JP6919780B2 - Heat pump type hot water supply device - Google Patents

Heat pump type hot water supply device Download PDF

Info

Publication number
JP6919780B2
JP6919780B2 JP2017031702A JP2017031702A JP6919780B2 JP 6919780 B2 JP6919780 B2 JP 6919780B2 JP 2017031702 A JP2017031702 A JP 2017031702A JP 2017031702 A JP2017031702 A JP 2017031702A JP 6919780 B2 JP6919780 B2 JP 6919780B2
Authority
JP
Japan
Prior art keywords
hot water
compressor
outside air
water supply
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017031702A
Other languages
Japanese (ja)
Other versions
JP2018136099A (en
Inventor
久也 武内
久也 武内
将典 野口
将典 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2017031702A priority Critical patent/JP6919780B2/en
Publication of JP2018136099A publication Critical patent/JP2018136099A/en
Application granted granted Critical
Publication of JP6919780B2 publication Critical patent/JP6919780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ式給湯装置に関し、さらに詳しく言えば、給湯運転開始時において圧縮機の起動を制御する技術に関するものである。 The present invention relates to a heat pump type hot water supply device, and more specifically, to a technique for controlling the start of a compressor at the start of hot water supply operation.

ヒートポンプ式給湯装置は、基本的な構成として、圧縮機、利用側熱交換部、膨張弁および熱源側熱交換器を冷媒配管を介して順次接続してなる冷媒回路と、貯湯タンクとを備え、利用側熱交換部は、例えば貯湯タンクの外周に冷媒配管を巻き付けた構成とし、利用側熱交換器が凝縮器として作用するように冷媒回路を切り換えて、貯湯タンク内の水と冷媒との熱交換により貯湯タンク内の水を加熱するようにしている。 The heat pump type hot water supply device is provided with a refrigerant circuit in which a compressor, a heat exchanger on the user side, an expansion valve and a heat exchanger on the heat source side are sequentially connected via a refrigerant pipe, and a hot water storage tank as a basic configuration. For example, the user-side heat exchanger has a configuration in which a refrigerant pipe is wound around the outer circumference of the hot water storage tank, and the refrigerant circuit is switched so that the user-side heat exchanger acts as a condenser to heat the water in the hot water storage tank and the refrigerant. The water in the hot water storage tank is heated by replacement.

このようなヒートポンプ式給湯装置では、貯湯タンク内の水温が最終的に到達させたい温水温度(目標水温)となるような沸き上げ運転が行われる。沸き上げ運転では、圧縮機から吐出された高温高圧の冷媒が利用側熱交換器に流入し貯湯タンク内の水と熱交換して凝縮する。凝縮した冷媒は膨張弁で減圧され熱源側熱交換器で蒸発し低圧のガス冷媒となって圧縮機に戻る。 In such a heat pump type hot water supply device, a boiling operation is performed so that the water temperature in the hot water storage tank finally reaches the desired hot water temperature (target water temperature). In the boiling operation, the high-temperature and high-pressure refrigerant discharged from the compressor flows into the heat exchanger on the user side and exchanges heat with the water in the hot water storage tank to condense. The condensed refrigerant is decompressed by the expansion valve, evaporated by the heat exchanger on the heat source side, becomes a low-pressure gas refrigerant, and returns to the compressor.

ところで、上記のような沸き上げ運転を行う際、その運転開始時から貯湯タンク内の水温が目標水温に到達する直前まで圧縮機を許容される最大回転数で駆動すると、沸き上げ運転時に凝縮器として機能する利用側熱交換部における凝縮圧力が高圧となる状態が続くことになり、圧縮機の運転負荷が増大する。 By the way, when the above-mentioned boiling operation is performed, if the compressor is driven at the maximum allowable rotation speed from the start of the operation to just before the water temperature in the hot water storage tank reaches the target water temperature, the condenser is operated during the boiling operation. The state in which the condensing pressure in the heat exchange section on the utilization side that functions as a function continues to be high will continue, and the operating load of the compressor will increase.

圧縮機の運転負荷が増大すれば、これに伴って圧縮機での消費電力量が増大することから、冷媒回路の運転効率が低下し、沸き上げ運転の効率低下を招くおそれがある。 If the operating load of the compressor increases, the power consumption of the compressor increases accordingly, so that the operating efficiency of the refrigerant circuit may decrease, which may lead to a decrease in the efficiency of the boiling operation.

そこで、特許文献1に記載された発明では、沸き上げ運転の立ち上げ時には、圧縮機の回転数を低い回転数(例えば、20rps)から段階的に上昇させる起動制御を行うようにしている。これにより、利用側熱交換器の凝縮圧力が高い状態で維持されないようにして、圧縮機の消費電力が増大するのを防止している。 Therefore, in the invention described in Patent Document 1, when the boiling operation is started, the start control is performed so that the rotation speed of the compressor is gradually increased from a low rotation speed (for example, 20 rps). As a result, the condensing pressure of the heat exchanger on the user side is not maintained in a high state, and the power consumption of the compressor is prevented from increasing.

