JP6924081B2 - 画像処理装置及び画像処理方法、プログラム、記憶媒体 - Google Patents

画像処理装置及び画像処理方法、プログラム、記憶媒体 Download PDF

Info

Publication number
JP6924081B2
JP6924081B2 JP2017119885A JP2017119885A JP6924081B2 JP 6924081 B2 JP6924081 B2 JP 6924081B2 JP 2017119885 A JP2017119885 A JP 2017119885A JP 2017119885 A JP2017119885 A JP 2017119885A JP 6924081 B2 JP6924081 B2 JP 6924081B2
Authority
JP
Japan
Prior art keywords
gradation conversion
signal
color
output
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017119885A
Other languages
English (en)
Other versions
JP2019004426A (ja
JP2019004426A5 (ja
Inventor
田島 香
香 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017119885A priority Critical patent/JP6924081B2/ja
Priority to US16/010,786 priority patent/US10440343B2/en
Publication of JP2019004426A publication Critical patent/JP2019004426A/ja
Publication of JP2019004426A5 publication Critical patent/JP2019004426A5/ja
Application granted granted Critical
Publication of JP6924081B2 publication Critical patent/JP6924081B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems
    • H04N11/06Transmission systems characterised by the manner in which the individual colour picture signal components are combined
    • H04N11/20Conversion of the manner in which the individual colour picture signal components are combined, e.g. conversion of colour television standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/86Camera processing pipelines; Components thereof for processing colour signals for controlling the colour saturation of colour signals, e.g. automatic chroma control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/77Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase
    • H04N9/78Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase for separating the brightness signal or the chrominance signal from the colour television signal, e.g. using comb filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Processing Of Color Television Signals (AREA)
  • Image Processing (AREA)

