JP6923724B1 - Air filter and its manufacturing method - Google Patents

Air filter and its manufacturing method Download PDF

Info

Publication number
JP6923724B1
JP6923724B1 JP2020132284A JP2020132284A JP6923724B1 JP 6923724 B1 JP6923724 B1 JP 6923724B1 JP 2020132284 A JP2020132284 A JP 2020132284A JP 2020132284 A JP2020132284 A JP 2020132284A JP 6923724 B1 JP6923724 B1 JP 6923724B1
Authority
JP
Japan
Prior art keywords
fluorine
air filter
oil
water
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020132284A
Other languages
Japanese (ja)
Other versions
JP2022029122A (en
Inventor
真也 白石
真也 白石
久実 渡邉
久実 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jemco Inc filed Critical Jemco Inc
Priority to JP2020132284A priority Critical patent/JP6923724B1/en
Priority to DE112020006250.3T priority patent/DE112020006250T5/en
Priority to CN202080095696.4A priority patent/CN115052673A/en
Priority to PCT/JP2020/047112 priority patent/WO2021125257A1/en
Application granted granted Critical
Publication of JP6923724B1 publication Critical patent/JP6923724B1/en
Publication of JP2022029122A publication Critical patent/JP2022029122A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

【課題】オイルミストと粉塵を含む空気を清浄にし、目詰まりを抑制する。【解決手段】オイルミストと粉塵を含む空気が流入する一面と、この一面に対向し空気が流出する他面との間を貫通する多数の気孔が繊維間に形成された不織布を含むエアフィルタである。不織布の繊維表面に式(1)のペルフルオロエーテル構造を含む第1フッ素系官能基成分(A1)が結合した平均粒子径2nm〜90nmの金属酸化物粒子(B)と、式(1)で示されるペルフルオロエーテル構造を含む第2フッ素系官能基成分(A2)を含有するシリカゾルゲル(C)とを含む撥水撥油性膜が形成される。撥水撥油性膜を100質量%とするとき、成分(A1)と成分(A2)とを合計した含有割合が1質量%〜30質量%であり、質量比(C:B)が、10:90〜90:10の範囲にあり、フィルタ通気度が1〜30ml/cm2/秒である。【選択図】図1PROBLEM TO BE SOLVED: To purify air containing oil mist and dust and suppress clogging. SOLUTION: An air filter containing a non-woven fabric in which a large number of pores penetrating between one surface into which air containing oil mist and dust flows in and another surface in which air flows out facing the one surface is formed between fibers. be. The metal oxide particles (B) having an average particle diameter of 2 nm to 90 nm in which the first fluorine-based functional group component (A1) containing the perfluoroether structure of the formula (1) is bonded to the fiber surface of the non-woven fabric are represented by the formula (1). A water- and oil-repellent film containing a silica sol gel (C) containing a second fluorine-based functional group component (A2) containing a perfluoroether structure is formed. When the water- and oil-repellent film is 100% by mass, the total content ratio of the component (A1) and the component (A2) is 1% by mass to 30% by mass, and the mass ratio (C: B) is 10: It is in the range of 90 to 90:10 and has a filter air permeability of 1 to 30 ml / cm2 / sec. [Selection diagram] Fig. 1

Description

本発明は、オイルミストと粉塵を含む空気を清浄にするエアフィルタ及びその製造方法に関する。更に詳しくは、撥水性と撥油性を有する撥水撥油性膜が不織布の繊維表面に形成されたエアフィルタ及びその製造方法に関するものである。 The present invention relates to an air filter for purifying air containing oil mist and dust, and a method for producing the same. More specifically, the present invention relates to an air filter in which a water-repellent and oil-repellent film having water repellency and oil repellency is formed on the fiber surface of a non-woven fabric, and a method for producing the same.

金属製品を切削油を用いて加工する切削機や旋削機等の工作機械からは機械の高速稼働により切削油が飛散して、オイルミストが発生し、同時に粉塵も発生する。これらのオイルミスト及び粉塵は作業環境を悪化させ、その作業効率を低下させる。このため、従来より、オイルミストと粉塵を含む空気を清浄にするエアフィルタとして、空気中に浮遊する粉塵だけでなく、オイルミストによる目詰まりを抑制できるエアフィルタ濾材が提案されている(例えば、特許文献1(請求項1、段落[0006]、段落[0021]、段落[0045]、段落[0053]〜段落[0060])。 Cutting oil is scattered from machine tools such as cutting machines and turning machines that process metal products using cutting oil due to the high-speed operation of the machines, and oil mist is generated, and at the same time, dust is also generated. These oil mists and dust deteriorate the working environment and reduce the working efficiency. For this reason, conventionally, as an air filter for purifying air containing oil mist and dust, an air filter filter medium capable of suppressing clogging due to oil mist as well as dust floating in the air has been proposed (for example,). Patent Document 1 (claim 1, paragraph [0006], paragraph [0021], paragraph [0045], paragraph [0053] to paragraph [0060]).

このエアフィルタ濾材は、第1のPTFE(ポリテトラフルオロエチレン)多孔質膜と、第2のPTFE多孔質膜を含み、気流が、エアフィルタ濾材の第1主面から第1のPTFE多孔質膜、第2のPTFE多孔質膜の順にエアフィルタ濾材の第2主面へと、通過するようになっている。第1のPTFE多孔質膜の厚さは4〜40μmの範囲にあり、第1のPTFE多孔質膜の比表面積は0.5m2/g以下にあり、第2のPTFE多孔質膜の比表面積は、第1のPTFE多孔質膜のそれより大きい1.5〜10m2/g以下の範囲にある。 This air filter filter medium includes a first PTFE (polytetrafluoroethylene) porous membrane and a second PTFE porous membrane, and the air flow is from the first main surface of the air filter filter medium to the first PTFE porous membrane. , The second PTFE porous membrane passes through the second main surface of the air filter filter medium in this order. The thickness of the first PTFE porous membrane is in the range of 4 to 40 μm, the specific surface area of the first PTFE porous membrane is 0.5 m 2 / g or less, and the specific surface area of the second PTFE porous membrane. Is in the range of 1.5 to 10 m 2 / g or less, which is larger than that of the first PTFE porous membrane.

第1及び第2のPTFE多孔質膜は、それぞれPTFE微粉末と液状潤滑剤を加えた混合物をシート状成形体に成形する。第1のPTFE多孔質膜は、シート状成形体をPTFEの融点(327℃)以上の温度と50倍以上の倍率で、長手(MD)方向に加熱しつつ延伸し、次いで横(TD)方向に130〜400℃の温度で、延伸前の長さに対して5〜8倍になるように、加熱しつつ延伸することにより、製造される。第2のPTFE多孔質膜は、PTFEのシート状成形体をPTFEの融点未満の温度(270〜290℃)で、かつ15〜40倍の倍率でMD方向に加熱しつつ延伸し、次いでTD方向に更に120〜130℃の温度で、延伸前の長さに対して15〜40倍になるように、とMD方向延伸時と同じ倍率で加熱しつつ延伸することにより、製造される。 The first and second PTFE porous membranes are formed into a sheet-like molded body by adding a mixture of PTFE fine powder and a liquid lubricant, respectively. The first PTFE porous membrane stretches the sheet-shaped molded product while heating it in the longitudinal (MD) direction at a temperature equal to or higher than the melting point of PTFE (327 ° C.) and a magnification of 50 times or higher, and then stretches it in the lateral (TD) direction. It is produced by stretching while heating at a temperature of 130 to 400 ° C. so as to be 5 to 8 times the length before stretching. The second PTFE porous membrane stretches the PTFE sheet-shaped molded product at a temperature below the melting point of PTFE (270 to 290 ° C.) while heating it in the MD direction at a magnification of 15 to 40 times, and then in the TD direction. Further, it is produced by stretching at a temperature of 120 to 130 ° C. so as to be 15 to 40 times the length before stretching while heating at the same magnification as during stretching in the MD direction.

特開2018−51546号公報Japanese Unexamined Patent Publication No. 2018-51546

特許文献1に開示されたエアフィルタ濾材では、第1のPTFE多孔質膜を、第2のPTFE多孔質膜と比較して、延伸温度を高くし、延伸倍率を大きくして、製造することにより、第1のPTFE多孔質膜の比表面積を0.5m2/g以下と小さくし、これにより、大きい粒径の粉塵及びオイルミストを捕集する。一方、第2のPTFE多孔質膜の比表面積を1.5〜10m2/gと大きくし、これにより、小さい粒径の粉塵及びオイルミストを捕集している。 In the air filter filter medium disclosed in Patent Document 1, the first PTFE porous membrane is manufactured by increasing the stretching temperature and the stretching ratio as compared with the second PTFE porous membrane. , The specific surface area of the first PTFE porous membrane is reduced to 0.5 m 2 / g or less, thereby collecting dust and oil mist having a large particle size. On the other hand, the specific surface area of the second PTFE porous membrane is increased to 1.5 to 10 m 2 / g, whereby dust and oil mist having a small particle size are collected.

しかしながら、特許文献1に開示されるエアフィルタ濾材では、第1及び第2のPTFE多孔質膜により、粒径の異なる粉塵とオイルミストを捕集するとしても、PTFE多孔質膜は、静電気が発生し易く、かつ発生した静電気の除去が困難であるため、フィルタ形状に加工することが容易でなかった。また撥油性よりも撥水性が高いため、大気中に含まれる水分がPTFE多孔質膜を塞ぐことがあり、そこに粉塵が付着し易かった。そのため、エアフィルタ濾材を使用し続けると、オイルミストがエアフィルタ濾材の内部に残留し続け、エアフィルタ濾材が目詰まりし易く、その結果、エアフィルタを通過する風量が低下し易く、新しいエアフィルタと頻繁に交換しなければならない課題があった。 However, in the air filter filter medium disclosed in Patent Document 1, even if the first and second PTFE porous membranes collect dust and oil mist having different particle sizes, the PTFE porous membranes generate static electricity. It was not easy to process it into a filter shape because it was easy to do and it was difficult to remove the generated static electricity. Further, since the water repellency is higher than the oil repellency, the moisture contained in the atmosphere may block the PTFE porous membrane, and dust easily adheres to the PTFE porous membrane. Therefore, if the air filter filter medium is continuously used, the oil mist continues to remain inside the air filter filter medium, and the air filter filter medium is easily clogged. As a result, the air volume passing through the air filter is likely to decrease, and a new air filter is used. There was a problem that had to be replaced frequently.

本発明の目的は、オイルミストと粉塵を含む空気を清浄にし、目詰まりを抑制するエアフィルタを提供することにある。本発明の別の目的は、オイルミストと粉塵を含む空気を清浄にし、目詰まりを抑制するエアフィルタを簡便に製造する方法を提供することにある。 An object of the present invention is to provide an air filter that purifies air containing oil mist and dust and suppresses clogging. Another object of the present invention is to provide a method for easily producing an air filter that purifies air containing oil mist and dust and suppresses clogging.

本発明の第1の観点は、オイルミストと粉塵を含む空気が流入する一面と、この一面に対向し前記空気が流出する他面との間を貫通する多数の気孔が繊維間に形成された不織布を含むエアフィルタであって、前記不織布の繊維表面に撥水撥油性膜が形成され、前記撥水撥油性膜は、下記の一般式(1)又は式(2)で示されるペルフルオロエーテル構造を含む第1フッ素系官能基成分(A1)が結合した平均粒子径2nm〜90nmの金属酸化物粒子(B)と、下記の一般式(1)又は式(2)で示されるペルフルオロエーテル構造を含む第2フッ素系官能基成分(A2)を含有するシリカゾルゲル(C)とを含み、前記撥水撥油性膜を100質量%とするとき、前記第1フッ素系官能基成分(A1)と前記第2フッ素系官能基成分(A2)とを合計した含有割合が、1質量%〜30質量%であり、前記シリカゾルゲル(C)と前記金属酸化物粒子(B)の質量比(C:B)が、10:90〜90:10の範囲にあり、前記エアフィルタの通気度が1ml/cm2/秒〜30ml/cm2/秒であることを特徴とするエアフィルタである。 The first aspect of the present invention is that a large number of pores are formed between the fibers, which penetrate between one surface into which air containing oil mist and dust flows in and the other surface in which the air flows out facing the one surface. An air filter containing a non-woven fabric, wherein a water-repellent oil-repellent film is formed on the fiber surface of the non-woven fabric, and the water-repellent oil-repellent film has a perfluoroether structure represented by the following general formula (1) or formula (2). Metal oxide particles (B) having an average particle diameter of 2 nm to 90 nm to which the first fluorine-based functional group component (A1) containing the above is bonded, and a perfluoroether structure represented by the following general formula (1) or formula (2). When the silica sol gel (C) containing the second fluorine-based functional group component (A2) is contained and the water-repellent oil-repellent film is 100% by mass, the first fluorine-based functional group component (A1) and the above. The total content ratio of the second fluorine-based functional group component (A2) is 1% by mass to 30% by mass, and the mass ratio (C: B) of the silica solgel (C) and the metal oxide particles (B). ) is 10: 90 to 90: in the range of 10, an air filter, wherein the air permeability of the air filter is 1 ml / cm 2 / sec -30 mL / cm 2 / sec.

Figure 0006923724
Figure 0006923724

上記式(1)及び式(2)中、p、q及びrは、それぞれ同一又は互いに異なる1〜6の整数であって、直鎖状又は分岐状であってもよい。また上記式(1)及び式(2)中、Xは、炭素数2〜10の炭化水素基であって、エーテル結合、CO−NH結合、O−CO−NH結合及びスルホンアミド結合から選択される1種以上の結合を含んでいてもよい。更に上記式(1)及び式(2)中、Yはシランの加水分解体又はシリカゾルゲルの主成分である。 In the above formulas (1) and (2), p, q and r are integers of 1 to 6 which are the same or different from each other, and may be linear or branched. Further, in the above formulas (1) and (2), X is a hydrocarbon group having 2 to 10 carbon atoms and is selected from an ether bond, a CO-NH bond, an O-CO-NH bond and a sulfone amide bond. It may contain one or more bonds. Further, in the above formulas (1) and (2), Y is a hydrolyzate of silane or the main component of the silica sol gel.

このYについて更に述べると、第1フッ素系官能基成分(A1)である場合は、Yは、金属酸化物粒子(B)と結合する部位であり、第2フッ素系官能基成分(A2)である場合は、Yは、シリカゾルゲル(C)と結合する部位である。
具体例としては、Yとして、後述する式(3)又は式(4)において、Z部分が加水分解した構造が挙げられる。また、Yとして、式(3)又は式(4)のシラン化合物と、テトラエトキシシランやテトラメトキシシラン等のケイ素アルコキシドとを混合し、加水分解重合したシリカゾルゲルの主成分等も挙げられる。更に、Yとして、式(3)又は式(4)のシラン化合物と、テトラエトキシシランやテトラメトキシシラン等のケイ素アルコキシドと、エポキシ基やビニル基、エーテル基を含有したシラン等とを混合し、加水分解重合したシリカゾルゲルの主成分等も挙げられる。
Further describing this Y, in the case of the first fluorine-based functional group component (A1), Y is a site that binds to the metal oxide particles (B), and is the second fluorine-based functional group component (A2). In some cases, Y is the site that binds to the silica solgel (C).
As a specific example, as Y, a structure in which the Z portion is hydrolyzed in the formula (3) or the formula (4) described later can be mentioned. Further, as Y, the main component of a silica sol gel obtained by mixing a silane compound of the formula (3) or the formula (4) with a silicon alkoxide such as tetraethoxysilane or tetramethoxysilane and hydrolyzing and polymerizing it can also be mentioned. Further, as Y, the silane compound of the formula (3) or the formula (4), a silicon alkoxide such as tetraethoxysilane or tetramethoxysilane, and a silane containing an epoxy group, a vinyl group, or an ether group are mixed. The main components of the hydrolyzed silica sol gel can also be mentioned.

本発明の第2の観点は、第1の観点に基づく発明であって、前記第1フッ素官能基成分(A1)の含有割合が、質量比で前記第2フッ素官能基成分(A2)の含有割合以上であるエアフィルタである。 The second aspect of the present invention is the invention based on the first aspect, in which the content ratio of the first fluorine functional group component (A1) is the content of the second fluorine functional group component (A2) in terms of mass ratio. It is an air filter that is equal to or more than the ratio.

本発明の第3の観点は、第1の観点に基づく発明であって、前記金属酸化物粒子(B)は、Si,Al、Mg、Ca、Ti、Zn及びZrからなる群より選ばれた1種又は2種の金属の酸化物粒子であるエアフィルタである。 The third aspect of the present invention is an invention based on the first aspect, and the metal oxide particles (B) are selected from the group consisting of Si, Al, Mg, Ca, Ti, Zn and Zr. An air filter that is an oxide particle of one or two metals.

