空気含有量が調整される。望ましくは、一次空気比は、二次空気比よりも低い。例えば、流動床部11とフリーボード部12との総空気比を1.2とする場合に、一次空気比を0.4とし、二次空気比を0.8としてよい。
[Operation method of fluidized bed furnace 1]
Here, the operation method of the fluidized bed furnace 1 having the above configuration will be described. In the fluidized bed furnace 1, low air ratio combustion is performed in the fluidized bed portion 11. More specifically, the air ratio (that is, the primary air ratio) of the combustion cell 61 of the fluidized floor portion 11 and the fuel input while setting the total air ratio of the fluidized floor portion 11 and the free board portion 12 to a value larger than 1. The amount of fluidized air and secondary combustion gas supplied to the combustion cell 61 and / or its so that the air ratio (secondary air ratio) around the mouth 65 is a low air ratio of less than 1. The air content is adjusted. Desirably, the primary air ratio is lower than the secondary air ratio. For example, when the total air ratio of the fluidized bed portion 11 and the free board portion 12 is 1.2, the primary air ratio may be 0.4 and the secondary air ratio may be 0.8.

酸素濃度の低い還元雰囲気の流動床部11では、燃料の緩慢な乾燥と熱分解によって、可燃性熱分解ガスと熱分解残渣が生じる。熱分解残渣や燃料の燃え残りは、燃焼セル61の底部であって、第1側壁10aと第1仕切壁41との間の中間位置に設けられた流動媒体及び不燃物の抜出口72から炉外へ排出される。流動床部11で生じた熱分解ガスは二次燃焼用ガスで燃焼し、その燃焼ガス中の未燃分は、フリーボード部12において三次燃焼用ガスで完全燃焼し、その燃焼排ガスが燃焼排ガス系統3へ排出される。 In the fluidized bed 11 in a reducing atmosphere with a low oxygen concentration, flammable pyrolysis gas and pyrolysis residue are produced by the slow drying and thermal decomposition of the fuel. The thermal decomposition residue and the unburned residue of the fuel are the bottom of the combustion cell 61, and the furnace is provided from the outlet 72 of the flow medium and the incombustible material provided at an intermediate position between the first side wall 10a and the first partition wall 41. It is discharged to the outside. The pyrolysis gas generated in the fluidized floor portion 11 is burned by the secondary combustion gas, and the unburned portion in the combustion gas is completely burned by the tertiary combustion gas in the free board portion 12, and the combustion exhaust gas is the combustion exhaust gas. It is discharged to the system 3.

上記構成に係る流動床炉1の燃焼セル61では、燃料を低空気比燃焼させることから、空気比が1以上の場合と比較して、燃焼セル61における燃料の未燃分(未燃チャー)の割合が大きい。前述の例のように一次空気比を0.4とする場合には、従来の空気比が0.8〜0.9程度の場合と比較して、燃焼セル61における未燃チャーの割合はとりわけ大きくなる。燃焼セル61の未燃チャーの割合が増えると、未燃チャーの密度は流動媒体と比較して低いので、流動層51の密度が低下する。流動層51の密度が低下すると、流動層51の体積が膨張して流動特性が悪化するおそれがある。 In the combustion cell 61 of the fluidized bed furnace 1 according to the above configuration, since the fuel is burned at a low air ratio, the unburned portion (unburned char) of the fuel in the combustion cell 61 is compared with the case where the air ratio is 1 or more. The ratio is large. When the primary air ratio is 0.4 as in the above example, the ratio of unburned char in the combustion cell 61 is particularly high as compared with the case where the conventional air ratio is about 0.8 to 0.9. growing. As the proportion of unburned char in the combustion cell 61 increases, the density of the unburned char is lower than that of the fluidized bed, so that the density of the fluidized bed 51 decreases. When the density of the fluidized bed 51 decreases, the volume of the fluidized bed 51 may expand and the fluidized characteristics may deteriorate.

また、燃焼セル61での未燃チャーの割合が増えると、流動媒体の循環によって、収熱セル63にも未燃チャーが流入することがある。収熱セル63では、流動層51中に未燃炭素が存在しないか、存在してもその割合が極めて小さいことが望ましい。 Further, when the proportion of unburned char in the combustion cell 61 increases, the unburned char may flow into the heat collecting cell 63 due to the circulation of the fluid medium. In the heat collecting cell 63, it is desirable that unburned carbon does not exist in the fluidized bed 51, or even if it exists, its proportion is extremely small.

そこで、流動床炉1では、流動床監視装置9を備えて、流動床部11の燃焼セル61及び収熱セル63について流動層51の未燃炭素(未燃チャーを含む)の割合を監視して、未燃炭素の割合に応じた処理を行うようにしている。なお、流動層51の密度を低下させることにより当該流動層51の流動性を低下させる流動阻害因子は複数種類が存在し得るが、ここでは、その一つである未燃炭素の割合を監視する。以下、流動床監視装置9及びそれが行う流動床監視方法について詳細に説明する。 Therefore, in the fluidized bed furnace 1, the fluidized bed monitoring device 9 is provided to monitor the ratio of unburned carbon (including unburned char) in the fluidized bed 51 with respect to the combustion cell 61 and the heat collecting cell 63 of the fluidized bed portion 11. Therefore, the treatment is performed according to the proportion of unburned carbon. There may be a plurality of types of flow inhibiting factors that reduce the fluidity of the fluidized bed 51 by reducing the density of the fluidized bed 51, and here, the ratio of unburned carbon, which is one of them, is monitored. .. Hereinafter, the fluidized bed monitoring device 9 and the fluidized bed monitoring method performed by the device 9 will be described in detail.