Description

本発明は、撮像された画像信号の階調特性をHDRモニタに出力するのに適した階調特性に変換する技術に関するものである。
近年、ディスプレイの表示輝度が高くなることに伴い、これまで圧縮されていた高輝度側の階調を、より見た目に近い階調で再現できるHDR(ハイダイナミックレンジ)カメラシステムが提案されている。また、ST2084、BT.2100などのように、HDRモニタで取り扱う映像信号の色空間、階調圧縮の規格も規定されつつある。
カメラ内でHDR規格に対応した映像信号を生成する場合、光学系、撮像素子を介して取得された入力画像に対して、HDRに対応するように階調変換を行った後、輝度信号と色差信号を分離して、映像信号を出力する。HDRモニタでは、カメラから出力される映像信号を受けて、RGBまたはXYZなどの表示処理用の色空間に変換した後、HDR規格に対応したモニタ側の階調変換を適用し、表示する。
従来、カメラ側の処理として、人間の視覚特性を考慮し、色と輝度の出力がそれぞれ最適になるような画像処理が提案されている(特許文献1)。
特許第3919389号公報
特許文献1に開示されている画像処理装置では、色差出力用の信号処理(色系信号処理)と、輝度出力用の信号処理(輝度系信号処理)を、それぞれ最適化している。したがって、色系信号処理において入力画像から分離される輝度成分と、輝度系信号処理において入力画像から生成される輝度成分との間に、振幅レベルの差が発生する場合がある。特に、ST2084などのHDR規格に対応した階調変換特性は、暗部の立ち上がりが急峻であるため、輝度成分の振幅レベルの差が階調変換によって強調される場合がある。その結果、カメラから出力される映像信号をHDRモニタ内で表示のための色空間に変換する際、カメラ内で発生した輝度振幅レベルの差が表示用の色空間内で偽信号を生成し、画質を著しく損なうという課題がある。
本発明は上述した課題に鑑みてなされたものであり、その目的は、輝度系と色系でそれぞれ最適化した階調変換処理を行う場合に、輝度成分の振幅レベル差の増大を抑制できるようにした画像処理装置を提供することである。
本発明に係わる画像処理装置は、入力画像信号から、所定の周波数振幅特性に基づいて高周波成分と低周波成分を分離する第1の分離手段と、前記低周波成分から、輝度信号用の色信号成分を生成する第1の生成手段と、前記低周波成分から、色差信号用の色信号成分を生成する第2の生成手段と、前記第1の生成手段の出力と前記第2の生成手段の出力を合成して、輝度信号用と色差信号用に共通の色信号成分を生成する第3の生成手段と、前記第3の生成手段の出力に対して第1の階調変換処理を行う第1の階調変換手段と、前記第1の階調変換手段により処理された後の信号から輝度信号と色差信号を生成する色輝度分離手段と、前記高周波成分に対して第2の階調変換を行う第2の階調変換手段と、前記色輝度分離手段の出力と前記第2の階調変換手段の出力とを合成する合成手段と、を備えることを特徴とする。
本発明に係わる画像処理装置は、入力画像信号から、所定の周波数振幅特性に基づいて高周波成分と低周波成分を分離する第1の分離手段と、前記低周波成分から、輝度信号用の色信号成分を生成する第1の生成手段と、前記低周波成分から、色差信号用の色信号成分を生成する第2の生成手段と、前記輝度信号用の色信号成分に対して第3の階調変換処理を行う第3の階調変換手段と、前記色差信号用の色信号成分に対して第4の階調変換処理を行う第4の階調変換手段と、前記第3の階調変換手段の出力と前記第4の階調変換手段の出力を合成して、輝度信号用と色差信号用に共通の色信号成分を生成する第3の生成手段と、前記第3の生成手段の出力に対して第1の階調変換処理を行う第1の階調変換手段と、前記第1の階調変換手段により処理された後の信号から輝度信号と色差信号を生成する色輝度分離手段と、前記高周波成分に対して第2の階調変換を行う第2の階調変換手段と、前記色輝度分離手段の出力と前記第2の階調変換手段の出力とを合成する合成手段と、を備えることを特徴とする。
本発明によれば、輝度系と色系でそれぞれ最適化した階調変換処理を行う場合に、輝度成分の振幅レベル差の増大を抑制できるようにした画像処理装置を提供することが可能となる。
本発明の画像処理装置の第1の実施形態であるデジタルカメラの構成を示すブロック図。 第1の実施形態における画像処理部の構成を示すブロック図。 第1の実施形態における輝度信号と色差信号で実現したい周波数振幅特性を示す図。 第1の実施形態において帯域分離部で分離される高周波成分の周波数振幅特性を示す図。 HDRモニタの階調変換特性(EOTF特性)の特徴を示す図。 HDRモニタの階調変換特性(逆EOTF特性)の特徴を示す図。 図6の曲線の微係数を示す図。 第2の階調変換部の特性を説明する図。 第2の実施形態における画像処理部の構成を示すブロック図。 第2の実施形態における輝度信号と色差信号で実現したい周波数振幅特性を示す図。 第2の実施形態における第3及び第4の階調変換部の特性を説明する図。 第2の実施形態における第1の階調変換部の特性を説明する図。
以下、本発明の実施形態について、添付図面を参照して詳細に説明する。
(第1の実施形態)
図1は、本発明の画像処理装置の第1の実施形態であるデジタルカメラの構成例を示すブロック図である。