本発明の第4の観点は、第1の観点に基づく発明であって、前記シリカゾルゲル(C)は、前記シリカゾルゲル(C)を100質量%としたとき、炭素数2〜7のアルキレン基成分を0.5質量%〜20質量%含むエアフィルタである。 The fourth aspect of the present invention is the invention based on the first aspect, and the silica solgel (C) is an alkylene group having 2 to 7 carbon atoms when the silica solgel (C) is 100% by mass. It is an air filter containing 0.5% by mass to 20% by mass of components.

本発明の第5の観点は、第1の観点に基づく発明であって、前記不織布が単一層により構成されるか、又は複数層の積層体により構成されるエアフィルタである。 A fifth aspect of the present invention is an invention based on the first aspect, which is an air filter in which the nonwoven fabric is composed of a single layer or a laminate of a plurality of layers.

本発明の第6の観点は、第1又は第5の観点に基づく発明であって、前記不織布を構成する繊維がポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属からなる群より選ばれた1種又は2種以上の繊維であるエアフィルタである。 The sixth aspect of the present invention is the invention based on the first or fifth aspect, in which the fibers constituting the non-woven fabric are polyethylene terephthalate (PET), polypropylene (PP), polytetrafluoroethylene (PTFE), and glass. An air filter which is one or more fibers selected from the group consisting of alumina, carbon, cellulose, pulp, nylon and metal.

本発明の第7の観点は、フッ素含有金属酸化物粒子の分散液とフッ素含有シリカゾルゲル液とを混合して撥水撥油性膜形成用液組成物を調製する工程と、前記撥水撥油性膜形成用液組成物の希釈液に不織布をディッピングする工程と、前記ディッピングした不織布を脱液し乾燥する工程とを含むエアフィルタの製造方法である。 A seventh aspect of the present invention is a step of preparing a water-repellent oil-repellent film-forming liquid composition by mixing a dispersion liquid of fluorine-containing metal oxide particles and a fluorine-containing silica solgel liquid, and the water-repellent oil-repellent property. It is a method for manufacturing an air filter including a step of dipping a non-woven fabric into a diluted solution of a film-forming liquid composition and a step of deliquessing and drying the dipped non-woven fabric.

本発明の第8の観点は、第7の観点に基づく発明であって、前記フッ素含有金属酸化物粒子の分散液が、金属酸化物粒子の分散液に第1フッ素系官能基成分を含むフッ素系化合物を添加混合し、この混合液に水と触媒を添加混合して、調製されるエアフィルタの製造方法である。 The eighth aspect of the present invention is an invention based on the seventh aspect, wherein the dispersion liquid of the fluorine-containing metal oxide particles contains fluorine containing a first fluorine-based functional group component in the dispersion liquid of the metal oxide particles. This is a method for producing an air filter, which is prepared by adding and mixing a system compound, adding and mixing water and a catalyst to this mixed solution.

本発明の第9の観点は、第8の観点に基づく発明であって、前記金属酸化物粒子がSi,Al、Mg、Ca、Ti、Zn及びZrからなる群より選ばれた1種又は2種の金属の酸化物粒子であるエアフィルタの製造方法である。 The ninth aspect of the present invention is an invention based on the eighth aspect, wherein the metal oxide particles are one or two selected from the group consisting of Si, Al, Mg, Ca, Ti, Zn and Zr. It is a method for producing an air filter which is an oxide particle of a kind metal.

本発明の第10の観点は、第7の観点に基づく発明であって、前記フッ素含有シリカゾルゲル液が、第2フッ素系官能基成分を含むフッ素系化合物とケイ素アルコキシドとアルコールと水を混合した混合液に触媒を添加混合して、調製されるエアフィルタの製造方法である。 The tenth aspect of the present invention is the invention based on the seventh aspect, in which the fluorine-containing silica solgel liquid is a mixture of a fluorine-based compound containing a second fluorine-based functional group component, silicon alkoxide, alcohol, and water. This is a method for producing an air filter prepared by adding and mixing a catalyst to a mixed solution.

本発明の第1の観点のエアフィルタは、エアフィルタに含まれる不織布の繊維表面に撥水撥油性膜が形成され、撥水撥油性膜が、前述した一般式(1)又は式(2)で示されるペルフルオロエーテル構造を含む第1フッ素系官能基成分(A1)が結合した平均粒子径2nm〜90nmの金属酸化物粒子(B)と、前述した一般式(1)又は式(2)で示されるペルフルオロエーテル構造を含む第2フッ素系官能基成分(A2)を含有するシリカゾルゲル(C)と、溶媒(D)とを含み、前記溶媒(D)を除く全成分量を100質量%としたとき、前記第1フッ素系官能基成分(A1)と前記第2フッ素系官能基成分(A2)とを合計した含有割合が、1質量%〜30質量%であり、前記シリカゾルゲル(C)と前記金属酸化物粒子(B)の質量比(C:B)が、10:90〜90:10の範囲にあり、前記エアフィルタの通気度が1ml/cm2/秒〜30ml/cm2/秒である。このため、エアフィルタ内にオイルミストと粉塵を含む空気がエアフィルタの一面から流入すると、オイルミストと粉塵が不織布で捕集され、空気だけが不織布の気孔を通過しエアフィルタの他面から流出して、空気が清浄になり、目詰まりが抑制される。 In the air filter according to the first aspect of the present invention, a water-repellent oil-repellent film is formed on the fiber surface of the non-woven fabric contained in the air filter, and the water-repellent oil-repellent film is formed by the above-mentioned general formula (1) or formula (2). The metal oxide particles (B) having an average particle diameter of 2 nm to 90 nm to which the first fluorine-based functional group component (A1) containing the perfluoroether structure represented by the above is bonded, and the above-mentioned general formula (1) or formula (2). A silica solgel (C) containing a second fluorine-based functional group component (A2) containing the shown perfluoroether structure and a solvent (D) are contained, and the total amount of the components excluding the solvent (D) is 100% by mass. Then, the total content ratio of the first fluorine-based functional group component (A1) and the second fluorine-based functional group component (A2) is 1% by mass to 30% by mass, and the silica solvent gel (C) The mass ratio (C: B) of the metal oxide particles (B) to the metal oxide particles (B) is in the range of 10:90 to 90:10, and the air permeability of the air filter is 1 ml / cm 2 / sec to 30 ml / cm 2 /. Seconds. Therefore, when air containing oil mist and dust flows into the air filter from one surface of the air filter, the oil mist and dust are collected by the non-woven fabric, and only air passes through the pores of the non-woven fabric and flows out from the other surface of the air filter. As a result, the air becomes clean and clogging is suppressed.

このとき、撥水撥油性膜の撥油性能のため、またエアフィルタの通気度が1ml/cm2/秒〜30ml/cm2/秒であるため、オイルミストが不織布の繊維表面の撥水撥油性膜に吸着せずに弾かれて付着するに止まる。エアフィルタを使用し続けてオイルミストの不織布内部における捕集量が増えると、エアフィルタが水平に配置される場合には、オイルミストは液状化して通過する空気に随伴されてエアフィルタの他面に集まり、エアフィルタが鉛直に配置される場合には、捕集されたオイルミストが自重によりエアフィルタの下端に集まり、不織布の気孔を閉塞しない。これにより、オイルミストによる気孔の目詰まりは抑制される。 At this time, since the oil repellency of the water-repellent oil-repellent coating, and because air permeability of the air filter is 1 ml / cm 2 / sec -30 mL / cm 2 / sec, water repellency of the oil mist of the nonwoven fiber surface It does not stick to the oil-based film, but is repelled and adheres. As the amount of oil mist collected inside the non-woven fabric increases as the air filter continues to be used, when the air filter is placed horizontally, the oil mist liquefies and accompanies the passing air on the other surface of the air filter. When the air filter is arranged vertically, the collected oil mist collects at the lower end of the air filter due to its own weight and does not block the pores of the non-woven fabric. As a result, clogging of the pores due to the oil mist is suppressed.

一方、粉塵は、エアフィルタの通気度が1ml/cm2/秒〜30ml/cm2/秒であるため、不織布の繊維表面の撥水撥油性膜に直接付着するか、或いは撥水撥油性膜に付着したオイルミストに付着する。このため、エアフィルタを長期間使用して粉塵等で目詰まりしたときに、エアノッカー等でエアフィルタに衝撃を与えると、オイルミストと一緒に付着した粉塵を容易に落とすことができ、エアフィルタを再生することができる。 Meanwhile, dust, because air permeability of the air filter is 1 ml / cm 2 / sec -30 mL / cm 2 / sec, or attached directly to the water and oil repellency film of the nonwoven fabric of the fiber surface, or water-repellent oil-repellent layer Adheres to the oil mist adhering to. Therefore, when the air filter is used for a long period of time and is clogged with dust or the like, if the air filter is impacted by an air knocker or the like, the dust adhering together with the oil mist can be easily removed, and the air filter can be used. Can be regenerated.

本発明の第2の観点のエアフィルタでは、第1フッ素官能基成分(A1)が第2フッ素官能基成分(A2)と同じ質量割合であるか、又は第2フッ素官能基成分(A2)より多く含有するため、不織布の繊維表面への撥水撥油性膜の密着性が高い。 In the air filter according to the second aspect of the present invention, the first fluorine functional group component (A1) has the same mass ratio as the second fluorine functional group component (A2), or is more than the second fluorine functional group component (A2). Since it contains a large amount, the water- and oil-repellent film has high adhesion to the fiber surface of the non-woven fabric.

本発明の第3の観点のエアフィルタでは、撥水撥油性膜に含まれる金属酸化物粒子が、Si,Al、Mg、Ca、Ti、Zn及びZrからなる群より選ばれた1種又は2種の金属酸化物粒子であるため、多種の金属酸化物粒子の中から、エアフィルタの使用環境に適した金属酸化物粒子を含むことができる。 In the air filter according to the third aspect of the present invention, the metal oxide particles contained in the water- and oil-repellent film are one or two selected from the group consisting of Si, Al, Mg, Ca, Ti, Zn and Zr. Since it is a kind of metal oxide particles, it is possible to include metal oxide particles suitable for the usage environment of the air filter from among various types of metal oxide particles.

本発明の第4の観点のエアフィルタでは、シリカゾルゲル(C)を100質量%とするとき、炭素数2〜7のアルキレン基成分を0.5質量%〜20質量%含むため、撥水撥油性膜を形成する不織布に良好に密着し、かつ撥水撥油性膜の厚さが均一になり、撥水撥油性膜により一層優れた撥油性能を付与することができる。 In the air filter of the fourth aspect of the present invention, when the silica solgel (C) is 100% by mass, it contains 0.5% by mass to 20% by mass of an alkylene group component having 2 to 7 carbon atoms, so that it is water repellent. It adheres well to the non-woven fabric forming the oil-based film, the thickness of the water-repellent oil-repellent film becomes uniform, and the water-repellent oil-repellent film can impart more excellent oil-repellent performance.

本発明の第5の観点のエアフィルタでは、不織布が単一層により構成される場合には、簡単な構成のエアフィルタになり、不織布が複数層の積層体により構成される場合には、流入する粉塵の粒径、オイルミストの油粒子のサイズ等の性状に応じて各層を構成することができる。 The air filter according to the fifth aspect of the present invention is an air filter having a simple structure when the non-woven fabric is composed of a single layer, and flows in when the non-woven fabric is composed of a laminated body of a plurality of layers. Each layer can be formed according to the properties such as the particle size of dust and the size of oil particles of oil mist.

本発明の第6の観点のエアフィルタでは、不織布を構成する繊維の材質を、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属から、流入する粉塵の粒径、オイルミストの油粒子のサイズ等の性状に応じて、選択することができる。 In the air filter according to the sixth aspect of the present invention, the materials of the fibers constituting the non-woven fabric are polyethylene terephthalate (PET), polypropylene (PP), polytetrafluoroethylene (PTFE), glass, alumina, carbon, cellulose, pulp, and the like. It can be selected from nylon and metal according to the properties such as the particle size of the inflowing dust and the size of the oil particles of the oil mist.

本発明の第7の観点のエアフィルタの製造方法では、図3に示すように、フッ素含有金属酸化物粒子の分散液17とフッ素含有シリカゾルゲル液57とを混合して撥水撥油性膜形成用液組成物60を調製し、この撥水撥油性膜形成用液組成物60の希釈液62に不織布20をディッピングして不織布を脱液し乾燥することにより、エアフィルタ10が製造される。フッ素含有した金属酸化物粒子がフッ素系化合物を含むシリカゾルゲル中に存在するため、液組成物を不織布の繊維表面にディッピングし乾燥したときに、不織布により一層撥水撥油性を付与することができる。また不織布の通気度を低くすることが容易になる。更に特許文献1のPTFE多孔質膜とは異なり、撥水撥油性膜には静電気が発生しにくく、簡便にエアフィルタを製造することができる。 In the method for producing an air filter according to the seventh aspect of the present invention, as shown in FIG. 3, a dispersion liquid 17 of fluorine-containing metal oxide particles and a fluorine-containing silica solgel liquid 57 are mixed to form a water- and oil-repellent film. The air filter 10 is manufactured by preparing the liquid composition 60, dipping the non-woven fabric 20 in the diluted liquid 62 of the water- and oil-repellent film-forming liquid composition 60, deflating the non-woven fabric, and drying the non-woven fabric. Since the fluorine-containing metal oxide particles are present in the silica sol gel containing the fluorine-based compound, the non-woven fabric can further impart water and oil repellency when the liquid composition is dipped on the fiber surface of the non-woven fabric and dried. .. In addition, it becomes easy to reduce the air permeability of the non-woven fabric. Further, unlike the PTFE porous membrane of Patent Document 1, the water- and oil-repellent membrane is less likely to generate static electricity, and an air filter can be easily manufactured.

本発明の第8の観点のエアフィルタの製造方法では、金属酸化物粒子の分散液にフッ素系化合物を添加混合し、この混合液に水と触媒を添加混合するため、フッ素含有金属酸化物粒子が均一に分散した分散液が得られる。 In the method for producing an air filter according to the eighth aspect of the present invention, a fluorine-based compound is added and mixed with a dispersion liquid of metal oxide particles, and water and a catalyst are added and mixed with this mixed liquid. A dispersion liquid in which is uniformly dispersed is obtained.

本発明の第9の観点のエアフィルタの製造方法では、金属酸化物粒子が、Si,Al、Mg、Ca、Ti、Zn及びZrからなる群より選ばれた1種又は2種の金属酸化物粒子であるため、多種の金属酸化物粒子の中から、エアフィルタの使用環境に適した金属酸化物粒子を含んだエアフィルタを製造することができる。 In the method for producing an air filter according to the ninth aspect of the present invention, the metal oxide particles are one or two metal oxides selected from the group consisting of Si, Al, Mg, Ca, Ti, Zn and Zr. Since it is a particle, it is possible to manufacture an air filter containing the metal oxide particle suitable for the usage environment of the air filter from among various metal oxide particles.

本発明の第10の観点のエアフィルタの製造方法では、ケイ素アルコキシドとアルコールとフッ素系化合物と水の混合液に触媒を添加混合して調製されたフッ素含有シリカゾルゲル液は、フッ素含有金属酸化物粒子のバインダとして作用するとともに、液組成物を不織布表面に成膜したときに、膜を不織布表面に堅牢に結着させるとともにより膜に一層の撥水撥油性を付与する。 In the method for producing an air filter according to the tenth aspect of the present invention, the fluorine-containing silica solgel solution prepared by adding and mixing a catalyst to a mixture of silicon alkoxide, alcohol, a fluorine-based compound, and water is a fluorine-containing metal oxide. It acts as a binder for particles, and when the liquid composition is formed on the surface of the non-woven fabric, it firmly binds the film to the surface of the non-woven fabric and imparts further water and oil repellency to the film.

本実施形態の単一層の不織布の側面図である。It is a side view of the non-woven fabric of a single layer of this embodiment. 本実施形態の二層の不織布の側面図である。It is a side view of the two-layer non-woven fabric of this embodiment. 本実施形態のエアフィルタを製造するフロー図である。It is a flow chart for manufacturing the air filter of this embodiment.

次に本発明を実施するための形態について図面を参照して説明する。 Next, a mode for carrying out the present invention will be described with reference to the drawings.