〔流動床監視装置9〕
図4は、流動床監視装置9の構成を示す図である。図4では、複数のセグメントSのうちの1つが強調して示されている。図4に示すように、流動床監視装置9は、複数の圧力センサ91と、演算部92と、監視部93とを備えている。
[Fluidized bed monitoring device 9]
FIG. 4 is a diagram showing the configuration of the fluidized bed monitoring device 9. In FIG. 4, one of the plurality of segments S is highlighted. As shown in FIG. 4, the fluidized bed monitoring device 9 includes a plurality of pressure sensors 91, a calculation unit 92, and a monitoring unit 93.

複数の圧力センサ91は、流動床炉1の炉本体10において、流動床部11の流動層51と接触している内壁に設けられており、異なる高さレベルに配置されている。それら複数の圧力センサ91によって、異なる2点の高さレベル間の圧力差を測定することができる。本実施形態では、複数の圧力センサ91が、流動床部11の炉壁に高さ方向に等間隔で並んでいる。そして、高さ方向に隣接する2つの圧力センサ91の高さレベル間を1つのセグメントSとし、各セグメントSの上端レベルの圧力検出値と下端レベルの圧力検出値とを用いて、各セグメントSの上端レベルと下端レベルとの圧力差(以下、「セグメントSの差圧」と称する)を測定する。但し、複数の圧力センサ91に代えて、セグメントSの上端レベルと下端レベルに配置された一対のプローブで当該セグメントSの差圧を検出する、1又は複数の差圧センサを用いてもよい。 The plurality of pressure sensors 91 are provided on the inner wall of the furnace body 10 of the fluidized bed furnace 1 in contact with the fluidized bed 51 of the fluidized bed portion 11, and are arranged at different height levels. The plurality of pressure sensors 91 can measure the pressure difference between two different height levels. In the present embodiment, a plurality of pressure sensors 91 are arranged at equal intervals in the height direction on the furnace wall of the fluidized bed portion 11. Then, one segment S is located between the height levels of the two pressure sensors 91 adjacent to each other in the height direction, and each segment S is used by using the pressure detection value at the upper end level and the pressure detection value at the lower end level of each segment S. The pressure difference between the upper end level and the lower end level of the above (hereinafter referred to as "differential pressure of segment S") is measured. However, instead of the plurality of pressure sensors 91, one or a plurality of differential pressure sensors that detect the differential pressure of the segment S with a pair of probes arranged at the upper end level and the lower end level of the segment S may be used.

演算部92は、いわゆるコンピュータであって、プロセッサと、メモリ及び通信インターフェイスなどとを備えおり(いずれも図示略)、プロセッサがメモリに記憶された所定のプログラムを実行することにより、演算部92としての機能を発揮する。通信インターフェイスは、プロセッサによって制御されることによって、無線又は有線の通信手段を利用して、複数の圧力センサ91から検出信号を受信し、また、監視部93などとデータを送受信する。 The arithmetic unit 92 is a so-called computer, which includes a processor, a memory, a communication interface, and the like (both are not shown), and the processor executes a predetermined program stored in the memory to form the arithmetic unit 92. Demonstrate the function of. The communication interface receives detection signals from a plurality of pressure sensors 91 by using wireless or wired communication means by being controlled by a processor, and also transmits / receives data to / from a monitoring unit 93 and the like.

演算部92は、複数の圧力センサ91の検出信号を取得し、複数の圧力センサ91の検出値から各セグメントSの差圧を求める。但し、前述の通り、複数の圧力センサ91に代えて差圧センサが用いられる場合は、各差圧センサの検出値をセグメントSの差圧として取得してよい。 The calculation unit 92 acquires the detection signals of the plurality of pressure sensors 91, and obtains the differential pressure of each segment S from the detection values of the plurality of pressure sensors 91. However, as described above, when a differential pressure sensor is used instead of the plurality of pressure sensors 91, the detected value of each differential pressure sensor may be acquired as the differential pressure of the segment S.

更に、演算部92は、各セグメントSについて、セグメントSの差圧から当該セグメントSの未燃炭素割合を求める。セグメントSの未燃炭素割合は、セグメントSの差圧と、対象セルの流動用ガスの流速(空塔速度)との関数で表すことができる。 Further, the calculation unit 92 obtains the unburned carbon ratio of the segment S from the differential pressure of the segment S for each segment S. The unburned carbon ratio of the segment S can be expressed as a function of the differential pressure of the segment S and the flow velocity (superficial velocity) of the flow gas of the target cell.

図5は、或るセグメントSにおける、未燃炭素濃度[wt%]と差圧[kPa]との関係を示す図表である。この図表では、対象セルの流動用ガスの流速fがF1,F2,F3(F1>F2>F3)である場合の、セグメントSの未燃炭素濃度と差圧との関係が示されている。未燃炭素濃度[wt%]は、対象セグメントSにおける、未燃炭素重量/(流動媒体重量+未燃炭素重量)×100で表される。セグメントSの未燃炭素濃度は、セグメントSの差圧が大きくなるに従って低下する。換言すれば、セグメントSの未燃炭素濃度は、セグメントSの差圧が小さくなるに従って増大する。これは、未燃炭素分は珪砂よりも比重が小さいことから、セグメントSの未燃炭素濃度が増えると、未燃炭素濃度がそれよりも低い状態と比較して、セグメントSの流動媒体の重量が軽くなり、その結果、セグメントSの差圧(差圧力)が低下するためである。 FIG. 5 is a chart showing the relationship between the unburned carbon concentration [wt%] and the differential pressure [kPa] in a certain segment S. In this chart, the relationship between the unburned carbon concentration of the segment S and the differential pressure is shown when the flow velocity f of the flow gas of the target cell is F1, F2, F3 (F1> F2> F3). The unburned carbon concentration [wt%] is represented by the weight of unburned carbon / (weight of fluid medium + weight of unburned carbon) × 100 in the target segment S. The unburned carbon concentration of the segment S decreases as the differential pressure of the segment S increases. In other words, the unburned carbon concentration in the segment S increases as the differential pressure in the segment S decreases. This is because the unburned carbon content has a lower specific gravity than the silica sand, so that when the unburned carbon concentration of the segment S increases, the weight of the flow medium of the segment S is compared with the state where the unburned carbon concentration is lower than that. As a result, the differential pressure (differential pressure) of the segment S decreases.