図1において、レンズ群101はズームレンズ、フォーカスレンズを含み、被写体像を結像させる。シャッター102は光路を開閉する機能と絞り機能とを備える。撮像部103はCMOS素子等で構成され、光学像を電気信号に変換する。A/D変換器104は、撮像部103から出力されるアナログ画像信号をデジタル画像信号に変換する。画像処理部105は、A/D変換器104から出力される画像データに対して、ホワイトバランス処理、デモザイク処理、ノイズリダクション処理、輪郭強調処理、階調変換処理、色補正処理などの各種画像処理を行う。画像メモリ106は画像データを一時記憶する。メモリ制御部107は、画像メモリ106からの画像データの入出力を制御する。D/A変換器108は入力されたデジタル信号をアナログ信号に変換する。表示部109はLCD等からなり、D/A変換器108から出力された画像データ等を表示する。コーデック部110は画像データを圧縮符号化・復号化する。
記録媒体112はメモリカードやハードディスク等からなり、画像データを記録する。インターフェース111は、映像信号を記録媒体112に出力するためのインターフェースである。外部出力端子113は、本実施形態のデジタルカメラで生成された映像信号を、HDR(ハイダイナミックレンジ)モニタなどの、このデジタルカメラに接続された外部機器に出力する。システム制御部114は、デジタルカメラのシステム全体を制御する。
次に、上記のように構成されたデジタルカメラにおける基本動作について説明する。撮像部103は、レンズ群101及びシャッター102を介して入射した光を光電変換し、生成された画像信号を、入力画像信号としてA/D変換器104へ出力する。A/D変換器104は、撮像部103から出力されるアナログ画像信号をデジタル画像信号に変換し、画像処理部105に出力する。
画像処理部105は、A/D変換器104から出力された画像データ、又はメモリ制御部107から出力された画像データを処理し、コーデック部110、外部出録端子113に出力するための映像信号を生成する。画像処理部105から出力された画像データは、メモリ制御部107を介して画像メモリ106に書き込まれる。画像メモリ106は、A/D変換器104から出力された画像データや、表示部109に表示するための画像データを格納する。
また、D/A変換器108は、画像メモリ106に格納されている表示用の画像データをアナログ信号に変換して表示部109に供給する。表示部109は、LCD等の表示器上に、D/A変換器108から出力されたアナログ信号に応じた表示を行う。コーデック部110は、画像メモリ106に格納された画像データを圧縮符号化する。システム制御部114は符号化した画像データを、インタフェース111を介して記録媒体に格納する。また、システム制御部114は、画像メモリ106または、画像処理部105、またはコーデック部110から出力される映像信号を、外部出力端子113を介して、HDRモニタなどの外部出力機器に出力する。
次に、図2は、画像処理部105の構成を示す図である。図2において、帯域分離部210は、入力画像を高周波成分と、輝度用低周波成分、色用低周波成分に分離する。輝度用信号生成部200は、帯域分離部210から出力される輝度用低周波成分から、低周波輝度信号に適したRGBの信号成分(色信号成分)を生成する。色差用信号生成部201は、帯域分離部210から出力される色用低周波成分から、低周波色差信号に適したRGBの信号成分(色信号成分)を生成する。
輝度用信号生成部200と色差用信号生成部201の出力は、信号統合部204に入力される。信号統合部204は、輝度用信号生成部200、色差用信号生成部201から出力される、輝度信号用と色差信号用の2系統のRGB信号を統合(合成)して、1系統のRGB信号Rmix,Gmix,Bmixを生成する。式(1)〜式(3)は、信号統合部204での演算を示す式である。
Rmix=R1c+a*(R1y−R1c)+b*(G1y−G1c)
+c*(B1y−B1c) …(1)
Gmix=G1c+a*(R1y−R1c)+b*(G1y−G1c)
+c*(B1y−B1c) …(2)
Bmix=B1c+a*(R1y−R1c)+b*(G1y−G1c)
+c*(B1y−B1c) …(3)
ここで、式(1)〜式(3)において、R1y,G1y,B1yは、輝度用信号生成部200から出力されるRGB信号であり、R1c,G1c,B1cは、色差用信号生成部201から出力されるRGB信号である。また、a,b,cは任意の係数であり、a+b+c=1を満たす。
信号統合部204の出力は、第1の階調変換部205に入力される。第1の階調変換部205は、信号統合部204から出力されるRGB信号Rmix,Gmix,Bmixに対して、第1の階調変換を行う。第1の階調変換では、式(4)〜式(6)を用いて、出力信号R1’,G1’,B1’を生成する。ここで、第1の階調変換部205での変換処理は、xを入力、yを出力、変換特性の微係数をf1(x)とすると、y=x*f1(x)と表記できる。
R1’=Rmix*f1(Rmix) …(4)
G1’=Gmix*f1(Gmix) …(5)
B1’=Bmix*f1(Bmix) …(6)
第1の階調変換部205の出力は、色輝度分離部206に入力される。色輝度分離部206は、第1の階調変換部205から出力されるRGB信号から、式(7)〜式(9)を用いて、輝度信号Y(輝度信号成分)と色差信号U,V(色差信号成分)を分離する。なお、式(7)〜式(9)において、a1,b1,c1は任意の係数であり、a1+b1+c1=1を満たす。
Y=a1*R1’+b1*G1’+c1*B1’ …(7)
U=(1−c1)*B1’−a1*R1’−b1*G1’ …(8)
V=(1−a1)*R1’−c1*B1’−b1*G1’ …(9)