特開2013−155991号公報Japanese Unexamined Patent Publication No. 2013-155991

しかしながら、外気温度が低い環境で圧縮機を起動するとき、圧縮機から吐出される高圧側の冷媒温度と圧縮機自体の温度(例えば密閉容器の温度)の温度差(以降、温度差ΔTと記載する)が小さい場合、冷媒が冷凍機油に多く溶け込んでいる状態での駆動、いわゆる寝込み駆動となって冷凍機油が冷媒回路内に大量に吐出される等、圧縮機の信頼性が損なわれるおそれがある。 However, when the compressor is started in an environment where the outside air temperature is low, the temperature difference between the refrigerant temperature on the high pressure side discharged from the compressor and the temperature of the compressor itself (for example, the temperature of the closed container) (hereinafter referred to as temperature difference ΔT). If the temperature is small, the reliability of the compressor may be impaired, for example, driving in a state where a large amount of refrigerant is dissolved in the refrigerating machine oil, that is, so-called laying-down driving, in which a large amount of refrigerating machine oil is discharged into the refrigerant circuit. be.

上記特許文献1に記載された発明のように、起動制御として、沸き上げ運転の立ち上げ時に圧縮機の回転数を段階的に上昇させる方法によると、圧縮機の回転数が高くなるまで時間がかかり、これに伴って圧縮機から吐出される高圧側の冷媒温度の上昇に時間がかかるので、上記温度差ΔTが大きくなるまでには時間がかかり、上記寝込み駆動による問題が発生する可能性が高くなる。 According to the method of gradually increasing the rotation speed of the compressor at the start of the boiling operation as the start control as in the invention described in Patent Document 1, it takes time for the rotation speed of the compressor to increase. As a result, it takes time for the temperature of the refrigerant on the high pressure side discharged from the compressor to rise. Therefore, it takes time for the temperature difference ΔT to increase, which may cause a problem due to the sleeping drive. It gets higher.

そこで、本発明の課題は、圧縮機の回転数を低い回転数から段階的に上昇させる起動制御による沸き上げ運転開始時に、上記温度差ΔTが小さい状態での運転を回避して圧縮機の信頼性を確保することにある。 Therefore, an object of the present invention is to avoid the operation in a state where the temperature difference ΔT is small at the start of the boiling operation by the start control in which the rotation speed of the compressor is gradually increased from a low rotation speed, and the reliability of the compressor is improved. It is to ensure sex.

上記課題を解決するため、本発明は、圧縮機、流路切替手段給湯端末内の水と冷媒との熱交換を行う利用側熱交換部および熱源側熱交換器を冷媒配管を介して順次接続してなる冷媒回路と、外気温度を検出する外気温センサと、制御手段とを含み、上記制御手段は、給湯運転開始時に上記圧縮機の回転数を上記外気温センサの検出値に応じて予め定められた所定の出発回転数から段階的に上昇させる起動制御を行うヒートポンプ式給湯装置において、
上記制御手段は、上記起動制御を行う前に、上記外気温センサにて検出される外気温度に応じて、上記圧縮機を上記出発回転数よりも高い回転数で所定時間駆動する起動前制御を行うことを特徴としている。
In order to solve the above problems, the present invention sequentially connects a compressor, a flow path switching means, a user-side heat exchange unit that exchanges heat between water and a refrigerant in a hot water supply terminal, and a heat source-side heat exchanger via a refrigerant pipe. The control means includes a connected refrigerant circuit, an outside temperature sensor for detecting the outside air temperature, and a control means, and the control means sets the number of revolutions of the compressor according to the detection value of the outside temperature sensor at the start of the hot water supply operation. In a heat pump type hot water supply device that performs start control to gradually increase from a predetermined starting rotation speed.
It said control means, before the above activation control, depending on the outside air temperature detected by the outside air temperature sensor, a pre-boot control a predetermined time driving the compressor at a higher rotational speed than the starting rotational speed It is characterized by doing.

本発明の好ましい態様によると、上記起動前制御時の圧縮機回転数は、上記外気温センサにて検出される外気温度ごとにそれぞれ一定値として設定されており、上記制御手段は、上記起動前制御実行中、上記起動前制御の圧縮機回転数を上記一定値に維持する。 According to a preferred embodiment of the present invention, the compressor rotation speed at the time of the pre-start control is set as a constant value for each outside air temperature detected by the outside air temperature sensor, and the control means is set as a constant value before the start. During the control execution, the compressor rotation speed of the pre-start control is maintained at the constant value.

また、上記制御手段は、上記外気温度が所定温度以下のときに上記起動前制御を行う。また、その起動前制御時において、上記外気温度が低くなるほど圧縮機回転数を高くし、かつ、その駆動時間を上記外気温度が低くなるほど長くする。 Further, the control means performs the pre-start control when the outside air temperature is equal to or lower than the predetermined temperature. Further, during the pre-startup control, the lower the outside air temperature, the higher the compressor rotation speed, and the lower the outside air temperature, the longer the drive time.

本発明によれば、省エネルギー運転として、給湯運転開始時に貯湯タンク内の水温が目標水温に到達するように圧縮機を外気温度に応じた所定の回転数から段階的に上昇させる起動制御を行う前に起動前制御を行うことにより、外気温が低いときに前述したいわゆる寝込み駆動による運転が回避され、圧縮機の信頼性を確保することができる。 According to the present invention, as an energy-saving operation, before performing start control in which the compressor is gradually increased from a predetermined rotation speed according to the outside air temperature so that the water temperature in the hot water storage tank reaches the target water temperature at the start of the hot water supply operation. By performing the pre-start control, the operation by the so-called sleep drive described above can be avoided when the outside temperature is low, and the reliability of the compressor can be ensured.