演算部92では、上記のようなセグメントSの未燃炭素濃度と差圧との関係に基づいて、検出されたセグメントSの差圧から未燃炭素濃度を算出する。なお、セグメントSの未燃炭素濃度と差圧との関係は、予め実験により又はシミュレーションにより求めて、演算部92に記憶されている。 The calculation unit 92 calculates the unburned carbon concentration from the detected differential pressure of the segment S based on the relationship between the unburned carbon concentration of the segment S and the differential pressure as described above. The relationship between the unburned carbon concentration of the segment S and the differential pressure is obtained in advance by an experiment or a simulation and stored in the calculation unit 92.

演算部92は、上記の未燃炭素割合の算出手法に代えて、セグメントSの未燃炭素濃度がゼロである状態(即ち、流動床部11に燃料が供給されていない状態)のセグメントSの差圧である「圧力差基準値」を、予め実験又はシミュレーションによって求めて記憶しておき、検出されたセグメントSの差圧と圧力差基準値との差から、セグメントSの未燃炭素割合を求めるように構成されていてもよい。 Instead of the above-mentioned method for calculating the unburned carbon ratio, the calculation unit 92 of the segment S in a state where the unburned carbon concentration of the segment S is zero (that is, a state in which fuel is not supplied to the fluidized floor portion 11). The "pressure difference reference value", which is the differential pressure, is obtained and stored in advance by an experiment or simulation, and the unburned carbon ratio of the segment S is calculated from the difference between the detected differential pressure of the segment S and the pressure difference reference value. It may be configured as desired.

監視部93は、いわゆるコンピュータであって、プロセッサと、メモリ及び通信インターフェイスなどとを備えおり(いずれも図示略)、プロセッサがメモリに記憶された所定のプログラムを実行することにより、監視部93としての機能を発揮する。通信インターフェイスは、プロセッサによって制御されることによって、無線又は有線の通信手段を利用して、監視部93、運転制御装置15などとデータを送受信する。 The monitoring unit 93 is a so-called computer, which includes a processor, a memory, a communication interface, and the like (both are not shown), and the processor executes a predetermined program stored in the memory to serve as the monitoring unit 93. Demonstrate the function of. The communication interface is controlled by a processor to transmit and receive data to and from the monitoring unit 93, the operation control device 15, and the like by using wireless or wired communication means.

監視部93は、演算部92が求めた各セグメントSの未燃炭素割合を取得して、運転中の流動床炉1の未燃炭素割合の値やその変化を監視する。更に、監視部93は、監視中に所定の状態が検出されると、警告やその処置を運転制御装置15へ伝達する。 The monitoring unit 93 acquires the unburned carbon ratio of each segment S obtained by the calculation unit 92, and monitors the value of the unburned carbon ratio of the fluidized bed furnace 1 during operation and its change. Further, when a predetermined state is detected during monitoring, the monitoring unit 93 transmits a warning and its measures to the operation control device 15.

例えば、監視部93は、流動層51の表層から流動層51の高さ寸法の1/3の範囲に含まれるセグメントSにおいて、未燃炭素割合が所定の閾値を超えたことを検出すると、流動層51で過剰な未燃炭素が浮いている状態が推定されるので、燃料の投入量を減らすように運転制御装置15へ信号を送る。 For example, when the monitoring unit 93 detects that the unburned carbon ratio exceeds a predetermined threshold value in the segment S included in the range from the surface layer of the fluidized bed 51 to 1/3 of the height dimension of the fluidized bed 51, the fluidized bed 93 flows. Since it is estimated that excess unburned carbon is floating in the layer 51, a signal is sent to the operation control device 15 so as to reduce the amount of fuel input.

例えば、監視部93は、流動層51の底から流動層51の高さ寸法の1/3の範囲に含まれるセグメントSにおいて、未燃炭素割合が所定の閾値を超えたことを検出すると、流動層51の下部で過剰の未燃炭素が滞留している状態が推定されるので、流動用ガスの流量を増加させるように運転制御装置15へ信号を送る。なお、流動層51の下部で過剰の未燃炭素が滞留している状態では、流動層51へ流動用ガスを供給しても流動化しなくなるおそれがあるので、上記の場合には、監視部93は流動床炉1の運転を停止するように運転制御装置15へ信号を送ってもよい。 For example, when the monitoring unit 93 detects that the unburned carbon ratio exceeds a predetermined threshold value in the segment S included in the range of 1/3 of the height dimension of the fluidized bed 51 from the bottom of the fluidized bed 51, the fluidized bed 93 flows. Since it is estimated that excess unburned carbon is retained in the lower part of the layer 51, a signal is sent to the operation control device 15 so as to increase the flow rate of the fluidized gas. In the state where excess unburned carbon is retained in the lower part of the fluidized bed 51, there is a possibility that the fluidized gas will not be fluidized even if the fluidized gas is supplied to the fluidized bed 51. May send a signal to the operation control device 15 to stop the operation of the fluidized bed furnace 1.

監視部93が未燃炭素割合を監視するセグメントSは、単数であっても、複数であってもよい。また、セグメントSは、流動層51の高さ方向全域が1つのセグメントSとして規定されてもよいし、流動層51の高さ方向に亘って連続する複数のセグメントSが規定されたり、流動層51の高さ方向に分散する複数のセグメントSが規定されてもよい。流動層51に複数のセグメントSが規定される場合には、監視部93は、運転中の流動床炉1の未燃炭素割合を監視するにあたり、高さレベルの異なる2以上のセグメントSの未燃炭素割合を比較して、流動床部11の状態を推定するとよい。 The segment S in which the monitoring unit 93 monitors the unburned carbon ratio may be singular or plural. Further, as the segment S, the entire height direction of the flow layer 51 may be defined as one segment S, or a plurality of segments S continuous in the height direction of the flow layer 51 may be defined, or the flow layer may be defined. A plurality of segments S dispersed in the height direction of 51 may be defined. When a plurality of segments S are defined in the fluidized bed 51, the monitoring unit 93 monitors the unburned carbon ratio of the fluidized bed furnace 1 in operation, and the monitoring unit 93 does not have two or more segments S having different height levels. It is advisable to estimate the state of the fluidized bed 11 by comparing the fuel carbon ratio.