ここで、人間の視覚系は、色よりも明るさの変化に対して、高い空間周波数まで応答する特徴がある。そのため、輝度用信号生成部200では、高周波成分を多く含むよう、A/D変換器104から出力された画像データに対して、デモザイク処理、ノイズリダクション処理、輪郭補償処理などを行う。一方、色差用信号生成部201では、ノイズや画像処理によるエイリアシングなど、高周波成分に起因した画質劣化がなるべく低減されるよう、A/D変換器104から出力された画像データに対して、デモザイク処理、ノイズリダクション処理、色補正処理などを行う。そのため、輝度用信号生成部200で生成されるRGB信号と、色差用信号生成部201で生成されるRGB信号に帯域差が生じる場合がある。このようにRGB信号に帯域差が生じると、輝度系のRGB信号に含まれる高周波成分に起因して、信号統合部204の処理において、統合後のRGB信号に元の信号にはなかった偽信号が発生する場合があり、画質を著しく劣化させる。
そこで、本実施形態では、帯域分離部210により、高周波成分と、輝度用低周波成分、色用低周波成分を分離し、この分離された低周波成分を、輝度用信号生成部200と、色差用信号生成部201に入力する。つまり、輝度信号用のRGB信号と、色差信号用のRGB信号の周波数帯域を揃える。
周波数帯域を調整する処理としては、例えば、入力画像における着目画素p(i,j)および着目画素近傍の画素を参照し、式(10)に示すような演算により低域通過フィルタの処理を行う。
p_out(i,j)={k1*p(i-1,j-1)+k2*p(i,j-1)+k3*p(i+1,j-1)+k4*p(i-1,j)
+k5*p(i,j)+k6*p(i+1,j)+k7*p(i-1,j+1)+k8*p(i,j+1)+k9*p(i+1,j+1)}/M
…(10)
式(10)において、i,jは、それぞれ入力画像における着目画素の行方向、列方向の画素位置を示し、M=k1+k2+k3+k4+k5+k6+k7+k8+k9 とする。k1,k2,k3,k4,k5,k6,k7,k8,k9は、参照画素にかかるフィルタ係数となる。
例えば最終的な輝度信号で実現したい周波数振幅特性が、図3の符号801で示すような特性であり、最終的な色差信号で実現したい周波数振幅特性が、図3の曲線802で示すような特性であったとする。この場合は、低周波輝度信号用のRGB信号と、色差信号用のRGB信号を、図3の曲線802で示すような周波数振幅特性となるよう、上記のフィルタ係数を調整する。
これにより、式(1)〜式(3)において、第2項目以降の成分が0になるため、信号統合部204でのRGB信号の統合後に、輝度系処理と色系処理の違いに起因したレベル差がなくなり、画質劣化を防ぐことが可能となる。
一方、帯域分離部210では、図4の曲線803で示すような周波数振幅特性で、入力画像から高周波成分を分離する。この特性は、最終的な輝度信号として実現したい図3の曲線801に対応した周波数振幅特性と、最終的な色差信号として実現したい図3の曲線802に対応した周波数振幅特性との差分を含むものとする。なお、図3、図4において、Nはナイキスト周波数を示す。
なお、帯域分離部210で分離された高周波成分は、第2の階調変換部207において階調変換される。第2の階調変換部207は、第1の階調変換部205とは異なる特性で階調変換を行う。具体的には、第2の階調変換部207は、相対的に第1の階調変換部205よりも非線形性の弱い特性で階調変換を行う。第2の階調変換部207での変換処理は、例えば、Y_acを入力、Y_ac’を出力、変換特性のゲインをf2(Yy)とすると、式(11)〜式(13)で表される。なお、式(11)〜式(13)において、a2,b2,c2は任意の係数であり、a2+b2+c2=1を満たす。
Y_ac’=Y_ac*f2(Yy) …(11)
Y_ac=a2*(R1y−R1c)+b2*(G1y−G1c)
+c*(B1y−B1c) …(12)
Yy=a2*R1y+b2*G1y+c2*B1y …(13)
すなわち、輝度用のRGB信号R1y,G1y,B1yから求めた輝度Yyを参照して、階調変換の変換特性となるゲインf2(Yy)を決定する。そして、そのゲインを用いて高周波の輝度信号Y_acの振幅レベルを調整するよう、第2の階調変換部207で階調変換を行う。
第2の階調変換部207の出力は、高域成分合成部208において、色輝度分離部206で分離された後の輝度信号に合成され、高域成分合成部208は、最終的な輝度信号Y_out、色差信号U_out,V_outを出力する。高域成分合成部208では、式(7)〜式(9)と式(10)の結果を用いて、式(14)〜式(16)のような演算が行われる。
Y_out=Y+Y_ac’ …(14)
U_out=U …(15)
V_out=V …(16)
高域成分合成部208から出力される輝度信号、色差信号は、画像メモリ106、またはコーデック部110を経由して、外部出力端子113から出力され、HDRモニタに入力される。
HDRモニタでは、式(14)〜式(16)の輝度信号、色差信号がRGB信号に変換されて表示される。この変換は式(7)〜式(9)の逆変換であるので、式(14)に含まれる高周波成分Y_ac’は、モニタ内で変換されたRGBの各信号に分配される。したがって、Y_ac’のノイズや、Y_acの生成時に含まれる偽信号が、第2の階調変換部207で著しく増幅されてモニタ表示時に画質劣化が発生する場合がある。
そのため、本実施形態では、モニタ表示時の明るさ、彩度に影響する低周波成分については、非線形性が強い階調変換特性で変換を行い、所望の明るさ、彩度が再現されるようにする。一方、ノイズとの分離が難しい高周波成分については、解像感とのバランスを考慮して、第1の階調変換部よりも非線形性の弱い特性で階調変換を行う。
次に、図5、図6、図7、図8は、第1の階調変換部205と第2の階調変換部207の特性と作用を説明する図である。
HDR(ハイダイナミックレンジ)に対応したモニタでは、ダイナミックレンジ(Dレンジ)の広いシーンの輝度を、なるべく劣化なく再現するため、映像信号の量子化レベルと表示輝度との対応関係がEOTF(Electro Optical Transfer Function)として規定されている。そして、その入出力特性は、例えば図5のようになる。従って、カメラ側では、図6で示すような、上記のEOTFの逆特性(目標とする目標曲線)で、撮像部103で取得された入力画像の階調変換を行い、映像信号(出力画像信号)をモニタに出力する。これにより、ダイナミックレンジの広いシーンの輝度を、モニタ上の輝度として再現することができる。ここで、図6のような入出力特性で階調変換を行う場合、階調変換特性の微係数は図7のようになり、入力信号のレベルが小さい領域500では、入力信号レベルが大きい領域よりも、相対的に大きい微係数で入力信号が増幅されることなる。
信号統合部204で統合される前の色系と輝度系のRGBの信号帯域に差があると、第1の階調変換部205での第1の階調変換によって、信号帯域の差分が強調されて、他の色信号に伝搬することがある。しかし、本実施形態では、輝度用信号生成部200でのRGB信号の信号帯域と色差用信号生成部201でのRGB信号の信号帯域を揃えている。そのため、第1の階調変換では、図7のような微係数で振幅の変調が行われるよう階調変換を行ったとしても、画質劣化が生じない。