本発明によるヒートポンプ式給湯装置の構成を示す模式図。The schematic diagram which shows the structure of the heat pump type hot water supply apparatus by this invention. 本発明の動作を示すタイミングチャート。A timing chart showing the operation of the present invention. 制御手段が備える起動前制御時の参照用テーブルを示す模式図。The schematic diagram which shows the reference table at the time of pre-start control provided by a control means.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、給湯端末である貯湯タンクを有し、冷媒との熱交換により貯湯タンク内部に貯留された水を加熱するヒートポンプ式給湯装置を例に挙げて説明する。なお、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. As an embodiment, a heat pump type hot water supply device having a hot water storage tank which is a hot water supply terminal and heating water stored inside the hot water storage tank by heat exchange with a refrigerant will be described as an example. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.

図1は、本発明によるヒートポンプ式給湯装置の構成を示している。このヒートポンプ式給湯装置100は、能力可変型の圧縮機1、流路切替手段である四方弁2、貯湯タンク70の外周に後述する冷媒配管11の一部を巻き付けて構成される利用側の熱交換部3、膨張弁4、熱源側熱交換器5,アキュムレータ6を順に冷媒配管11で接続した冷媒回路10を有しており、四方弁2を切り換えることによって冷媒の循環方向を切り換えることができるようになっている。 FIG. 1 shows the configuration of a heat pump type hot water supply device according to the present invention. The heat pump type hot water supply device 100 is configured by winding a part of a refrigerant pipe 11 described later around the outer circumference of a compressor 1 having a variable capacity, a four-way valve 2 which is a flow path switching means, and a hot water storage tank 70. It has a refrigerant circuit 10 in which a switching unit 3, an expansion valve 4, a heat source side heat exchanger 5, and an accumulator 6 are connected in order by a refrigerant pipe 11, and the circulation direction of the refrigerant can be switched by switching the four-way valve 2. It has become like.

この冷媒回路10において、圧縮機1の冷媒吐出口付近の冷媒配管11には、圧縮機1から吐出された冷媒の温度を検出するための吐出温度センサ51が備えられている。また、熱交換部3と膨張弁4との間の冷媒配管11には、熱交換部3が凝縮器として機能しているときに熱交換部3から流出する冷媒の温度を、あるいは、熱交換部3が蒸発器として機能しているときに熱交換部3に流入する冷媒の温度を、各々検出する冷媒温度センサ53が備えられている。 In the refrigerant circuit 10, the refrigerant pipe 11 near the refrigerant discharge port of the compressor 1 is provided with a discharge temperature sensor 51 for detecting the temperature of the refrigerant discharged from the compressor 1. Further, in the refrigerant pipe 11 between the heat exchange unit 3 and the expansion valve 4, the temperature of the refrigerant flowing out from the heat exchange unit 3 when the heat exchange unit 3 is functioning as a condenser, or heat exchange. A refrigerant temperature sensor 53 is provided to detect the temperature of the refrigerant flowing into the heat exchange unit 3 when the unit 3 functions as an evaporator.

また、膨張弁4と熱源側熱交換器5との間の冷媒配管11には、熱源側熱交換器5が蒸発器として機能しているときに熱源側熱交換器5に流入する冷媒の温度を、あるいは、熱源側熱交換器5が凝縮器として機能しているときに熱源側熱交換器5から流出する冷媒の温度を、各々検出する熱交温度検出手段である熱交温度センサ54が備えられている。 Further, in the refrigerant pipe 11 between the expansion valve 4 and the heat source side heat exchanger 5, the temperature of the refrigerant flowing into the heat source side heat exchanger 5 when the heat source side heat exchanger 5 is functioning as an evaporator Alternatively, the heat exchange temperature sensor 54, which is a heat exchange temperature detecting means, detects the temperature of the refrigerant flowing out from the heat source side heat exchanger 5 when the heat source side heat exchanger 5 is functioning as a condenser. It is provided.

さらには、圧縮機1の吐出側(四方弁2と熱交換部3との間)の冷媒配管11には、沸き上げ運転時、つまり、熱交換部3が凝縮器として機能するときの、熱交換部3における冷媒の凝縮圧力を検出する圧力センサ50が備えられている。また、熱源側熱交換器5の近傍には、外気温度検出手段である外気温度センサ52が設けられている。 Further, the refrigerant pipe 11 on the discharge side of the compressor 1 (between the four-way valve 2 and the heat exchange unit 3) is provided with heat during the boiling operation, that is, when the heat exchange unit 3 functions as a condenser. A pressure sensor 50 for detecting the condensation pressure of the refrigerant in the exchange unit 3 is provided. Further, an outside air temperature sensor 52, which is an outside air temperature detecting means, is provided in the vicinity of the heat source side heat exchanger 5.

熱源側熱交換器5の近傍には、ヒートポンプ式給湯装置100の図示しない筐体内部に外気を取り込んで熱源側熱交換器5に外気を流通させるファン7が配置されている。ファン7は、回転数を可変できる図示しないモータの出力軸(回転軸)に取り付けられている。また、膨張弁4は、ステッピングモータを用いて弁の開度をパルス制御可能としたものである。 In the vicinity of the heat source side heat exchanger 5, a fan 7 that takes in outside air into a housing (not shown) of the heat pump type hot water supply device 100 and circulates the outside air to the heat source side heat exchanger 5 is arranged. The fan 7 is attached to an output shaft (rotation shaft) of a motor (not shown) whose rotation speed can be changed. Further, the expansion valve 4 is capable of pulse-controlling the opening degree of the valve by using a stepping motor.