〔エアフィルタ〕
図1に示すように、本実施形態のエアフィルタ10は、不織布20とこの不織布の繊維表面に形成された撥水性と撥油性を有する撥水撥油性膜21とを備える。このエアフィルタ10の主たる構成要素である不織布20は、オイルミストと粉塵を含む空気が流入する一面20aと、この一面20aに対向し前記空気が流出する他面20bを有し、単一層からなる。図2に示すように、上層の不織布30と下層の不織布40の二層の積層体により構成されるエアフィルタ50でもよい。この場合、上層の不織布30の上面がオイルミストと粉塵を含む空気が流入する一面30aとなり、下層の不織布40の下面がこの一面30aに対向する他面40bとなる。なお、積層体は二層に限らず、三層、四層等の複数層から構成することもできる。
[Air filter]
As shown in FIG. 1, the air filter 10 of the present embodiment includes a non-woven fabric 20 and a water- and oil-repellent film 21 having water repellency and oil repellency formed on the fiber surface of the non-woven fabric. The non-woven fabric 20, which is the main component of the air filter 10, has one surface 20a into which air containing oil mist and dust flows in, and another surface 20b in which the air flows out facing the one surface 20a, and is composed of a single layer. .. As shown in FIG. 2, the air filter 50 may be composed of a two-layer laminate of the upper non-woven fabric 30 and the lower non-woven fabric 40. In this case, the upper surface of the upper non-woven fabric 30 is one surface 30a into which air containing oil mist and dust flows, and the lower surface of the lower layer non-woven fabric 40 is the other surface 40b facing the one surface 30a. The laminated body is not limited to two layers, and may be composed of a plurality of layers such as three layers and four layers.

図1中央の拡大図に示すように、不織布20は多数の繊維20cが絡み合って形成され、繊維と繊維の間には気孔20dが形成される。気孔20dは不織布20の一面20aと他面20bとの間を貫通する。不織布の繊維20cの表面には撥水撥油性膜21が形成される。不織布の目付は、100g/m2〜400g/m2の範囲にあることが好ましいが、この範囲に限定されるものではない。撥水撥油性膜21は、平均粒子径が2nm〜90nmの金属酸化物粒子(B)とシリカゾルゲル(C)とを含む。この金属酸化物粒子(B)には、前述した一般式(1)又は式(2)で示される第1フッ素系官能基成分(A1)が結合する。またシリカゾルゲル(C)は、前述した一般式(1)又は式(2)で示される第2フッ素系官能基成分(A2)を含む。第1フッ素系官能基成分(A1)と第2フッ素系官能基成分(A2)とは、撥水撥油性膜21を100質量%とするとき、合計して1質量%〜30質量%の割合で含まれる。またシリカゾルゲル(C)と金属酸化物粒子(B)の質量比(C:B)は、10:90〜90:10の範囲にある。 As shown in the enlarged view at the center of FIG. 1, the non-woven fabric 20 is formed by entwining a large number of fibers 20c, and pores 20d are formed between the fibers. The pores 20d penetrate between one surface 20a and the other surface 20b of the non-woven fabric 20. A water- and oil-repellent film 21 is formed on the surface of the non-woven fiber 20c. Basis weight of the nonwoven fabric is preferably in the range of 100g / m 2 ~400g / m 2 , but is not limited to this range. The water- and oil-repellent film 21 contains metal oxide particles (B) having an average particle diameter of 2 nm to 90 nm and silica sol gel (C). The first fluorine-based functional group component (A1) represented by the above-mentioned general formula (1) or formula (2) is bonded to the metal oxide particles (B). Further, the silica sol gel (C) contains the second fluorine-based functional group component (A2) represented by the above-mentioned general formula (1) or formula (2). The ratio of the first fluorine-based functional group component (A1) and the second fluorine-based functional group component (A2) is 1% by mass to 30% by mass in total when the water-repellent oil-repellent film 21 is 100% by mass. Included in. The mass ratio (C: B) of the silica sol gel (C) and the metal oxide particles (B) is in the range of 10:90 to 90:10.

図1上部の更なる拡大図に示すように、撥水撥油性膜21は、粒子表面がフッ素系官能基成分に覆われた多数の金属酸化物粒子21aがバインダとしてのフッ素含有シリカゾルゲル21bで結着して構成される。撥水撥油性膜21は金属酸化物粒子21aを含むため、見かけ上、厚膜となり、繊維と繊維の間の気孔20dを狭くすることができる。また膜厚は、金属酸化物粒子の粒子径と膜成分中の金属酸化物粒子の含有割合を変えることにより制御することができる。 As shown in the further enlarged view of the upper part of FIG. 1, the water- and oil-repellent film 21 is formed of a fluorine-containing silica sol gel 21b in which a large number of metal oxide particles 21a whose particle surface is covered with a fluorine-based functional group component as a binder. It is composed by binding. Since the water- and oil-repellent film 21 contains the metal oxide particles 21a, it is apparently a thick film, and the pores 20d between the fibers can be narrowed. The film thickness can be controlled by changing the particle size of the metal oxide particles and the content ratio of the metal oxide particles in the film components.

不織布の目付が100g/m2未満であると、繊維間の気孔が大き過ぎることから、粉塵を捕集する能力が不足し易い。400g/m2を超えると、通気度が1ml/cm2/秒未満となり、粉塵が直ぐに繊維間の気孔に詰まり易くなるか、或いは通気度が低過ぎるため、エアフィルタに送り込む空気の抵抗によりエアフィルタで圧力損失が生じ易く、送風エネルギーの効率が悪化し易い。不織布の目付は、200g/m2〜350g/m2の範囲にあることが更に好ましい。 If the basis weight of the non-woven fabric is less than 100 g / m 2 , the pores between the fibers are too large, and the ability to collect dust tends to be insufficient. If it exceeds 400 g / m 2 , the air permeability becomes less than 1 ml / cm 2 / sec, and dust easily clogs the pores between the fibers immediately, or the air permeability is too low, and the air is sent to the air filter due to the resistance of the air. Pressure loss is likely to occur in the filter, and the efficiency of ventilation energy is likely to deteriorate. Basis weight of the nonwoven fabric is more preferably in the range of 200g / m 2 ~350g / m 2 .

繊維表面に撥水撥油性膜21が形成されたエアフィルタ10の状態で、不織布20は1ml/cm2/秒〜30ml/cm2/秒の通気度を有するように作製される。通気度が1ml/cm2/秒未満では、後述する撥水撥油性膜形成用液組成物の希釈液に不織布をディッピングしたときに希釈液が不織布内に浸透しにくく、撥水撥油性膜21が十分に繊維表面に形成されない。また通気性に劣り、オイルミストと粉塵を含む空気が通過しにくくなる。30ml/cm2/秒を超えると、撥水撥油性膜21が十分に繊維表面に形成されるものの、不織布の気孔20dの大きさが流入する空気中のオイルミストの油粒子22及び粉塵の粒子23の各粒径よりも遙かに大きくなり、油粒子22及び粉塵の粒子23が空気とともに不織布の気孔を通してエアフィルタ10から通過し、オイルミストと粉塵を捕集することができない。即ち、撥油性を発揮できない。通気度は1.5ml/cm2/秒〜25ml/cm2/秒であることが好ましい。通気度はJIS−L1913:2000に記載のフラジール形試験機を用いて測定される。 In the state of the air filter 10 to water-repellent oil-repellent layer 21 is formed on the fiber surface, the nonwoven fabric 20 is made to have a permeability of 1 ml / cm 2 / sec -30 mL / cm 2 / sec. When the air permeability is less than 1 ml / cm 2 / sec, when the non-woven fabric is dipped in the diluent of the liquid composition for forming a water-repellent oil-repellent film described later, the diluent does not easily penetrate into the non-woven fabric, and the water-repellent oil-repellent film 21 Is not sufficiently formed on the fiber surface. In addition, it is inferior in air permeability, and it becomes difficult for air containing oil mist and dust to pass through. When it exceeds 30 ml / cm 2 / sec, the water- and oil-repellent film 21 is sufficiently formed on the fiber surface, but the size of the pores 20d of the non-woven fabric flows into the oil mist oil particles 22 and dust particles in the air. It is much larger than each particle size of 23, and the oil particles 22 and the dust particles 23 pass through the pores of the non-woven fabric together with the air from the air filter 10 and cannot collect the oil mist and the dust. That is, it cannot exhibit oil repellency. Air permeability is preferably 1.5 ml / cm 2 / sec ~25ml / cm 2 / sec. The air permeability is measured using the Frazier type tester described in JIS-L1913: 2000.

撥水撥油性膜21を100質量%とするときの第1フッ素系官能基成分(A1)と第2フッ素系官能基成分(A2)を合計した含有割合が1質量%未満では、撥油性の効果に乏しく、オイルミストを弾く性能が不十分になる。即ち、オイルミストがエアフィルタに到達したときに、オイルミストが繊維表面上に濡れ広がり、気孔20dを塞ぎ易くなる。また合計した含有割合が30質量%を超えると、撥水撥油性膜の不織布への密着性が悪くなる。撥水撥油性膜21を100質量%とするときの第1フッ素系官能基成分(A1)と第2フッ素系官能基成分(A2)を合計した含有割合は、5質量%〜25質量%であることが好ましい。 When the total content of the first fluorine-based functional group component (A1) and the second fluorine-based functional group component (A2) is less than 1% by mass when the water-repellent oil-repellent film 21 is 100% by mass, the oil-repellent property is oil-repellent. The effect is poor, and the ability to repel oil mist is insufficient. That is, when the oil mist reaches the air filter, the oil mist wets and spreads on the fiber surface, and the pores 20d are easily closed. Further, when the total content ratio exceeds 30% by mass, the adhesion of the water-repellent oil-repellent film to the non-woven fabric deteriorates. When the water- and oil-repellent film 21 is 100% by mass , the total content ratio of the first fluorine-based functional group component (A1) and the second fluorine-based functional group component (A2) is 5% by mass to 25% by mass. It is preferable to have.

撥水撥油性膜21に含まれる金属酸化物粒子(B)は、平均粒子径が2nm〜90nmの範囲にある。好ましくは2nm〜85nmの範囲にある。平均粒子径が2nm未満では、金属酸化物粒子の凝集が起こりやすくなり、媒体中に分散しにくくなる。90nmを超えると、金属酸化物粒子(B)が不織布の繊維表面に結着しにくく、撥水撥油性膜から脱落し易い。シリカゾルゲル(C)と金属酸化物粒子(B)の質量比(C:B)は、10:90〜90:10の範囲にある。即ち、シリカゾルゲル(C)と金属酸化物粒子(B)を合計した量を100質量%とするとき、シリカゾルゲル(C)が10質量%未満であって金属酸化物粒子(B)が90質量%を超える場合には、撥水撥油性膜中のバインダ成分が少なくなり過ぎて、撥水撥油性膜が不織布の繊維表面から剥離し易くなる。反対に金属酸化物粒子(B)が10質量%未満であってシリカゾルゲル(C)が90質量%を超える場合には、金属酸化物粒子が少な過ぎて、撥水撥油性膜が不織布の繊維表面から剥離し易くなる。好ましい質量比(C:B)は、20:80〜80:20である。なお、本明細書において、金属酸化物粒子の平均粒子径とは、透過型電子顕微鏡(TEM)で観察した粒子形状のうち、200点の粒子サイズを画像解析により測定したものの平均値をいう。 The metal oxide particles (B) contained in the water- and oil-repellent film 21 have an average particle diameter in the range of 2 nm to 90 nm. It is preferably in the range of 2 nm to 85 nm. If the average particle size is less than 2 nm, the metal oxide particles tend to agglomerate and are difficult to disperse in the medium. If it exceeds 90 nm, the metal oxide particles (B) are difficult to bind to the fiber surface of the non-woven fabric and easily fall off from the water-repellent oil-repellent film. The mass ratio (C: B) of the silica sol gel (C) to the metal oxide particles (B) is in the range of 10:90 to 90:10. That is, when the total amount of the silica sol gel (C) and the metal oxide particles (B) is 100% by mass, the silica sol gel (C) is less than 10% by mass and the metal oxide particles (B) are 90% by mass. If it exceeds%, the binder component in the water-repellent oil-repellent film becomes too small, and the water-repellent oil-repellent film is easily peeled off from the fiber surface of the non-woven fabric. On the contrary, when the metal oxide particles (B) are less than 10% by mass and the silica solgel (C) is more than 90% by mass, the amount of metal oxide particles is too small and the water- and oil-repellent film is a non-woven fabric fiber. It becomes easy to peel off from the surface. The preferred mass ratio (C: B) is 20:80-80:20. In the present specification, the average particle size of the metal oxide particles means the average value of the particle sizes of 200 points measured by image analysis among the particle shapes observed by a transmission electron microscope (TEM).

このようなエアフィルタ10の作用について説明する。図1に示すように、オイルミストと粉塵を含む空気が、エアフィルタ10を構成する不織布20の一面20aに到来する。ここでエアフィルタ10は所定の通気度を有するため、また撥水撥油性膜21が撥油性を示すため、オイルミストの油粒子22は気孔20dの孔径より粒径が大きい場合は勿論のこと、気孔20dの孔径より粒径が僅かに小さくても、エアフィルタ10を通過できず、不織布20の繊維20cと繊維20cの間に、撥水撥油性膜21によって弾かれながら、撥水撥油性膜21に付着して止まる。同時に粉塵の粒子23も撥水撥油性膜21に付着して止まる。撥水撥油性膜21中に金属酸化物粒子21aを含むため、膜が凹凸になり、油粒子22の膜への付着の程度は低い一方、粉塵の粒子23は付着し易くなる。これにより、オイルミストの油粒子22及び粉塵の粒子23が不織布に捕集され、オイルミストと粉塵を含んだ空気が、図1の拡大図に示す繊維20cと繊維20cの間に形成された気孔20dを通過して他面20bに至り、オイルミストと粉塵のない空気となって、不織布20を通過する。 The operation of such an air filter 10 will be described. As shown in FIG. 1, air containing oil mist and dust reaches one surface 20a of the non-woven fabric 20 constituting the air filter 10. Here, since the air filter 10 has a predetermined air permeability and the water- and oil-repellent film 21 exhibits oil repellency, it goes without saying that the oil particles 22 of the oil mist have a particle size larger than the pore diameter of the pores 20d. Even if the particle size is slightly smaller than the pore diameter of the pore 20d, it cannot pass through the air filter 10, and the water- and oil-repellent film is repelled by the water- and oil-repellent film 21 between the fibers 20c and the fibers 20c of the non-woven fabric 20. It adheres to 21 and stops. At the same time, the dust particles 23 also adhere to the water- and oil-repellent film 21 and stop. Since the metal oxide particles 21a are contained in the water- and oil-repellent film 21, the film becomes uneven, and the degree of adhesion of the oil particles 22 to the film is low, while the dust particles 23 are likely to adhere. As a result, the oil particles 22 of the oil mist and the dust particles 23 are collected on the non-woven fabric, and the air containing the oil mist and the dust is formed between the fibers 20c and the fibers 20c shown in the enlarged view of FIG. After passing through 20d, it reaches the other surface 20b, becomes air without oil mist and dust, and passes through the non-woven fabric 20.

エアフィルタを使用し続けてオイルミストの不織布内部における捕集量が増えると、エアフィルタが水平に配置される場合には、膜への付着の程度が低いオイルミストは液状化して通過する空気に随伴されてエアフィルタの他面に集まり、エアフィルタが鉛直に配置される場合には、捕集されたオイルミストが自重によりエアフィルタの下端に集まり、不織布の気孔を閉塞しない。これにより、オイルミストによる気孔の目詰まりは抑制される。粉塵は不織布の繊維表面の撥水撥油性膜に直接付着するか、或いは撥水撥油性膜に付着したオイルミストに付着する。不織布20に溜まったオイルミストと粉塵は、定期的にエアノッカー等でエアフィルタ10に衝撃を与えることにより、エアフィルタ10から除去することができる。 If the amount of oil mist collected inside the non-woven fabric increases as the air filter continues to be used, when the air filter is placed horizontally, the oil mist with a low degree of adhesion to the film will liquefy and pass through the air. When the air filter is concomitantly collected on the other surface of the air filter and the air filter is arranged vertically, the collected oil mist collects at the lower end of the air filter due to its own weight and does not block the pores of the non-woven fabric. As a result, clogging of the pores due to the oil mist is suppressed. The dust adheres directly to the water-repellent oil-repellent film on the fiber surface of the non-woven fabric, or adheres to the oil mist attached to the water-repellent oil-repellent film. The oil mist and dust accumulated in the non-woven fabric 20 can be removed from the air filter 10 by periodically giving an impact to the air filter 10 with an air knocker or the like.