一方、第2の階調変換部207では、高周波成分に対して階調変換処理を行うので、ノイズが強調されないよう、図7に示した微係数に対して、低輝度側の信号にかかる微係数の程度を抑制する。つまり、図8に示す曲線(または直線)901のような特性で入力の振幅が変調されるよう、階調変換を行う。なお、図8の曲線901の特性については、被写体の高周波成分の解像感とノイズとのバランスをみて、特性を調整する。
以上説明したように、本実施形態では、撮像部で取得されたリニアな入力画像に対して、輝度用、色差用に、それぞれ最適な画像処理を行う際に、周波数帯域を分ける。そして、第1の階調変換と第2の階調変換を組み合わせて、HDRモニタに対応したEOTFの逆特性となる階調変換を行う。これにより、輝度用と色差用の信号処理系の違いに起因して発生する偽信号を階調変換によって強調することなく、撮像部で取得されたシーンの輝度を、HDRモニタ上の輝度として再現することができる。
なお、本実施形態では、第1及び第2の階調変換部で階調変換を行う色空間を、RGBとしたが、XYZ、LMSなど、他の混色系表色系の色空間で変換処理を行ってもよい。
(第2の実施形態)
以下、本発明の画像処理装置の第2の実施形態であるデジタルカメラについて説明する。この第2の実施形態のデジタルカメラは、外面的には、図1に示した第1の実施形態のデジタルカメラと同じであり、画像処理部105の構成のみが、第1の実施形態と異なる。以下では、この第1の実施形態と異なる部分についてのみ説明する。
図9は、第2の実施形態における画像処理部105の構成を示す図である。第1の実施形態と同じ作用をする構成要素については同じ符号を付して、説明を省略する。
図9において、帯域分離部210は、入力画像を高周波成分と、輝度用低周波成分、色用低周波成分に分離する。輝度用信号生成部200は、帯域分離部210から出力される輝度用低周波成分から、低周波輝度信号に適したRGBの信号成分(色信号成分)を生成する。色差用信号生成部201は、帯域分離部210から出力される色用低周波成分から、低周波色差信号に適したRGBの信号成分(色信号成分)を生成する。
第3の階調変換部202は、輝度用信号生成部200の出力に対して、第3の階調変換を行う。また、第4の階調変換部203は、色差用信号生成部201の出力に対して、第4の階調変換を行う。
第3の階調変換部202と第4の階調変換部203の出力は、信号統合部204に入力される。信号統合部204は、第3の階調変換部202、第4の階調変換部203から出力される、輝度信号用と色差信号用の2系統のRGB信号を統合(合成)して、1系統のRGB信号Rmix,Gmix,Bmixを生成する。
信号統合部204の出力は、第1の階調変換部205に入力される。第1の階調変換部205は、信号統合部204から出力されるRGB信号Rmix,Gmix,Bmixに対して、第1の階調変換を行う。第1の階調変換部205の出力は、色輝度分離部206に入力される。色輝度分離部206は、第1の階調変換部205から出力されるRGB信号から、式(7)〜式(9)を用いて、輝度信号Y(輝度信号成分)と色差信号U,V(色差信号成分)を分離する。
一方、帯域分離部210で分離された高周波成分は、第2の階調変換部207において階調変換される。第2の階調変換部207の出力は、高域成分合成部208において、色輝度分離部206で分離された後の輝度信号に合成され、高域成分合成部208は、最終的な輝度信号Y_out、色差信号U_out,V_outを出力する。高域成分合成部208から出力される輝度信号、色差信号は、画像メモリ106、またはコーデック部110を経由して、外部出力端子113から出力され、HDRモニタに入力される。
この第2の実施形態では、帯域分離部210で、高周波成分と輝度用低周波成分、色用低周波成分を分離し、階調変換した後に信号統合部204に入力する。しかし、輝度信号用のRGB信号と、色差信号用のRGB信号の周波数帯域を完全には一致させない。
例えば、図10の曲線801で示す特性が最終的な輝度信号として実現したい周波数振幅特性、曲線804が最終的な色差信号として実現したい周波数振幅特性であるとする。この場合に、低周波輝度信号のためのRGB信号成分の周波数振幅特性が曲線802で示す特性となるように、帯域を分離する。
これは次のような理由による。つまり、輝度信号と色差信号とで、最終的に実現したい周波数振幅特性の差が大きい場合に、低周波輝度信号用のためのRGB信号を色差信号の帯域に揃えてしまうと、高域成分合成部208において、輝度の高周波成分で置換される信号の割合が多くなる。この場合、高彩度被写体でエッジが色抜けする問題が生じるからである。
一方、色差用のRGB信号と、低周波輝度信号用のRGB信号の周波数帯域を一致させていないため、信号統合部204でこれらの2系統のRGB信号が合成された場合、元の色信号にはない偽信号が発生する場合がある。そこで、本実施形態では、第3の階調変換部202による第3の階調変換と第4の階調変換部203による第4の階調変換を行う。そして、色差用のRGB信号と、低周波輝度信号用のRGB信号の周波数帯域の差に起因した信号レベルの差を低減させてから、信号統合部204で上記の2系統のRGB信号を統合する。なお、第3の階調変換部202と第4の階調変換部203は、同じ特性の階調変換処理を行ってもよいし、異なる特性の階調変換処理を行ってもよいが、本実施形態では同じ特性の階調変換処理を行うものとする。
そして、例えば、第3及び第4の階調変換部202,203では、図11で大きな微係数のかかる符号500で示す領域において、曲線402で示す特性となるよう、式(17)〜式(22)を用いて階調変換を行う。
ここで、第3の階調変換部202と第4の階調変換部203で同じ特性の階調変換を行うとすると、それらの階調変換処理は、xを入力、yを出力、変換特性の微係数をf3(x)とすると、y=x*f3(x)と表記できる。ここで、Ry,Gy,Cyは輝度用信号生成部200の出力であり、Rc,Gc,Bcは色差用信号生成部201の出力である。R3y’,G3y’,B3y’は、第3の階調変換部202の出力であり、R3c’,G3c’,B3c’は、第4の階調変換部203の出力である。
R3c’=Rc*f3(Rc) …(17)
R3y’=Ry*f3(Ry) …(18)
G3c’=Gc*f3(Gc) …(19)
G3y’=Gy*f3(Gy) …(20)
B3c’=Bc*f3(Bc) …(21)
B3y’=By*f3(By) …(22)
第3の階調変換部202と第4の階調変換部203の出力は、信号統合部204に入力される。信号統合部204は、第3の階調変換部202、第4の階調変換部203から出力される、輝度信号用と色差信号用の2系統のRGB信号を統合(合成)して、1系統のRGB信号Rmix,Gmix,Bmixを生成する。式(23)〜式(25)は、信号統合部204での演算を示す式である。
Rmix=R3c’+a3*(R3y’−R3c’)+b3*(G3y’−G3c’)
+c3*(B3y’−B3c’) …(23)
Gmix=G1c’+a3*(R3y’−R3c’)+b3*(G3y’−G3c’)
+c3*(B3y’−B3c’) …(24)
Bmix=B1c’+a3*(R3y’−R3c’)+b3*(G3y’−G3c’)
+c3*(B3y’−B3c’) …(25)