例えば、監視部93は、2以上のセグメントSの未燃炭素割合を比較して、流動層51における局所的な未燃炭素割合の増大を検出することができる。このように、流動層51における局所的な未燃炭素割合の増大がみつかると、監視部93は、流動層51の未燃炭素割合が増大している部分に応じた処理を行う。例えば、局所的な未燃炭素割合の増大がみつかったセグメントSが流動層51の表層又は表層に近い部分である場合には、そのセグメントSが流動層51の表層に上がってくるタイミングで燃料の投入量を減らすように運転制御装置15へ信号を送る。例えば、局所的な未燃炭素割合の増大がみつかったセグメントSが流動層51の底部又は底部に近い部分である場合には、監視部93は、流動層51の流動不良が予測されるタイミングに合わせて流動用ガスの流量を増加させるように運転制御装置15へ信号を送る。 For example, the monitoring unit 93 can compare the unburned carbon proportions of two or more segments S and detect a local increase in the unburned carbon proportions in the fluidized bed 51. As described above, when the local increase in the unburned carbon ratio in the fluidized bed 51 is found, the monitoring unit 93 performs the treatment according to the portion where the unburned carbon ratio in the fluidized bed 51 is increased. For example, when the segment S in which the local increase in the unburned carbon ratio is found is the surface layer of the fluidized bed 51 or a portion close to the surface layer, the fuel is charged at the timing when the segment S rises to the surface layer of the fluidized bed 51. A signal is sent to the operation control device 15 so as to reduce the input amount. For example, when the segment S in which the local increase in the unburned carbon ratio is found is the bottom or a portion near the bottom of the fluidized bed 51, the monitoring unit 93 sets the timing at which the flow failure of the fluidized bed 51 is predicted. At the same time, a signal is sent to the operation control device 15 so as to increase the flow rate of the fluidized gas.

例えば、監視部93は、2以上のセグメントSの未燃炭素割合を比較して、流動層51の高さ方向全体に亘る未燃炭素割合の増大を検出することができる。ここで、2以上のセグメントSは、流動層51の高さ方向に亘って分散しているか、流動層51の高さ方向に亘って連続しているとよい。このように、流動層51における全体的な未燃炭素割合の増大がみつかると、監視部93は、燃料投入量の減少、流動用ガスの流量の増加、流動媒体の増加、及び、流動床炉1の運転停止の対応処理群のうち少なくとも1つの処理を行うように運転制御装置15へ信号を送る。 For example, the monitoring unit 93 can compare the unburned carbon proportions of the two or more segments S and detect an increase in the unburned carbon proportions over the entire height direction of the fluidized bed 51. Here, it is preferable that the two or more segments S are dispersed in the height direction of the fluidized bed 51 or continuous in the height direction of the fluidized bed 51. In this way, when an increase in the overall unburned carbon ratio in the fluidized bed 51 is found, the monitoring unit 93 reduces the fuel input amount, increases the flow rate of the fluidized gas, increases the fluidized medium, and the fluidized bed furnace. A signal is sent to the operation control device 15 so as to perform at least one process in the corresponding process group of the operation stop of 1.

なお、上記においては監視部93が運転制御装置15が取る対処を運転制御装置15へ指示しているが、監視部93は推定される流動層51の状態を運転制御装置15へ伝達する処理のみを行ってもよい。この場合、運転制御装置15は、監視部93から取得した推定される流動層51の状態に基づいて、その状態に対応する処理を行う。 In the above, the monitoring unit 93 instructs the operation control device 15 to take measures to be taken by the operation control device 15, but the monitoring unit 93 only performs a process of transmitting the estimated state of the fluidized bed 51 to the operation control device 15. May be done. In this case, the operation control device 15 performs processing corresponding to the estimated state of the fluidized bed 51 acquired from the monitoring unit 93.

以上に説明したように、本実施形態に係る流動床監視装置9は、炉内下部に充填された流動媒体を炉底から吹き出す流動用ガスで流動させてなる流動層51が形成された流動床炉1において、流動層51の状態を監視するものであって、流動層51内に高さ方向のセグメントSが規定され、流動層51と接触している流動床炉1の内壁に設けられ、セグメントSの上端レベルと下端レベルとの圧力差を検出する圧力センサ91と、検出された圧力差に基づいて、セグメントSの未燃炭素割合を求める演算部92と、流動床炉1の運転中に流動層51の未燃炭素割合を監視する監視部93とを備えることを特徴としている。なお、流動層51は流動床と読み替えることができる。 As described above, the fluidized bed monitoring device 9 according to the present embodiment has a fluidized bed 51 in which a fluidized bed 51 formed by flowing a fluidized medium filled in the lower part of the furnace with a fluidized gas blown out from the bottom of the furnace. In the fluidized bed 1, the state of the fluidized bed 51 is monitored, and a segment S in the height direction is defined in the fluidized bed 51, and is provided on the inner wall of the fluidized bed furnace 1 in contact with the fluidized bed 51. The pressure sensor 91 that detects the pressure difference between the upper end level and the lower end level of the segment S, the calculation unit 92 that calculates the unburned carbon ratio of the segment S based on the detected pressure difference, and the fluidized bed furnace 1 are in operation. Is provided with a monitoring unit 93 for monitoring the unburned carbon ratio of the fluidized bed 51. The fluidized bed 51 can be read as a fluidized bed.