〔エアフィルタの製造方法〕
エアフィルタは次の方法により、概略製造される。
図3に示すように、金属酸化物粒子11を溶媒12と混合して金属酸化物粒子分散液13を調製する。この分散液13に第1フッ素系官能基成分(A1)を含むフッ素系化合物14を混合し、更に水15と触媒16を混合してフッ素含有金属酸化物粒子の分散液17を調製する。一方、ケイ素アルコキシド51とアルコール52と第2フッ素系官能基成分(A2)を含むフッ素系化合物53と水54と、必要に応じてアルキレン基成分55を混合し、この混合液に触媒56を加えることにより、フッ素含有シリカゾルゲル(C)液57を調製する。
このシリカゾルゲル(C)液57に溶媒58を混合し、この混合液と上記フッ素含有金属酸化物粒子の分散液17とを混合することにより、撥水撥油性膜形成用液組成物60を調製する。この液組成物60を溶媒61により希釈して希釈液62を調製し、そこに不織布20をディッピングする。続いて不織布20を脱液し、乾燥することによりエアフィルタ10を製造する。
[Manufacturing method of air filter]
The air filter is roughly manufactured by the following method.
As shown in FIG. 3, the metal oxide particles 11 are mixed with the solvent 12 to prepare the metal oxide particle dispersion liquid 13. A fluorine-based compound 14 containing a first fluorine-based functional group component (A1) is mixed with the dispersion liquid 13, and water 15 and a catalyst 16 are further mixed to prepare a dispersion liquid 17 of fluorine-containing metal oxide particles. On the other hand, a fluorine-based compound 53 containing a silicon alkoxide 51, an alcohol 52, a second fluorine-based functional group component (A2), water 54, and an alkylene group component 55, if necessary, are mixed, and the catalyst 56 is added to the mixed solution. As a result, the fluorine-containing silica solgel (C) liquid 57 is prepared.
The solvent 58 is mixed with the silica solgel (C) liquid 57, and the mixed liquid and the dispersion liquid 17 of the fluorine-containing metal oxide particles are mixed to prepare a water- and oil-repellent film-forming liquid composition 60. do. This liquid composition 60 is diluted with a solvent 61 to prepare a diluted liquid 62, and the non-woven fabric 20 is dipped therein. Subsequently, the non-woven fabric 20 is deflated and dried to manufacture the air filter 10.

以下、エアフィルタの製造方法を詳述する。
〔不織布の準備〕
先ず、1.1ml/cm2/秒〜40ml/cm2/秒の通気度を有する不織布を準備する。具体的には、後述する撥水撥油性膜が不織布の繊維表面に形成されたエアフィルタになった状態で、1ml/cm2/秒〜30ml/cm2/秒の通気度を有する不織布を準備する。撥水撥油性膜が厚膜に形成される場合には、通気度の大きい不織布が選定され、撥水撥油性膜が薄膜に形成される場合には、通気度の小さい不織布が選定される。
Hereinafter, the method for manufacturing the air filter will be described in detail.
[Preparation of non-woven fabric]
First, a 1.1 ml / cm 2 / sec ~40ml / cm 2 / sec nonwoven having a air permeability of. Specifically, prepared in a state where the water and oil repellency film to be described later becomes an air filter formed on the fiber surface of the nonwoven fabric, 1 ml / cm 2 / sec -30 mL / cm 2 / sec nonwoven having a air permeability of the do. When the water-repellent oil-repellent film is formed on a thick film, a non-woven fabric having a high air permeability is selected, and when the water-repellent oil-repellent film is formed on a thin film, a non-woven fabric having a low air permeability is selected.

この不織布としては、例えば、セルロース混合エステル性のメンブレンフィルタ、ガラス繊維ろ紙、ポリエチレンテレフタレート繊維とガラス繊維を混用した不織布(安積濾紙社製、商品名:340)がある。このように不織布は、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属からなる群より選ばれた1種又は2種以上の繊維から作られる。繊維は、2以上の繊維を混合した繊維でもよい。繊維の太さ(繊維径)は、上記通気度が得られるように、0.01μm〜10μmの太さが好適である。不織布の厚さは、エアフィルタが単一層である場合には、0.2mm〜0.8mm、複数層の積層体である場合には、積層体の厚さが0.2mm〜1.6mmになる厚さが好ましい。本発明の撥水撥油性膜形成材料の主成分がシリカゾルゲルであるときには、繊維との密着性を得るために、繊維に水酸基をもつ材料が好ましい。その中でも、ガラス、アルミナ、セルロースナノ繊維等は、繊維径も細いものがあり、通気度を上記範囲内の低い値にすることができる。 As the nonwoven fabric, for example, cellulose mixed esters of the membrane filter, a glass fiber filter paper, non-woven fabric mix polyethylene terephthalate fiber and glass fiber (Azumi Filter Paper Co., Ltd., trade name: 340) have. As described above, the non-woven fabric is one or two selected from the group consisting of polyethylene terephthalate (PET), polypropylene (PP), polytetrafluoroethylene (PTFE), glass, alumina, carbon, cellulose, pulp, nylon and metal. Made from the above fibers. The fiber may be a fiber obtained by mixing two or more fibers. The fiber thickness (fiber diameter) is preferably 0.01 μm to 10 μm so that the above-mentioned air permeability can be obtained. The thickness of the non-woven fabric is 0.2 mm to 0.8 mm when the air filter is a single layer, and 0.2 mm to 1.6 mm when the air filter is a multi-layer laminate. The thickness is preferable. When the main component of the water- and oil-repellent film-forming material of the present invention is silica sol gel, a material having a hydroxyl group in the fiber is preferable in order to obtain adhesion to the fiber. Among them, glass, alumina, cellulose nanofibers and the like have a small fiber diameter, and the air permeability can be set to a low value within the above range.

前述したように不織布が図2に示すように複数の不織布30、40を積層した積層体である場合、オイルミストと粉塵を含む空気が流入する側の不織布30を構成する繊維をガラス繊維にすることにより、シリカゾルゲルを主成分として含む撥水撥油性膜が、より一層強固にガラス繊維に密着し、不織布の繊維から剥離しにくくなる。 As described above, when the non-woven fabric is a laminated body in which a plurality of non-woven fabrics 30 and 40 are laminated as shown in FIG. 2, the fibers constituting the non-woven fabric 30 on the side where air containing oil mist and dust flow in are made into glass fibers. As a result, the water- and oil-repellent film containing silica sol gel as a main component adheres to the glass fiber more firmly and is less likely to be peeled off from the non-woven fabric fiber.

〔撥水撥油性膜形成用液組成物の製造方法〕
〔金属酸化物粒子分散液の調製〕
先ず、有機溶媒中に、金属酸化物粒子を分散させて金属酸化物粒子の分散液を調製する。有機溶媒としては、メタノール、エタノール、イソプロパノール(以下、IPAということもある。)、テトラヒドロフラン、ヘキサン、クロロホルム、トルエン、酢酸エチル、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、アセトン、フッ素系溶剤などが例示される。これらの中でも、沸点が120℃未満の炭素数1〜4の範囲にあるメタノール、エタノール、イソプロパノールなどのアルコールが好ましい。金属酸化物粒子としては、SiO2、Al23、MgO、CaO、TiO2、ZnO、ZrO2の粒子、これらの混合粒子、複合酸化物粒子等が例示される。
[Manufacturing method of liquid composition for forming a water- and oil-repellent film]
[Preparation of metal oxide particle dispersion]
First, a dispersion liquid of the metal oxide particles is prepared by dispersing the metal oxide particles in an organic solvent. Examples of the organic solvent include methanol, ethanol, isopropanol (hereinafter, also referred to as IPA), tetrahydrofuran, hexane, chloroform, toluene, ethyl acetate, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetone, fluorine-based solvent and the like. Is exemplified. Among these, alcohols such as methanol, ethanol, and isopropanol having a boiling point in the range of 1 to 4 carbon atoms having a boiling point of less than 120 ° C. are preferable. Examples of the metal oxide particles include particles of SiO 2 , Al 2 O 3 , MgO, CaO, TiO 2 , ZnO, and ZrO 2 , mixed particles thereof, and composite oxide particles.

〔フッ素含有金属酸化物粒子分散液の調製〕
次に、調製された金属酸化物粒子の分散液中に、上述した式(1)又は式(2)で表される第1フッ素系官能基成分(A1)を含むフッ素系化合物を添加して、金属酸化物粒子とフッ素系官能基成分とがナノコンポジット化された複合材料を合成する。更に反応を促進するために、水及び触媒を添加する。これにより、フッ素含有金属酸化物粒子の分散液が調製される。
[Preparation of fluorine-containing metal oxide particle dispersion]
Next, a fluorine-based compound containing the first fluorine-based functional group component (A1) represented by the above-mentioned formula (1) or formula (2) is added to the prepared dispersion of metal oxide particles. , A composite material in which metal oxide particles and fluorine-based functional group components are nanocomposited is synthesized. Water and a catalyst are added to further accelerate the reaction. As a result, a dispersion liquid of fluorine-containing metal oxide particles is prepared.

上記触媒としては、有機酸、無機酸、アルカリ又はチタン化合物が挙げられ、有機酸としてはギ酸、シュウ酸が例示され、無機酸としては塩酸、硝酸、リン酸が例示され、アルカリとしては、水酸化ナトリウム、水酸化リチウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム、アンモニアが例示され、チタン化合物としてはテトラプロポキシチタン、テトラブトキシチタン、テトライソプロポキシチタン、乳酸チタン等が例示される。触媒は上記のものに限定されない。上記水としては、不純物の混入防止のため、イオン交換水や純水等を使用するのが望ましい Examples of the catalyst include organic acids, inorganic acids, alkalis and titanium compounds, examples of organic acids include formic acid and oxalic acid, examples of inorganic acids include hydrochloric acid, nitrate and phosphoric acid, and examples of alkali include water. Examples thereof include sodium oxide, lithium hydroxide, magnesium hydroxide, potassium hydroxide, calcium hydroxide, and ammonia, and examples of the titanium compound include tetrapropoxytitanium, tetrabutoxytitanium, tetraisopropoxytitanium, and titanium lactate. The catalyst is not limited to the above. As the water, it is desirable to use ion-exchanged water, pure water, etc. to prevent impurities from being mixed in.

第1フッ素系官能基成分(A1)を含むフッ素系化合物は、下記一般式(3)又は式(4)で示される。これらの式(3)又は式(4)中のペルフルオロエーテル基としては、より具体的には、下記式(5)〜(13)で示されるペルフルオロエーテル構造を挙げることができる。 The fluorine-based compound containing the first fluorine-based functional group component (A1) is represented by the following general formula (3) or formula (4). More specifically, examples of the perfluoroether group in the formula (3) or the formula (4) include perfluoroether structures represented by the following formulas (5) to (13).

Figure 0006923724
Figure 0006923724

Figure 0006923724
Figure 0006923724

Figure 0006923724
Figure 0006923724

また、上記式(3)及び式(4)中のXとしては、下記式(14)〜(18)で示される構造を挙げることができる。なお、下記式(14)はエーテル結合、下記式(15)はエステル結合、下記式(16)はアミド結合、下記式(17)はウレタン結合、下記式(18)はスルホンアミド結合を含む例を示している。 Further, examples of X in the above formulas (3) and (4) include structures represented by the following formulas (14) to (18). The following formula (14) is an ether bond, the following formula (15) is an ester bond, the following formula (16) is an amide bond, the following formula (17) is a urethane bond, and the following formula (18) is an example containing a sulfone amide bond. Is shown.

Figure 0006923724
Figure 0006923724

ここで、上記式(14)〜(18)中、R2及びR3は炭素数が0から10の炭化水素基、R4は水素原子又は炭素数1から6の炭化水素基である。R3の炭化水素基の例とは、メチレン基、エチレン基等のアルキレン基が挙げられ、R4の炭化水素基の例とは、メチル基、エチル基等のアルキル基の他、フェニル基等も挙げられる。 Here, in the above formulas (14) to (18), R 2 and R 3 are hydrocarbon groups having 0 to 10 carbon atoms, and R 4 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. Examples of the hydrocarbon group of R 3 include an alkylene group such as a methylene group and an ethylene group, and examples of the hydrocarbon group of R 4 include an alkyl group such as a methyl group and an ethyl group, as well as a phenyl group and the like. Can also be mentioned.

また、上記式(3)及び式(4)中、R1は、メチル基、エチル基等が挙げられる。 Further, in the above formulas (3) and (4), R 1 includes a methyl group, an ethyl group and the like.

また、上記式(3)及び式(4)中、Zは、加水分解されてSi−O−Si結合を形成可能な加水分解性基であれば特に限定されるものではない。このような加水分解性基としては、具体的には、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基、フェノキシ基、ナフトキシ基などのアリールオキシ基、ベンジルオキシ基、フェネチルオキシ基などのアラルキルオキシ基、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基などのアシルオキシ基等が挙げられる。これらの中でも、エトキシ基を適用することが好ましい。 Further, in the above formulas (3) and (4), Z is not particularly limited as long as it is a hydrolyzable group capable of forming a Si—O—Si bond by hydrolysis. Specific examples of such a hydrolyzable group include an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group and a butoxy group, an aryloxy group such as a phenoxy group and a naphthoxy group, a benzyloxy group and a phenethyloxy group. Examples thereof include an aralkyloxy group such as a group, an acetoxy group, a propionyloxy group, a butyryloxy group, a valeryloxy group, a pivaloyloxy group, an acyloxy group such as a benzoyloxy group and the like. Among these, it is preferable to apply an ethoxy group.

ここで、上記式(3)又は式(4)で表されるペルフルオロエーテル構造を有するフッ素系官能基成分を含むフッ素系化合物の具体例としては、例えば、下記式(19)〜(27)で表される構造が挙げられる。なお、下記式(19)〜(27)中、Rはメチル基又はエチル基である。 Here, specific examples of the fluorine-based compound containing a fluorine-based functional group component having a perfluoroether structure represented by the above formula (3) or the formula (4) are, for example, the following formulas (19) to (27). Examples include the structures represented. In the following formulas (19) to (27), R is a methyl group or an ethyl group.

Figure 0006923724
Figure 0006923724

Figure 0006923724
Figure 0006923724

〔フッ素含有シリカゾルゲル液の調製〕
先ず、ケイ素アルコキシドとしてのテトラメトキシシラン又はテトラエトキシシランと、沸点が120℃未満の炭素数1〜4の範囲にあるアルコールと、上述した式(1)又は式(2)で表される第2フッ素系官能基成分(A2)を含むフッ素系化合物と、水とを混合して混合液を調製する。このときアルキレン基成分となるエポキシ基含有シランを一緒に混合してもよい。このケイ素アルコキシドとしては、具体的には、テトラメトキシシラン(TMOS)、そのオリゴマー又はテトラエトキシシラン(TEOS)、そのオリゴマーが挙げられる。例えば、耐久性の高い撥水撥油性膜を得る目的には、テトラメトキシシランを用いることが好ましく、一方、加水分解時に発生するメタノールを避ける場合は、テトラエトキシシランを用いることが好ましい。
[Preparation of fluorine-containing silica sol gel solution]
First, tetramethoxysilane or tetraethoxysilane as a silicon alkoxide, an alcohol having a boiling point in the range of 1 to 4 carbon atoms having a boiling point of less than 120 ° C., and a second represented by the above formula (1) or formula (2). A fluorinated compound containing a fluorinated functional group component (A2) and water are mixed to prepare a mixed solution. At this time, an epoxy group-containing silane as an alkylene group component may be mixed together. Specific examples of the silicon alkoxide include tetramethoxysilane (TMS), an oligomer thereof or tetraethoxysilane (TEOS), and an oligomer thereof. For example, it is preferable to use tetramethoxysilane for the purpose of obtaining a highly durable water- and oil-repellent film, while it is preferable to use tetraethoxysilane when avoiding methanol generated during hydrolysis.

フッ素系化合物に含まれる第2フッ素系官能基成分(A2)は、上述した式(1)又は式(2)表され、第1フッ素系官能基成分(A1)を含む具体的なフッ素系化合物と第2フッ素系官能基成分(A2)を含む具体的なフッ素系化合物とは、同一であっても、異なってもよい。 The second fluorine-based functional group component (A2) contained in the fluorine-based compound is represented by the above-mentioned formula (1) or formula (2), and is a specific fluorine-based compound containing the first fluorine-based functional group component (A1). And the specific fluorine-based compound containing the second fluorine-based functional group component (A2) may be the same or different.

上記アルキレン基成分となるエポキシ基含有シランとしては、具体的には、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン又は多官能エポキシシランが挙げられる。アルキレン基成分はケイ素アルコキシドとアルキレン基成分の合計質量に対して1質量%〜40質量%、好ましくは2.5質量%〜20質量%含まれる。アルキレン基成分が下限値の1質量%未満では、水酸基を含まない不織布に膜を形成した場合に、不織布への密着性が不十分になる。また上限値の40質量%を超えると、形成した膜の耐久性が低くなる。アルキレン基成分を上記1質量%〜40質量%の範囲になるようにエポキシ基含有シランを含むと、エポキシ基も加水分解重合過程において開環して重合に寄与し、これにより乾燥過程にレベリング性が改善し膜厚さが均一になる。なお、基材がガラス等の親水基を含む場合には、アルキレン基成分の含有量は極少量であるか、若しくはゼロでもよい。一方、基材が親水基を含まない場合には、このアルキレン基成分をシリカゾルゲル(C)を100質量%とするとき、0.5質量%〜20質量%含むことが好ましい。 Specific examples of the epoxy group-containing silane as the alkylene group component include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyl. Examples thereof include diethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane and polyfunctional epoxysilane. The alkylene group component is contained in an amount of 1% by mass to 40% by mass, preferably 2.5% by mass to 20% by mass, based on the total mass of the silicon alkoxide and the alkylene group component. If the alkylene group component is less than 1% by mass of the lower limit value, the adhesion to the non-woven fabric becomes insufficient when the film is formed on the non-woven fabric containing no hydroxyl group. On the other hand, if it exceeds the upper limit of 40% by mass, the durability of the formed film becomes low. When the epoxy group-containing silane is contained so that the alkylene group component is in the range of 1% by mass to 40% by mass, the epoxy group also opens the ring in the hydrolysis polymerization process and contributes to the polymerization, which makes it levelable in the drying process. Is improved and the film thickness becomes uniform. When the base material contains a hydrophilic group such as glass, the content of the alkylene group component may be extremely small or zero. On the other hand, when the base material does not contain a hydrophilic group, the alkylene group component is preferably contained in an amount of 0.5% by mass to 20% by mass when the silica sol gel (C) is 100% by mass.