熱交換部3は、冷媒配管11の一部に含まれている。本実施形態において、熱交換部3は貯湯タンク70の外周面の下部側に螺旋状に冷媒配管11の一部を巻き付けて構成され、貯湯タンク70内の水との間で熱交換を行う。 The heat exchange unit 3 is included in a part of the refrigerant pipe 11. In the present embodiment, the heat exchange unit 3 is configured by spirally winding a part of the refrigerant pipe 11 around the lower side of the outer peripheral surface of the hot water storage tank 70, and exchanges heat with the water in the hot water storage tank 70.

なお、熱交換部3は、貯湯タンク70内に配置されてもよい。また、図示しないが、熱交換部3は、冷媒側流路と水側流路を有する二重管熱交換器のように、貯湯タンク70内の水を熱交換部3に流入させて冷媒と熱交換させるものであってもよい。 The heat exchange unit 3 may be arranged in the hot water storage tank 70. Further, although not shown, the heat exchange unit 3 causes the water in the hot water storage tank 70 to flow into the heat exchange unit 3 and becomes a refrigerant like a double tube heat exchanger having a refrigerant side flow path and a water side flow path. It may be heat exchanged.

貯湯タンク70の上部には、貯湯タンク70の内部に貯留されている温水を浴槽や洗面台蛇口等に供給するための給湯口73が備えられている。また、貯湯タンク70の下部には、貯湯タンク70の内部に水を供給するための入水口72が備えられており、入水口72には図示しない水道管が接続されている。 A hot water supply port 73 for supplying hot water stored inside the hot water storage tank 70 to a bathtub, a washbasin faucet, or the like is provided above the hot water storage tank 70. Further, a water inlet 72 for supplying water to the inside of the hot water storage tank 70 is provided in the lower portion of the hot water storage tank 70, and a water pipe (not shown) is connected to the water inlet 72.

また、貯湯タンク70の内部の上下方向のほぼ中央部には、貯湯タンク70内に滞留する温水の温度を検出する水温センサ58が備えられている。 Further, a water temperature sensor 58 for detecting the temperature of hot water staying in the hot water storage tank 70 is provided in a substantially central portion of the inside of the hot water storage tank 70 in the vertical direction.

以上説明した構成のほかに、ヒートポンプ式給湯装置100は、制御手段60を有している。制御手段60は、各温度センサ51,52,53,54,58で検出した温度や圧力センサ50で検出した沸き上げ運転時の冷媒圧力を取り込み、あるいは、図示しないリモコン等による使用者からの運転要求を取り込み、これらに応じて圧縮機1やファン7の駆動制御、四方弁2の切り換え制御、膨張弁4の開度制御等といった、ヒートポンプ式給湯装置100の運転に関わる様々な制御を行う。 In addition to the configuration described above, the heat pump type hot water supply device 100 includes a control means 60. The control means 60 takes in the temperature detected by the temperature sensors 51, 52, 53, 54, 58 and the refrigerant pressure during the boiling operation detected by the pressure sensor 50, or is operated by a user using a remote control (not shown) or the like. It takes in the demands and performs various controls related to the operation of the heat pump type hot water supply device 100 such as drive control of the compressor 1 and the fan 7, switching control of the four-way valve 2, and opening degree control of the expansion valve 4.

なお、図示は省略するが、制御手段60は、時間を計測するタイマー部や各種センサで検出した値やヒートポンプ式給湯装置100の制御プログラム等を記憶する記憶部を有している。 Although not shown, the control means 60 has a timer unit for measuring time, a storage unit for storing values detected by various sensors, a control program of the heat pump type hot water supply device 100, and the like.

次に、本実施形態のヒートポンプ式給湯装置100が備える冷媒回路10における冷媒の流れや各部の動作について説明する。 Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 included in the heat pump type hot water supply device 100 of the present embodiment will be described.

本実施形態のヒートポンプ式給湯装置100は、冷媒回路10を暖房サイクルとして貯湯タンク70に貯留されている水を沸き上げる沸き上げ運転と、沸き上げ運転を行っているときに冷媒回路10を冷房サイクルとして熱源側熱交換器5の除霜を行う逆サイクル除霜運転を行うことができる。 The heat pump type hot water supply device 100 of the present embodiment uses the refrigerant circuit 10 as a heating cycle to boil water stored in the hot water storage tank 70, and a cooling cycle for the refrigerant circuit 10 during the boiling operation. The reverse cycle defrosting operation for defrosting the heat source side heat exchanger 5 can be performed.

沸き上げ運転時には、冷媒が図1の実線矢印80方向に流れるのに対し、逆サイクル除霜運転には、四方弁2が切り換えられて冷媒が図1の破線矢印81方向に流れるが、本発明において、逆サイクル除霜運転には特に特徴を有していないため、その詳細な説明は省略し、以下に沸き上げ運転時のヒートポンプ式給湯装置100の動作について説明する。 During the boiling operation, the refrigerant flows in the direction of the solid arrow 80 in FIG. 1, whereas in the reverse cycle defrosting operation, the four-way valve 2 is switched and the refrigerant flows in the direction of the broken arrow 81 in FIG. Since the reverse cycle defrosting operation is not particularly characterized in the above, the detailed description thereof will be omitted, and the operation of the heat pump type hot water supply device 100 during the boiling operation will be described below.