なお、式(23)〜式(25)において、a3,b3,c3は任意の係数であり、a3+b3+c3=1を満たす。
式(23)〜式(25)において、第2項目以降の成分は、第3及び第4の階調変換部202,203により、振幅レベルが低減されている。なお、すでに説明したように、第3の階調変換部202と第4の階調変換部204における階調変換の特性は共通にしてもよいし、階調変換後の2系統のRGB信号の振幅レベルの差異が許容できる範囲で、異なる特性としてもよい。
第3の階調変換部202と第4の階調変換部203の出力は、信号統合部204に入力される。信号統合部204は、第3の階調変換部202、第4の階調変換部203から出力される、輝度信号用と色差信号用の2系統のRGB信号を統合(合成)して、1系統のRGB信号Rmix,Gmix,Bmixを生成する。
信号統合部204の出力は、第1の階調変換部205に入力される。第1の階調変換部205は、信号統合部204から出力されるRGB信号Rmix,Gmix,Bmixに対して、式(4)〜式(6)を用いて第1の階調変換を行う。第2の実施形態においては、式(4)〜式(6)での、変換特性の微係数f1(x)は、入力をx、出力をf1(x)としたときに、図12に示すような入出力特性となる。図12において、符号500で示す領域は、図11に符号500で示す領域と対応している。図11の符号500で示す領域の出力信号レベルは、曲線402で示すようにHDRモニタに対応したEOTFの逆特性に対して、振幅レベルが低くなっている。そのため、第1の階調変換では、第3及び第4の階調変換で不足する振幅レベルの増幅を行うよう、f1(x)を用いた図12に示すような特性の階調変換が行われる。
本実施形態では、上記のようにHDRモニタに対応したEOTFの逆特性を、1段階目の第3及び第4の階調変換部202,203と、2段階目の第1の階調変換部205の2段階に分けて適用する。信号統合部204で統合される前の、1段階目の第3及び第4の階調変換部202,203では、上記の2系統のRGB信号について、変換後のRGBの比が、著しく乖離せず、所定のレベル以下になるようにする。具体的には、図11に符号500で示す領域において、HDRモニタに対応したEOTFの逆特性401に一致する特性よりも、暗部(低輝度部)の立ち上がりが小さくなるような特性(変換量)で階調変換を行う。このときの入出力特性は、例えば図11に符号402で示すような特性となる。なお、第3の階調変換部202と第4の階調変換部203における階調変換の特性は、すでに説明したように共通にしてもよいし、階調変換後の2系統のRGB信号の振幅レベルの差異が許容できる範囲で、異なる特性としてもよい。また、図11の符号402で示す特性は曲線であるが、入力値が一律のゲインで増幅されるような線形な特性としてもよい。その一例として、図11の原点Oと点Aを直線で結んだ線形な特性とすることができる。なお、階調変換の前後でそれぞれのRGB信号の信号値の比が保たれるような変換特性であれば、2系統のRGB信号の振幅レベルの差が増幅されるのを抑制することができるので、線形変換以外にべき乗の変換であってもよい。
一方、信号統合部204で統合された後の第1の階調変換部205では、図12に示すような入出力特性で階調変換を行う。符号500で示す領域は、図11の符号500で示す領域と対応している。1段階目の第3及び第4の階調変換部202,203で階調変換された後の、符号500で示す領域の出力信号レベルは、HDRモニタに対応したEOTFの逆特性に対して、振幅レベルが低くなっている。そのため、2段階目の階調変換である第1の階調変換部205による階調変換では、1段階目の階調変換で不足する振幅レベルの増幅を行うよう、階調変換を行う。
なお、この2段階の階調変換は、別の表現をすれば、信号統合部204で統合する前の1段階目では、相対的に非線形性の弱い階調変換を行い、信号統合部204で統合した後の2段階目では、相対的に1段階目の階調変換よりも非線形性の強い階調変換を行うと表現することもできる。そして、これらの2段階の階調変換を組み合わせて、最終的に低周波成分については、HDRモニタに対応したEOTFの逆特性となるように階調変換を行う。
第1の階調変換部205の出力は、色輝度分離部206に入力される。色輝度分離部206は、第1の階調変換部205から出力されるRGB信号から、式(7)〜式(9)を用いて、輝度信号Y(輝度信号成分)と色差信号U,V(色差信号成分)を分離する。
本実施形態においては、帯域分離部210は、図4の曲線803で示すような周波数振幅特性で、入力画像から高周波成分を分離する。この特性は、最終的な輝度信号として実現したい図10の曲線801に対応した周波数振幅特性と、最終的な色差信号として実現したい図10の曲線802に対応した周波数振幅特性との差分を含むものとする。なお、図3、図4において、Nはナイキスト周波数を示す。
なお、帯域分離部210で分離された高周波成分は、第2の階調変換部207において、例えば式(11)〜式(13)を用いて階調変換される。すなわち、輝度用のRGB信号R1y,G1y,B1yから求めた輝度Yyを参照して、階調変換の変換特性となるゲインf2(Yy)を決定する。そして、そのゲインを用いて高周波の輝度信号Y_acの振幅レベルを調整するよう、第2の階調変換部207で階調変換を行う。
第2の階調変換部207の出力は、高域成分合成部208において、色輝度分離部206で分離された後の輝度信号に合成され、高域成分合成部208は、最終的な輝度信号Y_out、色差信号U_out,V_outを出力する。高域成分合成部208では、式(7)〜式(9)と式(10)の結果を用いて、式(14)〜式(16)のような演算が行われる。
高域成分合成部208から出力される輝度信号、色差信号は、画像メモリ106、またはコーデック部110を経由して、外部出力端子113から出力され、HDRモニタに入力される。
以上説明したように、第2の実施形態においても、撮像部で取得されたリニアな入力画像に対して、輝度用、色差用に、それぞれ最適な画像処理を行う際に、周波数帯域を分ける。そして、低周波成分に対しては、第1の階調変換と第3及び第4の階調変換を組み合わせる。また、高周波成分に対しては、第2の階調変換を適用する。そして、HDRモニタに対応したEOTFの逆特性となる階調変換を行う。これにより、輝度用と色差用の信号処理系の違いに起因して発生する偽信号を階調変換によって強調することなく、撮像部で取得されたシーンの輝度を、HDRモニタ上の輝度として再現することができる。
なお、本実施形態では、第1乃至第4の階調変換部で階調変換を行う色空間を、RGBとしたが、XYZ、LMSなど、他の混色系表色系の色空間で変換処理を行ってもよい。
(他の実施形態)
また本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現できる。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現できる。
105:画像処理部、200:輝度用信号生成部、201:色差用信号生成部、202:第3の階調変換部、203:第4の階調変換部、204:信号統合部、205:第1の階調変換部、206:色輝度分離部、207:第2の階調変換部、208:高輝度成分合成部、210:帯域分離部