ここで、演算部92は、例えば、流動層51に燃料が供給されていない状態のセグメントSの上端レベルと下端レベルとの圧力差である圧力差基準値と、検出された圧力差との差から、未燃炭素割合を求めることができる。 Here, in the calculation unit 92, for example, the difference between the pressure difference reference value, which is the pressure difference between the upper end level and the lower end level of the segment S in the state where fuel is not supplied to the fluidized bed 51, and the detected pressure difference. From, the unburned carbon ratio can be obtained.

同様に、本実施形態に係る流動床監視方法は、流動層51内に高さ方向のセグメントSを規定し、そのセグメントSの上端レベルと下端レベルとの圧力差を検出し、検出された圧力差に基づいて、セグメントSの未燃炭素割合を求め、流動床炉1の運転中に流動層51の未燃炭素割合を監視することを特徴としている。 Similarly, in the fluidized bed monitoring method according to the present embodiment, a segment S in the height direction is defined in the fluidized bed 51, a pressure difference between the upper end level and the lower end level of the segment S is detected, and the detected pressure is detected. Based on the difference, the unburned carbon ratio of the segment S is obtained, and the unburned carbon ratio of the fluidized bed 51 is monitored during the operation of the fluidized bed furnace 1.

上記の流動床監視装置9及び流動床監視方法によれば、流動床炉1の運転中に、流動層51中の未燃チャーなどの未燃炭素の割合を監視することができる。そして、流動層51中の未燃炭素の割合の変化に基づいて、流動層51中の未燃炭素の割合の増大に起因する流動層51の流動特性の悪化を予測することができる。これにより、流動層51の流動特性が悪化する前に適切な処理を行うことが可能となり、流動層51の流動特性の悪化を回避することができる。 According to the fluidized bed monitoring device 9 and the fluidized bed monitoring method described above, the proportion of unburned carbon such as unburned char in the fluidized bed 51 can be monitored during the operation of the fluidized bed furnace 1. Then, based on the change in the ratio of unburned carbon in the fluidized bed 51, it is possible to predict the deterioration of the flow characteristics of the fluidized bed 51 due to the increase in the ratio of unburned carbon in the fluidized bed 51. As a result, it is possible to perform an appropriate treatment before the flow characteristics of the fluidized bed 51 deteriorate, and it is possible to avoid deterioration of the flow characteristics of the fluidized bed 51.

また、本実施形態に係る流動床監視装置9の監視部93では、以下に例示される流動層51の未燃炭素割合の監視方法を行うように構成されている。但し、監視部93は、それらの監視方法のうち、少なくとも1つを行うように構成されていてよい。
(1)流動層51の表層から流動層51の高さ寸法の1/3の範囲に含まれるセグメントSにおいて、未燃炭素割合が所定の閾値を超えると、所定の処理を行う。(2)流動層51の底から流動層51の高さ寸法の1/3の範囲に含まれるセグメントSにおいて、未燃炭素割合が所定の閾値を超えると、所定の処理を行う。
(3)2以上のセグメントSの未燃炭素割合から、流動層51における局所的な未燃炭素割合の増大がみつかると、所定の処理を行う。
(4)2以上のセグメントSの未燃炭素割合から、流動層51の全体的な未燃炭素割合の増大がみつかると、所定の処理を行う。
Further, the monitoring unit 93 of the fluidized bed monitoring device 9 according to the present embodiment is configured to monitor the unburned carbon ratio of the fluidized bed 51 illustrated below. However, the monitoring unit 93 may be configured to perform at least one of those monitoring methods.
(1) When the unburned carbon ratio exceeds a predetermined threshold value in the segment S included in the range from the surface layer of the fluidized bed 51 to 1/3 of the height dimension of the fluidized bed 51, a predetermined process is performed. (2) When the unburned carbon ratio exceeds a predetermined threshold value in the segment S included in the range of 1/3 of the height dimension of the fluidized bed 51 from the bottom of the fluidized bed 51, a predetermined process is performed.
(3) When a local increase in the unburned carbon ratio in the fluidized bed 51 is found from the unburned carbon ratio in the two or more segments S, a predetermined treatment is performed.
(4) When an increase in the overall unburned carbon ratio of the fluidized bed 51 is found from the unburned carbon ratio of the two or more segments S, a predetermined treatment is performed.

上記のような未燃炭素割合の監視方法で流動層51の未燃炭素割合が監視されることにより、流動層51中の未燃炭素の割合の増大に起因して流動層51の流動特性が悪化する前に、それを予測することができる。そして、流動層51の流動特性が悪化する前に適切な処理を行うことによって、流動層51の流動特性の悪化を回避することができる。 By monitoring the unburned carbon ratio of the fluidized bed 51 by the above-mentioned method for monitoring the unburned carbon ratio, the flow characteristics of the fluidized bed 51 are improved due to the increase in the ratio of unburned carbon in the fluidized bed 51. You can predict it before it gets worse. Then, by performing an appropriate treatment before the flow characteristics of the fluidized bed 51 deteriorate, it is possible to avoid deterioration of the flow characteristics of the fluidized bed 51.

以上に本発明の好適な実施の形態を説明したが、本発明の精神を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。 Although the preferred embodiment of the present invention has been described above, the present invention may include modified details of the specific structure and / or function of the above embodiment without departing from the spirit of the present invention. ..

例えば、上記実施形態に係る流動床炉1の流動床部11は内部循環流動床であるが、外部循環流動床などの他の態様の流動床においても、本発明に係る流動床監視装置9及び方法を適用して、流動床の未燃炭素割合を検出し、それを監視することができる。 For example, the fluidized bed portion 11 of the fluidized bed furnace 1 according to the above embodiment is an internal circulating fluidized bed, but the fluidized bed monitoring device 9 and the fluidized bed monitoring device 9 according to the present invention can also be used in other modes such as an external circulating fluidized bed. Methods can be applied to detect and monitor the percentage of unburned carbon in fluidized beds.