沸点が120℃未満の炭素数1〜4の範囲にあるアルコールは、上述したアルコールが挙げられる。特にメタノール又はエタノールが好ましい。これらのアルコールは、ケイ素アルコキドとの混合がしやすいためである。上記水としては、不純物の混入防止のため、イオン交換水や純水等を使用するのが望ましい。ケイ素アルコキシドに、或いはケイ素アルコキシドとエポキシ基含有シランに、炭素数1〜4の範囲にあるアルコールと水を添加して、好ましくは10℃〜30℃の温度で5分〜20分間撹拌することにより混合液を調製する。 Examples of alcohols having a boiling point in the range of 1 to 4 carbon atoms having a boiling point of less than 120 ° C. include the above-mentioned alcohols. Methanol or ethanol is particularly preferable. This is because these alcohols are easily mixed with silicon alcohol. As the water, it is desirable to use ion-exchanged water, pure water, or the like in order to prevent impurities from being mixed. Alcohol and water in the range of 1 to 4 carbon atoms are added to the silicon alkoxide or the silicon alkoxide and the epoxy group-containing silane, and the mixture is preferably stirred at a temperature of 10 ° C to 30 ° C for 5 to 20 minutes. Prepare a mixture.

上記調製された混合液に触媒を添加混合する。この触媒としては、有機酸、無機酸又はチタン化合物が例示される。このとき液温を好ましくは30℃〜80℃の温度に保持して、好ましくは1時間〜24時間撹拌する。これにより、フッ素含有シリカゾルゲル液が調製される。なお、次の工程のために、フッ素含有シリカゾルゲル液にアルコールを添加混合してもよい。 A catalyst is added to the prepared mixture and mixed. Examples of this catalyst include organic acids, inorganic acids and titanium compounds. At this time, the liquid temperature is preferably maintained at a temperature of 30 ° C. to 80 ° C., and the mixture is preferably stirred for 1 hour to 24 hours. As a result, a fluorine-containing silica sol gel solution is prepared. Alcohol may be added and mixed with the fluorine-containing silica sol gel solution for the next step.

上記アルコールを添加混合した場合には、フッ素含有シリカゾルゲル液は、ケイ素アルコキシドを2質量%〜50質量%、炭素数1〜4の範囲にあるアルコールを20質量%〜98質量%、水を0.1質量%〜40質量%、触媒として0.01質量%〜5質量%の割合で含有することが好ましい。アルキレン基成分となるエポキシ基含有シランを混合した場合には、エポキシ基含有シランを最大30質量%まで含有することが好ましい。 When the above alcohol is added and mixed, the fluorine-containing silica solgel solution contains 2% by mass to 50% by mass of silicon alkoxide, 20% by mass to 98% by mass of alcohol in the range of 1 to 4 carbon atoms, and 0% by mass of water. It is preferably contained in a proportion of 1% by mass to 40% by mass and 0.01% by mass to 5% by mass as a catalyst. When an epoxy group-containing silane as an alkylene group component is mixed, it is preferable that the epoxy group-containing silane is contained in a maximum of 30% by mass.

炭素数1〜4の範囲にあるアルコールの割合を上記範囲に限定したのは、アルコールの割合が下限値未満では、ケイ素アルコキシドが、溶液中に溶解せず分離してしまうこと、ケイ素アルコキシドの加水分解反応中に反応液がゲル化しやすく、一方、上限値を超えると、加水分解に必要な水、触媒量が相対的に少なくなるために、加水分解の反応性が低下して、重合が進まず、膜の密着性が低下するためである。水の割合を上記範囲に限定したのは、下限値未満では加水分解速度が遅くなるために、重合が進まず、撥水撥油性膜の密着性が不十分になり、一方、上限値を超えると加水分解反応中に反応液がゲル化し、水が多過ぎるためケイ素アルコキシド化合物がアルコール水溶液に溶解せず、分離する不具合を生じるからである。 The reason why the proportion of alcohol in the range of 1 to 4 carbon atoms is limited to the above range is that if the proportion of alcohol is less than the lower limit, the silicon alkoxide does not dissolve in the solution and separates. The reaction solution tends to gel during the decomposition reaction, while when the upper limit is exceeded, the amount of water and catalyst required for hydrolysis is relatively small, so that the reactivity of hydrolysis decreases and polymerization proceeds. First, the adhesion of the film is reduced. The reason why the ratio of water is limited to the above range is that if the value is less than the lower limit, the hydrolysis rate becomes slower, so that the polymerization does not proceed and the adhesion of the water-repellent oil-repellent film becomes insufficient, while exceeding the upper limit. This is because the reaction solution gels during the hydrolysis reaction, and the amount of water is too large, so that the silicon alkoxide compound does not dissolve in the alcohol aqueous solution, causing a problem of separation.

シリカゾルゲルを100質量%とするときのSiO2濃度(SiO2分)は1質量%〜40質量%であるものが好ましい。このSiO2濃度が下限値未満では、重合が不十分であり、膜の密着性の低下やクラックの発生が起こり易く、上限値を超えると、相対的に水の割合が高くなりケイ素アルコキシドが溶解せず、反応液がゲル化する不具合を生じる。 When the silica sol gel is 100% by mass, the SiO 2 concentration (SiO 2 minutes) is preferably 1% by mass to 40% by mass. If the SiO 2 concentration is less than the lower limit, the polymerization is insufficient, and the adhesion of the film is likely to decrease and cracks are likely to occur. If the concentration exceeds the upper limit, the proportion of water becomes relatively high and the silicon alkoxide is dissolved. Instead, the reaction solution gels.

有機酸、無機酸又はチタン化合物は加水分解反応を促進させるための触媒として機能する。有機酸としてはギ酸、シュウ酸が例示され、無機酸としては塩酸、硝酸、リン酸が例示され、チタン化合物としてはテトラプロポキシチタン、テトラブトキシチタン、テトライソプロポキシチタン、乳酸チタン等が例示される。触媒は上記のものに限定されない。上記触媒の割合を上記範囲に限定したのは、下限値未満では反応性に乏しく重合が不十分になるため、膜が形成されず、一方、上限値を超えても反応性に影響はないが、残留する酸により、膜の形成された不織布が腐食等を生じ易い。 The organic acid, inorganic acid or titanium compound functions as a catalyst for promoting the hydrolysis reaction. Examples of organic acids include formic acid and oxalic acid, examples of inorganic acids include hydrochloric acid, nitric acid, and phosphoric acid, and examples of titanium compounds include tetrapropoxytitanium, tetrabutoxytitanium, tetraisopropoxytitanium, and titanium lactate. .. The catalyst is not limited to the above. The reason why the ratio of the catalyst is limited to the above range is that if the value is less than the lower limit, the reactivity is poor and the polymerization is insufficient, so that a film is not formed. On the other hand, if the value exceeds the upper limit, the reactivity is not affected. Due to the residual acid, the non-woven fabric on which the film is formed is likely to be corroded.

〔撥水撥油性膜形成用液組成物〕
本実施の形態の撥水撥油性膜形成用液組成物は、上記製造方法で製造され、前述した第1フッ素系官能基成分(A1)が結合した金属酸化物粒子(B)と、前述した第2フッ素系官能基成分(A2)を含有するシリカゾルゲル(C)と、溶媒(D)(図1の符号58で示される。)とを含む。溶媒(D)は、水、メタノール、エタノール、イソプロパノール(以下、IPAということもある。)、テトラヒドロフラン、ヘキサン、クロロホルム、トルエン、酢酸エチル、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、アセトン、フッ素系溶剤などが例示される。これらのフッ素系官能基成分(A1)及び(A2)は、上記の一般式(1)又は式(2)で示されるペルフルオロエーテル構造を有し、溶媒(D)を除く全成分量を100質量%としたとき、液組成物中、合計して、1質量%〜30質量%含まれる。フッ素系官能基成分の合計した含有割合(A1+A2)が1質量%未満では形成した膜に撥油性を付与できず、30質量%を超えると膜の弾き等が発生し成膜性に劣る。好ましいフッ素系官能基成分の合計した含有割合(A1+A2)は2質量%〜28質量%である。
[Liquid composition for forming a water- and oil-repellent film]
The liquid composition for forming a water- and oil-repellent film of the present embodiment is produced by the above-mentioned production method, and the above-mentioned metal oxide particles (B) to which the first fluorine-based functional group component (A1) is bonded and the above-mentioned above-mentioned. It contains a silica solgel (C) containing a second fluorine-based functional group component (A2) and a solvent (D) (indicated by reference numeral 58 in FIG. 1). The solvent (D) is water, methanol, ethanol, isopropanol (hereinafter, also referred to as IPA), tetrahydrofuran, hexane, chloroform, toluene, ethyl acetate, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetone, fluorine. Examples include system solvents. These fluorine-based functional group components (A1) and (A2) have a perfluoroether structure represented by the above general formula (1) or formula (2), and the total amount of the components excluding the solvent (D) is 100% by mass. When it is%, it is contained in the liquid composition in a total amount of 1% by mass to 30% by mass. If the total content ratio (A1 + A2) of the fluorine-based functional group components is less than 1% by mass, oil repellency cannot be imparted to the formed film, and if it exceeds 30% by mass, the film is repelled and the film forming property is inferior. The total content ratio (A1 + A2) of the preferable fluorine-based functional group components is 2% by mass to 28% by mass.

また第1フッ素官能基成分(A1)は、第2フッ素官能基成分(A2)と同じ質量割合であるか、又は第2フッ素官能基成分(A2)より多く含有することが不織布の繊維表面への撥水撥油性膜の密着性が高くなるため、好ましい。 Further, the fiber surface of the non-woven fabric may contain the same mass ratio of the first fluorine functional group component (A1) as the second fluorine functional group component (A2) or more than the second fluorine functional group component (A2). This is preferable because the adhesion of the water-repellent and oil-repellent film is increased.

上述したように、本実施の形態の撥水撥油性膜形成用液組成物に含まれるフッ素系化合物は、分子内に酸素原子に炭素数が6以下の短鎖長のペルフルオロアルキル基とペルフルオロアルキレン基が複数結合したペルフルオロエーテル基を有しており、分子内のフッ素含有率が高いため、形成した膜に優れた撥水撥油性を付与することができる。ペルフルオロエーテル構造の具体例としては、上述した式(19)〜(27)で示される構造を挙げることができる。 As described above, the fluorine-based compound contained in the water- and oil-repellent film-forming liquid composition of the present embodiment has a short-chain long perfluoroalkyl group having 6 or less carbon atoms in the molecule and a perfluoroalkylene. Since it has a perfluoroether group in which a plurality of groups are bonded and has a high fluorine content in the molecule, it is possible to impart excellent water and oil repellency to the formed film. Specific examples of the perfluoroether structure include the structures represented by the above-mentioned formulas (19) to (27).

更に本実施の形態の撥水撥油性膜形成用液組成物は、シリカゾルゲル(C)と金属酸化物粒子(B)の質量比(C:B)が、10:90〜90:10の範囲にあることが必要である。即ち、シリカゾルゲル(C)と金属酸化物粒子(B)を合計した量を100質量%とするとき、シリカゾルゲル(C)が10質量%未満であって金属酸化物粒子(B)が90質量%を超える場合には、液組成物中のバインダ成分が少なくなり過ぎて、形成した膜が不織布の繊維表面から剥離し易くなる。反対に金属酸化物粒子(B)が10質量%未満であってシリカゾルゲル(C)が90質量%を超える場合には、金属酸化物粒子が少な過ぎて、膜が不織布の繊維表面から剥離し易くなる。好ましい質量比(C:B)は、20:80〜80:20である。 Further, in the liquid composition for forming a water- and oil-repellent film of the present embodiment, the mass ratio (C: B) of the silica sol gel (C) and the metal oxide particles (B) is in the range of 10:90 to 90:10. Must be in. That is, when the total amount of the silica sol gel (C) and the metal oxide particles (B) is 100% by mass, the silica sol gel (C) is less than 10% by mass and the metal oxide particles (B) are 90% by mass. If it exceeds%, the binder component in the liquid composition becomes too small, and the formed film is easily peeled off from the fiber surface of the non-woven fabric. On the contrary, when the metal oxide particles (B) are less than 10% by mass and the silica solgel (C) is more than 90% by mass, the amount of metal oxide particles is too small and the film is peeled from the fiber surface of the non-woven fabric. It will be easier. The preferred mass ratio (C: B) is 20:80-80:20.

本実施の形態の撥水撥油性膜形成用液組成物がフッ素含有金属酸化物粒子の分散液と、フッ素含有シリカゾルゲル液を含むため、不織布の繊維表面に成膜したときに、従来の液組成物と比較して、より一層優れた撥油性能を付与するとともに、撥水撥油性膜の不織布の繊維表面への密着性に優れ、剥離しにくい高い強度の撥水撥油性膜が得られる。 Since the liquid composition for forming a water- and oil-repellent film of the present embodiment contains a dispersion liquid of fluorine-containing metal oxide particles and a fluorine-containing silica solgel liquid, a conventional liquid is formed when a film is formed on the fiber surface of the non-woven fabric. A high-strength water- and oil-repellent film that is hard to peel off can be obtained by imparting even more excellent oil-repellent performance as compared with the composition and having excellent adhesion of the water- and oil-repellent film to the fiber surface of the non-woven fabric. ..

〔不織布の繊維表面への撥水撥油性膜の形成方法〕
本実施形態の不織布の繊維表面に撥水撥油性膜を形成するには、撥水撥油性膜形成用液組成物を、水と沸点が120℃未満の炭素数1〜4の範囲にあるアルコールとを混合した溶媒で希釈した液を調製する。この溶媒における水とアルコールとの混合割合(水:アルコール)は質量比で1:0〜5である。また液組成物に対する溶媒の質量比(液組成物:溶媒)は1:0.1〜10の割合である。このように調製した希釈液に不織布をディッピングして希釈液から引上げ、大気中、室温で不織布を水平な金網等の上に拡げて一定の液分量になるまで脱液する。別法として、引き上げた不織布を振り払って余分な液を除去するか、或いは引き上げた不織布をマングルロール(絞り機)に通して脱液する。脱液した不織布は、大気中、25℃〜140℃の温度で0.5時間〜24時間乾燥する。これにより、図1中央の拡大図に示すように、不織布20を構成している繊維20cの表面に撥水撥油性膜21が形成される。脱液量が少ない場合には、撥水撥油性膜は厚膜に不織布の繊維表面に形成され、脱液量が多い場合には、撥水撥油性膜は薄膜に不織布の繊維表面に形成される。
[Method of forming a water- and oil-repellent film on the fiber surface of non-woven fabric]
In order to form a water-repellent oil-repellent film on the fiber surface of the non-woven fabric of the present embodiment, the liquid composition for forming the water-repellent oil-repellent film is mixed with water and an alcohol having a boiling point of less than 120 ° C. and having 1 to 4 carbon atoms. Prepare a solution diluted with a solvent mixed with. The mixing ratio of water and alcohol (water: alcohol) in this solvent is 1: 0 to 5 by mass ratio. The mass ratio of the solvent to the liquid composition (liquid composition: solvent) is 1: 0.1 to 10. The non-woven fabric is dipped in the diluted solution prepared in this manner, pulled up from the diluted solution, and the non-woven fabric is spread on a horizontal wire mesh or the like at room temperature in the air and deliquesed until a certain amount of liquid is reached. Alternatively, the non-woven fabric that has been pulled up is shaken off to remove excess liquid, or the non-woven fabric that has been pulled up is passed through a mangle roll (squeezer) to remove the liquid. The deflated non-woven fabric is dried in the air at a temperature of 25 ° C. to 140 ° C. for 0.5 hours to 24 hours. As a result, as shown in the enlarged view in the center of FIG. 1, a water- and oil-repellent film 21 is formed on the surface of the fibers 20c constituting the non-woven fabric 20. When the amount of liquid removed is small, the water-repellent oil-repellent film is formed on the fiber surface of the non-woven fabric on the thick film, and when the amount of liquid removed is large, the water-repellent oil-repellent film is formed on the fiber surface of the non-woven fabric on the thin film. NS.