〈沸き上げ運転〉
使用者が図示しないリモコン等を操作して沸き上げ運転の開始を指示すると、制御手段60は、冷媒回路10が暖房サイクルとなるように四方弁2を切り換える。具体的には、制御手段60は、圧縮機1の吐出側と熱交換部3とが接続されるよう、また、圧縮機1の吸入側と熱源側熱交換器5とが接続されるよう、四方弁2を切り換える。これにより、熱交換部3が凝縮器として機能し、また、熱源側熱交換器5が蒸発器として機能する。
<Boiling operation>
When the user operates a remote controller or the like (not shown) to instruct the start of the boiling operation, the control means 60 switches the four-way valve 2 so that the refrigerant circuit 10 is in the heating cycle. Specifically, the control means 60 is such that the discharge side of the compressor 1 and the heat exchange unit 3 are connected, and the suction side of the compressor 1 and the heat source side heat exchanger 5 are connected. Switch the four-way valve 2. As a result, the heat exchange unit 3 functions as a condenser, and the heat source side heat exchanger 5 functions as an evaporator.

次に、制御手段60は、圧縮機1およびファン7を起動してヒートポンプ式給湯装置100の沸き上げ運転を開始する。制御手段60は、水温センサ58で検出される貯湯タンク70内の現在の水温と沸き上げ目標温度の温度差に応じて、記憶部に記憶されている温度差と圧縮機1の回転数とを関係付けた図示しないテーブルを参照して圧縮機1の回転数を決定し、この回転数で圧縮機を駆動する。 Next, the control means 60 activates the compressor 1 and the fan 7 to start the boiling operation of the heat pump type hot water supply device 100. The control means 60 determines the temperature difference stored in the storage unit and the rotation speed of the compressor 1 according to the temperature difference between the current water temperature in the hot water storage tank 70 and the boiling target temperature detected by the water temperature sensor 58. The rotation speed of the compressor 1 is determined with reference to the associated table (not shown), and the compressor is driven by this rotation speed.

圧縮機1が駆動すると、図1の実線矢印80に示すように、圧縮機1から吐出された高温高圧の冷媒は四方弁2を通過し、熱交換部3で水と熱交換して凝縮し、さらに膨張弁4で減圧されて熱源側熱交換器5で外気と熱交換して蒸発し、アキュムレータ6で気液分離された後、圧縮機1に吸入されて再び圧縮機1で圧縮される過程を繰り返す。 When the compressor 1 is driven, as shown by the solid line arrow 80 in FIG. 1, the high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the four-way valve 2 and exchanges heat with water in the heat exchange unit 3 to condense. Further, the pressure is reduced by the expansion valve 4, heat is exchanged with the outside air by the heat source side heat exchanger 5, the vapor is evaporated, the gas and liquid are separated by the accumulator 6, and then sucked into the compressor 1 and compressed again by the compressor 1. Repeat the process.

このようにして、貯湯タンク70内の水が熱交換部3を流れる高温高圧の冷媒により加熱され、貯湯タンク70内の水温が沸き上げ目標温度に到達すると、制御手段60は圧縮機1およびファン7の運転を停止する。 In this way, the water in the hot water storage tank 70 is heated by the high-temperature and high-pressure refrigerant flowing through the heat exchange unit 3, and when the water temperature in the hot water storage tank 70 reaches the target temperature, the control means 60 uses the compressor 1 and the fan. Stop the operation of 7.

なお、制御手段60は、水温センサ58で検出した貯湯タンク70内の水温を常時監視しており、その水温が沸き上げ目標温度から予め設定された所定温度(例えば、5℃)低下すると、沸き上げ運転を再開する。 The control means 60 constantly monitors the water temperature in the hot water storage tank 70 detected by the water temperature sensor 58, and when the water temperature drops from the boiling target temperature by a preset predetermined temperature (for example, 5 ° C.), it boils. Resume raising operation.

ところで、先にも説明したように、沸き上げ運転開始時から圧縮機1を最大回転数として駆動し続けると、熱交換部3が高温となりその状態が継続されることになる。その一方で、沸き上げ運転の開始直後、すなわち、貯湯タンク内の水温が低くて目標水温との温度差が大きいときは、貯湯タンク70内部の水の熱容量が大きいことに起因して、貯湯タンク70内の水温は熱交換部3の温度に見合うだけ上昇しない。 By the way, as described above, if the compressor 1 is continuously driven at the maximum rotation speed from the start of the boiling operation, the heat exchange unit 3 becomes hot and the state is continued. On the other hand, immediately after the start of the boiling operation, that is, when the water temperature in the hot water storage tank is low and the temperature difference from the target water temperature is large, the heat capacity of the water inside the hot water storage tank 70 is large, so that the hot water storage tank The water temperature in 70 does not rise as much as the temperature of the heat exchange unit 3.

これにより、熱交換部3における凝縮圧力が高圧となる状態が続くことになり、その結果、圧縮機1の運転負荷が増大して圧縮機1での消費電力が増大するため、冷媒回路10の運転効率が低下して沸き上げ運転の効率低下を招くおそれがある。 As a result, the state in which the condensing pressure in the heat exchange unit 3 becomes high continues to be high, and as a result, the operating load of the compressor 1 increases and the power consumption in the compressor 1 increases. There is a risk that the operating efficiency will decrease, leading to a decrease in the efficiency of boiling operation.