また、上記実施形態において、流動層51の密度を低下させることにより当該流動層51の流動性を低下させる流動阻害因子が未燃炭素の場合について説明したが、流動阻害因子は未燃炭素に限定されない。 Further, in the above embodiment, the case where the flow inhibitor that reduces the fluidity of the fluidized bed 51 by reducing the density of the fluidized bed 51 is unburned carbon has been described, but the flow inhibitor is limited to unburned carbon. Not done.

例えば、流動媒体として、イルメナイト(Fe系)などの酸素吸蔵放出材料と、Ni鉱石などの炭素のガス化促進材料とを含む複数の材料の混合物を使用した流動床炉では、流動阻害因子として流動層51中のガス化促進材料の割合を監視してもよい。この場合、上記実施形態において、未燃炭素を「ガス化促進材料」と読み替えることによって、流動層51中のガス化促進材料の割合の監視、及び、ガス化促進材料の割合の流動特性の悪化を予測することができる。 For example, in a fluidized bed furnace using a mixture of a plurality of materials including an oxygen occlusion / release material such as ilmenite (Fe-based) and a carbon gasification promoting material such as Ni ore as a fluidized bed, the fluid is fluidized as a fluidized bed factor. The proportion of gasification-promoting material in the layer 51 may be monitored. In this case, in the above embodiment, by replacing the unburned carbon with "gasification promoting material", the ratio of the gasification promoting material in the fluidized bed 51 is monitored, and the flow characteristics of the ratio of the gasification promoting material are deteriorated. Can be predicted.

また、例えば、流動媒体として、珪砂と、珪砂のアルカリ成分を吸収する材料(ゼオライトやカルシウム酸化物などの多孔質物質)からなる凝集防止剤とを含む複数の材料の混合物を使用した流動床炉では、流動阻害因子として流動層51中の凝集防止剤の割合を監視してもよい。この場合、上記実施形態において、未燃炭素を「凝集防止剤」と読み替えることによって、流動層51中の凝集防止剤の割合の監視、及び、凝集防止剤の割合の流動特性の悪化を予測することができる。 Further, for example, as a fluidized bed, a fluidized bed furnace using a mixture of a plurality of materials including silica sand and an anti-aggregation agent composed of a material (porous substance such as zeolite or calcium oxide) that absorbs an alkaline component of the silica sand. Then, the ratio of the antiaggregating agent in the fluidized bed 51 may be monitored as a fluidizing inhibitor. In this case, in the above embodiment, by replacing the unburned carbon with "anti-aggregation agent", the ratio of the anti-aggregation agent in the fluidized bed 51 is monitored, and the deterioration of the flow characteristics of the ratio of the anti-aggregation agent is predicted. be able to.

1 :流動床炉
3 :燃焼排ガス系統
4 :排ガス再循環系統
10 :炉本体
10a :第1側壁
10b :第2側壁
11 :流動床部
12 :フリーボード部
13 :絞り部
15 :運転制御装置
31 :熱交換装置
32 :サイクロン式集塵機
33 :バグフィルタ
34 :誘引ブロワ
40 :ガス再循環ブロワ
41 :第1仕切壁
42 :第2仕切壁
43 :天井壁
51 :流動層
52 :流動用ガス供給装置
53 :燃焼領域
54 :熱回収領域
55,56,57 :連通口
61 :燃焼セル
62 :循環セル
63 :収熱セル
64 :伝熱管
65 :燃料投入口
68 :未燃ガス供給口
69 :三次燃焼用ガス供給口
70 :温度センサ
72 :抜出口
79 :押込ブロワ
80 :散気管
81,82,83 :流動用ガス供給配管
81a,82a,83a :流量調整手段
81b,82b,83b :流量計
88,89 :流量調整手段
9 流動床監視装置
91 :圧力センサ
92 :演算部
93 :監視部
100 :燃焼システム
1: Fluidized bed furnace 3: Combustion exhaust gas system 4: Exhaust gas recirculation system 10: Furnace body 10a: First side wall 10b: Second side wall 11: Fluidized bed part 12: Free board part 13: Squeezing part 15: Operation control device 31 : Heat exchange device 32: Cyclone type dust collector 33: Bug filter 34: Attracting blower 40: Gas recirculation blower 41: First partition wall 42: Second partition wall 43: Ceiling wall 51: Fluidized bed 52: Gas supply device for fluidization 53: Combustion area 54: Heat recovery area 55, 56, 57: Communication port 61: Combustion cell 62: Circulation cell 63: Heat collection cell 64: Heat transfer tube 65: Fuel input port 68: Unburned gas supply port 69: Tertiary combustion Gas supply port 70: Temperature sensor 72: Extraction outlet 79: Pushing blower 80: Air diffuser pipe 81, 82, 83: Flow gas supply pipe 81a, 82a, 83a: Flow adjustment means 81b, 82b, 83b: Flow meter 88, 89: Flow adjustment means 9 Fluid bed monitoring device 91: Pressure sensor 92: Calculation unit 93: Monitoring unit 100: Combustion system

Claims (10)