次に本発明の実施例を比較例とともに詳しく説明する。先ず、金属酸化物粒子の分散液を調製するための合成例1〜9及び比較合成例1〜2を説明し、次いでフッ素含有シリカゾルゲル液を調製するための合成例10〜13及び比較合成例3を説明し、次にこれらの合成例及び比較合成例を用いた撥水撥油性膜形成用液組成物の製造に関する実施例1〜9及び比較例1〜9を説明する。 Next, examples of the present invention will be described in detail together with comparative examples. First, Synthesis Examples 1 to 9 and Comparative Synthesis Examples 1 to 2 for preparing a dispersion liquid of metal oxide particles will be described, and then Synthesis Examples 10 to 13 and Comparative Synthesis Examples for preparing a fluorine-containing silica solgel solution will be described. No. 3 will be described, and then Examples 1 to 9 and Comparative Examples 1 to 9 relating to the production of a water- and oil-repellent film-forming liquid composition using these synthetic examples and comparative synthetic examples will be described.

〔金属酸化物粒子分散液を調製するための合成例1〜9、比較合成例1〜2〕
<合成例1>
平均粒子径が12nmの二酸化ケイ素のIPA分散液(IPA−ST、日産化学社製、SiO2濃度30%)が50.0g入ったビーカーに、上述した式(19)で表されるフッ素系化合物を1.50g添加し混合した。次に、水を0.10g添加し混合した。更に、硝酸を0.005g添加し、40℃で2時間混合し、フッ素系化合物が二酸化ケイ素粒子に結合した二酸化ケイ素(シリカ)粒子の分散液を得た。
[Synthetic Examples 1 to 9 for Preparing Metal Oxide Particle Dispersion Liquid, Comparative Synthesis Examples 1 to 2]
<Synthesis example 1>
A fluorine-based compound represented by the above formula (19) in a beaker containing 50.0 g of an IPA dispersion of silicon dioxide (IPA-ST, manufactured by Nissan Chemical Industries, Ltd., SiO 2 concentration 30%) having an average particle size of 12 nm. 1.50 g was added and mixed. Next, 0.10 g of water was added and mixed. Further, 0.005 g of nitric acid was added and mixed at 40 ° C. for 2 hours to obtain a dispersion liquid of silicon dioxide (silica) particles in which a fluorine-based compound was bonded to silicon dioxide particles.

<合成例2>
平均粒子径が45nmの二酸化ケイ素のIPA分散液(IPA−ST−L、日産化学社製、SiO2濃度30%)が50.0g入ったビーカーに、上述した式(20)で表されるフッ素系化合物を1.50g添加し混合した。次に、水を0.10g添加し混合した。更に、硝酸を0.005g添加し、以下、合成例1と同様にして二酸化ケイ素(シリカ)粒子の分散液を得た。
<Synthesis example 2>
Fluorine represented by the above formula (20) in a beaker containing 50.0 g of an IPA dispersion of silicon dioxide (IPA-ST-L, manufactured by Nissan Chemical Industries, Ltd., SiO 2 concentration 30%) having an average particle size of 45 nm. 1.50 g of the system compound was added and mixed. Next, 0.10 g of water was added and mixed. Further, 0.005 g of nitric acid was added to obtain a dispersion liquid of silicon dioxide (silica) particles in the same manner as in Synthesis Example 1.

<合成例3>
平均粒子径が80nmの二酸化ケイ素のIPA分散液(IPA−ST−ZL、日産化学社製、SiO2濃度30%)が50.0g入ったビーカーに、上述した式(21)で表されるフッ素系化合物を1.50g添加し混合した。次に、水を0.10g添加し混合した。更に、硝酸を0.005g添加し、以下、合成例1と同様にして二酸化ケイ素(シリカ)粒子の分散液を得た。
<Synthesis example 3>
Fluorine represented by the above formula (21) is contained in a beaker containing 50.0 g of an IPA dispersion of silicon dioxide (IPA-ST-ZL, manufactured by Nissan Chemical Industries, Ltd., SiO 2 concentration 30%) having an average particle size of 80 nm. 1.50 g of the system compound was added and mixed. Next, 0.10 g of water was added and mixed. Further, 0.005 g of nitric acid was added to obtain a dispersion liquid of silicon dioxide (silica) particles in the same manner as in Synthesis Example 1.

<合成例4>
合成例3と同じ二酸化ケイ素のIPA分散液が50.0g入ったビーカーに、上述した式(22)で表されるフッ素系化合物を0.75g添加し混合した。次に、水を0.05g添加し混合した。更に、硝酸を0.005g添加し、以下、合成例1と同様にして二酸化ケイ素(シリカ)粒子の分散液を得た。
<Synthesis example 4>
0.75 g of the fluorine-based compound represented by the above formula (22) was added to a beaker containing 50.0 g of the same IPA dispersion of silicon dioxide as in Synthesis Example 3 and mixed. Next, 0.05 g of water was added and mixed. Further, 0.005 g of nitric acid was added to obtain a dispersion liquid of silicon dioxide (silica) particles in the same manner as in Synthesis Example 1.

<合成例5>
合成例3と同じ二酸化ケイ素のIPA分散液が50.0g入ったビーカーに、上述した式(23)で表されるフッ素系化合物を2.25g添加し混合した。次に、水を0.15g添加し混合した。更に、硝酸を0.005g添加し、以下、合成例1と同様にして二酸化ケイ素(シリカ)粒子の分散液を得た。
<Synthesis example 5>
To a beaker containing 50.0 g of the same IPA dispersion of silicon dioxide as in Synthesis Example 3, 2.25 g of the fluorine-based compound represented by the above formula (23) was added and mixed. Next, 0.15 g of water was added and mixed. Further, 0.005 g of nitric acid was added to obtain a dispersion liquid of silicon dioxide (silica) particles in the same manner as in Synthesis Example 1.

<合成例6>
平均粒子径が3nmの二酸化ジルコニウムのメタノール分散液(SZR−M、堺化学社製、ZrO2濃度30%)が50.0g入ったビーカーに、上述した式(27)で表されるフッ素系化合物を8.00g添加し混合した。次に、水を4.05g添加し混合した。更に、硝酸0.035g添加し、以下、合成例1と同様にして二酸化ジルコニウム粒子の分散液を得た。
<Synthesis example 6>
A fluorine-based compound represented by the above formula (27) in a beaker containing 50.0 g of a methanol dispersion of zirconium dioxide having an average particle size of 3 nm (SZR-M, manufactured by Sakai Chemical Co., Ltd., ZrO 2 concentration 30%). Was added in an amount of 8.00 g and mixed. Next, 4.05 g of water was added and mixed. Further, 0.035 g of nitric acid was added to obtain a dispersion of zirconium dioxide particles in the same manner as in Synthesis Example 1.

<合成例7>
平均粒子径が6nmの二酸化チタンのIPA分散液(TKD−701、テイカ社製、TiO2濃度18%)が50.0g入ったビーカーに、上述した式(27)で表されるフッ素系化合物を2.70g添加し混合した。次に、水を0.97g添加し混合した。更に、硝酸0.010g添加し、以下、合成例1と同様にして二酸化チタン粒子の分散液を得た。
<Synthesis example 7>
A fluorine-based compound represented by the above formula (27) is placed in a beaker containing 50.0 g of an IPA dispersion of titanium dioxide having an average particle size of 6 nm (TKD-701, manufactured by TAYCA Corporation, TiO 2 concentration: 18%). 2.70 g was added and mixed. Next, 0.97 g of water was added and mixed. Further, 0.010 g of nitric acid was added to obtain a dispersion of titanium dioxide particles in the same manner as in Synthesis Example 1.

<合成例8>
平均粒子径が60nmのアルミナと二酸化ケイ素のIPA分散液(バイラールAS−L10、多木化学社製、3Al23・2SiO2濃度10%)が50.0g入ったビーカーに、上述した式(27)で表されるフッ素系化合物を0.03g添加し混合した。次に、水0.02g添加混合した。更に、硝酸0.005g添加し、以下、合成例1と同様にしてアルミナと二酸化ケイ素の粒子の分散液を得た。
<Synthesis Example 8>
Mean IPA dispersion of particle size 60nm alumina and silicon dioxide (Bairaru AS-L10, Taki Chemical Co., 3Al 2 O 3 · 2SiO 2 concentration of 10%) in the beaker containing 50.0 g, the above Expression ( 0.03 g of the fluorine-based compound represented by 27) was added and mixed. Then, water was mixed 0.02 g added pressure. Further, 0.005 g of nitric acid was added to obtain a dispersion of alumina and silicon dioxide particles in the same manner as in Synthesis Example 1.

<合成例9>
平均粒子径が25nmの酸化亜鉛のIPA分散液(MZ−500、テイカ社製、ZnO濃度30%)が50.0g入ったビーカーに、上述した式(27)で表されるフッ素系化合物を0.30g添加し混合した。次に、水を0.11g添加し混合した。更に、硝酸を0.005g添加し、以下、合成例1と同様にして酸化亜鉛粒子の分散液を得た。
<Synthesis example 9>
In a beaker containing 50.0 g of an IPA dispersion of zinc oxide having an average particle size of 25 nm (MZ-500, manufactured by Teika, ZnO concentration: 30%), the fluorine-based compound represented by the above formula (27) is 0. .30 g was added and mixed. Next, 0.11 g of water was added and mixed. Further, 0.005 g of nitric acid was added, and thereafter, a dispersion liquid of zinc oxide particles was obtained in the same manner as in Synthesis Example 1.

<比較合成例1>
平均粒子径が230nmの二酸化チタンのIPA分散液(R32、堺化学社製、TiO2濃度30%)が50.0g入ったビーカーに、上述した式(27)で表されるフッ素系化合物を0.75g添加し混合した。次に、水を0.27g添加し混合した。更に、硝酸を0.005g添加し、以下、合成例1と同様にして二酸化チタン粒子の分散液を得た。
<Comparative synthesis example 1>
In a beaker containing 50.0 g of an IPA dispersion of titanium dioxide having an average particle size of 230 nm (R32, manufactured by Sakai Chemical Co., Ltd., TiO 2 concentration: 30%), the fluorine-based compound represented by the above formula (27) is 0. .75 g was added and mixed. Next, 0.27 g of water was added and mixed. Further, 0.005 g of nitric acid was added to obtain a dispersion of titanium dioxide particles in the same manner as in Synthesis Example 1.

<比較合成例2>
合成例1と同じIPA分散液が50.0g入ったビーカーに、フッ素系化合物を全く添加せずに、水を0.10g添加し混合した。更に、硝酸を0.005g添加し、以下、合成例1と同様にして二酸化ケイ素粒子の分散液を得た。
<Comparative synthesis example 2>
To a beaker containing 50.0 g of the same IPA dispersion as in Synthesis Example 1, 0.10 g of water was added and mixed without adding any fluorine-based compound. Further, 0.005 g of nitric acid was added to obtain a dispersion liquid of silicon dioxide particles in the same manner as in Synthesis Example 1.

以下の表1に、合成例1〜9及び比較合成例1のフッ素含有金属酸化物粒子の分散液と比較合成例2のフッ素非含有の金属酸化物粒子の分散液の内容を示す。なお、表1において、フッ素系化合物として式(19)〜式(23)及び式(27)で表わされるフッ素含有シランの式中のRはすべてエチル基である。 Table 1 below shows the contents of the dispersion liquid of the fluorine-containing metal oxide particles of Synthesis Examples 1 to 9 and Comparative Synthesis Example 1 and the dispersion liquid of the fluorine-free metal oxide particles of Comparative Synthesis Example 2. In Table 1, all Rs in the formulas of the fluorine-containing silanes represented by the formulas (19) to (23) and the formula (27) as the fluorine-based compounds are ethyl groups.

Figure 0006923724
Figure 0006923724

〔フッ素含有シリカゾルゲル液を調製するための合成例10〜13、比較合成例3〕
<合成例10>
テトラメトキシシラン(TMOS)の3量体〜5量体(三菱化学社製、商品名:MKCシリケートMS51)が28.5gと、エタノールが59.7g入ったビーカーに、上述した式(27)で表されるフッ素系化合物を0.24g(0.8質量%)添加し混合した。次に、アルキレン基成分としてエポキシ基含有シランである3−グリシドキシプロピルトリメトキシシラン(GPTMS:信越化学工業社製、商品名:KBM−403)を1.5gと、水を10g添加し混合した。更に、硝酸を0.1g添加し、30℃で3時間混合し、フッ素含有シリカゾルゲル液を得た。
[Synthetic Examples 10 to 13 for Preparing Fluorine-Containing Silica Solgel Liquid, Comparative Synthesis Example 3]
<Synthesis Example 10>
In a beaker containing 28.5 g of tetramethoxysilane (TMS) trimeric to pentameric (manufactured by Mitsubishi Chemical Corporation, trade name: MKC silicate MS51) and 59.7 g of ethanol, the above formula (27) is used. 0.24 g (0.8% by mass) of the fluorinated compound represented was added and mixed. Next, 1.5 g of 3-glycidoxypropyltrimethoxysilane (GPTMS: manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-403), which is an epoxy group-containing silane, and 10 g of water are added and mixed as an alkylene group component. bottom. Further, 0.1 g of nitric acid was added and mixed at 30 ° C. for 3 hours to obtain a fluorine-containing silica solgel solution.

<合成例11>
合成例10と同一のTMOSの3量体〜5量体が24.0gと、エタノールが59.7g入ったビーカーに、上述した式(27)で表されるフッ素系化合物を0.06g(0.2質量%)添加し混合した。次に、アルキレン基成分として合成例10と同一のGPTMSを6.0gと、水を10g添加し混合した。更に、硝酸を0.1g添加し、30℃で3時間混合し、フッ素含有シリカゾルゲル液を得た。
<Synthesis Example 11>
And 24.0g trimeric 5 mer same TMOS and Synthesis Example 10, in ethanol was Tsu input 59.7 g beaker, a fluorine-based compound represented by the above-mentioned formula (27) 0.06 g (0.2% by mass) was added and mixed. Next, 6.0 g of GPTMS, which is the same as that of Synthesis Example 10, and 10 g of water were added and mixed as an alkylene group component. Further, 0.1 g of nitric acid was added and mixed at 30 ° C. for 3 hours to obtain a fluorine-containing silica solgel solution.

<合成例12>
合成例10と同一のTMOSの3量体〜5量体が29.8gと、エタノールが59.8g入ったビーカーに、上述した式(27)で表されるフッ素系化合物を3.00g(10.0質量%)添加し混合した。次に、アルキレン基成分として合成例10と同一のGPTMSを0.2gと、水を10g添加し混合した。更に、硝酸を0.1g添加し、30℃で3時間混合し、フッ素含有シリカゾルゲル液を得た。
<Synthesis Example 12>
3.00g and 29.8g trimeric 5 mer same TMOS and Synthesis Example 10, in ethanol was Tsu input 59.8 g beaker, a fluorine-based compound represented by the above-mentioned formula (27) (10.0% by mass) was added and mixed. Next, 0.2 g of GPTMS, which is the same as that of Synthesis Example 10, and 10 g of water were added and mixed as an alkylene group component. Further, 0.1 g of nitric acid was added and mixed at 30 ° C. for 3 hours to obtain a fluorine-containing silica solgel solution.

<合成例13>
テトラエトキシシラン(TEOS、東京化成工業社製)が30.0gと、エタノールが56.9g入ったビーカーに、上述した式(27)で表されるフッ素系化合物を0.30g(1.0質量%)添加し混合した。次に、アルキレン基成分を添加することなく、水を10g添加し混合した。更に、硝酸を0.1g添加し、30℃で3時間混合し、フッ素含有シリカゾルゲル液を得た。
<Synthesis Example 13>
Tetraethoxysilane (TEOS, produced by Tokyo Kasei Kogyo Co., Ltd.) and is 30.0 g, the beaker ethanol was Tsu entry 56.9 g, a fluorine-based compound 0.30g represented by the aforementioned formula (27) (1. 0% by mass) was added and mixed. Next, 10 g of water was added and mixed without adding the alkylene group component. Further, 0.1 g of nitric acid was added and mixed at 30 ° C. for 3 hours to obtain a fluorine-containing silica solgel solution.

<比較合成例3>
合成例11と同一のTMOSの3量体〜5量体が28.5gと、エタノールが59.6g入ったビーカーに、フッ素系化合物を全く添加せずに、アルキレン基成分として合成例10と同一のGPTMSを1.5gと、水を10g添加し混合した。更に、硝酸を0.1g添加し、30℃で3時間混合し、フッ素を含有しないシリカゾルゲル液を得た。
<Comparative synthesis example 3>
And 28.5g trimeric 5 mer same TMOS and Synthesis Example 11, in a beaker ethanol was Tsu entry 59.6 g, without at all the addition of fluorine compound, Synthesis Example 10 alkylene group component 1.5 g of the same GPTMS and 10 g of water were added and mixed. Further, 0.1 g of nitric acid was added and mixed at 30 ° C. for 3 hours to obtain a fluorine-free silica solgel solution.