Claims (20)

  1. 入力画像信号から、所定の周波数振幅特性に基づいて高周波成分と低周波成分を分離する第1の分離手段と、
    前記低周波成分から、輝度信号用の色信号成分を生成する第1の生成手段と、
    前記低周波成分から、色差信号用の色信号成分を生成する第2の生成手段と、
    前記第1の生成手段の出力と前記第2の生成手段の出力を合成して、輝度信号用と色差信号用に共通の色信号成分を生成する第3の生成手段と、
    前記第3の生成手段の出力に対して第1の階調変換処理を行う第1の階調変換手段と、
    前記第1の階調変換手段により処理された後の信号から輝度信号と色差信号を生成する色輝度分離手段と、
    前記高周波成分に対して第2の階調変換を行う第2の階調変換手段と、
    前記色輝度分離手段の出力と前記第2の階調変換手段の出力とを合成する合成手段と、
    を備えることを特徴とする画像処理装置。
  2. 前記第2の階調変換手段は、前記第1の階調変換手段よりも、入力信号の低輝度部に対する振幅の増幅の程度が小さいことを特徴とする請求項1に記載の画像処理装置。
  3. 前記第1の階調変換手段は、相対的に非線形の強い階調変換を行い、前記第2の階調変換手段は、相対的に前記第1の階調変換手段よりも非線形の弱い階調変換を行うことを特徴とする請求項1に記載の画像処理装置。
  4. 前記色信号成分は、RGBの信号成分であることを特徴とする請求項1乃至3のいずれか1項に記載の画像処理装置。
  5. 前記第1の階調変換手段から出力される色信号成分を、輝度信号成分と色差信号成分とに分離する第2の分離手段をさらに備えることを特徴とする請求項1乃至4のいずれか1項に記載の画像処理装置。
  6. 前記画像処理装置は、入力画像信号の信号レベルと出力画像信号の信号レベルの関係を示す曲線が目標とする目標曲線となるように、入力画像信号に対して階調変換を行う画像処理装置であって、
    前記目標曲線は、ハイダイナミックレンジに対応するモニタのEOTF(Electro Optical Transfer Function)の逆特性となる曲線であることを特徴とする請求項1乃至5のいずれか1項に記載の画像処理装置。
  7. 入力画像信号から、所定の周波数振幅特性に基づいて高周波成分と低周波成分を分離する第1の分離手段と、
    前記低周波成分から、輝度信号用の色信号成分を生成する第1の生成手段と、
    前記低周波成分から、色差信号用の色信号成分を生成する第2の生成手段と、
    前記輝度信号用の色信号成分に対して第3の階調変換処理を行う第3の階調変換手段と、
    前記色差信号用の色信号成分に対して第4の階調変換処理を行う第4の階調変換手段と、
    前記第3の階調変換手段の出力と前記第4の階調変換手段の出力を合成して、輝度信号用と色差信号用に共通の色信号成分を生成する第3の生成手段と、
    前記第3の生成手段の出力に対して第1の階調変換処理を行う第1の階調変換手段と、
    前記第1の階調変換手段により処理された後の信号から輝度信号と色差信号を生成する色輝度分離手段と、
    前記高周波成分に対して第2の階調変換を行う第2の階調変換手段と、
    前記色輝度分離手段の出力と前記第2の階調変換手段の出力とを合成する合成手段と、
    を備えることを特徴とする画像処理装置。
  8. 前記第3の階調変換手段と前記第4の階調変換手段は、前記第3の階調変換手段から出力される色信号成分と、前記第4の階調変換手段から出力される色信号成分の振幅の差が所定のレベル以下になるように、階調変換を行うことを特徴とする請求項7に記載の画像処理装置。
  9. 前記第2の階調変換手段は、前記第1の階調変換手段と、前記第3または第4の階調変換手段とを組み合わせた階調変換特性よりも、入力信号の低輝度部に対する振幅の増幅の程度が小さいことを特徴とする請求項7または8に記載の画像処理装置。
  10. 前記第1の階調変換手段と、前記第3または第4の階調変換手段とを組み合わせた階調変換特性は、相対的に非線形の強い階調変換特性であり、前記第2の階調変換手段の階調変換特性は、相対的に前記第1の階調変換手段と、前記第3または第4の階調変換手段とを組み合わせた階調変換特性よりも非線形の弱い階調変換特性であることを特徴とする請求項7に記載の画像処理装置。
  11. 前記第3の階調変換手段と前記第4の階調変換手段は、互いに同じ特性の階調変換を行うことを特徴とする請求項7乃至10のいずれか1項に記載の画像処理装置。
  12. 前記第3および第4の階調変換手段が行う階調変換は、入力信号の信号レベルと出力信号の信号レベルの関係を表す曲線が直線である階調変換を含むことを特徴とする請求項7乃至11のいずれか1項に記載の画像処理装置。
  13. 前記画像処理装置は、入力画像信号の信号レベルと出力画像信号の信号レベルの関係を示す曲線が目標とする目標曲線となるように、入力画像信号に対して階調変換を行う画像処理装置であって、
    前記第3および第4の階調変換手段は、前記入力画像信号の低周波成分の信号レベルと出力画像信号の低周波成分の信号レベルの関係を示す曲線が前記目標曲線に一致するよりも少ない変換量で階調変換を行い、前記第1の階調変換手段は、前記第3および第4の階調変換手段で階調変換した後に残った前記目標曲線との差分に対応する変換量で階調変換を行うことを特徴とする請求項7に記載の画像処理装置。
  14. 前記目標曲線は、ハイダイナミックレンジに対応するモニタのEOTF(Electro Optical Transfer Function)の逆特性となる曲線であることを特徴とする請求項13に記載の画像処理装置。
  15. 前記色信号成分は、RGBの信号成分であることを特徴とする請求項7乃至14のいずれか1項に記載の画像処理装置。
  16. 前記第1の階調変換手段から出力される色信号成分を、輝度信号成分と色差信号成分とに分離する第2の分離手段をさらに備えることを特徴とする請求項7乃至15のいずれか1項に記載の画像処理装置。
  17. 入力画像信号から、所定の周波数振幅特性に基づいて高周波成分と低周波成分を分離する分離工程と、
    前記低周波成分から、輝度信号用の色信号成分を生成する第1の生成工程と、
    前記低周波成分から、色差信号用の色信号成分を生成する第2の生成工程と、
    前記第1の生成工程の出力と前記第2の生成工程の出力を合成して、輝度信号用と色差信号用に共通の色信号成分を生成する第3の生成工程と、
    前記第3の生成工程の出力に対して第1の階調変換処理を行う第1の階調変換工程と、
    前記第1の階調変換工程により処理された後の信号から輝度信号と色差信号を生成する色輝度分離工程と、
    前記高周波成分に対して第2の階調変換を行う第2の階調変換工程と、
    前記色輝度分離工程の出力と前記第2の階調変換工程の出力とを合成する合成工程と、
    を有することを特徴とする画像処理方法。
  18. 入力画像信号から、所定の周波数振幅特性に基づいて高周波成分と低周波成分を分離する分離工程と、
    前記低周波成分から、輝度信号用の色信号成分を生成する第1の生成工程と、
    前記低周波成分から、色差信号用の色信号成分を生成する第2の生成工程と、
    前記輝度信号用の色信号成分に対して第3の階調変換処理を行う第3の階調変換工程と、
    前記色差信号用の色信号成分に対して第4の階調変換処理を行う第4の階調変換工程と、
    前記第3の階調変換工程の出力と前記第4の階調変換工程の出力を合成して、輝度信号用と色差信号用に共通の色信号成分を生成する第3の生成工程と、
    前記第3の生成工程の出力に対して第1の階調変換処理を行う第1の階調変換工程と、
    前記第1の階調変換工程により処理された後の信号から輝度信号と色差信号を生成する色輝度分離工程と、
    前記高周波成分に対して第2の階調変換を行う第2の階調変換工程と、
    前記色輝度分離工程の出力と前記第2の階調変換工程の出力とを合成する合成工程と、
    を有することを特徴とする画像処理方法。
  19. 請求項17または18に記載の画像処理方法の各工程をコンピュータに実行させるためのプログラム。
  20. 請求項17または18に記載の画像処理方法の各工程をコンピュータに実行させるためのプログラムを記憶したコンピュータが読み取り可能な記憶媒体。
JP2017119885A 2017-06-19 2017-06-19 画像処理装置及び画像処理方法、プログラム、記憶媒体 Active JP6924081B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017119885A JP6924081B2 (ja) 2017-06-19 2017-06-19 画像処理装置及び画像処理方法、プログラム、記憶媒体
US16/010,786 US10440343B2 (en) 2017-06-19 2018-06-18 Image processing apparatus, image processing method, and storage medium for performing tone conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017119885A JP6924081B2 (ja) 2017-06-19 2017-06-19 画像処理装置及び画像処理方法、プログラム、記憶媒体