炉内下部に充填された流動媒体を炉底から吹き出す流動用ガスで流動させてなる流動床が形成された流動床炉において、前記流動床の状態を監視する流動床監視方法であって、
前記流動床内に高さ方向のセグメントを規定し、そのセグメントの上端レベルと下端レベルとの圧力差を検出し、
検出された前記圧力差に基づいて、前記セグメントに含まれる、前記流動床の密度を低下させることにより当該流動床の流動性を低下させる流動阻害因子の割合を求め、
前記流動床炉の運転中に前記流動阻害因子の割合を監視する、
流動床監視方法。
A fluidized bed monitoring method for monitoring the state of the fluidized bed in a fluidized bed furnace in which a fluidized bed formed by flowing a fluidized medium filled in the lower part of the furnace with a fluidized gas blown from the bottom of the furnace.
A segment in the height direction is defined in the fluidized bed, and the pressure difference between the upper end level and the lower end level of the segment is detected.
Based on the detected pressure difference, the proportion of the flow inhibitor contained in the segment, which reduces the fluidity of the fluidized bed by reducing the density of the fluidized bed, was determined.
Monitor the proportion of the fluidized bed factor during the operation of the fluidized bed furnace,
Fluidized bed monitoring method.
前記流動床に燃料が供給されていない状態の前記セグメントの上端レベルと下端レベルとの圧力差である圧力差基準値と、検出された前記圧力差との差から、前記流動阻害因子の割合を求める、
請求項1に記載の流動床監視方法。
The ratio of the fluidized bed is determined from the difference between the detected pressure difference and the pressure difference reference value, which is the pressure difference between the upper end level and the lower end level of the segment in a state where fuel is not supplied to the fluidized bed. Ask,
The fluidized bed monitoring method according to claim 1.
前記流動阻害因子の割合を、高さレベルの異なる2以上の前記セグメントで求め、
前記流動床炉の運転中に2以上の前記セグメントの前記流動阻害因子の割合を監視する、
請求項1又は2に記載の流動床監視方法。
The proportion of the flow inhibitor was determined in two or more of the segments having different height levels.
Monitor the proportion of the fluidized bed factor in two or more of the segments during the operation of the fluidized bed furnace.
The fluidized bed monitoring method according to claim 1 or 2.
2以上の前記セグメントの前記流動阻害因子の割合から、前記流動床における局所的な前記流動阻害因子の割合の増大がみつかると、所定の処理を行う、
請求項3に記載の流動床監視方法。
When a local increase in the proportion of the flow-inhibiting factor in the fluidized bed is found from the proportion of the flow-inhibiting factor in two or more of the segments, a predetermined treatment is performed.
The fluidized bed monitoring method according to claim 3.
2以上の前記セグメントの前記流動阻害因子の割合から、前記流動床の全体的な前記流動阻害因子の割合の増大がみつかると、所定の処理を行う、
請求項3に記載の流動床監視方法。
When an increase in the overall proportion of the fluidized bed in the fluidized bed is found from the proportion of the fluidized bed in the two or more segments, a predetermined treatment is performed.
The fluidized bed monitoring method according to claim 3.
炉内下部に充填された流動媒体を炉底から吹き出す流動用ガスで流動させてなる流動床が形成された流動床炉において、前記流動床の状態を監視する流動床監視装置であって、
前記流動床内に高さ方向のセグメントが規定され、
前記流動床と接触している前記流動床炉の内壁に設けられ、前記セグメントの上端レベルと下端レベルとの圧力差を検出する圧力センサと、
検出された前記圧力差に基づいて、前記セグメントに含まれる、前記流動床の密度を低下させることにより当該流動床の流動性を低下させる流動阻害因子の割合を求める演算部と、
前記流動床炉の運転中に前記流動阻害因子の割合を監視する監視部とを、備える、
流動床監視装置。
A fluidized bed monitoring device for monitoring the state of the fluidized bed in a fluidized bed furnace in which a fluidized bed formed by flowing a fluidized medium filled in the lower part of the furnace with a fluidized gas blown from the bottom of the furnace is formed.
A segment in the height direction is defined in the fluidized bed.
A pressure sensor provided on the inner wall of the fluidized bed furnace in contact with the fluidized bed to detect the pressure difference between the upper end level and the lower end level of the segment.
Based on the detected pressure difference, a calculation unit for obtaining the ratio of a flow inhibitor containing in the segment to reduce the fluidity of the fluidized bed by reducing the density of the fluidized bed, and
A monitoring unit for monitoring the ratio of the fluidized bed factor during the operation of the fluidized bed furnace is provided.
Fluidized bed monitoring device.
前記演算部が、前記流動床に燃料が供給されていない状態の前記セグメントの上端レベルと下端レベルとの圧力差である圧力差基準値と、検出された前記圧力差との差から、前記流動阻害因子の割合を求める、
請求項6に記載の流動床監視装置。
The flow unit is based on the difference between the detected pressure difference and the pressure difference reference value, which is the pressure difference between the upper end level and the lower end level of the segment in a state where fuel is not supplied to the fluidized bed. Find the percentage of inhibitor,
The fluidized bed monitoring device according to claim 6.
前記演算部は、前記流動阻害因子の割合を、高さレベルの異なる2以上の前記セグメントで求め、
前記監視部は、前記流動床炉の運転中に2以上の前記セグメントの前記流動阻害因子の割合を監視する、
請求項6又は7に記載の流動床監視装置。
The calculation unit obtains the ratio of the flow inhibitor in two or more of the segments having different height levels.
The monitoring unit monitors the proportion of the fluidized bed factor in two or more of the segments during the operation of the fluidized bed furnace.
The fluidized bed monitoring device according to claim 6 or 7.
前記監視部は、2以上の前記セグメントの前記流動阻害因子の割合から、前記流動床における局所的な前記流動阻害因子の割合の増大がみつかると、所定の処理を行う、
請求項8に記載の流動床監視装置。
When the monitoring unit finds a local increase in the ratio of the flow-inhibiting factor in the fluidized bed from the ratio of the flow-inhibiting factor in two or more of the segments, a predetermined process is performed.
The fluidized bed monitoring device according to claim 8.
前記監視部は、2以上の前記セグメントの前記流動阻害因子の割合から、前記流動床の全体的な前記流動阻害因子の割合の増大がみつかると、所定の処理を行う、
請求項8に記載の流動床監視装置。
When the monitoring unit finds an increase in the overall proportion of the fluidized bed in the fluidized bed from the proportion of the fluidized bed in the two or more segments, it performs a predetermined treatment.
The fluidized bed monitoring device according to claim 8.
JP2017229177A 2017-11-29 2017-11-29 Fluidized bed monitoring method and equipment Active JP6928544B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017229177A JP6928544B2 (en) 2017-11-29 2017-11-29 Fluidized bed monitoring method and equipment
CN201880076248.2A CN111602004B (en) 2017-11-29 2018-11-28 Fluidized bed monitoring method and apparatus
BR112020010705-0A BR112020010705A2 (en) 2017-11-29 2018-11-28 fluidized bed monitoring method and device
PCT/JP2018/043806 WO2019107422A1 (en) 2017-11-29 2018-11-28 Fluidized bed monitoring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229177A JP6928544B2 (en) 2017-11-29 2017-11-29 Fluidized bed monitoring method and equipment