以下の表2に、合成例10〜13のフッ素含有シリカゾルゲル液と比較合成例3のフッ素非含有のシリカゾルゲル液の内容を示す。 Table 2 below shows the contents of the fluorine-containing silica sol gel solution of Synthesis Examples 10 to 13 and the fluorine-free silica sol gel solution of Comparative Synthesis Example 3.

Figure 0006923724
Figure 0006923724

〔撥水撥油性膜形成用液組成物の調製とエアフィルタの製造のための実施例1〜9、比較例1〜9〕
<実施例1>
合成例10で得られたフッ素含有シリカゾルゲル液6.4gに溶媒として工業アルコール(AP−7、日本アルコール産業社製)80.9gを添加し混合した。その後、合成例1の金属酸化物粒子の分散液5.2gを添加し混合し、撥水撥油性膜形成用液組成物を調製した。得られた撥水撥油性膜形成用液組成物85.0gを、水と工業アルコールとの混合溶媒(質量比で水:工業アルコール=1:1)15.0gで希釈して希釈液を調製した。エアフィルタの基材として、PET繊維とガラス繊維の混合繊維(質量比でPET:ガラス=80:20)からなる、通気度が9.3ml/cm 2 /秒の安積ろ紙社製不織布356を用いた。上記希釈液にこの不織布をディッピングし、余分な液を振り払い、室温で24時間乾燥させ、通気度が7.9ml/cm2/秒のエアフィルタを作製した。この内容を以下の表3及び表4に示す。この内容を以下の表3に示す。
[Examples 1 to 9 and Comparative Examples 1 to 9 for preparing a liquid composition for forming a water- and oil-repellent film and producing an air filter]
<Example 1>
80.9 g of an industrial alcohol (AP-7, manufactured by Japan Alcohol Corporation) was added as a solvent to 6.4 g of the fluorine-containing silica solgel solution obtained in Synthesis Example 10 and mixed. Then, 5.2 g of the dispersion liquid of the metal oxide particles of Synthesis Example 1 was added and mixed to prepare a liquid composition for forming a water- and oil-repellent film. A diluted solution is prepared by diluting 85.0 g of the obtained liquid composition for forming a water- and oil-repellent film with 15.0 g of a mixed solvent of water and industrial alcohol (water: industrial alcohol = 1: 1 by mass ratio). bottom. As the base material of the air filter, a non-woven fabric 356 manufactured by Azumi Filter Paper Co., Ltd., which is made of a mixed fiber of PET fiber and glass fiber (PET: glass = 80:20 by mass ratio) and has a breathability of 9.3 ml / cm 2 / sec, is used. board. This non-woven fabric was dipped in the above diluted solution, the excess liquid was shaken off, and the mixture was dried at room temperature for 24 hours to prepare an air filter having an air permeability of 7.9 ml / cm 2 / sec. The contents are shown in Tables 3 and 4 below. The contents are shown in Table 3 below.

Figure 0006923724
Figure 0006923724

Figure 0006923724
Figure 0006923724

<実施例2〜9及び比較例1〜9>
実施例2〜9及び比較例1〜9について、表3に示すように、フッ素含有金属酸化物粒子の分散液の種類と秤量、フッ素含有シリカゾルゲル液の種類と秤量、及び実施例1と同一の溶媒の秤量をそれぞれ決定して、実施例2〜9及び比較例1〜9の各撥水撥油性膜形成用液組成物を調製した。
<Examples 2 to 9 and Comparative Examples 1 to 9>
As shown in Table 3, with respect to Examples 2 to 9 and Comparative Examples 1 to 9, the type and weighing of the dispersion liquid of the fluorine-containing metal oxide particles, the type and weighing of the fluorine-containing silica solgel liquid, and the same as in Example 1. Each of the water- and oil-repellent film-forming liquid compositions of Examples 2 to 9 and Comparative Examples 1 to 9 was prepared by determining the weighing of the solvent.

表3には、『溶媒を除く液組成物中の第1フッ素系官能基成分(A1)と第2フッ素系官能基成分(A2)を合計した含有割合』、『シリカゾルゲル(C)と金属酸化物粒子(B)の質量比((C):(B))』及び『第1フッ素系官能基成分(A1)と第2フッ素系官能基成分(A2)の質量比((A1):(A2))』も示す。なお、溶媒を除く液組成物中の第1フッ素系官能基成分(A1)と第2フッ素系官能基成分(A2)を合計した含有割合(質量%)は、撥水撥油性膜中の第1フッ素系官能基成分(A1)と第2フッ素系官能基成分(A2)を合計した含有割合(質量%)と同じである。 Table 3 shows "the total content ratio of the first fluorine-based functional group component (A1) and the second fluorine-based functional group component (A2) in the liquid composition excluding the solvent", "Silica solgel (C) and metal. Mass ratio of oxide particles (B) ((C): (B)) ”and“ Mass ratio of first fluorine-based functional group component (A1) to second fluorine-based functional group component (A2) ((A1): (A2)) ”is also shown. The total content ratio (mass%) of the first fluorine-based functional group component (A1) and the second fluorine-based functional group component (A2) in the liquid composition excluding the solvent is the first in the water- and oil-repellent film. It is the same as the total content ratio (mass%) of the 1 fluorine-based functional group component (A1) and the second fluorine-based functional group component (A2).

表4に示す実施例1と通気度が同一又は異なる不織布と、エアフィルタの基材の種類を選定して、実施例2〜及び比較例1〜9で調製された各撥水撥油性膜形成用液組成物の希釈液を、選定した不織布からなる基材に、実施例1と同様にして、ディッピングし、脱液・乾燥して表4に示す特性を有するエアフィルタを得た。 Each of the water- and oil-repellent films prepared in Examples 2 to 9 and Comparative Examples 1 to 9 by selecting the non-woven fabric having the same or different air permeability from Example 1 shown in Table 4 and the type of the base material of the air filter. The diluted solution of the forming liquid composition was dipped into a substrate made of the selected non-woven fabric in the same manner as in Example 1, and the liquid was removed and dried to obtain an air filter having the characteristics shown in Table 4.

なお、実施例8及び比較例8に用いた不織布は、実施例1の不織布と異なり、ガラス繊維の不織布とPET繊維の不織布の二層からなり、実施例8及び比較例8に用いた不織布から得られたエアフィルタの通気度は、それぞれ1.8ml/cm2/秒及び0.1ml/cm2/秒であった。 Unlike the non-woven fabric of Example 1, the non-woven fabric used in Example 8 and Comparative Example 8 is composed of two layers of a non-woven fabric of glass fiber and a non-woven fabric of PET fiber, and is composed of the non-woven fabric used in Example 8 and Comparative Example 8. The air permeability of the obtained air filter was 1.8 ml / cm 2 / sec and 0.1 ml / cm 2 / sec, respectively.

<比較試験及び評価>
金属製品を切削油を用いて加工する工作機械から飛散するオイルミストと粉塵に模して、ヘキサデカンと酸化鉄(III)(富士フイルム和光純薬社製)を質量比で80:20の割合で自転公転撹拌機に投入して撹拌混合し、模擬液を得た。この模擬液を用いて、実施例1〜9及び比較例1〜9で得られた18種類のエアフィルタついて、エアフィルタを構成する不織布の繊維表面上の撥水撥油性膜(以下、単に膜という。)の強度試験前後の撥油性について調べた。
<Comparative tests and evaluations>
Hexadecane and iron (III) oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) are mixed in a mass ratio of 80:20, imitating oil mist and dust scattered from machine tools that process metal products using cutting oil. It was put into a rotating and revolving stirrer and stirred and mixed to obtain a simulated liquid. Using this simulated liquid, the 18 types of air filters obtained in Examples 1 to 9 and Comparative Examples 1 to 9 were subjected to a water- and oil-repellent film on the fiber surface of the non-woven fabric constituting the air filter (hereinafter, simply a film). The oil repellency before and after the strength test was investigated.

(1) 膜の強度試験前の撥油性試験
18種類の水平に置いたエアフィルタを構成する不織布の繊維表面上の膜の強度試験を行う前に、得られた模擬液1mlをエアフィルタに上方から滴下した後、エアフィルタを鉛直に立てて、模擬液の転落性を確認した。模擬液がエアフィルタに染みこんだものは、エアフィルタの撥油性が『不良』であるとし、模擬液がエアフィルタに染みこまないがその表面に付着し、エアフィルタを振動させると模擬液がその表面から転落するものは、エアフィルタの撥油性が『やや良好』であるとし、模擬液がエアフィルタから転落するものをエアフィルタの撥油性が『良好』であるとした。
(1) Oil repellency test before the film strength test Before performing the film strength test on the fiber surface of the non-woven fabric that constitutes 18 types of horizontally placed air filters, 1 ml of the obtained simulated liquid was applied to the air filter. After dropping from the water filter, the air filter was erected vertically and the falling property of the simulated liquid was confirmed. If the simulated liquid soaks into the air filter, the oil repellency of the air filter is considered to be "poor". Those that fall from the surface are said to have "slightly good" oil repellency of the air filter, and those that fall from the air filter are said to have "good" oil repellency of the air filter.

(2) 膜の強度試験後の撥油性試験
評価する18種類の膜に下記の接触子を所定の荷重をかけながら、次の条件で10往復移動した。次いで、上記撥油性試験と同様にして、模擬液の転落性を確認した。模擬液がエアフィルタに染みこんだものは、接触子の往復動で膜が剥離したものとみなして、撥油性が『不良』であるとした。また模擬液がエアフィルタに染みこまないがその表面に付着し、エアフィルタを振動させると模擬液がその表面から転落するものは、接触子の往復動で膜が剥離するまでには至らないものとみなして、撥油性が『やや良好』であるとし、模擬液がエアフィルタから直ぐに転落するものは、接触子の往復動で膜が剥離せずに、撥油性が『良好』であるとした。
(a) 測定器:静・動摩擦測定機TL201Tt(株式会社トリニティーラボ)
(b) 測定条件:
・移動距離:30mm
・垂直荷重:500g重
・移動速度:50mm/秒
・接触子:50mm×50mm角のネオプレーンゴム
(2) Oil repellency test after film strength test The 18 types of films to be evaluated were moved 10 times back and forth under the following conditions while applying a predetermined load to the 18 types of films to be evaluated. Next, the falling property of the simulated liquid was confirmed in the same manner as in the above oil repellency test. If the simulated liquid soaked into the air filter, it was considered that the film had peeled off due to the reciprocating movement of the contacts, and the oil repellency was considered to be "poor." Also, if the simulated liquid does not soak into the air filter but adheres to the surface and the simulated liquid falls off the surface when the air filter is vibrated, it does not reach the point where the film peels off due to the reciprocating movement of the contacts. Considering that, the oil repellency was "slightly good", and the one in which the simulated liquid immediately fell from the air filter was said to have "good" oil repellency without the film peeling off due to the reciprocating movement of the contacts. ..
(a) Measuring instrument: Static / dynamic friction measuring instrument TL201Tt (Trinity Lab Co., Ltd.)
(b) Measurement conditions:
・ Movement distance: 30 mm
・ Vertical load: 500g weight ・ Movement speed: 50mm / sec ・ Contact: 50mm x 50mm square neoprene rubber

表4から明らかなように、比較例1のエアフィルタでは、平均粒子径が230nmである金属酸化物(二酸化チタン)粒子を含む比較合成例1から撥水撥油性膜形成用液組成物を調製した。比較例1のエアフィルタは、この液組成物に不織布をディッピングし、脱液し乾燥して作られたため、金属酸化物粒子の平均粒子径が大き過ぎ、バインダ成分であるシリカゾルゲルで金属酸化物粒子が不織布の繊維表面に結着しにくかった。この結果、膜の強度試験前後にて、模擬液がエアフィルタから転落せず、膜の強度試験前後のエアフィルタの撥油性はともに『不良』であった。 As is clear from Table 4, in the air filter of Comparative Example 1, a liquid composition for forming a water- and oil-repellent film was prepared from Comparative Synthesis Example 1 containing metal oxide (titanium dioxide) particles having an average particle diameter of 230 nm. bottom. Since the air filter of Comparative Example 1 was made by dipping a non-woven fabric in this liquid composition, deflating it, and drying it, the average particle size of the metal oxide particles was too large, and the silica sol gel, which is a binder component, was used as a metal oxide. It was difficult for the particles to bind to the fiber surface of the non-woven fabric. As a result, the simulated liquid did not fall from the air filter before and after the membrane strength test, and the oil repellency of the air filter before and after the membrane strength test was both "poor".

比較例2のエアフィルタは、金属酸化物粒子がフッ素系化合物を含有していたため、膜の強度試験前のエアフィルタでは、撥油性は『良好』であった。しかし膜の強度試験後では、このエアフィルタはフッ素系化合物を含まない比較合成例3のシリカゾルゲル液から撥水撥油性膜形成用液組成物を調製して、この液組成物により作られたため、模擬液はエアフィルタに染みこんで転落せず、撥油性は『不良』であった。これはシリカゾルゲルにフッ素系化合物が含まれていないため、不織布繊維表面にフッ素含有金属酸化物粒子が集まり易く、膜の強度試験により膜が剥がれ易い状態になっていたと考えられた。 In the air filter of Comparative Example 2, since the metal oxide particles contained a fluorine-based compound, the air filter before the film strength test had "good" oil repellency. However, after the film strength test, this air filter was prepared from the silica solgel solution of Comparative Synthesis Example 3 containing no fluorine-based compound to prepare a liquid composition for forming a water- and oil-repellent film, and was prepared by this liquid composition. , The simulated liquid soaked into the air filter and did not fall, and the oil repellency was "poor". It is considered that this is because the silica sol gel does not contain a fluorine-based compound, so that fluorine-containing metal oxide particles are likely to collect on the surface of the non-woven fabric fiber, and the film is easily peeled off by the strength test of the film.

比較例3のエアフィルタでは、シリカゾルゲル(C)と金属酸化物粒子(B)を合計した量を100質量%とするとき、シリカゾルゲル(C)の含有割合が5質量%と低過ぎたため、液組成物中のバインダ成分が少なくなり過ぎた。比較例3のエアフィルタは、この液組成物により作られたため、金属酸化物粒子を固定化するバインダ成分が少なく、粒子間に模擬液が染みこみ易かった。このため、膜の強度試験前後にて、模擬液がエアフィルタから転落せず、膜の強度試験前後のエアフィルタの撥油性はともに『不良』であった。 In the air filter of Comparative Example 3, when the total amount of the silica sol gel (C) and the metal oxide particles (B) was 100% by mass, the content ratio of the silica sol gel (C) was too low, 5% by mass. The binder component in the liquid composition was too low. Since the air filter of Comparative Example 3 was made of this liquid composition, there were few binder components for immobilizing the metal oxide particles, and the simulated liquid easily permeated between the particles. Therefore, the simulated liquid did not fall from the air filter before and after the membrane strength test, and the oil repellency of the air filter before and after the membrane strength test was both “poor”.

比較例4のエアフィルタでは、シリカゾルゲル(C)と金属酸化物粒子(B)を合計した量を100質量%とするとき、シリカゾルゲル(C)の含有割合が95質量%であったため、膜の強度試験前の撥油性は『やや良好』であった。しかし金属酸化物粒子(B)の含有割合が5質量%と低過ぎたため、液組成物中の金属酸化物粒子が少なくなり過ぎ、膜の強度試験で膜が繊維表面から剥離した。このため、膜の強度試験後の撥油性は『不良』であった。 In the air filter of Comparative Example 4, when the total amount of the silica sol gel (C) and the metal oxide particles (B) was 100% by mass, the content ratio of the silica sol gel (C) was 95% by mass, so that the film was used. The oil repellency before the strength test was "slightly good". However, since the content ratio of the metal oxide particles (B) was too low at 5% by mass, the amount of metal oxide particles in the liquid composition became too small, and the film was peeled off from the fiber surface in the film strength test. Therefore, the oil repellency after the strength test of the film was "poor".

比較例5のエアフィルタでは、フッ素系官能基成分(A1)とフッ素系官能基成分(A2)の合計した含有割合(A1+A2)が0.8質量%と低過ぎた。比較例5のエアフィルタは、この液組成物により作られたため、形成した膜に撥油性を付与できず、膜の強度試験前後にて、模擬液がエアフィルタから転落せず、膜の強度試験前後のエアフィルタの撥油性はともに『不良』であった。 In the air filter of Comparative Example 5, the total content ratio (A1 + A2) of the fluorine-based functional group component (A1) and the fluorine-based functional group component (A2) was too low at 0.8% by mass. Since the air filter of Comparative Example 5 was made of this liquid composition, oil repellency could not be imparted to the formed membrane, and the simulated liquid did not fall from the air filter before and after the strength test of the membrane, and the strength test of the membrane was performed. The oil repellency of the front and rear air filters was "poor".