そこで、このヒートポンプ式給湯装置100では、沸き上げ運転の開始時は、圧縮機1の起動制御として、図2のタイミングチャートに示すように、まず圧縮機1を例えば20rps程度の低い回転数(本実施形態の所定回転数に相当する出発回転数)で起動し、その後、水温センサ58で検出される貯湯タンク70内の水温の上昇に応じて圧縮機1の回転数を段階的に上昇させるようにしている(この圧縮機1の起動制御の詳細については、例えば特開2013−155991号公報参照)。 Therefore, in this heat pump type hot water supply device 100, at the start of the boiling operation, as a start control of the compressor 1, as shown in the timing chart of FIG. 2, the compressor 1 is first rotated at a low rotation speed of, for example, about 20 rps (this). It is started at the starting rotation speed corresponding to the predetermined rotation speed of the embodiment), and then the rotation speed of the compressor 1 is gradually increased according to the increase in the water temperature in the hot water storage tank 70 detected by the water temperature sensor 58. (For details on the activation control of the compressor 1, refer to, for example, Japanese Patent Application Laid-Open No. 2013-155991).

このような圧縮機1の起動制御によれば、熱交換部3の運転が高温状態のまま継続する、すなわち凝縮圧力が高い状態での運転が継続されるのが防止されることから、圧縮機1の消費電力の増大を防ぐことができる。 According to such start control of the compressor 1, the operation of the heat exchange unit 3 is prevented from continuing in a high temperature state, that is, the operation in a state where the condensing pressure is high is prevented. It is possible to prevent an increase in the power consumption of 1.

しかしながら、外気温度が低い環境で圧縮機1を起動するとき、圧縮機1から吐出される高圧側の冷媒温度と圧縮機1自体の温度(例えば、密閉容器の温度)の温度差であるΔTが小さい場合、圧縮機1の運転は、冷媒が冷凍機油に多く溶け込んでいる状態での駆動、いわゆる寝込み駆動となって冷凍機油が冷媒回路内に大量に吐出される等、圧縮機の信頼性が損なわれるおそれがある。 However, when the compressor 1 is started in an environment where the outside air temperature is low, ΔT, which is the temperature difference between the temperature of the refrigerant on the high pressure side discharged from the compressor 1 and the temperature of the compressor 1 itself (for example, the temperature of the closed container), is If it is small, the operation of the compressor 1 is driven in a state where a large amount of refrigerant is dissolved in the refrigerating machine oil, that is, a so-called sleeping drive, and a large amount of refrigerating machine oil is discharged into the refrigerant circuit. It may be damaged.

特に、上記の起動制御として、沸き上げ運転の開始時に圧縮機の回転数を低い回転数から段階的に上昇させる方法によると、圧縮機の回転数が高くなるまで時間がかかり、圧縮機1から吐出される高圧側の冷媒温度が高くなって上記温度差ΔTが大きくなるまでには時間がかかるため、上記寝込み駆動による問題(冷凍機油の冷媒回路への流出)が発生する可能性が高くなる。 In particular, as the above-mentioned start control, according to the method of gradually increasing the rotation speed of the compressor from a low rotation speed at the start of the boiling operation, it takes time for the rotation speed of the compressor to increase, and the compressor 1 starts from. Since it takes time for the temperature of the discharged high-pressure refrigerant to rise and the temperature difference ΔT to increase, there is a high possibility that the problem due to the sneaking drive (outflow of the refrigerating machine oil to the refrigerant circuit) will occur. ..

そこで、本発明では、外気温度センサ52にて検出される外気温度に応じて、上記起動制御を行う前の起動前制御として、圧縮機1を起動制御時の出発回転数よりも高い回転数で所定時間駆動することにより、上記温度差ΔTが小さい状態での運転を回避して圧縮機1の信頼性を確保するようにしている。 Therefore, in the present invention, the compressor 1 is operated at a rotation speed higher than the starting rotation speed at the start control as the pre-start control before the start control is performed according to the outside air temperature detected by the outside air temperature sensor 52. By driving for a predetermined time, the operation in a state where the temperature difference ΔT is small is avoided and the reliability of the compressor 1 is ensured.

図2のタイミングチャートを参照して、起動前制御とは、沸き上げ運転時に圧縮機1の回転数を低い回転数(出発回転数)から段階的に上昇させる起動制御の前に行う制御である。 With reference to the timing chart of FIG. 2, the pre-start control is a control performed before the start control in which the rotation speed of the compressor 1 is gradually increased from a low rotation speed (starting rotation speed) during the boiling operation. ..

その具体例として、外気温度Toに応じて設定される起動前制御時における圧縮機1の回転数およびそのホールド時間、起動制御時の出発回転数を図3に示す。なお、図3に記載の圧縮機回転数、ホールド時間および出発回転数は、予め試験等を行って求められているものであり、寝込み駆動とならないことが確認されているものである。 As a specific example, FIG. 3 shows the rotation speed of the compressor 1 at the time of pre-start control set according to the outside air temperature To, the hold time thereof, and the start rotation speed at the time of start control. The compressor rotation speed, hold time, and starting rotation speed shown in FIG. 3 have been obtained by conducting tests and the like in advance, and it has been confirmed that the compressor does not fall asleep.