Publications (2)

Publication Number Publication Date
JP2019100575A JP2019100575A (en) 2019-06-24
JP6928544B2 true JP6928544B2 (en) 2021-09-01

Family

ID=66664044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229177A Active JP6928544B2 (en) 2017-11-29 2017-11-29 Fluidized bed monitoring method and equipment

Country Status (4)

Country Link
JP (1) JP6928544B2 (en)
CN (1) CN111602004B (en)
BR (1) BR112020010705A2 (en)
WO (1) WO2019107422A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241724A1 (en) 2019-05-29 2020-12-03 株式会社クラレ Laminate, and method for producing same
CN112856399B (en) * 2021-01-25 2022-06-24 浙江城建煤气热电设计院股份有限公司 Method for monitoring height of bed material in fluidized bed boiler operation in real time
CN113181844A (en) * 2021-05-12 2021-07-30 哈尔滨理工大学 Fluidized bed monitoring device and monitoring method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589882B2 (en) * 1978-09-18 1983-02-23 石垣機工株式会社 Method and device for extracting foreign matter from a fluidized bed furnace
JPS59225209A (en) * 1983-06-06 1984-12-18 Kawasaki Heavy Ind Ltd Control method for height of fluidized bed and device thereof
JPS60133206A (en) * 1983-12-20 1985-07-16 Mitsubishi Heavy Ind Ltd Operating method of fluidized bed furnace
JP2002081615A (en) * 2000-08-31 2002-03-22 Babcock Hitachi Kk Method for measuring height of pressurized fluidized bed
JP4919635B2 (en) * 2005-08-31 2012-04-18 中国電力株式会社 Bed density optimization method and bed density optimization system of fluidized medium in pressurized fluidized bed boiler
JP4990642B2 (en) * 2007-02-08 2012-08-01 中国電力株式会社 Bed density optimization method and bed density optimization system of fluidized medium in pressurized fluidized bed boiler
CN101311626B (en) * 2007-05-25 2012-03-14 巴布考克及威尔考克斯公司 Integral fluid bed ash cooler
PL2587147T3 (en) * 2010-06-22 2018-06-29 Kobelco Eco-Solutions Co., Ltd Fluidized bed furnace and waste processing method
CN202303351U (en) * 2011-10-10 2012-07-04 湖南利能科技股份有限公司 Multiple internal circulation fluidized bed boiler for burning biomass
CN202973108U (en) * 2012-11-13 2013-06-05 浙江大学 Circulating fluidized bed incinerator
CN103292320A (en) * 2013-05-31 2013-09-11 神华集团有限责任公司 Circulating fluid bed boiler and fluidizing method using same
CN104197324B (en) * 2014-09-24 2015-11-04 北京中科润东节能技术有限公司 Fluidized-bed combustion boiler burning optimization adjustment control method and device

Also Published As

Publication number Publication date
BR112020010705A2 (en) 2020-11-17
JP2019100575A (en) 2019-06-24
CN111602004B (en) 2022-08-12
CN111602004A (en) 2020-08-28
WO2019107422A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6928544B2 (en) Fluidized bed monitoring method and equipment
BR102013002741B1 (en) Automatic draft control system for coconut trees
CN107750320A (en) Control method for the operation of burning boiler
Blaszczuk et al. Simulation of mass balance behavior in a large-scale circulating fluidized bed reactor
KR101560731B1 (en) Apparatus and method for controlling circulation quantity of fluidized particles in each cyclone for circulating fluidized bed boiler
Blaszczuk et al. Simulation model of the mass balance in a supercritical circulating fluidized bed combustor
KR101430860B1 (en) Circulating Fluidized Bed Boiler
CN104676617B (en) A kind of burning boiler flue accumulation prevention structure
JP7010676B2 (en) Fluidized bed furnace
CN101701707B (en) Device for preventing coal dust in gas-solid separator of boiler for circulating fluidized bed from coking
JP2001289406A (en) Estimation method and apparatus for sand circulation amount in external circulation fluidized bed boiler, and control method and apparatus based upon estimation
JP7103781B2 (en) Fluidized bed furnace
CN201568959U (en) Coking prevention device of gas-solid separator of circulating fluidized bed boiler
JP6775329B2 (en) Fluidized bed boiler, fluidized bed temperature equalization method and fluidized bed temperature equalizer
SU1746129A1 (en) Circulating fluidized-bed boiler
JP3800099B2 (en) Circulating fluidized bed furnace and circulating fluidized bed boiler
JP3913236B2 (en) Circulating fluidized furnace and operation method thereof
DeFusco et al. A comparison of fluid-bed technologies for renewable energy applications
JP6916974B1 (en) Fluidized bed processing furnace
Degirmenci et al. Assessment of catalyst deactivation model for sulfur retention in fluidized bed combustors
CN208204988U (en) A kind of circulating fluid bed boiler structure of cleaning burning
JP2004316938A (en) Heat recovering equipment and heat recovering method of circulated fluidized bed incinerator
CN206974162U (en) A kind of fluidized bed roasting freezing of a furnace
JP2004003757A (en) Circulating fluidized bed furnace
JPS62123211A (en) Control of unburnt constituent in fluidized bed combustion boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210806

R150 Certificate of patent or registration of utility model

Ref document number: 6928544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150