Publications (3)

Publication Number Publication Date
JP2019004426A JP2019004426A (ja) 2019-01-10
JP2019004426A5 JP2019004426A5 (ja) 2020-07-27
JP6924081B2 true JP6924081B2 (ja) 2021-08-25

Family

ID=64657713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017119885A Active JP6924081B2 (ja) 2017-06-19 2017-06-19 画像処理装置及び画像処理方法、プログラム、記憶媒体

Country Status (2)

Country Link
US (1) US10440343B2 (ja)
JP (1) JP6924081B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480300B1 (en) * 1998-04-08 2002-11-12 Fuji Photo Film Co., Ltd. Image processing apparatus, image processing method and recording medium on which software for executing the image processing is recorded
JP3919389B2 (ja) 1999-07-27 2007-05-23 キヤノン株式会社 信号処理装置及び信号処理方法
JP3946913B2 (ja) * 1999-09-09 2007-07-18 富士フイルム株式会社 信号生成方法および装置並びに記録媒体
JP6956531B2 (ja) 2017-06-19 2021-11-02 キヤノン株式会社 画像処理装置及び画像処理方法、プログラム、記憶媒体

Also Published As

Publication number Publication date
JP2019004426A (ja) 2019-01-10
US10440343B2 (en) 2019-10-08
US20180367780A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
KR101051604B1 (ko) 화상 처리 장치 및 방법
US8169500B2 (en) Dynamic range compression apparatus, dynamic range compression method, computer-readable recording medium, integrated circuit, and imaging apparatus
US7920183B2 (en) Image processing device and digital camera
JP3302423B2 (ja) 撮像装置
JP2007208399A (ja) 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
US9712797B2 (en) Image processing apparatus, image pickup apparatus, image processing method, and non-transitory computer-readable medium
JP3134784B2 (ja) 画像合成回路
JP4810473B2 (ja) 画像処理装置および画像処理プログラム
JP2009111541A (ja) 画像処理装置及び画像処理方法
JP5474586B2 (ja) 画像処理装置
US20110279714A1 (en) Image processing device, image processing method, and image pickup apparatus
US8659684B2 (en) Image processing apparatus, program, method and image capturing system
JPH0630330A (ja) 階調補正回路及び撮像装置
JP2018112936A (ja) Hdr画像処理装置および方法
JP2004363853A (ja) 画像信号のノイズ低減方法及びノイズ低減装置
JP6956531B2 (ja) 画像処理装置及び画像処理方法、プログラム、記憶媒体
JP6924081B2 (ja) 画像処理装置及び画像処理方法、プログラム、記憶媒体
JP6929174B2 (ja) 画像処理装置及び画像処理方法及びプログラム
JP2009081526A (ja) 撮像装置
JPWO2009057478A1 (ja) 画像処理装置、画像処理方法、及び撮像装置
JP3586238B2 (ja) 撮像装置
JP7282536B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP4714096B2 (ja) 撮像装置
JP5706436B2 (ja) デジタル信号処理方法
JP2021048522A (ja) 画像処理装置および画像処理方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200611

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210730

R151 Written notification of patent or utility model registration

Ref document number: 6924081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151