これによると、制御手段60は、ユーザーからの指示もしくは貯湯タンク70内の湯温低下により、沸き上げ運転を開始するにあたって、
外気温度Toが10℃以上の場合(10℃≦To)には、起動前制御は行わず出発回転数を25rpsとして起動制御を実行する。
According to this, when the control means 60 starts the boiling operation by the instruction from the user or the decrease in the temperature of the hot water in the hot water storage tank 70, the control means 60 starts the boiling operation.
When the outside air temperature To is 10 ° C. or higher (10 ° C. ≦ To), the start-up control is executed with the starting rotation speed set to 25 rps without performing the pre-start-up control.

外気温度Toが0℃以上10℃未満の場合(0℃≦To<10℃)には、起動前制御として圧縮機1を回転数30rpsで10分間駆動し、その後、出発回転数を25rpsとして起動制御を実行する。 When the outside air temperature To is 0 ° C. or higher and lower than 10 ° C. (0 ° C. ≤ To <10 ° C.), the compressor 1 is driven at a rotation speed of 30 rps for 10 minutes as a pre-start control, and then started at a starting speed of 25 rps. Take control.

外気温度Toが−10℃以上0℃未満の場合(−10℃≦To<0℃)には、起動前制御として圧縮機1を回転数50rpsで15分間駆動し、その後、出発回転数を30rpsとして起動制御を実行する。 When the outside air temperature To is -10 ° C or higher and lower than 0 ° C (-10 ° C ≤ To <0 ° C), the compressor 1 is driven at a rotation speed of 50 rps for 15 minutes as a pre-start control, and then the starting rotation speed is set to 30 rps. Execute start control as.

外気温度Toが−20℃以上−10℃未満の場合(−20℃≦To<−10℃)には、起動前制御として圧縮機1を回転数70rpsで15分間駆動し、その後、出発回転数を40rpsとして起動制御を実行する。 When the outside air temperature To is -20 ° C or higher and lower than -10 ° C (-20 ° C ≤ To <-10 ° C), the compressor 1 is driven at a rotation speed of 70 rps for 15 minutes as a pre-start control, and then the starting rotation speed. Is set to 40 rps and start control is executed.

外気温度Toが−20℃未満の場合(To<−20℃)には、起動前制御として圧縮機1を回転数90rpsで20分間駆動し、その後、出発回転数を50rpsとして起動制御を実行する。 When the outside air temperature To is less than -20 ° C (To <-20 ° C), the compressor 1 is driven at a rotation speed of 90 rps for 20 minutes as a pre-start control, and then the start control is executed with a starting speed of 50 rps. ..

このように、外気温度が所定温度(上記の例では10℃)よりも低い場合に起動前制御を行うことにより、寝込み駆動による運転が回避され、圧縮機の信頼性を確保することができる。 As described above, by performing the pre-start control when the outside air temperature is lower than the predetermined temperature (10 ° C. in the above example), the operation due to the sleeping drive can be avoided and the reliability of the compressor can be ensured.

このように、本発明では、外気温度が低く上記温度差ΔTが取れない条件下では、圧縮機を起動制御する前に、起動前制御として、起動制御時の出発回転数よりも高い回転数で所定時間駆動し、上記温度差ΔTが確保されたら(5℃<ΔT)、省エネルギー性に優れた起動制御を行う。これにより、いわゆる寝込み駆動による運転が回避され、圧縮機の信頼性を確保することができる。 As described above, in the present invention, under the condition that the outside air temperature is low and the above temperature difference ΔT cannot be obtained, the rotation speed is higher than the starting rotation speed at the start control as the pre-start control before starting the compressor. After driving for a predetermined time and securing the temperature difference ΔT (5 ° C. <ΔT), start control having excellent energy saving is performed. As a result, the operation by so-called sleeping drive is avoided, and the reliability of the compressor can be ensured.

100 ヒートポンプ式給湯装置
1 圧縮機
2 四方弁
3 熱交換部(利用側熱交換器)
4 膨張弁
5 熱源側熱交換器
6 キュムレータ
7 ファン
10 冷媒回路
11 冷媒配管
51 吐出温度センサ
52 外気温度センサ
53 冷媒温度センサ
58 水温センサ
60 制御手段
70 貯湯タンク
100 Heat pump type hot water supply device 1 Compressor 2 Four-way valve 3 Heat exchanger (use side heat exchanger)
4 Expansion valve 5 Heat source side heat exchanger 6 Cumulator 7 Fan 10 Refrigerant circuit 11 Refrigerant piping 51 Discharge temperature sensor 52 Outside air temperature sensor 53 Refrigerant temperature sensor 58 Water temperature sensor 60 Control means 70 Hot water storage tank

Claims (4)