比較例6のエアフィルタでは、フッ素系官能基成分(A1)とフッ素系官能基成分(A2)の合計した含有割合(A1+A2)が35.2質量%と高過ぎた。比較例6のエアフィルタはこの液組成物により作られたため、膜の強度試験前では、その撥油性は『良好』であった。しかしフッ素系化合物が多過ぎることにより、均一な膜が形成されず、多孔質状態になり、膜の強度試験後では、膜の剥離が生じて、その撥油性は『不良』であった。 In the air filter of Comparative Example 6, the total content ratio (A1 + A2) of the fluorine-based functional group component (A1) and the fluorine-based functional group component (A2) was too high at 35.2% by mass. Since the air filter of Comparative Example 6 was made of this liquid composition, its oil repellency was "good" before the film strength test. However, when the amount of the fluorine-based compound was too large, a uniform film was not formed and the film became porous, and after the film strength test, the film was peeled off and its oil repellency was "poor".

比較例7のエアフィルタは、フッ素系化合物を含まない比較合成例2の金属酸化物粒子の分散液から撥水撥油性膜形成用液組成物を調製し、この液組成物により膜を形成したため、膜の強度試験前後にて、模擬液がエアフィルタから転落せず、膜の強度試験前後のエアフィルタの撥油性はともに『不良』であった。 As for the air filter of Comparative Example 7, a liquid composition for forming a water- and oil-repellent film was prepared from a dispersion liquid of metal oxide particles of Comparative Synthesis Example 2 containing no fluorine-based compound, and a film was formed by this liquid composition. Before and after the membrane strength test, the simulated liquid did not fall from the air filter, and the oil repellency of the air filter before and after the membrane strength test was both "poor".

比較例8のエアフィルタは、エアフィルタの通気度が0.1ml/cm 2 /秒と低過ぎる値であったことに加えて、撥水撥油性膜形成用液組成物の希釈液が不織布内に十分に浸透せず、不織布繊維表面に撥水撥油性膜が十分に形成されなかった。このため、膜の強度試験前は、撥油性が『良好』であったが、膜の強度試験後では、模擬液がエアフィルタから転落せず、エアフィルタの撥油性は『不良』であった。 In the air filter of Comparative Example 8, the air permeability of the air filter was 0.1 ml / cm 2 / sec , which was too low, and the diluted solution of the water- and oil-repellent film-forming liquid composition was contained in the non-woven fabric. The water- and oil-repellent film was not sufficiently formed on the surface of the non-woven fabric fiber. Therefore, before the membrane strength test, the oil repellency was "good", but after the membrane strength test, the simulated liquid did not fall from the air filter, and the oil repellency of the air filter was "poor". ..

比較例9のエアフィルタは、エアフィルタの通気度が32.2ml/cm 2 /秒と高過ぎる値であったため、不織布繊維表面に撥水撥油性膜が十分に形成されたが、気孔が大き過ぎるため、模擬液が不織布内に浸透した。このため、膜の強度試験前後にて、模擬液がエアフィルタから転落せず、膜の強度試験前後のエアフィルタの撥油性はともに『不良』であった。 In the air filter of Comparative Example 9, the air permeability of the air filter was 32.2 ml / cm 2 / sec , which was too high, so that a water- and oil-repellent film was sufficiently formed on the surface of the non-woven fabric fiber, but the pores were large. Too much, the simulated liquid permeated into the non-woven fabric. Therefore, the simulated liquid did not fall from the air filter before and after the membrane strength test, and the oil repellency of the air filter before and after the membrane strength test was both “poor”.

それに対して、実施例1〜9のエアフィルタでは、第1の観点の発明の要件を満たしていることから、膜の強度試験前の撥油性はすべて『良好』であり、ネオプレーンゴムによる膜の摩擦試験後の撥水性もすべて『良好』であるか又は『やや良好』であることを確認できた。特に、第1フッ素官能基成分(A1)の含有割合が、質量比で第2フッ素官能基成分(A2)の含有割合以上であって、かつフッ素含有シリカゾルゲル液にアルキレン基成分を含む実施例1、実施例2及び実施例3では、膜の強度試験後でも、すべて『良好』であった。 On the other hand, since the air filters of Examples 1 to 9 satisfy the requirements of the invention of the first aspect, the oil repellency before the strength test of the film is all "good", and the film made of neoprene rubber is used. It was confirmed that all the water repellency after the friction test was "good" or "slightly good". In particular, an example in which the content ratio of the first fluorine functional group component (A1) is equal to or more than the content ratio of the second fluorine functional group component (A2) in terms of mass ratio, and the fluorine-containing silica solgel solution contains an alkylene group component. 1. In Example 2 and Example 3 , all were "good" even after the film strength test.

本発明のエアフィルタは、金属製品を切削油を用いて加工する切削機や旋削機等の工作機械のある作業環境で用いられる。 The air filter of the present invention is used in a working environment where there is a machine tool such as a cutting machine or a turning machine that processes a metal product using cutting oil.

10 エアフィルタ
20 不織布
20a 不織布の一面
20b 不織布の他面
20c 不織布の繊維
20d 不織布の気孔
21 撥水撥油性膜
21a フッ素含有金属酸化物粒子
21b フッ素含有シリカゾルゲル
22 オイルミストの油粒子
23 粉塵
10 Air filter 20 Non-woven fabric 20a One side of non-woven fabric 20b Other side of non-woven fabric 20c Non-woven fabric fibers 20d Non-woven fabric pores 21 Water-repellent oil-repellent film 21a Fluorine-containing metal oxide particles 21b Fluorine-containing silica solgel 22 Oil mist oil particles 23 Dust

Claims (10)

オイルミストと粉塵を含む空気が流入する一面と、この一面に対向し前記空気が流出する他面との間を貫通する多数の気孔が繊維間に形成された不織布を含むエアフィルタであって、
前記不織布の繊維表面に撥水撥油性膜が形成され、
前記撥水撥油性膜は、下記の一般式(1)又は式(2)で示されるペルフルオロエーテル構造を含む第1フッ素系官能基成分(A1)が結合した平均粒子径2nm〜90nmの金属酸化物粒子(B)と、
下記の一般式(1)又は式(2)で示されるペルフルオロエーテル構造を含む第2フッ素系官能基成分(A2)を含有するシリカゾルゲル(C)とを含み、
前記撥水撥油性膜を100質量%とするとき、前記第1フッ素官能基成分(A1)と前記第2フッ素官能基成分(A2)とを合計した含有割合が、1質量%〜30質量%であり、
前記シリカゾルゲル(C)と前記金属酸化物粒子(B)の質量比(C:B)が、10:90〜90:10の範囲にあり、
前記エアフィルタの通気度が1ml/cm2/秒〜30ml/cm2/秒であることを特徴とするエアフィルタ。
Figure 0006923724
上記式(1)及び式(2)中、p、q及びrは、それぞれ同一又は互いに異なる1〜6の整数であって、直鎖状又は分岐状であってもよい。また上記式(1)及び式(2)中、Xは、炭素数2〜10の炭化水素基であって、エーテル結合、CO−NH結合、O−CO−NH結合及びスルホンアミド結合から選択される1種以上の結合を含んでいてもよい。更に上記式(1)及び式(2)中、Yはシランの加水分解体又はシリカゾルゲルの主成分である。
An air filter containing a non-woven fabric in which a large number of pores are formed between fibers, which are opposed to one surface on which air containing oil mist and dust flows in and the other surface on which the air flows out.
A water- and oil-repellent film is formed on the fiber surface of the non-woven fabric,
The water- and oil-repellent film has a metal oxidation having an average particle size of 2 nm to 90 nm to which a first fluorine-based functional group component (A1) containing a perfluoroether structure represented by the following general formula (1) or formula (2) is bonded. Object particle (B) and
It contains a silica sol gel (C) containing a second fluorine-based functional group component (A2) containing a perfluoroether structure represented by the following general formula (1) or formula (2).
When the water- and oil-repellent film is 100% by mass , the total content of the first fluorine functional group component (A1) and the second fluorine functional group component (A2) is 1% by mass to 30% by mass. And
The mass ratio (C: B) of the silica sol gel (C) to the metal oxide particles (B) is in the range of 10:90 to 90:10.
Air filter, wherein the air permeability of the air filter is 1 ml / cm 2 / sec -30 mL / cm 2 / sec.
Figure 0006923724
In the above formulas (1) and (2), p, q and r are integers of 1 to 6 which are the same or different from each other, and may be linear or branched. Further, in the above formulas (1) and (2), X is a hydrocarbon group having 2 to 10 carbon atoms and is selected from an ether bond, a CO-NH bond, an O-CO-NH bond and a sulfone amide bond. It may contain one or more bonds. Further, in the above formulas (1) and (2), Y is a hydrolyzate of silane or the main component of the silica sol gel.
前記第1フッ素官能基成分(A1)の含有割合が、質量比で前記第2フッ素官能基成分(A2)の含有割合以上である請求項1記載のエアフィルタ。 The air filter according to claim 1, wherein the content ratio of the first fluorine functional group component (A1) is equal to or more than the content ratio of the second fluorine functional group component (A2) in terms of mass ratio. 前記金属酸化物粒子(B)は、Si,Al、Mg、Ca、Ti、Zn及びZrからなる群より選ばれた1種又は2種の金属の酸化物粒子である請求項1記載のエアフィルタ。 The air filter according to claim 1, wherein the metal oxide particles (B) are oxide particles of one or two metals selected from the group consisting of Si, Al, Mg, Ca, Ti, Zn and Zr. .. 前記シリカゾルゲル(C)は、前記シリカゾルゲル(C)を100質量%としたとき、炭素数2〜7のアルキレン基成分を0.5質量%〜20質量%含む請求項1記載のエアフィルタ。 The air filter according to claim 1, wherein the silica sol gel (C) contains 0.5% by mass to 20% by mass of an alkylene group component having 2 to 7 carbon atoms when the silica sol gel (C) is 100% by mass. 前記不織布が単一層により構成されるか、又は複数層の積層体により構成される請求項1記載のエアフィルタ。 The air filter according to claim 1, wherein the nonwoven fabric is composed of a single layer or a laminate of a plurality of layers. 前記不織布を構成する繊維がポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属からなる群より選ばれた1種又は2種以上の繊維である請求項1又は5記載のエアフィルタ。 One or 2 selected from the group in which the fibers constituting the non-woven fabric consist of polyethylene terephthalate (PET), polypropylene (PP), polytetrafluoroethylene (PTFE), glass, alumina, carbon, cellulose, pulp, nylon and metal. The air filter according to claim 1 or 5, which is a fiber of more than one species. フッ素含有金属酸化物粒子の分散液とフッ素含有シリカゾルゲル液とを混合して撥水撥油性膜形成用液組成物を調製する工程と、
前記撥水撥油性膜形成用液組成物の希釈液に不織布をディッピングする工程と、
前記ディッピングした不織布を脱液し乾燥する工程と
を含むエアフィルタの製造方法。
A step of preparing a liquid composition for forming a water- and oil-repellent film by mixing a dispersion liquid of fluorine-containing metal oxide particles and a fluorine-containing silica solgel liquid, and
The step of dipping the non-woven fabric into the diluted solution of the water- and oil-repellent film-forming liquid composition, and
A method for manufacturing an air filter, which comprises a step of deflating and drying the dipped non-woven fabric.
前記フッ素含有金属酸化物粒子の分散液が、金属酸化物粒子の分散液に第1フッ素系官能基成分を含むフッ素系化合物を添加混合し、この混合液に水と触媒を添加混合して、調製される請求項7記載のエアフィルタの製造方法。 The dispersion liquid of the fluorine-containing metal oxide particles is prepared by adding and mixing a fluorine-based compound containing a first fluorine-based functional group component with the dispersion liquid of the metal oxide particles, and adding and mixing water and a catalyst to this mixed liquid. The method for producing an air filter according to claim 7, which is prepared. 前記金属酸化物粒子がSi,Al、Mg、Ca、Ti、Zn及びZrからなる群より選ばれた1種又は2種の金属の酸化物粒子である請求項8記載のエアフィルタの製造方法。 The method for producing an air filter according to claim 8, wherein the metal oxide particles are oxide particles of one or two metals selected from the group consisting of Si, Al, Mg, Ca, Ti, Zn and Zr. 前記フッ素含有シリカゾルゲル液が、第2フッ素系官能基成分を含むフッ素系化合物とケイ素アルコキシドとアルコールと水を混合した混合液に触媒を添加混合して、調製される請求項7記載のエアフィルタの製造方法。 The air filter according to claim 7, wherein the fluorine-containing silica solgel solution is prepared by adding a catalyst to a mixture of a fluorine-based compound containing a second fluorine-based functional group component, silicon alkoxide, alcohol, and water. Manufacturing method.
JP2020132284A 2019-12-20 2020-08-04 Air filter and its manufacturing method Active JP6923724B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020132284A JP6923724B1 (en) 2020-08-04 2020-08-04 Air filter and its manufacturing method
DE112020006250.3T DE112020006250T5 (en) 2019-12-20 2020-12-17 Air filter and method of making the same
CN202080095696.4A CN115052673A (en) 2019-12-20 2020-12-17 Air filter and method for manufacturing the same
PCT/JP2020/047112 WO2021125257A1 (en) 2019-12-20 2020-12-17 Air filter and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020132284A JP6923724B1 (en) 2020-08-04 2020-08-04 Air filter and its manufacturing method

Publications (2)

Publication Number Publication Date
JP6923724B1 true JP6923724B1 (en) 2021-08-25
JP2022029122A JP2022029122A (en) 2022-02-17

Family

ID=77364463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020132284A Active JP6923724B1 (en) 2019-12-20 2020-08-04 Air filter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6923724B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857528B2 (en) * 2004-06-11 2012-01-18 旭硝子株式会社 Silane coupling group-containing fluorine-containing ether compound, solution composition, coating film and article
JP5036675B2 (en) * 2008-10-03 2012-09-26 三菱電機株式会社 Filter and air conditioner
JP2012096217A (en) * 2010-10-07 2012-05-24 Toyota Boshoku Corp Filter medium for mist separator
WO2018123126A1 (en) * 2016-12-28 2018-07-05 三菱マテリアル電子化成株式会社 Liquid composition for film formation and method for producing same
FR3061724B1 (en) * 2017-01-06 2021-07-16 Commissariat Energie Atomique TEXTILE MATERIAL COATING PROCESS
CN108286127B (en) * 2018-02-02 2020-06-05 南京工业大学 Preparation method of hydrophobic and oleophobic nanofiber membrane

Also Published As

Publication number Publication date
JP2022029122A (en) 2022-02-17

Similar Documents

Publication Publication Date Title
Latthe et al. Development of sol–gel processed semi-transparent and self-cleaning superhydrophobic coatings
Su et al. Polydimethylsiloxane-based superhydrophobic surfaces on steel substrate: fabrication, reversibly extreme wettability and oil–water separation
WO2021125257A1 (en) Air filter and method for producing same
JP6236676B2 (en) Fluorine-containing nanocomposite particles and method for producing the same, coating agent containing the same, oil-water separation membrane, and resin composition
KR100894079B1 (en) Treatment for forming waterdrop slidable films and process for forming waterdrop slidable films
JP5680900B2 (en) Oil-repellent coated article and method for producing the same
WO2018143364A1 (en) Treatment agent for treating fibers, fibers and production method therefor, and fiber sheet and production method therefor
JP2016527098A (en) Poly (vinyl alcohol) -containing and silica nanoparticle multilayer coating and method
Zhong et al. Superhydrophobic Poly (l-lactic acid) Membranes with Fish-Scale Hierarchical Microstructures and Their Potential Application in Oil–Water Separation
JP2020158779A (en) Method for producing fluorine-containing ether compound and method for producing article
JP6923724B1 (en) Air filter and its manufacturing method
JP6923630B2 (en) Air filter
JP2019210392A (en) Liquid repellent surface and manufacturing method therefor
JPWO2018143356A1 (en) Water repellent treatment agent, water repellent structure and method for producing the same
JP6923697B1 (en) Air filter and its manufacturing method
JP2012106420A (en) Composite material having water-repellent surface
TW201235330A (en) Humidity-conditioning construction material
JP7417469B2 (en) Air filter and its manufacturing method
CN111346524B (en) Composite body
CN114805812B (en) Trapezoidal phenyl polysilsesquioxane, polycaprolactone/trapezoidal phenyl polysilsesquioxane blend membrane and preparation method thereof
WO2022209559A1 (en) Air filter and method for manufacturing same
JP2022037268A (en) Oil-water separation filter and method for manufacture thereof
WO2013165072A1 (en) Novel polymer composite, and coating composition and coated film comprising same
JP2022524645A (en) Hydrophobic coating coating composition and articles with a hydrophobic surface
JP7458304B2 (en) Air filter and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210416

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210416

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210729

R150 Certificate of patent or registration of utility model

Ref document number: 6923724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150