圧縮機、流路切替手段給湯端末内の水と冷媒との熱交換を行う利用側熱交換部および熱源側熱交換器を冷媒配管を介して順次接続してなる冷媒回路と、外気温度を検出する外気温センサと、制御手段とを含み、上記制御手段は、給湯運転開始時に上記圧縮機の回転数を上記外気温センサの検出値に応じて予め定められた所定の出発回転数から段階的に上昇させる起動制御を行うヒートポンプ式給湯装置において、
上記制御手段は、上記起動制御を行う前に、上記外気温センサにて検出される外気温度に応じて、上記圧縮機を上記出発回転数よりも高い回転数で所定時間駆動する起動前制御を行うことを特徴とするヒートポンプ式給湯装置。
A refrigerant circuit that sequentially connects a compressor, a flow path switching means , a heat exchange section on the user side that exchanges heat between water in a hot water supply terminal and a refrigerant, and a heat exchanger on the heat source side via a refrigerant pipe, and an outside air temperature. The control means includes an outside temperature sensor to detect and a control means, and the control means steps the rotation speed of the compressor from a predetermined starting rotation speed determined in advance according to the detection value of the outside temperature sensor at the start of the hot water supply operation. In a heat pump type hot water supply device that controls the start-up
It said control means, before the above activation control, depending on the outside air temperature detected by the outside air temperature sensor, a pre-boot control a predetermined time driving the compressor at a higher rotational speed than the starting rotational speed A heat pump type hot water supply device characterized by performing.
上記起動前制御時の圧縮機回転数は、上記外気温センサにて検出される外気温度ごとにそれぞれ一定値として設定されており、上記制御手段は、上記起動前制御実行中、上記起動前制御の圧縮機回転数を上記一定値に維持することを特徴とする請求項1に記載のヒートポンプ式給湯装置。 The compressor rotation speed during the pre-start control is set as a constant value for each outside air temperature detected by the outside air temperature sensor, and the control means is during the pre-start control execution and the pre-start control. The heat pump type hot water supply device according to claim 1, wherein the compressor rotation speed of the above is maintained at the above constant value. 上記制御手段は、上記外気温度が所定温度以下のときに上記起動前制御を行うことを特徴とする請求項1または2に記載のヒートポンプ式給湯装置。 The heat pump type hot water supply device according to claim 1 or 2, wherein the control means performs the pre-start control when the outside air temperature is equal to or lower than a predetermined temperature. 上記起動前制御における上記圧縮機の回転数は、上記外気温度が低くなるほど高くし、かつ、その駆動時間を上記外気温度が低くなるほど長くすることを特徴とする請求項1ないし3のいずれか1項に記載のヒートポンプ式給湯装置。 Any one of claims 1 to 3, wherein the rotation speed of the compressor in the pre-startup control is increased as the outside air temperature is lowered, and the driving time thereof is increased as the outside air temperature is lowered. The heat pump type hot water supply device described in the section.
JP2017031702A 2017-02-23 2017-02-23 Heat pump type hot water supply device Active JP6919780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017031702A JP6919780B2 (en) 2017-02-23 2017-02-23 Heat pump type hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017031702A JP6919780B2 (en) 2017-02-23 2017-02-23 Heat pump type hot water supply device

Publications (2)

Publication Number Publication Date
JP2018136099A JP2018136099A (en) 2018-08-30
JP6919780B2 true JP6919780B2 (en) 2021-08-18

Family

ID=63365870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017031702A Active JP6919780B2 (en) 2017-02-23 2017-02-23 Heat pump type hot water supply device

Country Status (1)

Country Link
JP (1) JP6919780B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172664B2 (en) * 2019-01-30 2022-11-16 株式会社富士通ゼネラル AIR CONDITIONER, CONTROL DEVICE FOR AIR CONDITIONER, CONTROL METHOD AND PROGRAM THEREOF
CN110030698B (en) * 2019-04-04 2021-08-24 重庆海尔空调器有限公司 Air conditioner control method and device and air conditioner
CN110486916B (en) * 2019-09-03 2020-10-23 珠海格力电器股份有限公司 Refrigeration control method, device, equipment, system and storage medium
CN111473466B (en) * 2020-04-21 2022-03-22 宁波奥克斯电气股份有限公司 Frequency control method and air conditioner
CN114234468B (en) * 2021-12-15 2023-08-18 广东芬尼克兹节能设备有限公司 Heat pump device control method, device, unit, computer equipment and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3742858B2 (en) * 2002-01-30 2006-02-08 ダイキン工業株式会社 Heat pump water heater
JP4552388B2 (en) * 2003-05-28 2010-09-29 パナソニック株式会社 Compressor operation control method, control apparatus, refrigerant compressor, and refrigeration apparatus
JP5982839B2 (en) * 2012-01-31 2016-08-31 株式会社富士通ゼネラル Heat pump cycle equipment

Also Published As

Publication number Publication date
JP2018136099A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6919780B2 (en) Heat pump type hot water supply device
JP2019049393A (en) Hot water heating system
JP2012032091A (en) Heat pump cycle system
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
JP6749471B2 (en) Air conditioner
JP5589607B2 (en) Heat pump cycle equipment
JP2011214736A (en) Heat pump type hot water supply device and method of controlling the same
JP3742858B2 (en) Heat pump water heater
JP2009121789A (en) Air conditioner
JP5194492B2 (en) Heat pump water heater
JP2012007751A (en) Heat pump cycle device
JP6086074B2 (en) Heat pump type hot water heater
JP6394329B2 (en) Heat pump type hot water heater
JP6428373B2 (en) Heat pump type hot water heater
JP2013170764A (en) Heat pump cycle device
JP3703995B2 (en) Heat pump water heater
JP6102794B2 (en) Heat pump type hot water heater
JP6094518B2 (en) Heat pump type hot water heater
JP6982272B2 (en) Heat pump type hot water supply device
JP4334153B2 (en) Heat pump water heater
JP6098557B2 (en) Heat pump type hot water heater
JP6086084B2 (en) Heat pump type hot water heater
JP6354574B2 (en) Heat pump type hot water heater
JP2015052438A (en) Refrigeration unit
JP6136158B2 (en) Heat pump cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R151 Written notification of patent or utility model registration

Ref document number: 6919780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151